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Abstract

This paper proposes a well-suited strategy for High Performance Comput-

ing (HPC) of density-based topology optimization using Graphics Processing

Units (GPUs). Such a strategy takes advantage of Massively Parallel Process-

ing (MPP) architectures to overcome the computationally demanding proce-

dures of density-based topology design, both in terms of memory consumption

and processing time. This is done exploiting data locality and minimizing both

memory consumption and data transfers. The proposed GPU instance makes

use of different granularities for the topology optimization pipeline, which are

selected to properly balance the workload between the threads exploiting the

parallelization potential of massive parallel architectures. The performance of

the fine-grained GPU instance of the solving stage is evaluated using two pre-

conditioning techniques. The proposal is also compared with the classical CPU

implementation for diverse topology optimization problems, including stiffness

maximization, heat sink design and compliant mechanism design.
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1. Introduction

Topology optimization aims to find the optimal distribution of material

within a design domain such that an objective function is minimized under cer-

tain constraints [1]. Contrary to size and shape optimization methods, topology

optimization permits to obtain a material distribution without assuming any

prior structural configuration. This provides engineering designers with a pow-

erful tool to find innovative and high-performance conceptual designs at the

early stages of the design process. Not to mention the great impact of the opti-

mization of geometry and topology on the structural performance. This problem

has sparked a broad interest since the early work of Bendsøe and Kikuchi [2],

giving rise to a multitude of studies in a wide range of physics problems, such

as stiffness maximization of structures [3], design of compliant mechanisms [4],

maximization of temperature diffusivity [5], and minimization of acoustic emis-

sion [6], to name but a few [7].

Shape and topology optimization methods can be broadly classified into

three main categories depending on the representation used to describe the

shapes they involve: density-based methods, Eulerian methods and Lagrangian

methods. The methods included in the first category operate on a fixed grid

of finite elements and seek an optimal void/solid material distribution that

minimizes an objective function. The homogenization method [2, 8] and the

Solid Isotropic Material Penalization (SIMP) method [1, 9] are some examples

of the most popular topology optimization approaches included in this category.

The second category is composed of methods that use an implicit representation

of the structural boundary. Such a boundary can be modified by tracking the

motion of a level-set function, as is done in the Level-Set Method (LSM) [10, 11,

12], or by evolving the interfacial dynamics of phase field equations, as occurs in

the phase field models [13]. The third category is composed of methods that use

an explicit representation of the structural shape by means of a computational

mesh or CAD model [14, 15]. This work deals with the efficient computation of

density-based topology optimization methods using GPU computing.

2



Despite the great advances made in theory and practical application of topol-

ogy optimization in the past decade, the computational requirements still remain

as a primary challenge [7]. This is due to some demanding tasks involved in the

topology optimization pipeline, such as the solving of large systems of equations,

the computation of sensitivities and the filtering strategy. Such tasks may in-

crease meaningfully the computation time of the topology optimization process,

which may takes hours or even days for relatively large models. High Perfor-

mance Computing (HPC) is then needed to address the topology optimization

process, normally making use of task-level parallel computing to address the

computationally intensive tasks [16, 17, 18].

The use of Graphics Processing Units (GPUs) for non-graphics applications

is rapidly growing in popularity [19, 20]. This is due to the high computing

capacity of these graphics cards for Massively Parallel Processing (MPP) at

reasonable cost. GPU computing consists of the use of a GPU together with

a CPU to accelerate compute intensive applications. This is not a simple goal

since there exist numerous problems that prevent the use of GPU computing

for certain scientific applications, such as memory related problems and lack of

data-level parallelism. The memory related problems include excessive global

memory transactions, non-coalesced global loads and stores that degrade global

memory bandwidth, and shared memory accesses inducing bank conflicts, to

name but a few. The lack of data-level parallelism prevents the exploitation of

Single Instruction Multiple Data (SIMD) parallel computation for which GPU

architectures are designed. Therefore, the proper implementation of topology

optimization methods using GPUs requires a suitable formulation and selection

of techniques allowing making use of the potential acceleration of massive paral-

lel architectures and preventing memory related problems [21], which constraint

severely the GPU performance.

GPU computing has been successfully used in diverse engineering and sci-

entific problems requiring numerical analysis. One can mention the accelera-

tion of the solving of parametric integral equations in elasticity [22], system of

equations in finite element problems [23] and peridynamic systems in peridy-
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namic models of solid mechanics [24, 25, 26]. These graphics devices are also

successfully used for real-time simulation and haptic feedback of soft tissue de-

formations [27, 28], which are especially useful for the development of realistic

simulators. Besides, relevant results are obtained for the structural solver of

finite element explicit dynamics problems using GPU computing [29]. These

graphics cards have also shown promising results in heterogeneous systems ad-

dressing large-scale problems in Finite Element Analysis (FEA) [30]. The use of

these devices to speedup computationally demanding tasks in the topology op-

timization pipeline has sparked a broad interest last years, giving rise to several

studies.

The early work of Wadbro and Berggren [31] aims to solve large topology op-

timization problems using a gradient-based optimality criterion method. This

early work implements a Preconditioned Conjugate Gradient (PCG) method

on GPU to solve high resolution finite element models arising in heat conduc-

tion topology optimization problems. The grain size of this GPU instance is at

the element level. The lack of native double-precision support for early GPUs

limited the GPU instance to single-precision format, which not ensures the con-

vergence of the solver due to round-off errors. A nodal-wise assembly-free GPU

implementation for the solver of the SIMP method is proposed in [32]. Applied

to the minimization of the structural compliance problem, this GPU instance

achieves significant speedups following the strategy of loading three successive

2D slices of the third dimension into shared memory to perform the computa-

tions required by the middle slice efficiently. Such a slice-wise and nodal-based

strategy is also adopted in [33] achieving speedups of one order of magnitude

for the solving of the system of equations of elasticity. GPU computing is also

used to increase the tractable computational resolution of topology optimiza-

tion problems using discrete level-set methods [34] and evolutionary structural

optimization methods [35].

GPU computing using the sparse-matrix representation permits to efficiently

assembly and solve the system of equations of elasticity [36]. However, a higher

performance can be achieved exploiting the grid regularity and performing the
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operations “on-the-fly”. The former permits to exploit data locality providing

reduced memory accesses and making use of on-chip memory, which is much

more efficient than global device memory. The latter avoids storing the matrix

of coefficients explicitly in the global device memory, which affects seriously the

GPU performance. For these reasons, matrix-free GPU implementations using

regular grids show good performance results for the Finite Element Analysis

(FEA). The GPU instance of PCG solver using geometric multigrid precon-

ditioning in topology optimization configured to perform a reduced number of

FEAs and iterations per FEA, permitted Wu et al. [37] to solve large-scale prob-

lems in a short time. This is done configuring the iterative method with low tol-

erance level along with SIMP method using standard Optimality Criteria (OC)

method [1]. The GPU instance is based on the node-wise GPU parallelization

proposed by Dick et al. [38], where the grid regularity is exploited to perform

coarsening and matrix-vector operations efficiently. Besides, the operations at

the finest level are performed “on-the-fly” to increase the GPU performance.

This paper proposes a multi-granular GPU implementation of the differ-

ent stages involved in density-based topology optimization methods. On the

one hand, a fine-grained GPU implementation of matrix-free PCG solver for

structural analysis is adopted. The regularity of the grid permits to exploit

data locality maximizing the GPU performance for FEA [39]. The granularity

of matrix-vector multiplication operations is at the Degree of Freedom (DoF)

level, which allows reducing and balancing the workload for all the threads of

the MPP architecture [23, 40]. Another key point for increasing the GPU per-

formance is that matrix-vector multiplication operations are launched by three-

dimensional kernels using cache data in shared memory for the corresponding

three-dimensional blocks. This strategy permits to increase the use of on-chip

memory, i.e. the cache data in shared memory, by the threads performing the

operations for the corresponding DoF. This achieves a significant improvement

for solving the system of equations using GPU computing. The performance

of the GPU instance for the solving stage is evaluated in terms of speedup and

wall-clock time analyzing two preconditioning techniques; in particular, Jacobi
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Figure 1: (a) Thread batching and memory model and (b) memory hierarchy of CUDA.
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preconditioner and geometric multigrid preconditioner. On the other hand, the

calculation of sensitivities, filter and density update are also implemented us-

ing GPU computing in order not to limit the theoretical speedup according to

Amdahl’s law [41]. The granularity of such tasks is at the finite element level

due to the nature of the operations do not allow us to reduce the grain size,

which usually improves the GPU performance. The proposed matrix-free GPU

instance is compared to the classical sparse-matrix CPU implementation for

diverse topology optimization problems, including stiffness maximization, heat

sink design and compliant mechanism design. The speedups and relative wall-

clock time in density-based topology optimization pipeline is also studied for

such topology optimization problems.

The paper is organized as follows. Section 2 provides an overview of the

GPU architecture and the CUDA programming model. The bases and the the-

oretical background of density-based topology optimization methods are briefly

reviewed in section 3. The proposed GPU implementation of SIMP method is

presented in section 4. Section 5 is devoted to the numerical experiments and the

performance evaluation of the proposed matrix-free GPU instance with respect

to the classical sparse-matrix CPU implementation. Finally, the conclusion of

the proposed GPU instance is presented in section 6.

2. GPU and CUDA architecture

GPU devices were initially designed to satisfy the market demand of real-

time and realistic 3D visualization. The use of these graphic cards, with mas-

sively parallel architecture, in non-graphics HPC applications is becoming very

popular due to their high computing capacity at a reasonable cost. Currently,

the use of Nvidia devices and its programming model, Compute Unified De-

vice Architecture (CUDA) [42], is the prevailing tendency, which is adopted in

the developments presented in this work. Such a programming model allows

to view the GPU as a compute device able to perform data-parallel computa-

tion (data/SIMD parallelism) using multiple cores. The parallel code (single
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instruction) is defined as a C Language Extension function, called kernel, which

is executed by a lot of CUDA threads using different data (multiple data). The

kernel call, invoked from the host (CPU) to the device (GPU) as shown in Fig-

ure 1(a) taken from [43], should specify the number of CUDA threads organized

as a grid of thread blocks.

The CUDA threads have only access to the device SGRAM (Synchronous

Graphic Random-Access Memory), a type of DRAM (Dynamic Random-Access

Memory) with high bandwidth interface for graphics-intensive functions, and to

the on-chip SRAM (Static Random-Access Memory) through the memory spaces

depicted in Figure 1(a). The blocks are batch of threads able to cooperate

by sharing data through shared memory and to synchronize their execution

coordinating memory accesses. A key point is that CUDA architecture is built

around a scalable array of multithreaded Streaming Multiprocessors (SMs). The

blocks of the grid, invoked by each kernel, are distributed to SMs depending

on their execution capacity, which includes on-chip memory resources. The

use of on-chip memory, much faster than SGRAM memory, is of paramount

importance to increase significantly the GPU performance.

For that reason, the CUDA memory hierarchy, shown in Figure 1(b), is cru-

cial to optimize memory access and achieve a reasonable performance. We can

observe that each SM has the following on-chip memory: one set of registers

(R) per processor (C) and a shared memory, a read-only constant cache and a

read-only texture cache. These memory resources are shared by all cores (Ci) of

such a SM. This fact implies that the amount of blocks that a SM can process at

once depends on the number of registers per thread and the shared memory per

block required for a given kernel. For this reason, the use of shared memory can

show relatively poor performance for computation using large arrays. CUDA

cannot schedule more blocks to SMs than the multiprocessors can support in

terms of shared memory and register usage, and thus the occupancy (number

of active warps) is deteriorated. A key point for the proposed GPU instance is

that the constant memory is stored in SGRAM but data are read through each

multiprocessor constant cache, which is on-chip memory. Constant memory is
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also optimized for broadcast, i.e. when warp of threads read same location, but

it is however serialized when warp of threads read in different locations. For

these reasons, the proposed GPU instance uses constant memory for storing

the common elemental stiffness matrix, whereas the use of shared memory is

limited to unknowns and elemental densities. Such a strategy achieves a signif-

icant GPU performance for the calculations involved in density-based topology

optimization.

The software developments using CUDA consist in the following steps: i)

memory allocation and transaction, ii) kernel execution on GPU and iii) copy

back the results to the host. The strategies to optimize code in GPU com-

puting can be summarized as follows: i) optimization of parallel execution to

achieve maximum use of cores, ii) optimization of memory management to facil-

itate coalesced memory accesses, iii) optimization of instruction usage to achieve

maximum instruction performance, and iv) optimization of communications to

achieve minimal synchronization between parallel executions. The different ef-

fects of the proposed GPU implementation can be explained using these opti-

mization criteria.

3. Density-based topology optimization

Topology optimization can be defined as a binary programming problem

that aims to find the optimal material layout (solid and void) that minimizes

an objective function. Such a material layout should satisfy a set of prescribed

constraints in the design domain. Density-based methods are the most widely

used topology optimization methods due to its conceptual simplicity, which has

facilitated its application in industrial software [44]. In these methods, the

integer-based topology optimization problem is relaxed to a formulation based

on artificial continuous material densities, which permits the use of gradient-

based solvers. The topology optimization problem can be stated as

9



min
ρ

f(ρ,u)

s. t. : K(ρ)u = f (1)

: V (ρ) ≤ V ∗

: 0 ≤ ρ(x) ≤ 1, x ∈ D

where f is the objective function, ρ is the vector of density design variables, u is

the system response, K is the global stiffness matrix, f is the force vector and x is

the vector of finite elements. The design domain is denoted by D and the volume

of material V (ρ) is constrained to be smaller than a prescribed target V ∗. The

unknown densities, ρ(x), are used to scale the stiffness of the finite elements of

the regular grid. In practice, this parametrization leads to designs with large

areas of intermediate densities which, even though being numerical optimal, are

impossible to manufacture. This problem is normally addressed using implicit

relaxation/penalization techniques, which drive the topology design towards

solid/void configurations. The SIMP method [9, 45] makes use of such implicit

penalization techniques by a power-law interpolation function between void and

solid to determine the stiffness matrix of each element Ke as follows

Ke = Kmin + ρe
p (K0 −Kmin) , (2)

where K0 and Kmin > 0 are the stiffness matrix of solid and void material

respectively, and p > 1 is the penalization power. For problems where the

volume constraint is active, Bendsøe and Sigmund [46] prove that the power-

law interpolation function is perfectly valid when p is sufficiently large. In

particular, p ≥ 3 is usually required to obtain black-and-white designs.

Although the use of material interpolation schemes enables to obtain almost

solid-and-void designs, they destroy the convexity of the optimization problem

increasing the risk of ending in local minima. However, it is common to use con-

tinuation methods to mitigate the premature convergence to local minima when

solving the optimization problem, see e.g. [47]. According to [48], continuation
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methods take “global” information into account and are more likely to ensure

“global” convergence or at least convergence to better designs. Different con-

tinuation methods have been proposed based on the idea of gradually change

the optimization problem from a convex problem to the original non-convex

problem.

The topology optimization problem should also be regularized using addi-

tional constraints on the density field to avoid numerical difficulties and model-

ing problems, such as mesh-dependency of solutions and checker-board patterns

[1] respectively. The sensitivity filter [4] is adopted in this work because it has

proven to be effective in practice producing mesh-independent solutions. More-

over, the filtering of gradients has a continuum mechanics motivation and may

promote convergence of some length scales over others, and thereby speeds up

convergence [49]. Furthermore, the sensitivity filter has computational advan-

tages because it is not included in the OC updating scheme loop. One drawback

is, however, that there remain discrepancies between the filtered sensitivities and

the actual sensitivities, i.e. the modified sensitivities do not completely corre-

spond to the objective function. In theory, this may lead to some divergence

problems though proper designs are obtained in practice. The sensitivity filter

applies a smoothing filter to the derivatives of the objective function as follows

∂̂f(ρ)

∂ρe
=

∑

i∈NBe

w(xi,xe)ρi
∂f(ρ)

∂ρi

max(γ, ρe)
∑

i∈NBe

w(xi,xe)
, (3)

where NBe is the neighborhood set of an element e, w(xi,xe) is a weighting

function and γ > 0 is a small value to prevent the division by zero. The linear

weighting function is used in this work, which is defined as

w(xi,xe) =





R− ||xi − xe|| if||xi − xe|| ≤ R
0 if||xi − xe|| > R

,
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whereas the neighborhood set of an element e is defined as

NBe := {i | dist(i, e) ≤ R}, (4)

where R is the filter size and dist(i, e) is the Euclidean distance between the

center of element i and the center of element e.

The SIMP method can be applied to diverse physics problems. The numer-

ical experiments of this work address the stiffness maximization of continuum

structures, the heat sink design cooled by heat conduction and the compliant

mechanism design problems. The objective function for the minimization of

structural compliance (maximization of stiffness) and the minimization of ther-

mal compliance (maximization of heat transfer) is given by

f = c = fTu, (5)

whereas the objective function for the compliant mechanism design, consisting

of the maximization of output displacements, is as follows

f = −uout = −lTu, (6)

where f and u are the global force/thermal load and displacement/temperature

vectors respectively for elasticity/heat transfer problems, and l is a vector with

ones at the Degrees of Freedom (DoF) of the output displacements uout and

zeros in all other positions. Considering the discretized linear state system

Ku = f and using the adjoint state method, the sensitivity of (5) and (6) with

respect to the state variables ρ is as follows

fρ =
∂f

∂ρ
= −u∗T

∂K

∂ρ
u = −u∗T(pρp−1 (K0 −Kmin) u, (7)
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where u∗ is given by the solution of the adjoint problem as follows

Ku∗ =
∂f

∂u
. (8)

The right hand side of the adjoint problem is ∂f/∂u = f for the minimization

of both structural and thermal compliance, which means that these problems

are self-adjoint and the solution of (8) is u∗ = u. Conversely, the right hand

side of (8) is ∂f/∂u = l for the compliant mechanism design, which requires

the solving of the adjoint system (8) to obtain u∗.

The sensitivities given by (7) permit to update the design variables ρ using

sequential convex approximations, such as the Sequential Quadratic Program-

ming (SQP) [50] and the Method of Moving Asymptotes (MMA) [51]. The

Optimality Criterion (OC) updating scheme proposed by [52] and modified by

[53] is adopted in this work due to its numerical efficiency. The OC updating

scheme is as follows

ρek+1
=





max{(1− ζ)ρek , 0} if ρekB
η
ek
≤ max{(1− ζ)ρek , 0},

min{(1 + ζ)ρek , 1} if min{(1 + ζ)ρek , 1} ≤ ρekBηek ,
(ρekB

η
ek

)q otherwise,

(9)

where ζ is a positive step width, η is a numerical damping coefficient, q is a

penalty factor to further achieve black-and-white topologies (typically q = 2)

and

Bek = −∂f(ρ)

∂ρe

(
λ
∂V (ρ)

∂ρe

)−1
= 1 (10)

is the Karush-Kuhn-Tucker (KKT) optimality condition. The Lagrange multi-

plier λ is found using the bisection method. The algorithm stops when the maxi-
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mum number of iterations is reached or when the change variable ||ρek+1
−ρek ||∞

and the change in the objective function |fk+1−fk| fall below a prescribed value.

The FEA is the principal bottleneck of the topology optimization pipeline.

This stage involves two computational intensive tasks: the assembly of the local

element equations into a global system of equations and the solving of such

a system. These computational intensive tasks can lead to an unaffordable

problem in terms of computation time and memory consumption. This problem

is exacerbated when dealing with large-scale models [54] or when the system

response needs to be re-evaluated, as occurs in topology optimization. Iterative

solvers and assembly-free methods have been extensively used for reducing the

memory requirements of FEA at the cost of increasing the processing time of

the solve step, which is commonly alleviated using parallel computing.

4. GPU implementation of SIMP method

GPU computing is used to accelerate the computationally intensive tasks

involved in the SIMP method. Such tasks are shown in the flowchart depicted

in Figure 3; in particular, the Finite Element Analysis (FEA), the calculation

of the sensitivities, the filtering strategy and the OC updating scheme. The

custom-developed CUDA kernels and the techniques adopted for the efficient

implementation of these computationally intensive tasks on GPU architectures

are detailed below.

4.1. Finite Element Analysis (FEA)

In this work, the performance of the solving stage is evaluated using a matrix-

free PCG method with two different preconditioning techniques: geometric

multigrid preconditioner and Jacobi preconditioner. The geometric multigrid

methods are based on the smoothing property and the coarse grid principle.

The former reduces the high frequency error components whereas the latter

approximates the low frequency error components on coarser grids, which are

then prolonged to the finer grids. Their major advantage is that they have
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an asymptotically optimal complexity of O(N) and provide mesh-independent

convergence and good parallel scalability [55]. However, the performance of

these methods deteriorates with increasing contrast in material properties [56].

This is attributed to the coarsening across discontinuities which affects to the

coarse grid correction [57]. Nevertheless, the use of geometric multigrid as pre-

conditioning technique shows good convergence rates for topology optimization

problems using a sufficiently strong smoothing operator [58].

The use of a regular grid permits to calculate and store the common ele-

mental stiffness matrix at the finest grid Ke
0 only once at the beginning of the

optimization, whereas the global matrix K at the finest grid can be calculated

“on-the-fly” using the elemental properties d = Evoid + ρp(Esolid − Evoid) (for

simplicity) for each analysis. This reduces meaningfully the use of device mem-

ory and permits to exploit the data locality [39]. Such an approach is enough for

the Jacobi preconditioning but the geometric multigrid preconditioner requires

the assembled coefficients at the coarser levels, which are computationally in-

tensive to calculate “on-the-fly” and require significant memory resources when

they are stored. In particular, a Galerkin-based coarsening is required and the

assembled coefficients at the coarser levels need to be stored. This deteriorates

the GPU performance due to the global memory accesses through large memory,

which does not permit to exploit data locality.
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Algorithm 1: DbD PCG algorithm (dbdPCG)
Data: Ke0, f0, u0, d, tol, kmax, µ1, µ2, n`, ω, Ic, I, C, DoFn, nx, ny , nz

Result: u

1 ρ0 ← 0; γ0 ← 0; k ← 0; ` ← 0; // Host initialization

2 u ← u0; f ← f0; // Device initialization

3 r ← dbdMVP(u, d, Ke0, `, Ic, I, C, DoFn, nx, ny , nz); // r = Keu

4

5 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdKer1)

6 if (u < NDoF ) then

7 r(u) ← f(u) − r(u);

8 end

9 if Multigrid then // Multigrid preconditioning

10 z ← VCycle(Ke0, r,d, `, n`, ω, Ic, I,C, µ1, µ2, nx, ny, nz,DoFn);

11 else if Jacobi then // Jacobi preconditioning

12 z ← dbdJacP(d,Ke0);

13 end

14

15 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdKer2)

16 if (u < NDoF ) then

17 p(u) ← r(u);

18 b(u) ← z(u)r(u);

19 c(u) ← f(u)f(u);

20 end

21

22 ρ0 ← ρ0 +
∑NDoF−1
u=0 b(u); // Reduction using thrust library

23 γ0 ← γ0 +
∑NDoF−1
u=0 c(u);

24 while (
√
ρk > tol · √γk ) and ( k < kmax ) do

25 k ← k + 1;

26 a ← dbdMVP(p, d, Ke0, `, Ic, I, C, DoFn, nx, ny , nz); // a = Kep

27 φk ← 0;

28

29 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdKer3)

30 if (u < NDoF ) then

31 b(u) ← a(u)p(u);

32 end

33

34 φk ← φk +
∑NDoF−1
u=0 b(u); // Reduction using thrust library

35 αk ← ρk−1/φk;

36

37 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdKer4)

38 if (u < NDoF ) then

39 u(u) ← u(u) + αkp
(u);

40 r(u) ← r(u) − αka
(u);

41 end

42 if Multigrid then // Multigrid preconditioning

43 z ← VCycle(Ke0, r,d, `, n`, ω, Ic, I,C, µ1, µ2, nx, ny, nz,DoFn);

44 end

45

46 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdKer5)

47 if (u < NDoF ) then

48 b(u) ← z(u)r(u);

49 end

50

51 ρk ← ρk +
∑NDoF−1
u=0 b(u); // Reduction using thrust library

52 βk ← ρk/ρk−1;

53

54 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdKer6)

55 if (u < NDoF ) then

56 p(u) ← r(u) + βkp
(u);

57 end

58 end

16



The GPU instance to calculate and store the assembled matrices of coeffi-

cients C at the coarser levels is of paramount importance for an efficient geomet-

ric multigrid implementation. The use of a regular grid permits to know a priori

that the contributions to the matrix of coefficients are bounded by 8 elements

and by 27 nodes per node. This permits to set the maximum size of global stiff-

ness coefficients per node, which is bounded by 27 matrices of dimension 3 × 3.

Such 27 matrices are related to the contributions of the 33 grid neighborhood

of the node. This storage scheme requires the indexes of the adjacent nodes,

which are stored on a vector I of integers where -1 means that the node does

not exit. The storage of the global stiffness matrix C per node has a similar size

than using a sparse-matrix representation but permits to allocate the required

memory for the assembly at the beginning, which has significant computational

benefits for GPU computing.

The coefficient matrices for the coarser levels are obtained from the finer lev-

els using a Galerkin-based coarsening following `+1C = R`+1
`

`C P`
`+1, where

R and P are the restriction and prolongation operators respectively. Following

[38], the coarsening operation is computed in a node-by-node matrix-free fash-

ion using a two-step approach. Firstly, a linear combination of the 33 fine grid

neighborhood of considered node is performed, corresponding to a linear com-

bination of the rows of `C. Secondly, these coefficients are interpolated to the

coarser grid vertices, corresponding to a linear combination of the columns of

`C. These operations require the vector Ie of indexes of the elements contribut-

ing to each node. The GPU instance for the coarsening is performed assigning

one CUDA thread to the calculation of each one of the 27 matrices of coefficients

per node of the coarser level. This fine granularity provides good performance

in the calculation of the matrices of coefficients at the coarser levels. The as-

sembled matrices of coefficients `C at the coarser levels ` are calculated and

stored in the device memory. The global matrix K of the finest grid is calcu-

lated “on-the-fly” using the elemental matrix Ke
0 and the elemental properties d

of the topology optimization. This is done for both preconditioners and allows

exploiting data locality alleviating mostly of memory related problems in GPU

17



blockDim.z

blo
ckD

im
.y

blockDim.x
halo

.y

halo
.y halo.x

halo.xhalo.z

halo.z

Figure 2: Cache data in shared memory by 3D block.

architectures.

The pseudocode of the DoF-by-DoF (DbD) PCG or dbdPCG GPU instance

using both preconditioners for FEA is shown in Algorithm 1. Such an algo-

rithm assumes that the hierarchical grids are composed of equally sized first-

order isoparametric hexahedral elements. For the finest grid, this tessellation

provides a set EEE of Nele elements, a set NNN of Nnod nodes and a set UUU of

NDoF unknowns. The vector Ic indicating the boundary conditions per node is

also required to impose the Dirichlet conditions to the corresponding DoFs at

the finest level. Thus, the input data of the dbdPCG algorithm for the finest

level are the common elemental stiffness matrix Ke
0, the vector of forces f0, an

initialization of displacements u0, the vector of elemental properties d of the

topology optimization, the vector Ic indicating the boundary conditions per

node, the number of divisions of the grid (nx,ny,nz) and the number of DoF per

node DoFn (DoFn = 3 for elasticity and DoFn = 1 for heat conduction prob-

lems). Additionally, for the coarser level the vector I of adjacent nodal indexes

per node and the assembled matrices of coefficients C per level are also included

as input data. Note that the data of the coarser levels is not needed for the

Jacobi preconditioner. Finally, the algorithm also requires the tolerance tol and
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the maximum number of iterations kmax for the stopping criteria of the iterative

method, the number of grid levels n`, the number of pre- and post-smoothing

steps µ1 and µ2, and the damping factor for Jacobi smoothing ω. The GPU

instance of PCG requires the matrix-vector product (dbdMVP) for both pre-

conditioners. Besides, it also requires the diagonally preconditioner (dbdJacP)

for the Jacobi preconditioning and the Vcycle preconditioner (Vcycle) for the

geometric multigrid preconditioning.

Algorithm 2: DbD Jacobi preconditioner (dbdJacP)

Data: d, Ke
0

Result: M // Preconditioner

1 u← threadId+BlockDim×BlockId; // CUDA kernel

2 if (u < NDoF ) then

3 M(u) ← 0;

4 EEE (u) ← Determine index of elements containing u;

5 foreach e ∈ EEE (u) do

6 UUU (e) ← Determine the unknowns of e ;

7 i← Extract index of u from UUU (e) ;

8 M(u) ←M(u) + d(e)Ke
0ii

;

9 end

10 M(u) ← 1/M(u);

11 end

Additionally, the GPU instance requires the calculation of diverse vector

arithmetic operations which are implemented using custom developed CUDA

kernels, labeled with “dbdkerX”, with granularity at the DoF level. Some of

these kernels require the synchronization of the threads involved in the compu-

tation to add the resulting data of all these threads. This can be done using

atomic addition in CUDA, which permits to read, modify, and write a value

back to device memory without the interference of any other threads. However,

its use should be minimized because the operations are serialized when the same

memory address is accessed at the same time, which can deteriorate the perfor-

mance of the kernel execution. For this reason, the addition is computed as a

reduction using the thrust library.
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Algorithm 3: Vcycle Preconditioner (Vcycle)

Data: Ke0, `r, d, `, n`, ω, Ic, I, C, µ1, µ2, `nx, `ny , `nz , DoFn

Result: `z // Preconditioner

1 `z ← 0;

2 foreach i = 1 : µ1 do

3 `s ← dbdDJS(`z, `r,d,Ke0, `, Ic, I,C,
`nx,

`ny,
`nz,DoFn);

4 `z ← `s;

5 end

6 `z ← dbdMVP(`z, d, Ke0, `, Ic, I, C, `nx, `ny , `nz , DoFn); // `z = `Ke`z

7

8 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdV1)

9 if (u < `NDoF ) then

10 `v(u) ← `r(u) − `z(u);

11 end

12

13 `+1v ← R
`+1
`

(`v); // CUDA kernel – Restriction (nbnVRest)

14 if ` + 1 == n` then // Coarsest level

15 `+1v ← Copy to Host memory;

16 `+1w ← Solve system
(
n`K

)(
`+1w

)
= `+1v; // Direct solver

17 `+1w ← Copy to Device memory;

18 else // Recursion

19 `+1w ← VCycle(Ke0,
`+1v,d, ` + 1, n`, ω, Ic, I,C, µ1, µ2,

`+1nx,
`+1ny,

`+1nz,DoFn)

20 end

21

22 `v ← P``+1(`+1w); // CUDA kernel – Prolongation (nbnVProl)

23

24 u ← threadId + BlockDim × BlockId; // CUDA kernel (dbdV2)

25 if (u < `NDoF ) then

26 `z(u) ← `z(u) + `v(u);

27 end

28 foreach i = 1 : µ2 do

29 `s ← dbdDJS(`z, `r,d,Ke0, `, Ic, I,C,
`nx,

`ny,
`nz,DoFn);

30 `z ← `s;

31 end

The pseudocode of the Jacobi preconditioner (dbdJacP) kernel is detailed

in Algorithm 2. It calculates the Jacobi preconditioner “on-the-fly” using the

common stiffness matrix Ke
0 and the vector d containing the elemental Young’s

modulus/thermal conductivity for elasticity/heat conduction problems. This

simple preconditioner is computationally cheap and only requires storing a vec-

tor of the dimension of unknowns. The pseudocode of the matrix-vector product

(dbdMVP) kernel is shown in Algorithm 5. This algorithm performs the matrix-

vector operation “on-the-fly” for the finest level (` = 0) using the vector d and

the common stiffness matrix Ke
0. For the coarser levels, it takes the matrix of

coefficients contributing to the node to perform the operation. Nevertheless,

the grain size of the operations is at the DoF level.

A key point to perform the matrix-vector multiplication operations efficiently
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using GPU computing is the maximization of the use of on-chip memory. This

is done in the proposed GPU instance by launching a three-dimensional CUDA

kernel for such an operation. The displacements p and elemental properties d

involved in the calculation required by the threads of the block are cached on

shared memory. This requires to store some halo values of the unknowns of

neighbor nodes. Figure 2 shows the dimension of the thread block in gray color

whereas the size of shared memory required by elasticity problems operating at

the DoF level should include the halo of neighbor nodes, which is depicted in

red color. The unknown displacements are cached on the x dimension, which

requires a higher halo than the other dimensions. The block size of three-

dimensional kernel can be tuned to maximize the use of shared memory by the

threads of each block, which can improve significantly the GPU performance as

shown in the numerical experiments.
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Algorithm 4: DbD Damped Jacobi Smoother (dbdDJS)
Data: z, r, d, Ke0, `, ω, Ic, I, C, nx, ny , nz , DoFn

Result: s

1 hp < x, y, z > ← < DoFn, 1, 1 >; hd < x, y, z > ← < 1, 1, 1 >;

2

3 idx ← threadIdx.x + blockDim.x · blockIdx.x; // CUDA kernel

4 idy ← threadIdx.y + blockDim.y · blockIdx.y;

5 idz ← threadIdx.z + blockDim.z · blockIdx.z;

// Copy to shared memory per block

6 z s[blockDim.x + 2 · hp.x][blockDim.y + 2 · hp.y][blockDim.z + 2 · hp.z] ← z;

7 d s[blockDim.x/hp.x − 1 + 2 · hd.x][blockDim.y − 1 + 2 · hd.y][blockDim.z − 1 + 2 · hd.z] ← d;

8 syncthreads(); // Synchronize threads in the block

9 if (idx < (nx + 1)) && (idy < (ny + 1)) && (idz < (nz + 1)) then

10 u ← (idz ∗ ((nx + 1) ∗ (ny + 1))) + (idy ∗ (nx + 1)) + idx ;

11 n1 ← Determine node containing u;

12 v ← Determine the unknowns of n1;

13 i ← Extract index of u from v;

14 foreach k = 0 : 26 do // Loop 1

15 n2 ← `In1
k ;

16 w ← Determine the unknowns of n2;

17 if n2 > −1 then

18 if ` == 0 then // assembly on-the-fly

19 foreach e ∈ EEE(n1) do

20 if n2 ∈NNN (e) then

21 A ← A + d s(e)
(
Ke0

)
v,w

;

22 end

23 end

24 A ← Impose Dirichlet BC from Ic;

25 else

26 A ← `Cn1
k ; // (3X3) coefficients matrix

27 end

28 if n2 == n1 then

29 M ← 1/Ai,i;

30 end

31 foreach j = 0 : 2 do // Loop 2

32 s(u) ← s(u) − ωMAi,j
(
z s(w)

)
j
;

33 end

34 end

35 end

36 s(u) ← s(u) + ωMr(u);

37 end

The pseudocode of the geometric multigrid preconditioner (Vcycle) kernel is

shown in Algorithm 3. Such a preconditioning is carried out by a recursive call

to the V-cycle algorithm. The algorithm requires as input data the vector d, the

common elemental stiffness matrix Ke
0, the vector Ic of boundary conditions for

the finest level (` = 0) and the assembled matrix of coefficients C for the coarser

levels. It also needs the vector I of neighbor nodal indexes per node, the residual

`r and the parameters ω, µ1 and µ2 for all the levels. The algorithm performs

a matrix-vector product (dbdMVP) and the multigrid smoother (dbdDJS) for
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each level. Besides, diverse vector arithmetic operations are performed using

custom developed kernels. To transfer information between two consecutive

grids `+1Ω and `Ω, a nodal-based GPU instance of prolongation operator P`
`+1 :

`+1Ω → `Ω and restriction operator R`+1
` : `Ω → `+1Ω are introduced. The

geometric relationship between hierarchical grids allows us to avoid storing the

prolongation operator P`
`+1 and the restriction operator R`+1

` and to work with

the stencils instead, which are constant or can be computed “on-the-fly” when

needed. The number of levels ` is selected in order to ensure the coarsest level

is small enough to be solved using a sparse LU decomposition on CPU. When

the number of levels ` is properly selected, the number of DoFs in the coarsest

grid is relatively small and the system of equations can be solved with a direct

method on CPU. The pseudocode of the multigrid smoother (dbdDJS) kernel is

shown in Algorithm 4. Such a smoother is based on the damped Jacobi method,

which uses the inverse of the diagonal of global stiffness matrix with a relaxation

parameter ω.
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Algorithm 5: DbD Matrix-Vector Product (dbdMVP)

Data: p, d, Ke
0, `, Ic, I, C, nx, ny , nz , DoFn

Result: a // a = Kp

1 hp < x, y, z > ← < DoFn, 1, 1 >; hd < x, y, z > ← < 1, 1, 1 >;

2

3 idx← threadIdx.x+ blockDim.x · blockIdx.x; // CUDA kernel

4 idy ← threadIdx.y + blockDim.y · blockIdx.y;

5 idz ← threadIdx.z + blockDim.z · blockIdx.z;
// Copy to shared memory per block

6 p s[blockDim.x+ 2 · hp.x][blockDim.y + 2 · hp.y][blockDim.z + 2 · hp.z]← p;

7 d s[blockDim.x/hp.x−1+2·hd.x][blockDim.y−1+2·hd.y][blockDim.z−1+2·hd.z]← d;

8 syncthreads(); // Synchronize threads in the block

9 if (idx < (nx + 1)) && (idy < (ny + 1)) && (idz < (nz + 1)) then

10 u← (idz ∗ ((nx + 1) ∗ (ny + 1))) + (idy ∗ (nx + 1)) + idx ;

11 n1← Determine node containing u;

12 v← Determine the unknowns of n1;

13 i← Extract index of u from v;

14 foreach k = 0 : 26 do // Loop 1

15 n2← `In1k ;

16 w← Determine the unknowns of n2;

17 if n2 > −1 then

18 if ` == 0 then // on-the-fly

19 foreach e ∈ EEE (n1) do

20 if n2 ∈NNN (e) then

21 A← A + d s(e)
(
Ke

0

)
v,w

;

22 end

23 end

24 A← Impose Dirichlet BC from Ic;

25 else // device memory

26 A← `Cn1k ; // (3X3) coefficients matrix

27 end

28 foreach j = 0 : 2 do // Loop 2

29 a(u) ← a(u) +Ai,j

(
p s(w)

)
j
; // a = Kp

30 end

31 end

32 end

33

34 end
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4.2. Calculation of sensitivities

The calculation of sensitivities (7) is decomposed into element-wise op-

erations to exploit the parallelization potential of GPU architectures. The

pseudo-code of the Element-by-Element (EbE) custom-developed CUDA ker-

nel (ebeUKU) is detailed in Algorithm 6. The input data of such a CUDA

kernel are: the vector dρ, the result of the state u and adjoint state u∗ equa-

tions, the number DoFe of DoFs per element, the elemental stiffness matrix

K0, the number of divisions of the regular grid (nx,ny,nz) and the number of

DoF per node DoFn. The common elemental matrix K0 is stored in constant

memory. The algorithm is designed as a three-dimensional CUDA kernel using

on-chip memory for the vector d and the state u and adjoint state u∗ involved

in the calculation of the thread block. The sensitivity of each block element is

calculated by one thread, for which the unknowns UUU (e) attached to the element

e are determined making use of the grid regularity. The inner loops operate

on each degree of freedom of the element to calculate the sensitivities fρ
(e) ac-

cording to (7). Finally, the objective function f is computed using reduction

operation using the thrust library. The compliant mechanism synthesis also re-

quires the calculation of the objective function (uout) as well as the adjoint state

(u∗), which are calculated on GPU using the custom-developed CUDA kernel

detailed in Algorithm 1.
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Algorithm 6: EbE calculation of sensitivities (ebeUKU)

Data: dρ, u∗, K0, u, DoFe, nx, ny , nz , DoFn

Result: fρ, f // fρ = −d̂u∗K0u

1 f ← 0;

2

3 idx← threadIdx.x+ blockDim.x · blockIdx.x; // CUDA kernel

4 idy ← threadIdx.y + blockDim.y · blockIdx.y;

5 idz ← threadIdx.z + blockDim.z · blockIdx.z;
// Copy to shared memory per block

6 u s[DoFn · (blockDim.x+ 1)][blockDim.y + 1][blockDim.z + 1]← u;

7 u∗s[DoFn · (blockDim.x+ 1)][blockDim.y + 1][blockDim.z + 1]← u∗;

8 dρ s[blockDim.x][blockDim.y][blockDim.z]← dρ;

9 syncthreads(); // Synchronize threads in the block

10 if (idx < nx) && (idy < ny) && (idz < nz) then

11 e← (idz ∗ ((nx + 1) ∗ (ny + 1))) + (idy ∗ (nx + 1)) + idx ;

12 UUU (e) ← Determine the unknowns of e ;

13 foreach i ∈ {1, . . . , DoFe} do // Loop

14 foreach j ∈ {1, . . . , DoFe} do // Loop

15 fρ
(e) ← f

(e)
ρ + dρ s

(e)u∗s
(e)
j K0iju s

(e)
j ;

16 end

17 end

18 fρ
(e) ← −fρ(e); // sensitivities

19 end

20

21 f ← f +
∑NDoF−1
u=0 f

(u)
ρ ; // Reduction using thrust library

4.3. Filtering strategy

The filtering strategy aims to prevent numerical artifacts in the optimal solu-

tion. The Algorithm 7 shows the pseudo-code of the EbE GPU implementation

of the three-dimensional sensitivity filter (ebeFILTER) following (3). The input

data of such an algorithm are: the density design variables ρ, the vector of sen-

sitivities fρ, the finite element size (dx, dy, dz), the number of divisions of the

grid (nx,ny,nz) and the filter radius R. Note that the ebeFILTER kernel can-

not be implemented using a three-dimensional launching approach. This is due

to the radius size of (4) requires a large halo in all the dimensions of the cache

data using shared memory, which normally exceeds the limit of such a resource
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or forces to launch very small three-dimensional blocks that do not make use

of the parallelization potential of GPU computing. The kernel applies to each

element e ∈ EEE going through each element that falls within the projection of the

linear convolution function (3). The regularity of the grid permits to efficiently

look for the neighbors of the corresponding element, avoiding the use of a global

index table that requires a substantial number of memory accesses. The gran-

ularity of the ebeFILTER CUDA kernel is at the element level, assigning one

CUDA thread to each element when invoking such a kernel.

Algorithm 7: EbE sensitivity filter (ebeFILTER)

Data: ρ, fρ, dx, dy , dz , nx, ny , nz , R

Result: f̂ρ // Filtered sensitivities

1 sx ← floor(R/dx);

2 sy ← floor(R/dy);

3 sz ← floor(R/dz);

4 f̂ρ ← 0;

5 sum← 0;

6

7 e← threadId+BlockDim×BlockId; // CUDA kernel

8 if (e < Nele) then

9 cz ← floor(e/((nx + 1)(ny + 1)));

10 cy ← floor((e− cx(nx + 1)(ny + 1))/(nx + 1));

11 cx ← e− cz(nx + 1)(ny + 1)− cy(nx + 1);

12 for r ← max(cx − sx, 0) to min(cx + sx, nx) do

13 for s← max(cy − sy , 0) to min(cy + sy , ny) do

14 for t← max(cz − sz , 0) to min(cz + sz , nz) do

15 i← t(nx + 1)(ny + 1) + s(nx + 1) + r;

16 w ← R− sqrt((cx − r)2 + (cy − s)2 + (cz − t)2) ; // convolution

operator

17 sum← sum+max(0, w);

18 f̂
(e)
ρ ← f̂

(e)
ρ +max(0, w)ρ(i)f̂

(i)
ρ ;

19 end

20 end

21 end

22 f̂
(e)
ρ ← f̂

(e)
ρ /(ρ(e)sum)

23 end
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4.4. Optimality Criterion (OC) update scheme

The pseudo-code of the EbE GPU implementation of the density updating

strategy (ebeOC) is shown in Algorithm 8. Such an implementation makes

use of the bisection method and the optimality criterion according to (9) and

(10). The input data of this algorithm are: the density design variables (ρ),

the interval bounds [λl, λu] of the Lagrange multiplier, the numerical damping

coefficient (η), a positive step width (ζ), an intermediate density penalty factor

(q), the finite element size (dx, dy, dz), the objective function sensitivities (f̂ρ)

and the volume sensitivities (Vρ). The algorithm is composed of two CUDA

kernels, highlighted in boxes labeled with “CUDA kernel”, with element level

granularity. The first kernel goes through each element of the regular grid to

calculate the volume penalized with ρ. The total volume is then calculated as

the addition of partial volume computed as a reduction using the thrust library.

The bisection method divides the interval repeatedly to calculate the midpoint

Lagrange multiplier λm, which is then used to calculate the KKT optimality

condition. The second kernel updates the element density ρ following (9) and

copy back the calculated volume Vnew to update the Lagrange multiplier, which

is used to evaluate the stopping criteria. This procedure is repeated until such

a convergence criterion is satisfied. The vector ρ is finally copy back to host

memory.
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Figure 3: Flowchart of GPU instance of SIMP method.
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Figure 4: Kernel invocation and memory transfer for each iteration of SIMP method.

Algorithm 8: EbE density update (ebeOC)
Data: ρ, λl, λu, η, ζ, q, dx, dy , dz , f̂ρ, Vρ

Result: ρ // updated densities

1 V0 ← 0 ;

2

3 e ← threadId + BlockDim × BlockId; // CUDA kernel (ebeKer1)

4 if (e < Nele) then

5 b(e) ← dxdydzρ
(e);

6 end

7

8 V0 ← V0 + +
∑NDoF−1
u=0 b(u); // Reduction using thrust library

9 while ((λu − λl)/(λu + λl) > 10−6) do

10 λm ← (λu + λl)/2;

11 Vnew ← 0 ;

12

13 e ← threadId + BlockDim × BlockId; // CUDA kernel (ebeKer2)

14 if (e < Nele) then

15 ρ(e) ← max(0,max(ρ(e) − ζ,min(1,min(ρ(e) + ζ, (ρ(e)(−f̂(e)ρ /V
(e)
ρ /λm)η)q))));

16 b(e) ← dxdydzρ
(e);

17

18 end

19

20 Vnew ← Vnew +
∑NDoF−1
u=0 b(u); // Reduction using thrust library

21 if V0 > Vnew then

22 λl = λm;

23 else

24 λu = λm;

25 end

26 end
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4.5. GPU implementation and memory management

The GPU instance of density-based topology optimization consists of the

custom-developed CUDA kernels for the computationally demanding tasks in-

volved in the algorithm. Figure 3 shows the flowchart of the algorithm and

the relevant memory allocation and memory transfer of large vectors during the

optimization, whereas Figure 4 details the custom-developed kernels, including

memory transfer of scalar values in each iteration of the topology optimiza-

tion and the invocations from the host. One can observe that the information

needed by the custom-developed CUDA kernels is allocated and transferred to

the device memory in the initialization of the optimization process, and that the

memory transaction between host and device memory of large vectors is reduced

to the ρ vector in each iteration of the optimization to evaluate the stopping

criteria. This is of paramount importance to obtain reasonable results. One

also can observe that the iterations of the optimization process only requires to

copy back to host memory some scalar values. This minimization of memory

transactions increases notably the GPU performance. The CUDA kernels are

invoked from the host assigning the corresponding grid size GS and block size

BS to fit the granularity of the custom-developed kernels, which are tuned to

empiric values that provide good performance.

The device memory allocated for the custom-developed kernels, obviating

the allocation of scalar values, is shown in Figure 5. The dbdPCG kernel using

the Jacobi preconditioner requires the storage in the global device memory of

vectors d, f , u, r, p, a, z, and Ic indicated in the pseudocode of Algorithm 1.

When the geometric multigrid preconditioner is used, the vectors s, v, `Ie, `I

and `+1C are also stored in the global device memory for the corresponding

nl levels. The common elemental stiffness matrix Ke
0 is stored in constant

memory. This permits to save bandwidth because constant memory is cached

and consecutive reads of the same address does not incur any additional memory

traffic. Besides, one single read from constant memory is broadcast to the

threads of a half-warp. Additionally, the vectors ρ, dρ, u∗, fρ and f̂ρ required

by the kernels ebeUKU, ebeFILTER and ebeOC are also stored in the global
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Figure 5: Device memory required by the kernels of the proposed GPU instance.
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device memory. In the case of compliance minimization problems, the memory

allocation for the adjoint state u∗ can be obviated because such problems are

self-adjoint.

5. Numerical experiments

The performance of the proposed GPU instance of density-based topology

optimization is evaluated using three topology optimization problems in differ-

ent fields. In particular, the stiffness design of continuum structures, the heat

sink design cooled by heat conduction and the compliant mechanism synthesis.

The two first two numerical experiments aim to analyze the use of different

DoFn, whereas the last one aims to explore the use of the proposal with multi-

GPU systems. The solving of the system of equations using GPU computing is

evaluated using two preconditioning techniques; in particular, the Jacobi pre-

conditioner and the geometric multigrid preconditioner. Besides, the way to

launch the kernel for the matrix-vector multiplication operation is studied to

make use of the parallel potential of massive parallel architectures in this de-

manding operation. In addition, the proposed GPU instance is compared with

the classical CPU implementation, in which the global stiffness matrix is as-

sembled and the sparse-matrix representation is used to perform the operations

required by the PCG solver. The CPU implementation makes use of only one

thread for the comparisons. The computationally demanding tasks involved in

the algorithm are evaluated separately using GPUs with different massive par-

allel capabilities. This aims to evaluate the scalability of the GPU instance with

respect to the capabilities of the graphics units.

The three numerical experiments are performed using a computer with an In-

tel Core i7-5820k 3.33 GHz and 32 GB of RAM memory. Three Nvidia GPUs are

installed in the computer to perform the experiments: GF100-100-KD (Quadro

4000), GF100 (Tesla C2070) and GK110b (Tesla K40). The first two graphics

cards use the Fermi micro-architecture, whereas the third one makes use of the

Kepler micro-architecture. Table 1 summarizes the most relevant specifications
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Nvidia GPU

model

CUDA

cores

Processor

clock (MHz)

Memory

clock (MHz)

FMA-DP

(GFlops)

GF100-100-KD 256 475 1400 243

GF100 448 575 1566 515.2

GK110b 2880 889 3004 1430

Table 1: GPU specifications for benchmark devices.

of such graphics units for scientific computation purposes; in particular, the

number of cores, the processor and memory clocks, and the Double-Precision

(DP) Fused Multiply Add (FMA) operations as specified in IEEE 754-2008. The

GPU instance is compiled using the NVIDIA CUDA Toolkit 7.5 and the numer-

ical experiments are run on 64 bits Linux OS with the NVIDIA Driver Version

340.76. It is important to remark that the development environment and the

graphics driver updates often show significant performance improvements.

A continuation strategy for parameter p is adopted for all the numerical

experiments; in particular, the evolution of the parameter p in the continuation

step, according to [53], is as follows

pk+1 =





1 if k 6 20

min(3, γ · pk) if k > 20
. (11)

This continuation strategy is represented in Figure 6 for different γ values. By

modifying the parameter p, the optimization problem is gradually changed from

a convex problem to the original non-convex problem, which is governed by the

parameter γ. Based on the experience provided by Groenwold and Etman [53],

such a γ parameter is set to 1.02 in all the numerical experiments.

The minimum compliance design problem consists of finding the material

density distribution that minimizes the deformation of the structure, a tied-

arch bridge in our case, under the prescribed loading and boundary conditions.

Figure 7(a) shows the box shape design domain and the boundary conditions

of the optimization problem. It also shows the non-optimizable region over

the top of the bridge deck, which represents the area needed to circulate the

vehicles. The bases of bridge abutments and the bottom part of the bridge deck
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Figure 6: Evolution of penalty parameter p using continuation on p.

are simply-supported along the edges located at 60m from left face and right

face respectively. A uniformly distributed load is applied to the top of the non-

optimizable bridge deck. The solving of this problem makes use of one of the

vertical planes of symmetry to only analyze the half of the finite element model.

The half design domain is discretized using 184 × 40 × 90 eight-node hexahedral

linear brick elements, i.e. 662,400 elements and about 2 million of DoFs. The

material parameters are Esolid = 210 GPa, Evoid = 2.1 ·10−4 GPa and ν = 0.31.

The maximum residual error is set to 10−8 for the PCG algorithm and the

calculations are performed using double-precision floating-point format. The

target volume is the 15% of the volume of the design domain. The parameters

of the bisection method used to infer the Lagrange multiplier λ are: η = 0.5,

ζ = 0.2, λl = 0, λu = 109 and λmin = 10−40. The topology optimization

parameters are: filter radius R = 3 m and factor q as follows

qk+1 =





1 if k 6 15

min(3, 1.01 · qk) if k > 15
. (12)
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Figure 7: Tied-arch bridge benchmark: (a) the design domain and boundary conditions, (b)

the topology design with threshold ρ = 0.99 from isometric view and (c) the Oregon city

bridge.
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The resulting structural design of the tied-arch bridge is shown in Figure 7(b),

where the final design is thresholded at ρ = 0.99 and colored by the magnitude

of the displacement field. This structural design resembles the topology of this

kind of bridges, as shown in the real bridge of Figure 7(c).

The compliant mechanism design problem consists of maximizing the output

displacements uout for mechanisms under given forces fin applied to the input

actuators. The numerical experiment aims to provide the optimal topology

compliant mechanism design for a gripper. The design domain and the boundary

conditions for this benchmark are shown in Figure 8(a). This design domain is

simply supported at the upper and lower edges of left face. The input actuator

and the output port are modeled as springs with different degrees of stiffness,

in particular kin and kout respectively. These degrees of stiffness are fixed to

kin = kout = 1kN/mm in the springs. The input force fin = 1kN is applied to

the center of a given face, for which the top and bottom edges are fixed. The

output ports are located in the opposite face as indicated in Figure 8(a). The

material considered is nylon with Young’s modulus Esolid = 3 GPa and Poisson’s

coefficient ν = 0.4. For the void material, a Young’s modulus Evoid = 10−3

GPa is considered. Only the half of the design domain is analyzed using the

horizontal plane of symmetry, which is discretized using 160×40×80 eight-node

hexahedral linear brick elements, i.e. 512,000 elements or 1,604,043 DoFs. The

target volume is about 10% of the volume of the design domain. The topology

optimization parameters are: filter radius R = 4 mm and factor q following (12).

The parameters of the bisection method used to infer the Lagrange multiplier

λ are: η = 0.3, ζ = 0.1, λl = 0, λu = 109 and λmin = 10−40. The resulting

mechanism design is shown in Figure 8(b), where the final design is thresholded

at ρ = 0.99 and colored by the magnitude of the displacement field. One can

observe that the gripping “jaws” along with the hinges resemble the common

topology of grippers.

The heat sink design considering conduction heat transfer, also known as

volume-to-point heat conduction problem [59], consists of the minimization of

thermal compliance to maximize the heat conduction transfer from the heat sink.
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Figure 8: 3D compliant gripper benchmark: (a) the design domain and boundary conditions

and (b) the topology design with threshold ρ = 0.99 from isometric view.
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The volume is subjected to a heat generation rate at every point of the design

domain and cooled through a small patch (heat sink) located in the middle of

its upper face. The thermal conductivity matrix of each element is considered,

according to (2), as the distribution of two material phases comprising a good

thermal conductor (K0) and a poor conductor (Kmin). Both material phases

are considered homogeneous and isotropic without temperature effect on their

conductivities. Therefore, the topology optimization problem aims to find the

optimal distribution of “good” thermal conductor that minimizes the highest

temperature under a volume constraint. The design domain and the boundary

conditions for this benchmark are shown in Figure 9(a). The thermal conduc-

tivities are kmin = 0.1 W/m2K and k0 = 100 W/m2K. The heat generation

rates for the different phases are similar with a magnitude of F = 10 kW/m3.

All the boundaries are adiabatic with the exception of the heat sink, in which

T = 0. Only one quarter of the design domain is analyzed using the two vertical

planes of symmetry, which is discretized using a regular grid of 128× 64× 256

eight-node hexahedral linear brick elements, i.e. 2,097,152 elements or 6,464,835

DoFs. The target volume is about the 30% of the volume of the design domain.

The topology optimization parameters are: filter radius R = 5 mm and factor

q following (12). The parameters of the bisection method used to infer the La-

grange multiplier λ are: η = 0.5, ζ = 0.2, λl = 0, λu = 109 and λmin = 10−40.

The resulting topology design along with intermediate designs to illustrate the

evolution of the optimization process are shown in Figure 9. The intermediate

and final designs are thresholded at ρ = 0.99 and colored by the magnitude of

the temperature field (◦C). One can observe how the final design is a “thermal

tree” composed of conductivity branches that move the heat away from the heat

source.

Figure 10 shows the evolution of the Measure of Non-Discreteness (Mnd)

[60] for the numerical experiments. This value indicates whether an optimized

design has converged to a discrete solution following
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Figure 10: Measure of Non-Discreteness (Mnd) for the numerical experiments.

Mnd =

Nele∑

e=1

4ρe(1− ρe)

Nele
× 100% , (13)

where Mnd = 100% indicates that the design is totally gray and Mnd = 0%

means that the design is fully discrete. One can observe in Figure 10 that

the numerical experiments show stable convergence to fully discrete designs.

Figure 11 shows the evolution of the objective function for the different topology

optimization problems. One can observe that all the topology optimization

problems show stable convergence of the objective function. All the numerical

experiments are performed using γ = 1.02 following (11). We can observe in

Figure 6 how the parameter p is fixed to p = 1 for the 20 initial iterations

and then it is increased until p = 3 in the iteration 75. The objective function

for the different topology optimization problems converges to a minimum with

intermediate densities, as shown in Figure 10, in the iteration 20. As the penalty

parameter p is increased one can observe that the objective function converges
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Block Grid Shared memory Threads Wall-clock

size size (bytes) per block time (ms)

111 × 3 × 3 5 × 14 × 33 28264 999 17.2

63 × 4 × 4 9 × 11 × 25 24272 1008 18.0

39 × 5 × 5 15 × 9 × 20 21672 975 18.7

24 × 7 × 6 24 × 6 × 17 21312 1008 21.6

21 × 7 × 6 27 × 6 × 17 19136 882 22.1

21 × 6 × 6 27 × 7 × 17 16960 756 25.0

18 × 6 × 6 31 × 7 × 17 15032 648 25.1

Table 2: Wall-clock time of dbdMVP configuring different grid and block size for tied-arch

bridge experiment.

to a local minima with a lower Mnd until a fully discrete design is found.

The efficient calculation of matrix-vector multiplication operations is crucial

to obtain a reasonable performance for the solving stage. The performance of

this operation using shared memory is evaluated modifying the block size used

to launch the dbdMV P kernel. This is done launching one FEA of the tied-

arch bridge problem using different three-dimensional block size configurations.

Table 2 shows the battery of experiments performed to tune the block size, which

is sorted by wall-clock time. As a general rule, the performance is maximized

using the maximum amount of on-chip memory and the maximum number of

threads. However, the GPU performance of dbdMV P kernel is maximized as

increasing the x dimension of block size due to the unknowns are stored in such

a dimension.

Table 3 details the thread hierarchy used for invoking the CUDA kernels in

the different benchmarks. One can observe that the three-dimensional kernels

with granularity at the DoF level use the block size configuration obtained from

the experiment shown in Table 2. Three-dimensional kernels with granularity at

the element level use symmetric kernels to maximize the use of shared memory.

These kernels do not operate over information with a dimension higher than

the others. The kernels that are not using on-chip memory are launched as
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Tied-arch bridge

BSe BSn BSu BSe3 BSu3

Tessellation (512,1,1) (512,1,1) (512,1,1) (10,10,10) (111,3,3)

184 × 40 × 96 GSe GSn GSu GSe3 GSu3

(1380,1,1) (1438,1,1) (4312,1,1) (5,14,33) (19,4,10)

3D gripper

BSe BSn BSu BSe3 BSu3

Tessellation (512,1,1) (512,1,1) (512,1,1) (10,10,10) (111,3,3)

160 × 40 × 80 GSe GSn GSu GSe3 GSu3

(800,1,1) (841,1,1) (2522,1,1) (16,4,8) (5,11,27)

Heat sink

BSe BSn BSu BSe3 BSu3

Tessellation (512,1,1) (512,1,1) (512,1,1) (10,10,10) (8,8,8)

128 × 64 × 256 GSe GSn GSu GSe3 GSu3

(4096,1,1) (4209,1,1) (12627,1,1) (13,7,26) (17,9,33)

Table 3: Thread hierarchy for the benchmarks. The reader is referred to Figure 4 in order to

find the block and grid sizes used by each kernel.

blocks with only one dimension. The grid size of all CUDA kernels is adjusted

to process the corresponding information.

The performance of solving the system of equations is evaluated using the

Jacobi and the geometric multigrid preconditioning techniques. Table 4 shows

the wall-clock time for the topology optimization stages using diverse graphic

cards, including the iterative solver using both preconditioners and the CPU

implementation using sparse-matrix operations. One can observe that the best

performance considering the wall-clock time is obtained using the geometric

multigrid preconditioner. The solving stage of the compliant mechanism design

problem (3D gripper) is also evaluated using a multi-GPU system, which exploits

the task-level parallelism involved in the computation of the direct and adjoint

problems. The multi-GPU system consists of a master-worker configuration [40]

installing two Nvidia Tesla K40 (GK110b) on the same host. The workers solve

the governing equations of the finite element model using the matrix-free PCG
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Tied-arch bridge

dbdPCG (sec) ebeUKU ebeFILTER ebeOC

Jacobi Multigrid (sec) (sec) (sec)

CPU (Sparse) 69991.92 5104.26 84.69 316.11 331.65

Quadro 4000 10769.99 3762.71 9.15 10.39 220.54

Tesla C2070 4831.15 1867.22 8.10 4.96 214.17

Tesla K40 3509.48 1256.81 6.75 2.76 193.59

3D gripper

dbdPCG (sec) ebeUKU ebeFILTER ebeOC

Jacobi Multigrid (sec) (sec) (sec)

CPU (Sparse) 320039.48 9704.29 146.92 754.21 308.24

Quadro 4000 51998.92 7009.23 22.76 35.14 151.91

Tesla C2070 25404.44 3212.67 17.78 14.62 114.12

Tesla K40 16528.05 2243.24 15.46 7.69 95.10

2 × Tesla K40 8549.52 1153.67 ‘’ ‘’ ‘’

Heat sink

dbdPCG (sec) ebeUKU ebeFILTER ebeOC

Jacobi Multigrid (sec) (sec) (sec)

CPU (Sparse) 26396.97 3006.49 58.76 28699.76 1435.07

Quadro 4000 3198.65 4453.50 22.28 1105.31 857.11

Tesla C2070 1938.04 1849.62 20.04 437.73 803.86

Tesla K40 1172.15 1113.96 17.34 176.85 719.47

Table 4: Total wall-clock time for the topology optimization stages.
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solver. The results show how the use of a multi-GPU platform permits to scale

up the acceleration of the solver stage preserving the speedups obtained for a

single analysis.

Figure 12 shows the speedups with respect to the sparse-matrix CPU im-

plementation for the topology optimization stages using diverse graphic cards.

These speedups are calculated for different graphics units to evaluate the scal-

ability with respect to GPU capabilities. One can observe that all the com-

putationally intensive tasks are accelerated significantly. Besides, the speedup

increases with the massive parallel capabilities of the graphics unit. Speedups

between 98x and 162x are obtained, in the 3D gripper and heat sink experi-

ments respectively, for the ebeFILTER kernel using the most recent graphics

card (Nvidia K40-GK110b) of the devices evaluated. The solving of the system

of equations limits the global speedup for the topology optimization; the numer-

ical experiments requiring the linear elastic analysis achieve speedups of 4x and

20x using the geometric multigrid and the Jacobi preconditioning respectively.

The speedup of the solving stage for the heat conduction problem is 2.7x and

22.5x using the geometric multigrid and the Jacobi preconditioning respectively.

The increment in the speedup using Jacobi preconditioning is attributed to the

higher size of the finite element model. Besides, the lower number of non-zero

elements in the global thermal conductivity matrix reduces the number of op-

erations and device memory accesses using GPU computing. The number of

non-zero elements is 13 per DoF for the thermal experiment, whereas is 40 per

DoF for elasticity problems. On the contrary, the decrement of the speedup

using the geometric multigrid preconditioner is attributed to the higher size of

the stiffness matrices of coefficients, which are stored in global device memory.

The memory accesses of these large arrays dominate the potential speedup.

Figure 13 shows the percentage of the total wall-clock time of each kernel in

the topology optimization using the Jacobi and the geometric multigrid precon-

ditioning. As expected, the principal bottleneck of the topology optimization

algorithm is the solving of the system of equations of the finite element model.

The wall-clock time for elasticity problems is around the 98% of the total wall-

45



Tied-arch bridge 3D gripper Heat sink

20 40 60 80 100 120

20 40 60 80 100 120

1.5e+05

2e+05

2.5e+05

3e+05

3.5e+05

4e+05

4.5e+05

# Iter

St
ru

ct
ur

al
 c

om
pl

ia
nc

e

1.5e+05

2e+05

2.5e+05

3e+05

3.5e+05

4e+05

4.5e+05

20 40 60 80 100 120 140

20 40 60 80 100 120 140

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

# Iter

O
ut

pu
t d

is
pl

ac
em

en
t

50 100 150 200 250

50 100 150 200 250

1

1.5

2

2.5

1

1.5

2

2.5

# Iter

Th
er

m
al

 c
om

pl
ia

nc
e

(a) (b) (c)

Figure 11: Evolution of the objective function for the numerical experiments.
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Figure 12: Speedup for the computationally demanding tasks in the numerical experiments.
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clock time using the Jacobi preconditioning whereas this percentage is around

the 87% using the geometric multigrid preconditioning. This percentage is con-

siderably reduced in the heat conduction problem, where the solving stage using

the most modern graphics device (GK110b) is about the 55% of the total wall-

clock time using both preconditioners. This is mainly attributed to the fewer

number of iterations required by PCG in the heat conduction problem to achieve

convergence. As a consequence, the percentage of the total wall-clock time con-

sumed by the filtering strategy and the bisection method become significant in

the heat conduction problem, and the use of GPU computing for these stages

can notably accelerate the topology optimization process.

6. Conclusion

This paper has investigated about the proper strategy and techniques to

achieve efficient calculation and reasonable speedups using GPU computing

for the computationally intensive tasks of density-based topology optimization

methods. The performance of the solving stage using GPU computing is ana-

lyzed using two preconditioning techniques; in particular, Jacobi preconditioner

and geometric multigrid preconditioner. Different granularities are used to fa-

cilitate the exploitation of massive parallel architectures. The solving of the

system of equations is implemented with granularity at the DoF level, whereas

element grain size is used to process the calculation of sensitivities, the filtering

strategy and the optimality criteria method. A nodal-based strategy is adopted

for the coarsening using the geometric multigrid preconditioner and for prolon-

gation and reduction operators. Significant speedup is achieved in the solving

stage using constant memory for storing the common elemental matrix K0 and

shared memory for storing the unknowns and the vector of elemental proper-

ties d of the topology optimization. Besides, the three-dimensional kernel to

process the matrix-vector multiplication operations fits well for massive parallel

processing showing good performance results.

The numerical results show that the proposed GPU instance achieves signifi-
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Figure 13: Percentage of total wall-clock time using (a) Jacobi and (b) geometric multigrid

preconditioning.
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cant speedups for the computational demanding tasks involved in density-based

topology optimization. Nevertheless, we have to remark that such speedups

are calculated with respect to the sparse-matrix calculation using one CPU

thread, and thus lower speedups are obtained using multiple CPU threads for

the calculation. The numerical results also show that the best performance in

wall-clock time is obtained using the geometric multigrid preconditioner in the

GPU instance of the PCG. Moreover, the experiments show the efficiency of the

proposed GPU implementation for solving topology optimization problems in

three different fields: maximum stiffness design, heat sink design and compliant

mechanism design. Furthermore, the numerical experiments show the scalabil-

ity of the proposed GPU instance with the resources of the graphics units. This

is a promising result to achieve higher speedups on new generations of graphics

cards.
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