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1. INTRODUCTION 

This project is about remote sensing. Remote sensing consists on the acquisition of 

information, that is, of electromagnetic radiation in the form of hyperspectral images. This 

will allow one to detect the different materials that are present in a given scene.  This is used 

in many fields such as coastal mapping and erosion prevention, to study the impact of natural 

disasters, or controlling the urban growth so that the damage of natural resources is minimal.  

The main purpose of this paper is the implementation in MATLAB of a set of functions 

that will optimize the process of simulating different scenarios using the software DART. So 

MATLAB will become an easy tool for others to use with any kind of scene made up of any 

kind of material. Once this is done, it will be followed by the study of the properties of 

different materials in different scenarios that are found on the Earth’s surface. In this 

particular case, the study will be focused only on environments with a high presence of snow.  

 

After that, an unmixing of the images will be done in order to see the amount of 

materials present in the scene. 

 

Figure 1. Mapping using remote sensing 

2. REMOTE SENSING: BASIC CONCEPTS 

2.1. Remote sensing 

As it was said before, remote sensing is the collection of the electromagnetic radiation 

from a distance. There are many ways to obtain the data. It can be gathered with cameras 

based on the ground, on aircrafts, or on satellites. This data is to be stored in computers for 

http://www.bing.com/images/search?q=remote+sensing&view=detailv2&&id=09BF073CDADD7E3342CB94BDE914B95472CB2D3D&selectedIndex=168&ccid=546g2otP&simid=608018837061961839&thid=OIP.Me78ea0da8b4ff8a605fe1d1be5dfbf44o0
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the upcoming study.  

One of the first uses of remote sensing was during the US Civil War where cameras 

were hid on kites, balloons, and even pigeons for gathering information about enemy 

territory. On Figure 2, there is an example this technique (the photograph at the left), in this 

case, of the use of pigeons. This was called aerial photography. It wasn’t until 1960, after the 

evolution of the methods and technologies used for obtaining the information, that the term 

remote sensing was introduced. Satellite sensors were developed during the late 20
th

 century 

and now data can be obtained from a global scale and even from other planets. Also on 

Figure 2, (the photograph at the right) there is an example of this. The photograph shows a 

satellite monitoring the North American continent.  

 

Figure 2. Old and new technologies for obtaining images from afar 

The use of remote sensing has grown rapidly through the years although it is mainly for 

image processing and interpretation. Nowadays it is used for all kinds of fields since users 

can collect, interpret and manipulate different types of data over large (and often not easily 

accessible) areas. It can be for coastal applications such as monitoring shorelines changes and 

current systems. It is also used for natural resource management. It is now possible to 

monitor land use and chart wildlife habitats in order to try and secure natural resources. There 

is also the ability to study the impact that natural disasters such as earthquakes, erosion, 

hurricanes and floods, to name a few, have created. 

 

Figure 3. Sensoring applications 
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The process of obtaining and reading data has become more sophisticated. 

Hyperspectral remote sensing is one of the many fields found in remote sensing. It combines 

two sensing modalities which are imaging and spectrometry. On one hand, imaging is the 

capturing of pictures from a remote distance by recollecting the reflected (or emitted) 

electromagnetic radiation. There are two kinds of radiation that will be considered by the 

sensors: the sunlight which is reflected by an object and the thermal emission from that same 

object and others nearby. This last source will be minimal from the visible to the shortwave 

infrared spectra. Multiple spectral bands can be used for the measurement so that pixels store 

the same scene view from different places (multispectral imaging). The use of the multiple 

spectral bands provides additional information that will change with the reflectance
1
, or 

emissivity
2
, of the pixels as a function of wavelength. Multispectral imagery supports image 

classification and land mapping. On the other hand, spectrometry measures the chemical 

composition of the materials. 

 

The most common radiation that is used in remote sensing is solar radiation. The sun 

emits radiation at nearly the maximum efficiency possible. 

 

Since one of the programs that will be used for the simulations works from the visible 

to thermal infrared domain, the radiation that will be studied would be just the reflectance of 

an object. It is important to keep in mind that the reflectance measured by the sensor won’t be 

as pure as the radiation emitted from the sun. This modified radiation will be made up, in the 

most part, as three major components: 

- Unscattered, surface-reflected radiation (generated at the visible shortwave range), 

this is the part of the radiation that is neither absorbed nor scattered by the 

atmosphere; the radiation hits directly the surface and bounces off towards the 

sensor. 

- Down-scattered, surface-reflected radiation (known as the skylight component), this 

is the part of the radiation scattered by the atmosphere and redirected towards the 

Earth’s surface, after it will be reflected towards the sensor. 

- Up-scattered path radiation, this portion of radiation doesn’t reach the surface of the 

Earth; it is scattered and redirected directly towards the sensor.  

 

 
 

 

 

 

 

 

 

 
 

 

Figure 4. The three major components of radiation 

                                                 
1  Reflectance of the surface of a material is the fraction of incident electromagnetic power that is reflected at an interface. 
2  Emissivity of the surface of a material is the ratio of the thermal radiation from the surface to the radiation from an ideal black surface at 

the same temperature as given by the Stefan-Boltzmann law. 
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 Remote sensors measure the energy that is reflected from the Earth’s surface. These 

sensors can be passive or active. Passive sensors measure natural energy, which most 

commonly would be sunlight. On the other hand, active sensors create their own energy 

source as form of measurement. Meanwhile, there are three different models for remote 

sensing: 

- The first model records the reflection of solar radiation from the Earth’s surface; the 

energy is mainly used in the visible and near-infrared portions of the spectrum. 

- The second one records the radiation emitted from the Earth’s surface; since emitted 

energy is strongest in the far infrared spectrum, to record these wavelengths it is 

required the use of special instruments; the emitted energy from the sun is mainly 

made of short waves which are absorbed and reemitted as longer wavelengths. 

- The third one generates its own energy with the use of active sensors and then 

records the reflection of that energy; although this might be more complex, it is very 

useful since it can operate at night and in cloudy weather.  

 

The type of remote sensing depends on what the sensors measure. Some sensors 

measure the vertical distributions of atmospheric parameters such as temperature, humidity, 

or pressure in a given area (these are called Sounders). Others measure the acceleration of the 

target or the electromagnetic energy. In this case, the sensors used will be those which detect 

incoming solar radiation. This type of sensor is called Optical Remote Sensors. They usually 

cover the region from visible and near-infrared to shortwave infrared.  

 

In the Optical Remote field, there are different kinds of sensors depending on the 

number of spectral bands used: 

- Panchromatic: one single channel detector; if it’s configured in the visible area, the 

result would be that of a black and white image.  

- Multispectral: multichannel detector with few narrow spectral bands; the result 

would be an image which contains both brightness and color of the target.  

- Superspectral: same as a multispectral sensor but with many more spectral channels 

(more than ten); the bands are narrower too, achieving a finer spectral image. 

- Hyperspectral: also known as imaging spectrometer, this sensor has more than a 

hundred continuous spectral bands which enables a finer image than the one 

obtained with superspectral sensors. 

DART will make of if hyperspectral sensors. On the figure from below there is a better 

visualization of what this type of sensor generates, as it is the creation of multilayer images.  
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Figure 5. Hyperspectral imaging 

In order to interpret the images created by the sensor spectral signatures are used. The 

spectral signatures are spectral measurements for identifying objects when resolution is too 

low for the recognition of an object. These measurements may be defined in different regions. 

The most common would be the solar reflective region by its reflectance as a function of 

wavelength. Other spectral regions would be temperature and emissivity (TIR) and surface 

roughness (radar).  

 

For every type of material, there is a different signature. It is important to keep in mind 

that there are some factors that, regrettably, may interfere with the characterization of a 

material. It can be caused by the very nature of the material, its natural variability. Another 

factor would be the design of the remote sensing systems that quantify a given image since 

they are not able to retrieve an image with that high resolution.  

 

Resolution is the sensitivity of the instrument and the existing contrast in the scene 

between objects and their backgrounds are always issues of significance in remote sensing 

investigations. These minimal areal units, known as pixels, are the smallest areal units 

identifiable on the image. This parameter is influenced primarily by the choice of sensor and 

the altitude at which it is used to record images of the Earth. As the altitude increases, the 
resolution of the sensor decreases. 

 

Each sensor has its own spectral response. The spectral response is one of the 

parameters that characterize a sensor. It is the response of the sensor at different wavelengths. 

The response of an imaging system to a point source must also be measured. It comes down 

to the Point Spread Function to indicate the degradation of the imaging process. For an object 

to be considered a point source, it has to be smaller than the central maximum of the 

diffraction function, so that the diffraction may appear. As a result, the response of that point 

is not a point. It actually consists on a bright central disc surrounded by fainting concentric 

rings. 

 

The sensors will be generated by the use of the bi-directional reflectance albedo
3
 

values. The product function is used to study the variation of reflectance of an object for the 

illumination’s geometry and viewing angles at a given wavelength. This function reads the 

directions of the light as it hits the object and as it bounces off of it. The directions will be 

functions of azimuth and zenith angles making, this function a four variable one. The 

                                                 
3  Albedo, or reflection coefficient, is the fraction of solar energy reflected from the Earth back into space. It is measured on a scale from 0 

to 1, where 0 is a idealised black surface with no reflection, and 1 represents a white surface that has perfect reflection. 
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downside of the albedo is that it doesn’t take into account the scattering properties of a 

surface therefore it would only be used as a first approximation. 

 

There are many ways to obtain the bidirectional reflectance distribution function 

(BRDF). One can either directly measure it using calibrated cameras or using analytic 

models. One of this would be the Lambertian reflectance model.  

 

A lambertian reflection defines an ideal reflecting surface, also called perfectly diffused 

surface. This surface exhibits equal radiance in all directions. This phenomenon depends on 

the wavelength and the view angle. Many natural surfaces are approximately Lambertian 

within a short range of view angles. It is most approximate at 20-40 degrees. As the angle 

passes this range and continues to increase, the materials will become less Lambertian and 

show different reflectance values at different directions. Nevertheless it is often assumed in 

remote sensing. 

 

Figure 6. Linear surface reflectance vs  lambertian surface 

There are two types of sensors that can be used on their location. They can either be 

satellite sensors which are found at the top of the atmosphere (TOA) or they can be airborne 

sensors which are found at the bottom (BOA). The different atmospheric levels depending on 

the height are displayed in figure 7. For the first type of sensor, the electromagnetic energy 

received by the sensor is only a portion of the energy transferred by the sun (passive sensing) 

or by a given material (active sensing). The radiation is transmitted through space without 

being much altered. As it approaches the Earth’s surface, some particles from the atmosphere 

absorb part of that energy. The most dominant components are ozone (O3), water (H2O), and 

carbon dioxide (CO2). This absorption takes place in the bands 1.5-3 μm and 5-8 μm. There is 

also a minor water absorption in the microwave region near 1.36 cm. The most significant 

absorption, though, takes place at 0.375 cm. It is important to highlight that water vapor, 

unlike ozone and carbon dioxide, varies greatly with time and location. Others just divert the 

travelling wave (scattering). If the atmosphere wasn’t taken into account both TOA and BOA 

sensors would generate the same images. 
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Figure 7. Atmosphere levels 

2.2. Snow properties 

The Earth’s surface is mainly composed of water surfaces at different states. One of 

them is ice and snow which covers a sixth of the surface. Snow is a mixture of ice crystals, 

liquid water and air. It may also contain dust or dirt if the atmosphere wasn’t clean during the 

creation of snow. Either way, the most characterizing parameter of snow is the grain size 

which is the radius of the ice crystals. The typical grain size is between 0.1 and 3 mm, 

although crystals with 0.01 mm radius can also be found. A snow pack, on the other hand, is 

harder to characterize. This is because of the inhomogeneities generated by the melting and 

refreezing that the snow can suffer. 

 

The snows albedo depends greatly on the type of snow which is considered. When it 

comes to a freshly fallen snow (pure) the albedo can be as high as 0.9. On the contrary, when 

dirty snow is found it can be as low as 0.2. In the case of melting snow it gets to 0.4. The 

reflectance of the snow varies little over the range of wavelengths 0.4 to 0.65 μm, which is in 

the visible band. The reflectance depends on the grain size of the particular set of snow. As 

this value increases, the reflectance decreases. The impurity of the snow, that is, the amount 

of dust that can be found also decreases its reflectance. It is also important the amount of 

snow accumulated. If the snowpack is not thick enough, most photons will travel through the 

material without scattering. The scattering effect is the process in which part of the radiation 

is forced to change direction into different paths when they hit non uniformities. In the 

thermal infrared region, the reflectance decreases considerably. In this spectrum, the 

absorption of ice is very high.  

 

The snow landscapes are one of the most difficult and dangerous places to access. 

Because of this, it has come down to remote sensing to obtain any kind of information. 
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Figure 8. Snow and ice landscapes 

Depending on the dimensions of the snow grains, there are several types of snow. Each 

type has their own signature, that is, their own reflectance. On DART’s database there are 

four types of snow: fine, coarse, granular medium and medium to fine. This classification is 

based on the size of the snow grain. Although they all have different values of reflectance, 

they do follow the same tendency. At a low wavelength, as the wavelength increases, the 

reflectance decreases.  

 

 

 
 

Figure 9. Reflectance of snow depending on the grain's size 

3. PROGRAMS 

For this project, two different programs will work alongside one another for the study 

of these scenarios. The first program is MATLAB that is very well known in the scientific 

field. This first program is the one the user will have to work on manually if there were to be 

changes either in the scene or in the simulation’s properties. This program will also display 

the results of the different simulations.   

 

The second program is DART created by CESBIO. It models the radiative transfer on 

the Earth’s surface in visible to thermal infrared domain. It is used for simulating 

measurements of different types of off the ground sensors. This will come in handy in the 

study and monitoring of land surfaces from remote sensing measurements. That way, the user 

will be able to study different scenarios with different materials at different angles.  

 

The main goal is to make the two programs interact. That is, to find a way to control 

DART by using MATLAB. Therefore, the user will not have the need to change the 
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parameters manually from DART. This will be achieved by reading and writing from .xml 

files which are found in DART’s output folders of each specific simulation. The .xml files are 

the files where all the parameters needed to run the simulations can be found. According to 

the needs of the user, three different files will have the biggest interest and will be tampered 

with: 

- Phase.xml: this file will be used to describe the type of radiation and atmospheric 

properties DART will simulate; there must be also written on this file the different 

wavelengths where the simulation will take place; here it’s also found the different 

sensors with its corresponding coordinates and angle. 

- Coeff_diff.xml: here there will be written the different materials that will make the 

simulated scene.  

- Wavelength.xml: this file contains details of the simulation; it is needed in order to 

execute the sequence module since it has the wavelength values that will be 

simulated. 

 

There is already a default folder in MATLAB with all the .xml files. These files will be 

copied in each scenario and altered with the desired characteristics. Doing so, there 

won’t be no need to start from scratch in each simulation. On the following image it’s 

displayed one of these files (coeff_diff.xml) . 

 

 

Figure 10. Default Coeff_diff.xml 
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DART can choose among three different methods for simulating light propagation. The 

radiative methods will be: 

 

- Flux-tracking: this is the default method used in DART; a set of photons is emitted 

and the sensor measures how many of them return. 

- Monte Carlo: a set of photons are tracked from the Earth’s surface; the only 

measurement made is that of the reflectance. 

- LIDAR (Light Detection and Ranging): this method is most used for weapons 

ranging but it can also be thought as a tool in the measure of chemicals in the 

atmosphere and heights of objects in the ground; with this method, a light pulse, or a 

set of a number spaced light pulses, is emitted in the direction of a target and the 

sensor measures the light that bounces off the target (reflected light). 

 

The modules that can be called on by MATLAB will be the following: 

 

- Dart: this module simulates the rest of modules in sequential order, this is, the 

module will not be executed, instead MATLAB will directly call onto the other 

modules one by one. 

- Vegetation: it generates the landscape of the scene. 

- Directions: this module divides the space into a number of discrete directions. 

- Phase: here it is set the optical properties of the given landscape. 

- Maket: this one is in charge of simulating the scene with the different elements that 

can make up the scene; all the information will be gathered in the form of .txt file 

(maket.txt). 

 

 

In order to generate the image, DART has two types of scanners to choose from: 

 

- Whiskbroom: this type of scanner uses several detector elements which will be found 

aligned in track (or along track); by structuring them this way, the scanner will 

perform several scans in parallel and with each scan the direction can be reversed; it 

typically has a higher resolution than the pushbroom scanner. 

- Pushbroom: this other type of scan has their detector elements aligned cross-track, 

as a result, this device scans the entire width of a surface in parallel as the platform 

moves; DART will make use of this last one. 
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Figure 11. Types of scans in DART: a) Whisbrook b) Pushbroom 

DART also can be configured to simulate pinhole cameras. These consist on a light 

tight box with a pinhole at one end and on the other the light sensitive material being 

watched. In the program, a matrix of locations will be generated followed by the generation 

of an image per location. When simulating LIDAR, this matrix will be a single value since 

there would be only one location. In any case, the computation time will be longer than with 

the pushbroom sensor.  

 

 
Figure 11. Pinhole camera 

4. IMPLEMENTATION 

The aim of this project is to implement a code in MATLAB so that DART may be 

controlled in the most optimized way possible. A code will be developed to run DART 

simulations directly through MATLAB. By doing this, the performance of the simulation will 

be optimized. Any parameter may be changed and any module may be executed directly from 

this program according to the needs of the user. All the information and images will be stored 

in the MATLAB folder so they may be visualized and manipulated if needed. This will be 

convenient for the study of the different materials that may compose the scene, as for the 

study of the effects caused by the topography and atmosphere. 
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Figure 12. Example of the input files 

As it was said before, all the input parameters from the DART modules will be stored in 

.xml files. The input files that are set by default in the folder Default Simulation will be 

copied and loaded in MATLAB in order to have a base to work with. For adding or changing 

specific parameters, these .xml files will be read and then written on according to the needs of 

the simulation. The files will be written with a tree hierarchy, therefore it is important to pay 

close attention to the position of the parameter being created or changed. In the figure 14, 

there is an example of the input folder with all these files. In this case, the file belongs to the 

folder of a snow scenario.  

 

Figure 134. A txt in one of DART's database (Lambertian.db) describing coarse snow 

 

4.1.  Creating the Scene 

 

Different scenarios have already been provided in this project in order to validate the 

performance of the code. Since snow landscapes are the main interest of this work, the 
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elements used will be of snow and of clouds. In order to create a scenario and be able to 

execute the DART modules, the first step is to provide to the scene a set of input parameters. 

It needs to be specified the range of wavelengths where the simulation will work on, the 

topography of the scene, and the type of atmosphere that will be taken into account. It is also 

required to specify the different materials that will appear in the scene. Since this all has to do 

with long distance sensing, the study of the materials will be done by the use of the signature 

that each material has. These measurements are stored in pixels. Each pixel will contain a 

single material.  

   

The signatures of the materials assigned have to be in the DART’s database in order for 

the program to carry out the execution. These materials are separated into groups depending 

on their nature. Each group has its own set of parameters that describe the material. In DART, 

there are already installed databases that describe the different properties of some materials. 

The materials are divided in different groups: vegetation, fluids, and soil and urban 

structures. This last group is made up of different types of houses, roads, and plain walls that 

will be simulated.  

 

 Even though each material has its own spectral signature, the overall behavior of the 

material will depend on the group as it is clearly seen in the following figure: 

 

 

Figure 14. Reflectances of different types of material 

Once this has been implemented, the next step will be to simulate the radiative transfer. 

That is, to read the radiation that is reflected from the Earth’s surface. All the materials will 

be assumed as Lambertian. Since these are just testing simulations to see if the code has been 

well implemented, the simulation will be done with 20 wavelength bands. For a big number 

of wavelengths, a computer with lots of processing power will be needed for there are many 

commands being executed, each one having to perform numerous calculations and the 

amount of data is too great.  

 

The code in MATLAB will also be altered in order to simulate the sensors at different 

angles. The user will be able to choose the exact angle or range of angles for the scene. For 

that, the file phase.xml must be renovated.  

 

For visualizing the results it is important to install in MATLAB the hyperspectral tool 

imshow3D. This tool displays 3D grayscale images from three perpendicular views.   
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4.1.1. Snow simple 

 

The study of the scenarios will begin with the execution of the simplest scene. This 

image will consist of three different materials distributed consecutively along the scenario.   

 

 
Figure 15. Materials of the scene 

As it can be seen in figure 16, there are three different materials in the scene. The first 

approach will be the study of the materials without taking into account neither the topography 

nor the atmosphere. The topography of the scene well also be displayed, as it is seen in the 

figure 17. Since it is null, there will be only a flat surface. 

 

Figure 16. Topography of the scene for a flat surface 

In figure 18, it is shown how each material has its own reflectance value for each 

wavelength in grayscale. Each pixel has a sampled spectrum of the material in the scene. In 

this case, the different materials can clearly be distinguished from one another. It is also 

noticeable that they react the same way to the value of the wavelength. As stated before, the 

figure also shows how the maximum reflectance is found at the first wavelengths. As the 

wavelength value increases, the reflectance decreases, since the program is simulating types 

of snow.  
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Figure 17. Hyperspectral Image at three different wavelength values 

In figure 19, it is displayed both the original spectrum of the scene and the spectrum of 

the scene that DART simulates. The spectrum is the distribution of the reflectance of the 

snow of the scene as a whole as a function of the wavelength. 

 

Figure 18. Reflectance of an original snow scene vs the simulated scene 

Now certain topography will be given to the previous scenario. There are many types of 

topography that can be set. In figure 20, three different topographies will be displayed. The 

highest places will be represented by the color red. As the height decreases this color travels 

from dark red to dark blue when a minimal height is found. One of the examples used (the 

first one) has two high points separated by a low surface. This corresponds to a scene with 

two mountains. The other two examples only have one mountain, each one with a different 

size. The scene with two mountains will be also displayed in DART using the 3D viewer, as 

figure 21 shows. 

 

 

   

Figure 19. Different topographies 
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Figure 20. Topography seen from DART 

In figure 22, it can be seen how a not null topography influences on the reflectance of 

the materials. But the behavior of snow remains the same. The reflectance is still highest at 

the first wavelength and after that it has a decreasing tendency. 

 

Figure 21. Simulating topography without atmosphere: a) Hyperspectral image b) Spectrum original 

scene vs simulated scene 

After adding the effects of the topography, it can clearly be seen how the reflectance 

has the same tendency as before, but with an offset. The scenario has been set with 

topography but null atmosphere. The next step will be to add the atmospheric effects. 

 

As the effects of the atmosphere are added, the resulting image becomes more distorted. 

It no longer has that smooth view of the bands. It is also visible how the resulting scene 

spectre differs when the atmosphere is taken into account. Due to this, whenever an unmixing 

is to be performed, by using the spectral signatures library of the different components that 

make the scene, these effects must be corrected beforehand. 
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Figure 22. Simulating topography and atmosphere: hyperspectral image 

 

Figure 23. Simulating topography: a) Without atmosphere b) With atmosphere 

4.1.2. Importing materials 

 

Once the program has been tested, the next step will be to generate the most coherent 

scenes possible, that is, to upload the information of different materials if needed.  

 

For now, MATLAB has only been working with one of the databases already created in 

DART’s database manager, Lambertian.db. The next step will be to try to generate a new set 

of materials, that is, a new database using MATLAB. That way, scenes can be simulated with 

real measurements that have been taken from a specific location. The information will be 

provided to MATLAB in the form of an image. It will be the information about different 

kinds of snow, four to be precise. These four types of snow will form different combinations. 

At the end, what is given to the program is an NxN pixel image. The amount of snow 

contained will depend on where the element is found in the matrix. The purest elements will 

be those found in the four corners. As one travels towards the middle of the matrix, the 

mixture of the elements tends to be homogeneous. Each element will have a certain reflection 

value for the different wavelengths. This image will be displayed in MATLAB and then 

compared to the simulated imaged created by using DART.  

 

Since the main focus of this project is to work with snow, the parameters needed for our 

database will be the wavelength, the reflectance, the direct transmittance, and the indirect 

transmittance. These last two values will be null in this case.   
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The new database will be placed in the folder database, which can be found in the 

folder user_data with the name OurOwnDatabase. When any of the elements of this database 

is called on, they must be called on by its proper name, that is, with the name given in the 

database Manager. The name that will be given to the element and the name of the element 

while loading it to the new data differ. This last name is used to determine the type of data 

that the database Manager will receive. For example, while uploading the data the program 

will call onto the snow 2D-LAM_Samples_layers610. With this name it is meant to call a two 

dimensional lambertian object. Meanwhile, DART will store it as samples_layers610. 

 

Figure 24. DART's Database Manager 

The resulting image that the program will generate will not be an exact replica of the 

given image. This is shown in the variable distance. This variable is equivalent to the 

difference between the given image imported and the image simulated with the given data. 

This significant difference in some of the bands is because the DART module is working with 

sequences of wavelengths equally spaced, as opposed to the data provided. This means that 

some of the wavelengths that DART is simulating would not be the same as the wavelengths 

of the material. It is also important to keep in mind that there may also be a small error 

generated by the simulation. For a more visual outlook, figure 26 shows the variable distance 

as a 3D hyperspectral image. 

 

Figure 25. Variable distance 

In the 3D plot, it is found the difference between the real image and the one that has 

been created. In most cases there will be a slight error (dark pixels) but in some wavelengths 
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the values will be quite big (light pixels). 

4.1.3. Capturing images 

 

DART uses the ILWILS image format. That means, a binary file will be created in the 

form of .mp# and also a .mpr header file. MATLAB will use the .mp# file for the display of 

the different images. 

 

Figure 26. Example of the output image 

The next step will be to gather information from an image already defined from DART. 

That way, the user will be able to manipulate from MATLAB the outputs that had already 

been stored in DART. For that, a scene must be previously generated from DART. This will 

be done manually. The scene created will be that of an urban scene made by houses and trees.  

 

Figure 27. Urban scene in 3D and in 2D aerial view 

As it is appreciated in figure 28, the second image (which is the 2D aerial view of the 

scene) does not have such high resolution. Nevertheless, it is easy to distinguish the different 

elements in the scene. There are the darkest elements, which belong to the trees that have 

been implanted. There is also another vegetation plot which can be recognized as the dark 

grey rectangle. Finally there are also the small rectangles which belong to the different 

houses. Some houses have a flat roof; therefore it will be seen as a single color rectangle. The 

other houses have different shades of grey; these belong to particular shapes of the roof. They 
can either have a classic roof (two slopes) or a complex roof (four slopes). 

4.2.  Imported Scenario  

 

In this scenario hyperspectral imaging sensors will be simulated. These sensors 

simultaneously capture both the spatial and spectral content of remote scenes. The result will 

be a hypercube (3D dataset) composed of layers of grayscale images.  
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Until now, several images have been recreated from afar in order to be able to study the 

effects that may counteract with the image created. This is done keeping in mind that it falls 

down to the sensor to obtain these images from afar.   

 

As opposed to the image that was generated by DART, sensors see a limited version of 

the image. DART can be thought of as an ideal sensor. Therefore, in order to simulate an 

image captured by a sensor, the number of samples that will be taken into account will be 

compressed from infinite to finite.  

  

Firstly, a scene will be created manually in DART, this image with have full resolution. 

Then a sensor simulated by MATLAB will acquire the image from DART. That sensor will 

be the one that will compress the samples, after windowing. There are many specific sensors 

that can be simulated. Sensors can also be simulated directly from DART, but only a small 

set of specific sensors. In order to simulate others that are not available in DART, it is 

required the use of MATLAB. This program will need a set of parameters from the specific 

sensors that can be found in the data sheets of each real sensor. For this project, three 

different sensors will be configured: 

 IKONOS QUICKBIRD WORLDVIEW-2 

Panchromatic Resolution
4
 1 m 0.61 m 0.46 m 

Multispectral Resolution 4 m 2.44 m 1.84 m 

Temporal Resolution 3-5 days 1-3.5 days 1.1-3.7 days 

Radiometric resolution Collect 11-bit 11-bit 11-bit 

 

 

  
 

Figure 28. Sensors: a) Ikonos sensor b) Quickbird sensor c) WV2 sensor (world view 2) 

Firstly, the different sensors will display a scene that the program will create itself from 

scratch. This image will that of a street viewed perpendicularly to the ground. The sensor 

would have to distinguish an urban area with man-made constructions such as cement or 

rooftops.  

 

These sensors will use the pansharpening method. Pansharpening is the process of 

                                                 
4
 The corresponding resolutions are those found at nadir. Nadir is the point  found directly below the observer. 

This point is diametrically opposite the zenith.  

http://www.bing.com/images/search?q=sensor+QUICKBIRD&view=detailv2&&id=B0FE34F30E15B117423445674F006EA0917187A1&selectedIndex=0&ccid=WIz/AMOL&simid=608009259289415415&thid=OIP.M588cff00c38be0e8be6c7a718cb115a7o0
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combining high-resolution panchromatic and lower resolution multispectral imagery in order 

to create a single high resolution color image.  

   

After executing the simulations, the program will display three different images of the 

scene. 

 

Figure 29. View of urban area with three different sensors: a) Panchromatic b) Multispectral c) Global 

As it can be seen in figure 30, the first sensor (panchromatic) sees the image in 

grayscale. Though there is a loss of color, the image has high resolution (the scene is very 

clear). On the other hand, the second sensor (multispectral) sees the image in color, but it is 

blurry since there is less resolution.  

 

The combination of the two sensors (one with high resolution and the other with color) 

will result in a very clear colored image as it is shown in the third image. 

 

As stated before, there is a large variety of sensor to choose from, but in this case the 

program will be configured to simulate only three sensors. 
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Figure 30. Relative responses normalized of the sensors: a) WV2 b) Quickbird c) Ikonos 

From the point of view of spectral responses, the Ikonos and Quickbird sensors are the 

most similar, as it is appreciated in figure 31. The third one, WV2 has the most number of 

channels.  

 

After seeing that the program simulates effectively the different sensors, the next step 

will be to simulate a sensor from an imported image from DART.   

4.2.1.  Importing images 

 

Now the images studied will have been already created directly in DART instead of 

having to create a scene from scratch. In this case, it will be a simple image with a few 

houses and trees. With DART the houses generated will be able to have different sizes and 

there will be three types of roof: plain, simple and complex. In this case, all three types will 

be introduced in the plot. There will also be a rectangular vegetation plot besides the 

incorporation of trees. These trees can either be set in a determined location or the location 

can be random. For the location doesn’t affect the upcoming result, the option random 

location will be chosen. 

 

Figure 31. Image seen in 3D from DART 

The sensors will capture the image from an areal view in 2D. This image has been 

made simulating an ideal sensor, this will be followed by the simulation of the real sensor. 
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Figure 32. Image seen in 2D from DART 

 

 

 

 

 

Figure 33. Global image seen by the sensor Global 

 

In the figure above it’s shown the image seen by the WorldView II sensor. As it has the 

most spetral bands (8 bands), the resolution will be best than with the other two sensors 

which only have half the number of bands. It is clear that this image has quite low resolution. 

Nevertheless, the components that make up the scene can be somewhat distinguished.  In 

order to simulated in DART, 300 bands have been used along the entire sensor spectra, that is 

from 0.4 to 1.0 μm.  

For obtaining a finner image, DART would need to work with a larger number of 

bands. Therefore, the same simulation has been created at a smaller range. This range only 

covers one of the sensor’s channel (the red channel which is at 700nm). With this, the number 

of bands simulated per wavelength has been increased. As a result, the multispectral image 

has this purplish color. In this new case, the images created are finner than the oness which 

covered the entire spectrum. As it is shown on the figure below, more caracteristics can be 

appreciated like the different shades generated by the trees and houses and also the roofs’ 

form. It still won’t be as clear as the images which are visualized directly from DART. In any 

case, since this simulation was done at the redd channel, it can be well apreciated how the 

combination on the panchromatic and the multispectral image result in a high quality colored 
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image.  

 

 

 

  

Figure 33. Image seen by one channel of the sensor: a) Panchromatic b) Multispectral c) Global 

 

4.3. Unmixing 

For accurate estimation it is required an unmixing. Pixels are assumed to be mixtures of 

different materials, these are called endmembers. The unmixing will be done with a scene 

with four different materials, which are all a different kind of snow. Out of the combination 

of the four, 100 new materials have been made with different percentages of each material. 

The respective spectral signatures of this new set of materials will be stored in a new database 

in DART. 

 

Unmixing can be challenging because of numerous factors such as observation noise, 

the materials variability, environment conditions, etc. Since DART uses linear mixing when 

simulating, for obtaining the different endmembers the procedure used will be linear 

unmixing algorithms. Assuming the linear observation model, the program will calculate the 

abundance of the different endmembers. The linear observation model is an approximation of 

the spectral functions in the wavelength domain. In this case, it would be the reflectance 

function and the abundance of the material.       

 

In order to obtain the amount of each material in the scene, the first approach will be by 

directly using the equations:  

 

𝑃(λ) =  ∑ 𝑅𝑖(λ)  .  𝑎𝑖

𝑚

𝑖=1

 

where m is the number of materials in the scene, Ri(λ) is the reflectance of the material i at the 

specific wavelength λ, ai is the abundance of the material i in the scene, and P(λ) is the value 

of the global reflectance of the pixel at the wavelength λ. The [Ri(λ)] matrix will be that of a 

4x4 since there four materials present. If the number of materials were N, a NxN matrix 

would be used. A simple way to obtain the scene proportions would be using the inverse 

matrix. 
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Since the input images are mare matrix with a certain reflectance value for each 

coordinate, for unmixing on a pixel level, the amount of different pixel values found in the 

image would be counted. The result will be the number of materials present in the scene. 

After, the number of pixels that have each value will be also counted. This will provide the 

amount of each material.  

  

Hyperspectral unmixing refers to any process that separates the pixel spectra from a 

hyperspectral image into multiple endmembers (single spectral signatures). Although, as it 

has been stated before, the method used will be the linear unmixing method. It is important to 

remember that the reflectance is usually a non linear function of the mass of the material. 

Therefore, the unmixing will be an estimation of the amount of material in a given space.  

 

 

 

Figure 34. Linear unmixing 

 

4.3.1.  Simulating ice and soil 

 

The first unmixing will be of materials whose spectral signatures differ greatly will be 

carried out in first place. This way, the efficiency that DART has at simulating mixed pixels 

will be tested. To begin, the materials from one of DART’s databases (Lambertian.db) will be 

used. MATLAB refers to these materials as it follows: Sandy loams
5
 (A), weathered asphalt 

(B), red brick (C), and ice (D). 

In DART, a material for the entire scene plot should be set. It is essential that this 

material doesn’t interfere with the calculations. Therefore the material used will be 

transparent. It will be created and loaded to the database, covering the entire scene. 

For this test trial, two different combinations of the four materials in the pixel will be set. 

If expressed as vectors (% of A, % of B, % of C, % of D), one combination will be (25, 25, 

25, 25) and the other will be (50, 25, 25, 0). 

                                                 
5
 It is a type of soil used for gardening. It is normally made up of sand along with varying amounts of silt and clay. 
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In this case, there will be different types of materials with different wavelength ranges. 

As it is seen on figure 36, the spectra are different from one another and the reflectance of the 

different kinds of soil differs greatly that from ice. It is also found that one of the materials 

(weathered asphalt) presents a very small wavelength range. Because of that, the unmixing 

will take place at a range where all the materials have a given reflectance value in DART’s 

database. 

    

Figure 35. Spectra of the different inputs and outputs of the simulation, in μm 

 

As it is seen on figure 37, an optimum range of simulation should be between 0.5 and 2.4 

μm. This range is that of the visible and infrared regions. At this range, the four materials 

(dotted lines) follow the same tendency. The two continuous lines represent the 

reflectance of the scene for different combinations of the materials. 
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Figure 36. Spectrums of the different inputs and outputs of the simulation at a short wavelength range, in 

μm 

 

Out of all these values, only four will be selected for the linear equation solving. Those 

values which are more accurate will be looked for. In order to do this, the MATLAB function 

cond(A) will be used. This function has as an output a single value that measures the accuracy 

which the specified matrix will have when calculating its inverse or when solving a linear 

equations system. The shorter this value is, the better is the performance. The points that will 

give a value of a 103 factor will be chosen. On figure 38, one of the possible matrix that have 

this condition can be seen. 

 

Figure 37. Matrix of endmembers  

Once all the inputs are loaded in MATLAB, the next step will be to solve the equations 

system. The resulting proportion that the program calculates is practically the same as the one 

that was placed in the scene. For both simulations the values presented on figure 39, the 

results are (25.00, 25.01, 25.00, 24.99) and (49.98, 24.98, 24.99, 0.04). 
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Figure 38. Abundancy of each material present in both simulations 

 

 There is another way to confirm the programs accuracy thanks to MATLAB because it 

can calculate the pixel reflectance value using the endmember matrix and the proportions 

obtained. It can be seen on figure 40 that the input value loaded from DART and the one 

calculated from MATLAB after the unmixing are the same. 

 

Figure 39. Pixel reflectance value from DART (S) and from MATLAB (ans) 

 

4.3.2. Simulating ice and snow 

 

The next step will be to change the materials to those most interested in. In this case, 

those materials will be different types of snow. The reflectance of different types of snow is 

found in DART’s database (also in Lambertian.db). The snow provided is that of different 

radius grain size. This data is equally spaced therefore it will be easier to select points in the 

spectrum for the signature matrix. 

Since dealing with another type of material, it will be necessary to change the points in 

the matrix of spectral signatures so they will match the wavelengths of the scene spectrum. It 

is important to find the exact points that are contained in all the materials. Even if the 

wavelength error is minimal (0.0001 μm), the results obtained would be too far off. 

In this simulation the different materials will be referred as: snow (A), snow fine (B), 

snow coarse (C), and ice (D). A scene with four materials equally distributed will be created. 

As it was seen on figure 39, there are three of the materials which are very similar to one 

another. These are the three different types of snow which are categorized by the size of the 

grain. For they are snow, they have the same tendency. And when bigger grain radiuses are 
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taken into account, the absorption area increases. As a result, the decrease of reflectance will 

be greater for snow with a bigger grain radius. This difference in the radius is most 

significant at the range of 1.5 to 2.5 μm. The maximum reflectance is found at the shortest 

wavelength. As the wavelength increases, the reflectance decreases. There are some peaks at 

two wavelengths, 1.82 and 2.24 μm. In contrast, the fourth material is ice. Ice has a very low 

reflectance which is almost constant in the majority of the spectrum. The reflectance behavior 

changes considerably in the infrared region. To be more precise, the sudden change is found 

at the mid-infrared region (2.5 – 25 μm). At 2.84 μm, it is found that the reflectance drops to 

lower than 10% of the mean average. This is due to the effects of absorption which is lowest 

at this wavelength. Right after, there is the maximal absolute value at 3.08 μm, which is 

considerably low compared with the snow.  

 

 
 

Figure 40.  Input and output reflectance for two types of snow, in μm 

On figure 42, the ice and the different types of snow can be seen at a shorter range at 

wavelengths corresponding to visible light and infrared light. 
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Figure 41. Spectra of different types of snow at a short wavelength range, in μm 

At the first range, visible light, all the snow has almost the same reflectance, which is 

very high. More than 95% of the snow is reflected at this range, giving them that pure white 

color. Meanwhile, by coming across the red color of the visible light and heading towards the 

infrared region it is noticed a decrease of the snow reflectance although it depends on the 

different types of snow. The reflectance is still very high (above 80% of the light is reflected). 

When dealing with thick snowpack crashed together, there is a high amount of light scattered 

through the snow. A lot of the red light is absorbed making the blue light dominant. As a 

result, snow tends to have a bluish color as it suffers more and more of scattering effects. It is 

appreciated this in places where large amounts of snow are compressed, as we can see on 

figure 43. 

      

Figure 42. Effects of scattering in snow and ice 

On the other hand, the reflectance of the ice can be considered as constant and very low. 

This is due to the fact that ice is a translucent material. The light passes through without 

difficulty but changing its direction. The reflectance falls considerably close to the 
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wavelength 320 nm. This is due to the fact that a maximum absorption at this wavelength is 

found. The reflectance then quickly stabilizes. 

Once again a pixel will be generated but now with the different types of snow. The first 

simulation will be with just two of the materials and the second one will be with all four, in 

both cases with identical proportions. Then the linear unmixing will be implemented. 

 
 

Figure 43. Abundancy of each material present in the scene for both simulations 

 

By multiplying by 100 each data presented on figure 44, the results are (50.00, 50.00, 

0.00, 0.00) and (24.94, 24.96, 24.97, 25.13). The abundances obtained in each simulation are 

almost the same as the abundances that had been placed in the scene. The drawback is that 

there is a lot of data that must be set manually. The next step will be to try to speed up the 

process. To reduce the amount of data that the user must import will be the priority now. The 

wavelengths that all materials share in common will be found. If chosen other materials, the 

unmixing would generate wrong results since the wavelength values could be different. 

Keeping in mind that the parameters from the simulated image can be changed, the best 

values for step size and central wavelength will be found. This will be done focusing on the 

materials present in the scene.   

By working with any set of values, it is necessary to change the sequence properties so 

that the four of the resulting wavelengths match the material wavelength. DART will be 

generating consecutive wavelengths. In order to find the maximum number of wavelengths 

present in all the materials and the simulation, both the step size should be smaller and the 

spectrum range amplified. By doing so, in a lot of cases, the same wavelength values as the 

materials would be obtained. But the computational cost would be too great, not only when 

simulating in DART but also reading the files in MATLAB. Therefore, it will be necessary to 

find out the wavelengths shared by all the materials without adding more wavelength values 

to the simulation. The sets of data of the endmembers will be divided into groups. The most 

common step size for those short ranges of wavelengths will be calculated along with the first 

wavelength that encounters that value. With this, it will be easy to choose a set of values for 

the simulation which will generate the most coherent unmixing results.  

 For the first set of materials, and in order to get the most accurate results, it is seen 

that it is necessary to start the sequence at the wavelength 0.648 μm and it should have a size 

step of 0.002 μm. 
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5. CONCLUSION  

For this project, two different programs (MATLAB and DART) have worked together 

for recreating the radiance exchange of information between the Earth’s surface and the 

receiving sensor. DART can be executed with the use of MATLAB. This simulation done has 

been as if from an ideal sensor.  

 

 The program has been able to both generate scenes from MATLAB and import the 

scenes from DART. By doing this, the study of different scenarios has taken place. The main 

focus of this study has been of those scenes that involve snow. This study makes emphasis on 

the impact parameters such as the topography of a scene and assuming or taking for granted 

the atmosphere that is caused in the recollection of information.  

 

Furthermore, a more realistic set of sensors has been successfully been simulated. Since 

the ideal sensor would be just a theory, the effects different that the specific sensors have on 

the images have been recreated for the display of those images.  

 

Once all this had been achieved and the images had been set in MATLAB, the next part 

of the project could be carried on. This part corresponds to the unmixing of the resulting 

image. The method used was at a subpixel level. This program is effective when simulating 

ideal virtual sensors as does DART. When obtaining simulations from real sensors, effects of 

the intrinsic and extrinsic phenomena of the sensor will degrade the simulation’s results. This 

should be addressed in future studies. Besides, this method can be used when there is a 

complete knowledge of the endmembers’ matrix which it is difficult to obtain in most cases.   

 

Due to the little time available for this study, the simplest methods have been used for 

the unmixing. With this method, a lot of data must be uploaded to MATLAB in the case of 

having more endmembers and the number of valid responses will be decremented as more 

endmembers are present in the scene. For future references, a more complex method should 

be worked with. 
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ANNEXES: MATLAB CODE 

 

After every scene that is generated, the same line of code will be used for all the 

different simulations, although there are two different types of simulations: the simulation 

that creates the scene from scratch and the simulation already generated from DART. 

Annex A. Simulation procedure for simulating images 

BlackBox:  

This function is used for the simulation of the scene. It doesn’t matter what type scene 

it is, the procedure will always be the same. First, some parameters must be set, if they 

haven’t been set value yet. Even if there is no specific value for the parameter, the parameters 

need to have been created beforehand. Once it’s all set, the program will call on the DART to 

execute all the modules one by one. 

 

Input: 

 

 Structure Opt: This variable stores information from the scene. In this case, the 

needed information will be the name of the scene, the first wavelength values, the 

step and size of the wavelengths, the number of wavelengths in our simulation 

(opt.name, opt.spband.first, opt.spband.step, opt.spband.delt, opt.spband.nb). It is 

also required the number of pixels of the squared matrix plot and the size of each 

pixel(opt.N, opt.Celldim). 

 

 mat: This variable consists on a vector with the different materials that make up 

the scene. 

 

 lcm: an indexed matrix with the different materials in their respective coordinates. 

Output: 

 

 bands: the different wavelengths that will be simulated. 

 

 IMG: this variable stores the matrix values that make the different images that 

DART has created. 

function [ bands, IMG ] = BlackBox(opt, mat, lcm, topo, mat2, lcm2)% 

%&%%when generating a scene from scratch 

%BlackBox Main function creating the whole simulation 
%   Input elements 

%       -opt : strucure with all the necessary options : 
%           "name" of the simulation 

%           "N" size of the scene in pixels 
%           "Celldim" Size of a pixel in meters in the scene (1 if not 

specified) 
%           "spband" structure with spectral bands options 

%       -mat : array of structures 
%       -lcm : indexed matrix with the occupation of materials (paired with 

%       mat). 
%       -topo : elevation matrix map 
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% 
%       OPTIONAL INPUT :  

% %       -lcm2 
% %       -mat2 

%  
% % Version 2.0 

  
% %% Falcultative Arguments 

if nargin<=5 
    lcm2=0; 
    mat2=0;  

end 

  
if nargin<4  

    topo=0; end 

  
if ~isfield(opt,'Nmat') 

    opt.Nmat=size(mat,2); end %Supposing mat is only an array 

  
if ~isfield(opt,'Celldim') 
    opt.Celldim=1; end 

  
if ~isfield(opt,'N') 
    opt.N=size(lcm); 
    opt.Nx=opt.N(1); 
    opt.Ny=opt.N(2); 

else %En supposant que la scène est carrée. 
    if ~isfield(opt,'Nx')||~isfield(opt,'Ny') 

        opt.Nx=opt.N; 
        opt.Ny=opt.N;     

    end 
end 

  
if ~isfield(opt,'atm') 

    opt.atm=1; end % Presence of atm by default 

  
if ~isfield(opt,'nbiter') 

    opt.nbiter=3; end % Reduce number of iterations to speed up calculation 

  
if ~isfield(opt,'cloud') 

    opt.cloud=0; end %No clouds 

  
if ~isfield(opt,'pinhole') 
    opt.pinhole='0';end 

if ~isfield(opt,'pushbroom') 
    opt.pushbroom='0';end 

%  
% % Creation of the scene 

opt.dartpath='..\..\..\DART'; %% PATH TO CHANGE IF MATLAB FILES ARE MOVING 
opt.defpath='..\DARTdefaultsimulation'; %% PATH TO CHANGE IF FILES ARE 

MOVING 

  
opt.path=[opt.dartpath,'\user_data\simulations\',opt.name]; 
 copyfile([opt.defpath,'\DefaultSimulation'],opt.path); 

  
 DARToptions(opt); % Configure other DART options 

  
if ~isempty(lcm) 
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    opt.lcm=1; % First Land Cover Map 
    LandCoverMap(opt,mat,lcm); % Launch Vegetation module to create plots 
    ExecuteDART(opt,'vegetation'); %Optionnal if only one lcm (redondant) 

end 

  
if topo~=0 

    Topography(opt,topo); 
end 

  
if opt.atm==1; 

    Atmosphere(opt); 
end 

  
if opt.cloud~=0;  
    Clouds(opt); 

end 

  

  
%% Execution of DART 

ExecuteDART(opt,'full'); 

  
% Sequence (spectral bands) 

Sequence(opt); 

  
% Create an hyperspectral image 

IMG=OpenAllImages(opt); 
% Array of Spectral Bands 
band = opt.spband.first; 

bands=zeros(1,opt.spband.nb); 

  
for i=1:opt.spband.nb 
    bands(i) = band; 

    band = band+opt.spband.step; 
end 

  
end 

  

Dart Options:  

This function is used to set parameters in the phase.xml file. It will write the number 

of iterations will be used in the specific simulation. This function also controls the different 

sensors that can be configured to be at different positions and at different angles. There will 

be two types of sensors: 

 

- Pinhole:  As default, this sensor captures the entire plot, but the camera’s orientation and 

position can be changed. The images can be visualized either with the camera field of view or 

with the sub-Earth scene. 

-  Pushbroom:  This sensor manipulates the azimuth’s angle and the platform azimuth. 

 

Input: 

 

 Structure Opt: This variable stores information from the scene. In this case the 

needed information will be the name of the scene and the number of iterations. 

(opt.name, opt.nbiter). 
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Output: 

 

 There will not be any outputs in MATLAB, but phase.xml will be modified.  

function [ output_args ] = DARToptions( opt ) 
%DARToptions parameters some options for the simulation 

%   can configure :  
%       the number of iterations(opt.nbiter) 

%       the captation from pinhole or pushbroom 

  
%% Configure Number of Iterations (phase.xml) 

xmlpathpl=[opt.path,'\input\phase.xml']; 
xDoc= xmlread(xmlpathpl); 

  
phase=xDoc.getElementsByTagName('Phase'); 

phase=phase.item(0); 
dainpa=phase.getElementsByTagName('DartInputParameters'); 

dainpa=dainpa.item(0); 
flutra=dainpa.getElementsByTagName('nodefluxtracking'); 

flutra=flutra.item(0); 
flutra.setAttribute('numberOfIteration',int2str(opt.nbiter));  

  
xmlwrite(xmlpathpl,xDoc); 

  
%% Pinhole/Pushbroom (phase.xml) 

dapr=phase.getElementsByTagName('DartProduct'); 
dapr=dapr.item(0); 

damopr=dapr.getElementsByTagName('dartModuleProducts'); 
damopr=damopr.item(0); 

brfprpr=damopr.getElementsByTagName('BrfProductsProperties'); 
brfprpr=brfprpr.item(0); 

  

      
    senimsim = xDoc.createElement('SensorImageSimulation'); 

    phase.appendChild(senimsim); 
    senimsim.setAttribute('importMultipleSensors','0');  

     
 xmlwrite(xmlpathpl, xDoc); 

     
    if opt.pinhole=='1' 

        pinhole = xDoc.createElement('Pinhole'); 
        senimsim.appendChild(pinhole); 

        pinhole.setAttribute('setImageSize','0'); 
        pinhole.setAttribute('defCameraOrientation','0'); 

        pinhole.setAttribute('cameraRotation','0'); 

  
        senpin=xDoc.createElement('Sensor'); 

        pinhole.appendChild(senpin); 
        senpin.setAttribute('sensorPosZ','1000'); 
        senpin.setAttribute('sensorPosY','0'); 
        senpin.setAttribute('sensorPosX','0'); 

    end 

    
    if opt.pushbroom=='1' 

        push = xDoc.createElement('Pushbroom'); 
        senimsim.appendChild(push); 
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        push.setAttribute('importThetaPhi','0'); 

         
        plat = xDoc.createElement('Platform'); 

        senimsim.appendChild(plat); 
        plat.setAttribute('PlatformDirection','0'); 
        plat.setAttribute('PlatformAzimuth','0'); 

         
        senpu = xDoc.createElement('Sensor'); 

        senimsim.appendChild(senpu); 
        senpu.setAttribute('PlatformDirection','0'); 
        senpu.setAttribute('PlatformAzimuth','0'); 

    end 

     

  

  
xmlwrite(xmlpathpl,xDoc); 

end 

 

 

Execute Dart:  

This function is used to execute any of DART’s modules. There can be one of the 

following: Vegetation, Directions, Phase, Maket, Dart, Full (this is the module that will be 

used during the project since it runs all of the previous modules consecutively), Sequence 

(this module will be called alongside full). 

 

Input: 

 

 Structure Opt: This variable stores information from the scene. In this case the 

needed information will be the name of the scene and the location of the 

program DART (opt.name, opt.dartpath). 

 The module that must be executed from the ones described above. 

Output: 

 

 There will not be any output in MATLAB. It will simulate the different 

modules and load the results in the output folder.  

function [ out ] = ExecuteDART( opt, module) 
%ExecuteDART Execution of the DART Modules 

%   The function executes DART modules specified by name module 

(vegetation, 
%   directions, phase, maket, dart and full (and the modules) in the 

%   simulation folder (namefolder). 
%   The functions can not use dart-full.bat correctly, so it execute all 

%   modules successively 
% Version 1.0 
name=opt.name; 
curdir = pwd; 

cd([opt.dartpath,'\tools\windows\']); 
switch module 

    case 'vegetation' 
        command=[opt.dartpath,'\tools\windows\dart-vegetation.bat ',name]; 

        system(command); 
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        out=1; 
                cd(curdir) 

        return 

     
    case 'directions' 

        command=[opt.dartpath,'\Tools\windows\dart-directions.bat ',name]; 
        system(command) 

        out=1; 
                cd(curdir) 

        return 

  
    case 'phase' 

        command=[opt.dartpath,'\Tools\windows\dart-vegetation.bat ',name]; 
        system(command) 

        command=[opt.dartpath,'\Tools\windows\dart-phase.bat ',name]; 
        system(command) 

        out=1; 
                cd(curdir) 

        return 

  
    case 'maket' 

        command=[opt.dartpath,'\Tools\windows\dart-maket.bat ',name]; 
        system(command) 

        out=1; 
                cd(curdir) 

        return 

  
    case 'dart' 

        command=[opt.dartpath,'\Tools\windows\dart-only.bat ',name]; 
        system(command) 

        out=1; 
                cd(curdir) 

        return 

  
    case 'full' 

        % Calling dart-full doesn't work, so the modules are executed one 
        % by one instead 

        command=[opt.dartpath,'\Tools\windows\dart-vegetation.bat ',name]; 
        system(command) 

        command=[opt.dartpath,'\Tools\windows\dart-directions.bat ',name]; 
        system(command) 

        command=[opt.dartpath,'\Tools\windows\dart-phase.bat ',name]; 
        system(command) 

        command=[opt.dartpath,'\Tools\windows\dart-maket.bat ',name]; 
        system(command) 

        command=[opt.dartpath,'\Tools\windows\dart-only.bat ',name]; 
        system(command) 

        out=1; 
                cd(curdir) 

        return 

         
    case 'sequence' 

        command=[opt.dartpath,'\Tools\windows\dart-sequence.bat ',name, 

'\Wavelength.xml -start']; 
        system(command) 

                cd(curdir) 
        return 

         
    otherwise 
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        print('Did you mean "vegetation", "directions", "phase", "maket", 

"dart", "sequence" or "full" ?'); 
        out=0; 

                cd(curdir) 
        return 

  
end 

  

Sequence:  

This function is used not only to call on the module Sequence, but it first prepares the 

files for the execution of the module. Firstly, the file Wavelength.xml will be copied from the 

folder Default Simulation. This folder contains all the default values for the simulations can 

be found. The copied file Wavelength will be placed in the folder of the scene, outside the 

input and output folders. This file will be altered by changing the range of wavelengths to the 

required by the simulation at hand. The step size between wavelengths will also need to be 

configured as the actually size of the wavelength. 

 

Input: 

 

 Structure Opt: This variable stores information from the scene. In this case the 

needed information will be the name of the scene and the values that have 

previously been defined and the location of both the scene folder and the 

default simulation folder (opt.name, opt.spband.first, opt.spband.step, 

opt.spband.delt, opt.spband.nb, opt.path,opt.defpath). 

Output: 

 

 There will not be any output in MATLAB. It will simulate the different 

modules and load the results in the Sequence folder.  

Any error generated during the execution of the module will be saved in 

Wavelength_Sequence_error.log which is found outside of the Sequence folder (The majority 

of the time this error will be for a misplaced parameter in the .xml files). 

 

function [ output_args ] = Sequence( opt ) 
%Sequence Create and execute a sequence with the specified spectral bands 

%    
% Input parameters (inside 'opt' structure) : 

%   namefolder 
%   firstmeanlambda : First spectral band of the sequence 
%   stepmeanlambda : Interval between each spectral band 

%   deltalambda : Width of the spectral bands 
%   numberbands : Number of Spectral Bands 

% Version 1.0 

  
%% Creation of the sequence file 

% For simplicity, we copy an existing xml file with default values (cf 
% captures) : delete as many useless files as possible (save space) ; only 

% execute main processes (direction, phase, maket, dart) 
copyfile([opt.defpath,'\Wavelength.xml'],opt.path); 

  
xmlpath=[opt.path,'\Wavelength.xml']; 
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 xDoc= xmlread(xmlpath);  

  
desc=xDoc.getElementsByTagName('DartSequencerDescriptorEntry'); 

meanLambda=[num2str(opt.spband.first),';',num2str(opt.spband.step),';',int2

str(opt.spband.nb)]; 
desc.item(0).setAttribute('args',meanLambda); 

deltaLambda=[num2str(opt.spband.delt),';0;',int2str(opt.spband.nb)]; 
desc.item(1).setAttribute('args',deltaLambda); 

  

  
pref=xDoc.getElementsByTagName('DartSequencerPreferences'); 

initialNode = pref.item(0); 
ids = char(initialNode.getAttribute('numberParallelThreads')) 
    pref.item(0).setAttribute('numberParallelThreads', '1'); 

ids = char(initialNode.getAttribute('numberParallelThreads'))    %%we check 

to see if we changed the parameter 

  
xmlwrite(xmlpath,xDoc); 

  
%% Execution of the sequence 

  
ExecuteDART(opt, 'sequence') 

  
end 

  

 

Land Cover Map:  

This function generates a land cover map of the scene.  It will be used to generate the 

different plots that are found in the scene as the overall Earth scene. 

 

Input: 

 

 Structure Opt: This variable stores information from the scene. In this case the 

needed information will be the name of the scene, the number of pixels in the 

scene, and the number of iterations (opt.name, opt.N, opt.nbiter). 

 
function [ output_args ] = LandCoverMap( opt,mat,lcm ) 

%LandCoverMap Creation of a Land Cover Map with the defined materials 
%   The function create an occupation map from the input parameters: 

%       -opt : options of the scene 
%       -mat : Array composed of the different materials (struct) 

%       -lcm : Indexed matrix image 
% Version 1.0 

  
if ~isfield(opt,'overwriteplot') 

    opt.overwriteplot=0; %keep (0) or crush (1) the existing plots 
end 

  
opt.Nmat=size(mat,2); 

if opt.lcm==2  %%%%%%%%%%%%lo quité 
    N=size(lcm); 
    opt.Nx=N(1); 
    opt.Ny=N(2); 
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end 

  
%% Create raster image .mp# 

imgname=[opt.path,'\input\lcm',int2str(opt.lcm),'.mp#']; 
fich=fopen(imgname, 'w'); 
fwrite(fich,lcm,'double'); 

fclose(fich); 

  
%% Create .mpr file 

  
mini=min(min(lcm)); 
maxi=max(max(lcm)); 

  
mprname=[opt.path,'\input\lcm',int2str(opt.lcm),'.mpr']; 

imgmpr=fopen(mprname,'w'); 

  
fprintf(imgmpr,'[Ilwis]\r\nDescription=\r\n'); 

fprintf(imgmpr,'Time=0\r\n'); 
fprintf(imgmpr,'Version=5.5\r\n');  

fprintf(imgmpr,'Class=Raster Map\r\n'); 
fprintf(imgmpr,'Type=BaseMap'); 
fprintf(imgmpr,'\r\n\r\n'); 

fprintf(imgmpr,'[BaseMap]\r\nCoordSystem=unknown.csy\r\n'); 
fprintf(imgmpr,'CoordBounds=0 -%d %d 

0\r\n',opt.Nx*opt.Celldim,opt.Ny*opt.Celldim);  %Dimensions of the scene 

(in m) ! 
fprintf(imgmpr,'Domain=value.dom\r\n');  

fprintf(imgmpr,'DomainInfo=value.dom;Long;value;0;-

9999999.9:9999999.9:0.1:offset=0;\r\n'); 
fprintf(imgmpr,'Range=1.000:%d.000:0.001:offset=0\r\n',opt.Nmat); 

fprintf(imgmpr,'Proximity=1.000000\r\nType=Map\r\n'); 
fprintf(imgmpr,'MinMax=%f:%f\r\n',mini,maxi); %Min and Max of values 

fprintf(imgmpr,'\r\n'); 
fprintf(imgmpr,'[Map]\r\nGeoRef=%s.grf\r\n','lcm'); 

fprintf(imgmpr,'Size=%d %d\r\n',opt.Nx,opt.Ny); %Size of the image (in 

pixels) ! 
fprintf(imgmpr,'Type=MapStore'); 

fprintf(imgmpr,'\r\n\r\n'); 
fprintf(imgmpr,'[MapStore]\r\n'); 

fprintf(imgmpr,'StoreTime=0\r\nData=%s.mp#\r\n','lcm'); 
fprintf(imgmpr,'Structure=Line\r\n'); 

fprintf(imgmpr,'StartOffset=0\r\nRowLength=%d\r\n',opt.Nx); 
fprintf(imgmpr,'PixelInterLeaved=Yes\r\nSwapBytes=No\r\n');   

%%%%%%%%%%%%%%%%change to yes 
fprintf(imgmpr,'Type=Real\r\nUseAs=No\r\nFormat=2\r\n'); 

  
fclose(imgmpr); 

  
%% Create the descriptor file 

  
descname=[opt.path,'\input\lcm',int2str(opt.lcm),'.txt']; 

descip=fopen(descname,'w'); 

  
for i=1:opt.Nmat 

    fprintf(descip,'%s\t%d\t%d\t',mat(i).name,mat(i).index,mat(i).plot);  
    fprintf(descip,'%d\t%d\t',mat(i).plottype,mat(i).soiltype);  

    fprintf(descip,'%s\t%s\t',mat(i).soildb,mat(i).soilsp);     
    fprintf(descip,'%s\t%s\t%g\t',mat(i).vegdb,mat(i).vegsp,mat(i).LAI);  
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    fprintf(descip,'%g\t%g\t%g\t',mat(i).Hbase,mat(i).H,mat(i).Hsigma); 
    fprintf(descip,'%g\t%g\t',mat(i).Tmean,mat(i).Tdelt); 

    

fprintf(descip,'%g\t%g\t%g\t%g\t',mat(i).clumpmin,mat(i).clumpmax,mat(i).cl

uma,mat(i).clumb);  
    

fprintf(descip,'%d\t%g\t%g\t%g\t',mat(i).LAD,mat(i).ALA,mat(i).eccen,mat(i)

.LeafSize); 
    fprintf(descip,'\r\n'); 

end 

  
fclose('all'); 

  
%% Modify the XML files to implement LCM 

%Plots 

  
xmlpathpl=[opt.path,'\input\plots.xml']; 

xDoc= xmlread(xmlpathpl);   
% Open XML 

  

     

     

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
plots=xDoc.getElementsByTagName('Plots');   % Get to the node "Plots" 

plots=plots.item(0); 
plots.setAttribute('isVegetation','1'); 

  
importRaster = plots.getElementsByTagName('ImportationFichierRaster'); 

importRaster = importRaster.item(0); 

  
vegetprop = xDoc.createElement('VegetationProperties'); 

importRaster.appendChild(vegetprop); 
vegetprop.setAttribute('OverwritePlots',int2str(opt.overwriteplot)); %keep 

(0) or crush (1) the existing plots 
vegetprop.setAttribute('coverLandMapDescFileName',['lcm',int2str(opt.lcm),'

.txt']); 
vegetprop.setAttribute('coverLandMapFileName',['lcm',int2str(opt.lcm),'.mp#

']); 
vegetprop.setAttribute('selectSubZone','0'); 

  

  

  

  
if opt.lcm==2 

    N=size(lcm); 
    Nx=N(1); 
    Ny=N(2); 

     
    vegetprop.setAttribute('selectSubZone','1'); 

    subzone = xDoc.createElement('SelectSubZoneProperties'); 
    vegetprop.appendChild(subzone); 
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    subzone.setAttribute('lineOfTopLeftPixel','5'); 
    subzone.setAttribute('lineNbSubZone',int2str(Nx)); 
    subzone.setAttribute('columnOfTopLeftPixel','5'); 

    subzone.setAttribute('columnNbSubZone',int2str(Ny)); 
end 

 
rastercos = xDoc.createElement('RasterCOSInformation'); 

importRaster.appendChild(rastercos); 
rastercos.setAttribute('nbColCOS',int2str(opt.Ny)); 
rastercos.setAttribute('nbLiCOS',int2str(opt.Nx)); 

rastercos.setAttribute('pixelByteSizeCOS','9'); %double (Little Endian) 
rastercos.setAttribute('pixelSizeCol',int2str(opt.Celldim)); 
rastercos.setAttribute('pixelSizeLi',int2str(opt.Celldim)); 

     
xmlwrite(xmlpathpl,xDoc); 

  

  

  
if opt.lcm==1; 
    %%Maket 

    xmlpathma=[opt.path,'\input\maket.xml']; 
    xDoc= xmlread(xmlpathma);   

  
    scene=xDoc.getElementsByTagName('Scene');   % Get to the node "Scene" 

    scene=scene.item(0); 
    cell=scene.getElementsByTagName('CellDimensions');   % Get to the node 

"CellDimensions" 
    cell=cell.item(0); 

    cell.setAttribute('x',int2str(opt.Celldim)); 
    cell.setAttribute('y',int2str(opt.Celldim)); 

  
    dim=scene.getElementsByTagName('SceneDimensions');   % Get to the node 

"CellDimensions" 
    dim=dim.item(0); 

    dim.setAttribute('x',num2str(opt.Nx,'%.2f')); 
    dim.setAttribute('y',num2str(opt.Ny,'%.2f')); 

     

  

  
    xmlwrite(xmlpathma,xDoc); 

end 

  

  
end 

  

 

Open all images:  

This function opens the images created by Sequence. 

 

Input: 

 

 Structure Opt:  This variable must contain the name of the scene, the number 

of pixels in the scene, and the number of iterations (opt.name, opt.N). 
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 lcm: an indexed matrix with the different materials in their respective 

coordinates. 

function [ IMG ] = OpenAllImages( opt,lcm ) 
%   Create a 3D image from all the image simulations 

%    
%   Input parameters :  

%       -name 
%       -N : size of the image (in pixels) 

%       -numberbands : number of spectral bands (=number of images) 
% Version 2.0 open brf,toa,sensor images (from v1.2) 

  
if nargin<2 

    lcm=0; end 

  
if ~isfield(opt,'simtype') 
    opt.simtype='brf'; end 

  
%Default parameters : Useful if function called outside of Black Box 

if ~isfield(opt,'path') 
    opt.dartpath='..\..\DART'; 

    opt.path=[opt.dartpath,'\user_data\simulations\',opt.name];  
end 

  
if ~isfield(opt,'N') 

    opt.N=size(lcm); opt.Nx=opt.N(1); opt.Ny=opt.N(2); 
else %En supposant que la scène est carrée. 
    if ~isfield(opt,'Nx')||~isfield(opt,'Ny') 

        opt.Nx=opt.N; opt.Ny=opt.N; end 
end 
%% 

pathsim=[opt.path,'\sequence']; 

  
IMG=zeros(opt.Nx,opt.Ny,opt.spband.nb); %Memory Allocation 

  
switch opt.simtype 
    case 'brf' 

        endpath='BRF\ITERX\IMAGES_DART'; 
    case 'sensor' 

        endpath='SENSOR\IMAGES_DART'; 
    case 'toa' 

        endpath='TOA\IMAGES_DART'; 
end 

         
for i=0:opt.spband.nb-1 

    path=[pathsim,'\Wavelength_',int2str(i),'\output\BAND0\',endpath]; 
    imgpath=[path,'\ima01_VZ=000_0_VA=000_0.mp#']; 

    image=fopen(imgpath); 
    F=fread(image,[opt.Nx,opt.Ny], 'double'); 

    IMG(:,:,i+1)=F; 
    fclose(image); 

end 

  
end 
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Annex B. Simulation procedure for importing images 

BlackBox:  

This function will be used when opening an image that already exists. This image will 

have already been created using directly DART. The scene will already have in the output file 

the images generated by Sequence (also using exclusively DART). Therefore the only task 

that this function has is to located the files and open the images. 

 

Input: 

 

 Structure opt:  Like in the other version of BlackBox, the needed information 

will be the name of the scene, the number of pixel of the scene, the first 

wavelength values, the step and size of the wavelengths, the number of 

wavelengths in our simulation and the number of iterations (opt.name, opt.N, 

opt.spband.first, opt.spband.step, opt.spband.delt, opt.spband.nb, opt.nbiter). 

 

function [ bands, IMG ] = BlackBox1(opt)    
%BlackBox Main function when the image haa already been created in DART 

%   Input elements 
%       -opt : strucure with all the necessary options : 

%     
% % Version 2.0 

  
% %% Falcultative Arguments 

  
% % Creation of the scene 

opt.dartpath='..\..\..\DART'; %% PATH TO CHANGE IF MATLAB FILES ARE MOVING 
opt.defpath='..\DARTdefaultsimulation'; %% PATH TO CHANGE IF FILES ARE 

MOVING 

  
opt.path=[opt.dartpath,'\user_data\simulations\',opt.name]; 

  
xmlpathpl=[opt.path,'\input\phase.xml']; 

xDoc= xmlread(xmlpathpl); 

  

phase=xDoc.getElementsByTagName('Phase'); %we need to add this parameter in order to 

execute in DART 
phase=phase.item(0); 

dainpa=phase.getElementsByTagName('DartInputParameters'); 
dainpa=dainpa.item(0); 

flutra=dainpa.getElementsByTagName('nodefluxtracking'); 
flutra=flutra.item(0); 

flutra.setAttribute('numberOfIteration',int2str(opt.nbiter));  

  
xmlwrite(xmlpathpl,xDoc); 

 %%%%%%%%%%%%%%%%%% import sensors 

   
    senimsim = xDoc.createElement('SensorImageSimulation'); 

    phase.appendChild(senimsim); 
    senimsim.setAttribute('importMultipleSensors','0');  

     
 xmlwrite(xmlpathpl, xDoc); 
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% % Create an hyperspectral image 

  
Sequence( opt ); 

 IMG=OpenAllImages(opt); 

  
% Array of Spectral Bands 
band = opt.spband.first; 

bands=zeros(1,opt.spband.nb); 

  
for i=1:opt.spband.nb 
    bands(i) = band; 

    band = band+opt.spband.step; 
end 

  
end 

 

Annex C. Simulation of sensors 

Sensor Call:  

This function establishes some of the values needed in order to simulate the sensor, if 

they have not been set already. To be more precise, the function establishes the sensor that 

will be used and the dimensions of the cell that make the image.  Once this is established, the 

program will start with the deformation of the image. 

 

Input: 

 

 Structure Opt: In this particular function the information need will be the name 

of both the simulation and the sensor used (opt.name, opt.sen.sensor). The size 

of the cell will be set by default if this value is not set, but it has to have been 

created (opt.Celldim). 

function [ output_args ] = SensorCall( opt ) 
%SensorCall Call the Sensor Simulation scripts (Pansharpening) 

%   The parameters useful for the simulation will be contained in the 
%   structure opt.sen 

%    

  
cd('..\Simulator') 

% addpath('..\Simulator\Images') 
% addpath('..\Simulator\Outputs') 

% addpath('..\Simulator\Relative Spectral Responses') 
% addpath('..\Simulator\Signatures' 

  
%% Parameters useful for the simulation 

  
%%%% Type of Sensor 

  

  
sensor = opt.sen.sensor; 
% sensor = 'IKONOS';  

% sensor = 'QUICKBIRD'; 
% sensor = 'WV2'; 
% sensor = 'none'; 
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%%%% Type of Sensor 

  
if ~isfield(opt.sen,'sensor') 

    opt.sen.sensor='IKONOS'; end 

  
% sensor = 'IKONOS';  

% sensor = 'QUICKBIRD'; 
% sensor = 'WV2'; 
% sensor = 'none'; 

 
%%%% Dimension of the simulated image 

  
if ~isfield(opt,'Celldim') 
    opt.Celldim=1; end 

  
% Dim_Pixel_Simulated_Image = opt.Celldim; % in [meter] usually << 1 meter 

  
SimulatorPansharpening( opt ) 

  
cd('..\CodeV2.0') 

end 

 

Simulator Pansharpening:  

This function deforms the image as the real sensor would (since the image created in 

DART would be that of an ideal sensor).  In order to do so, some information about the 

sensor such as their spectral response, their spatial resolution and their MTF gain value at the 

Nyquist frequency must be uploaded into the program. 

 

Input: 

 

 Sturcture Opt: In this particular function the information needed is the name of 

both the simulation and the sensor used (opt.name, opt.sen.sensor). The size of 

the cell will be set by default if we don’t set a value, but it has to have been 

created (opt.Celldim). 

Output: 

 

 This function generates the images that the specific sensor would produce.  

 
function[output_args] = SimulatorPansharpening( opt ) 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Sensor Choice %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Sensor to simulate 

sensor = opt.sen.sensor; 
% sensor = 'IKONOS'; 

% sensor = 'QUICKBIRD'; 
% sensor = 'WV2'; 
% sensor = 'none'; 

  
% Plot Relative Spectral Responses of the Sensor 

plotRelativeSpectralResponse = 1; 



s                

 

 

49 

 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% Parameter Setting %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Simulated Image 

Dim_Pixel_Simulated_Image = opt.Celldim; % in [meter] usually << 1 meter 

  

     
if strcmp(sensor,'IKONOS') 

    % Load the IKONOS Relative Spectral Response 
    load('Relative Spectral Responses/IKONOS_Spectral_Responses.mat'); % 

The order is: Blue, Green, Red, NIR, PAN     

            
    % Degradation and Resampling IKONOS sensor 

     
    % Cutoff frequency PANchromatic channel 
    Spatial_Resolution_PAN = 1; % in [meter] 

    PAN_fcutoff = Dim_Pixel_Simulated_Image/Spatial_Resolution_PAN; 
    PAN_fsampling = PAN_fcutoff; 

    PAN_GNyq = 0.17; 
    % Cutoff frequency MultiSpectral/HyperSpectral (MS/HS) channel 

    Spatial_Resolution_MS = 4; % in [meter] 
    MS_fcutoff = Dim_Pixel_Simulated_Image/Spatial_Resolution_MS; 

    MS_fsampling = MS_fcutoff; 
    MS_GNyq = [0.26,0.28,0.29,0.28]; % Band Order: B,G,R,NIR 

     
    % % % IKONOS with bicubic interpolator to degradate 

%     PAN_GNyq = []; 
%     MS_GNyq = []; 

     
    % Quantization 

    L = 11; % Radiometric Resolution IKONOS     

     
elseif strcmp(sensor,'QUICKBIRD') 

     
    % Load the QUICKBIRD Relative Spectral Response 

    load('Relative Spectral Responses/QUICKBIRD_Spectral_Responses.mat'); % 

The order is: Blue, Green, Red, NIR, PAN     

            
    % Degradation and Resampling QUICKBIRD sensor 

     
    % Cutoff frequency PANchromatic channel 

    Spatial_Resolution_PAN = 0.61; % in [meter] at nadir 
    PAN_fcutoff = Dim_Pixel_Simulated_Image/Spatial_Resolution_PAN; 

    PAN_fsampling = PAN_fcutoff; 
    PAN_GNyq = 0.15; 

    % Cutoff frequency MultiSpectral/HyperSpectral (MS/HS) channel 
    Spatial_Resolution_MS = 2.44; % in [meter] at nadir  

    MS_fcutoff = Dim_Pixel_Simulated_Image/Spatial_Resolution_MS; 
    MS_fsampling = MS_fcutoff; 

    MS_GNyq = [0.34 0.32 0.30 0.22]; % Band Order: B,G,R,NIR 

     
    % % % QUICKBIRD with bicubic interpolator to degradate 

%     PAN_GNyq = []; 
%     MS_GNyq = []; 
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    % Quantization 

    L = 11; % Radiometric Resolution QUICKBIRD     

  

     
elseif strcmp(sensor,'WV2') 

     
    % Load the WV-2 Relative Spectral Response 

    load('Relative Spectral Responses/WV2_Spectral_Responses.mat');  

            
    % Degradation and Resampling WV-2 sensor 

     
    % Cutoff frequency PANchromatic channel 

    Spatial_Resolution_PAN = 0.46; % in [meter] at nadir 
    PAN_fcutoff = Dim_Pixel_Simulated_Image/Spatial_Resolution_PAN; 

    PAN_fsampling = PAN_fcutoff; 
    PAN_GNyq = 0.11; 

    % Cutoff frequency MultiSpectral/HyperSpectral (MS/HS) channel 
    Spatial_Resolution_MS = 1.8; % in [meter] at nadir 

    MS_fcutoff = Dim_Pixel_Simulated_Image/Spatial_Resolution_MS; 
    MS_fsampling = MS_fcutoff; 

    MS_GNyq = [0.35 .* ones(1,7), 0.27]; % Band Order: All bands, NIR2 

  
    % % % WV-2 with bicubic interpolator to degradate 

%     PAN_GNyq = []; 
%     MS_GNyq = []; 

  
    % Quantization 

    L = 11; % Radiometric Resolution WV-2     

  
else 

    fprintf('Wrong Selection\n'); 
    return; 

end 

  
%%%%%%%%%%%%%%%%%%%%%%%% Other Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
coreg_shift_x = 0; 
coreg_shift_y = 0; 

sigma_gauss_noise = 0; 
sigma_mul_noise = 0; 

bandwidth_mul_noise = 10; 
magnitude_striping = 100; 

ratio_BD_N = 0; 
prob_bad_pixel = 0; 
spectral_offset = []; 
smile_width = []; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if plotRelativeSpectralResponse == 1 

    figure, plot(wavelength_nm,Spectral_Responses_Matrix) 
    xlabel('Wavelength [nm]'); 

    ylabel('Relative Spectral Response'); 
end 

  
%%%%%%%%%%%%%%%%%%%%% Builting a Test Image %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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cd('..\CodeV2.0') 
  LabeledImage = OpenAllImages(opt); 

cd('..\Simulator') 
%  img = size(LabeledImage); 

%   LabeledImage = Build_Image_Scenario_1(); 
%  LabeledImage = Build_Image_Scenario_2(); 

%  LabeledImage = Build_Image_Scenario_3(300,Dim_Pixel_Simulated_Image); 
% LabeledImage = Build_Image_Scenario_4(64); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%% Simulating Sensors %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
I_GT = 

Simulating_Sensor(LabeledImage,wavelength_nm,Spectral_Responses_Matrix(1:en

d-

1,:),PAN_fcutoff,MS_GNyq,PAN_fsampling,L,coreg_shift_x,coreg_shift_y,sigma_

gauss_noise,sigma_mul_noise,bandwidth_mul_noise,magnitude_striping,ratio_BD

_N,prob_bad_pixel,spectral_offset,smile_width); 

  
I_MS = 

Simulating_Sensor(LabeledImage,wavelength_nm,Spectral_Responses_Matrix(1:en

d-

1,:),MS_fcutoff,MS_GNyq,MS_fsampling,L,coreg_shift_x,coreg_shift_y,sigma_ga

uss_noise,sigma_mul_noise,bandwidth_mul_noise,magnitude_striping,ratio_BD_N

,prob_bad_pixel,spectral_offset,smile_width); 

  
I_PAN = 

Simulating_Sensor(LabeledImage,wavelength_nm,Spectral_Responses_Matrix(end,

:),PAN_fcutoff,PAN_GNyq,PAN_fsampling,L,coreg_shift_x,coreg_shift_y,sigma_g

auss_noise,sigma_mul_noise,bandwidth_mul_noise,magnitude_striping,ratio_BD_

N,prob_bad_pixel,spectral_offset,smile_width); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% Print Output RGB %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Adjustments to Print 

I_Printable_GT = zeros(size(I_GT)); 
I_Printable_MS = zeros(size(I_MS)); 

for ii = 1 : size(I_GT,3) 
    I_Printable_GT(:,:,ii) = imadjust(im2double(I_GT(:,:,ii))); 
    I_Printable_MS(:,:,ii) = imadjust(im2double(I_MS(:,:,ii))); 

end 
 I_Printable_PAN = imadjust(im2double(I_PAN)); 

  
% Print GT, MS and PAN 

figure, imshow(I_Printable_GT(:,:,[3 2 1])) 
figure, imshow(I_Printable_MS(:,:,[3 2 1])) 

figure, imshow(I_Printable_PAN) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% Save Simulated Result %%%%%%%%%%%%%%%%%%%%%%%%% 

  
save 'Outputs/Simulation.mat' I_PAN I_MS I_GT 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Simulating Sensor:  

This function is used in the SimulatorPansharpening function.  This is where the 

actual degradation of the image takes place. 

 

Input: 

 

 LabeledImage:  the image that has to be modified, it can either be created in 

MATLAB or simpled opened from the Sequence folder. 

 wavelength_nm: the range of Relative Spectral Responses of the specified 

sensor. 

 Spectral_Responses_Matrix: contains the relative spectral response of the 

sensor for each of wavelength. 

 fcutoff: cut frequency of the sensor. 

 GNyq: stores the values of the MTF gain at the Nyquist frequency. 

 fsampling: stores the sampling frequency. 

 L: number of quantification. 

 coreg_shift_x, coreg_shift_y:  values of both the spatial shift in x and in y 

direction. 

 sigma_gauss_noise, sigma_mul_noise: values of both standard deviation of 

gaussian and multiplication noise. 

 bandwidth_mul_noise:  bandwidth of the multiplicative noise. 

 magnitude_striping: magnitude striping. 

 ratio_BD_N: ration between bad and normal pixels.  

 prob_bad_pixel: probability of bad pixels. 

 spectral_offset: spectral offset. 

 smile_width: width of the spectral smile effect. 

Output: 

 

 This function generates images that seems as if captured by the sensor we 

specified. 

 

function SimulatedImage = 

Simulating_Sensor(LabeledImage,wavelength_nm,Spectral_Responses_Matrix,fcut

off,GNyq,fsampling,L,coreg_shift_x,coreg_shift_y,sigma_gauss_noise,sigma_mu

l_noise,bandwidth_mul_noise,magnitude_striping,ratio_BD_N,prob_bad_pixel,sp

ectral_offset,smile_width) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% % % INPUT 
% LabeledImage is the original scenario labeled. In library there will be 

% the relation between the labels and the spectral signatures of the 
% materials. 

% wavelength_nm is the vector of the range of Relative Spectral Responses 
% of the sensor to simulate. 

% Spectral_Responses_Matrix is the matrix of the Relative Spectral 
% Responses of the sensor to simulate. For each band we have a row in the 

% matrix. 
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% fcutoff is the cut frequency of the sensor optics. 
% GNyq is the vector or a single value of the MTF gain at the Nyquist 

% frequency. 
% fsampling is the vector or a single value of the sampling frequency in 

% the downsampling phase. 
% L represents the levels in the quatizator.  
% coreg_shift_x: Spatial shift in x direction 
% coreg_shift_y: Spatial shift in y direction 
% sigma_gauss_noise: St.dev. Gaussian noise 

% sigma_mul_noise: St.dev. multiplicative noise 
% bandwidth_mul_noise: Bandwidth multiplicative noise 

% magnitude_striping: Magnitude striping 
% ratio_BD_N: Ratio between Bad/Dead pixels and Normal ones 
% prob_bad_pixel: Probability of bad pixels w.r.t. dead ones 

% spectral_offset: Spectral offset 
% smile_width: Width of the spectral smile effect 

% % % OUTPUT 
% SimulatedImage is the LabeledImage seen by the simulated sensor. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if  isempty(GNyq) 

    flag_degradation = 'none'; 
else 

    flag_degradation = 'MTF'; 
end 

  
flag_library = 'none'; 
% flag_library = 'USGS'; 

  
%%% Input checks 

if numel(fsampling) == 1 
    fsampling = repmat(fsampling,[1 size(Spectral_Responses_Matrix,1)]); 

end 

  
if numel(GNyq) == 1 

    GNyq = repmat(GNyq,[1 size(Spectral_Responses_Matrix,1)]); 
end 

  
    if isempty(spectral_offset) || isempty(smile_width) 

        % Quicker but no smile effect 
        SimulatedImage = 

Build_Cube(wavelength_nm,Spectral_Responses_Matrix,LabeledImage); 
    else 

        SimulatedImage = 

Build_Cube_Smile(wavelength_nm,Spectral_Responses_Matrix,LabeledImage,spect

ral_offset,smile_width); 
    end 
% end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%% Degradation & Downsampling Phase %%%%%%%%%%%%%%%%%%%%%%%% 

  
SimulatedImage = 

DegradationAndResampling(SimulatedImage,flag_degradation,fcutoff,GNyq,fsamp

ling); 

  
SimulatedImage = 
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coregistration_shift(SimulatedImage,coreg_shift_x,coreg_shift_y); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% Noise Step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
SimulatedImage = 

noises(SimulatedImage,sigma_gauss_noise,sigma_mul_noise,bandwidth_mul_noise

); 

  
SimulatedImage = 

striping(SimulatedImage,magnitude_striping,ratio_BD_N,prob_bad_pixel); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% Quatization Step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
SimulatedImage = QuantizationAndConvertionUint16(SimulatedImage,L); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
end 

 

Build Cube: 

 This function is used to resize the image. That way, the program can simulate sensors 

which have different MTF vector lengths (like in this case are PAN and MS sensors) without 

having to change any of the code. 

 
function SimulatedImage = 

Build_Cube(wavelength_nm,Spectral_Responses_Matrix,LabeledImage) 

  
 SimulatedImage = zeros(size(LabeledImage,1), size(LabeledImage,2), 

size(Spectral_Responses_Matrix)); 

  

    b= size(SimulatedImage)     %we add the spectral responses of the chosen sensor 
 SimulatedImage = LabeledImage(:,:,1:size(Spectral_Responses_Matrix)); 

     

      
end 

  

 

Annex D. Others 

Load All Spectres:  

In this function, information from a given file is uploaded. This information will be 

the properties of certain materials. This file comes from a specific location from a specific 

computer. Because of this it must be changed when using another computer. It will generate a 

.txt file with the value of the MxN different points of the matrix as reflectance value for each 

wavelength value. That is, it will generate MxN reflectance signatures. Two more parameters 

will need to be added to much DART’s database files which are the direct and the diffuse 
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transmittance. In this example, we will set these two values to zero. 

 
clc 

clear all 
close all 

%%%%%%in this case we will upload an 10x10 image with 224 wavelengths  
load('C:\Users\Ester\MaterialesSimulacion\simulated_image.mat')  %Spectres 

of different materials 
spectre=zeros(size(wavelengths),4); 

  
N=size(img,1) 

  
for i = 1:N 

     
    tagname = ['layer', int2str(i)]; 

     spectre(:,1)= wavelengths; 

     
     for k= 1:N 

      spectre(:,2) = img(i,k,:); 
      spectre(:,3) = 0.0; 
      spectre(:,4) = 0.0; 

    

      
header='# Name:  '; 

header=[header, tagname];   %each material will have the same type of text file but with a different 

name and reflectance values  
header=[header, '\r\n#Sample\r\n'];  

header=[header,'\r\nwavelength;reflectance;direct_transmittance;diffuse_tra

nsmittance\r\n']; 
ident = ['layers', int2str(i)]; 

finalIdent = [ident, int2str(k)]; 
nameFile = strcat(finalIdent,'.txt'); 

finalNameFile = strcat('2D-LAM_Sample_', nameFile) 
txtfile=fopen(finalNameFile,'w'); 

fprintf(txtfile,header); 

  
fprintf(txtfile,'%f;%f;%f;%f\r\n',spectre.'); 

     end 
end 

 

 

Annex E. Unmixing at a pixel level 

Unmixing 

 

With this code the different materials present in the scene and the resulting reflectance 

after the DART simulation will be imported.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%                Pixel with types of snow scenario             %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clc 

clear all 
close all 
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%signatures of each material  

 load(‘ice.mat’) 
 spD = ice(:,2); 

 load(‘loaams.mat’) 
 spA = loams(:,2); 
 load(‘brickr.mat’) 
 spC = brickr(:,2); 
 load(‘asph4.mat’) 
 spB = asph4(:,2); 

   %reflectance of scene 
  load(‘A3C.mat’) 

   sA3C = A3C(:,2)*100 ;     
  load(‘ABCA.mat’)  

   sABCA = ABCA(:,2)*100 ;   
  load(‘AABB.mat’) 

   sAB = AABB(:,2)*100 ;   

  load(‘ABAD.mat’) 

 
sABAD = ABAD(:,2)*100 ;  %%%%%%%mitad B mitad D     

figure(1) 

plot(loams(:,1),spA, ‘:m’ ,’LineWidth’, 2) 

hold on  

plot(asph4(:,1),spB, ‘:g’ ,’LineWidth’, 2) 

hold on 

plot(brickr(:,1),spC, ‘:c’ ,’LineWidth’, 2) 

hold on 

plot(ice(:,1),spD, ‘:r’ ,’LineWidth’, 2) 

hold on 

plot(ABCA(:,1),sABCA, ‘y’ ,’LineWidth’, 2) 

hold on 

plot(AABB(:,1),sAB ,’r’,’LineWidth’, 2) 

legend(‘matA’, ‘matB’, ‘matC’, ‘matD’, ‘outcome2’, ‘outcome3’) 

  

%%%%%%only focus on the range they all have data 

contD = 0; 

for i = 1:size(ice(:,1)) 

if  ice(i,1) < max(asph4(:,1)) 

contD = contD +1; 

else  

break; 

end; 
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end 

figure(2) 

plot(ice(1:contD, 1),spD(1:contD), ‘:r’ ,’LineWidth’, 2) 

hold on 

contA = 0; 

for i = 1:size(loams(:,1)) 

if  loams(i,1) < max(asph4(:,1)) 

contA = contA +1; 

end 

end 

plot(loams(1:contA,1),spA(1:contA), ‘:m’ ,’LineWidth’, 2) 

hold on  

contC = 0; 

plot(asph4(:,1),spB, ‘:g’ ,’LineWidth’, 2) 

hold on 

for i = 1:size(brickr(:,1)) 

if  brickr(i,1) < max(asph4(:,1)) 

contC = contC +1; 

end 

end 

plot(brickr(1:contC, 1),spC(1:contC), ‘:c’ ,’LineWidth’, 2) 

hold on 

contM1 = 0; 

for i = 1:size(A3C(:,1)) 

if  A3C(i,1) < max(asph4(:,1)) 

contM1 = contM1 +1; 

end 

end 

plot(ABCA(1:contM1,1),sABCA(1:contM1), ‘y’ ,’LineWidth’, 2) 

hold on 

contM2 = 0; for i = 1:size(AABB(:,1)) 

if  AABB(i,1) < max(asph4(:,1)) 

contM2 = contM2 +1; 

end 
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end 

contM4 = 0; for i = 1:size(ABCA(:,1)) 

if  ABCA(i,1) < max(asph4(:,1)) 

contM4 = contM4 +1; 

end 

end 

plot(ABCA(1:contM4,1),sABCA(1:contM4) ,’r’,’LineWidth’, 2) 

hold on 

contM3 = 0; 

for i = 1:size(ABAD(:,1)) 

if  ABAD(i,1) < max(asph4(:,1)) 

contM3 = contM3 +1; 

end 

end 

plot(ABAD(1:contM3,1),sABAD(1:contM3) ,’c’,’LineWidth’, 2) 

legend(‘matD’, ‘matA’, ‘matB’, ‘matC’) 

%  

% for i= 1:contA  

% if (loams(i,1)== AABB(:,1)) 

%     i 

% end 

% end 

  

A = [spA(51),spB(31),spC(76),spD(76);  

spA(351),spB(181),spC(226),spD(226); 

spA(451),spB(306),spC(261),spD(261); 

spA(576),spB(488),spC(286),spD(286)]; 

cond(A) 

%  

%  

S = [sAB(2),sAB(8), sAB(13), sAB(23)] 

F = [sABCA(2),sABCA(8), sABCA(13), sABCA(23)] 

G = [sABAD(2),sABAD(8), sABAD(13), sABAD(23)]  

p3=A\F’; 

prob3 = p3./sum(p3)  

F 

A*[0.5 0.25 0.25 0]’ 

%     

p4=A\G’; 

prob2 = p4./sum(p4)    
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G 

A*[0.5 0.25  0.00 0.25]’ 

Range selection for sequence 

It will be evaluated which four points generate a more precise unmixing.   

A = zeros(4,4);  

for f = 1:20  %%(120)/4 = 20 

i = f+52; 

g = f + 252; 

A = [sA(g),sB(i),sC(i), sD(i);  %%I want to start off where the 

wavelength is now repeated 

sA(g+20),sB(i+20),sC(i+56),sD(i+20); 

sA(g+2*20),sB(i+2*20),sC(i+2*20), sD(i+2*20); 

sA(g+3*20),sB(i+3*20),sC(i+3*20),sD(i+3*20)]; 

if cond(A) < 280 

t  = cond(A) 

wavel= [snow(g,1);snow(i+20,1); snow(i+2*20,1);snow(i+3*20,1)] 

end 

end 

 

Range selection for unmixing 

With this code it will be possible to determine the best range for DART to simulate. The 

most common step and where to start the sequence will be found. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%                Pixel with types of tA scenario             %%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clc 

clear all 

close all 

  

%signatures of each material  

load('loaams.mat') 

 spDs = loams(:,2); 

 wD = loams(:,1); 

 load('brickr.mat') 

 spAs = brickr(:,2); 

  wA = brickr(:,1); 

 load('ice.mat') 

 spCs = ice(:,2); 

  wC = ice(:,1); 

 load('asph4.mat') 

 spBs = asph4(:,2); 

  wB = asph4(:,1); 

  

%    %reflectance of scene 
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   load('ABAD.mat') 

   ABs = ABAD(:,2)*100 ;  %%%%%%%mitad B mitad    

    wres = ABAD(:,1); 

     

maximo = [size(wA),size(wB), size(wC), size(wD)]; 

maxi = [maximo(1), maximo(3), maximo(5), maximo(7)];%%%maxi = 

maxi(1:2:size(maximo)) 

wG = -1*ones(max(maxi)+1,1); 

  

%%%%% I locate the wavelengths found in all materials 

%%%%% after I locate the wavelengths that are also in the resulting spectra 

cont1 = 1; 

wBB = [wB; -3];  %%%add a negative number so I can compare j and j+1 

for i = 1: size(wA) 

    for  j = 1: size(wB) 

           if wBB(j)~=wBB(j+1)   

            if wA(i) == wBB(j)  

               wG(cont1) = wA(i); 

             cont1 = cont1 +1; 

            break;%%once found the value we stop looking 

            end            

           end                

    end 

end 

  

cont1 = 1; 

wCC = [wC; -3]; 

  

for i = 1: size(wG) 

    for  j = 1: size(wC) 

         if wCC(j)~=wCC(j+1) 

             if wG(i) == wCC(j) 

            wG(cont1) = wCC(j); 

                 cont1 = cont1 +1; 

                 break; 

              end 

         end 

          

    end 

end 

  

  

cont1 = 1; 

wDD = [wD; -3]; 

  

for i = 1: size(wG) 

    for  j = 1: size(wD) 

         if wDD(j)~=wDD(j+1) 

            if wG(i) == wDD(j) 

                 wG(cont1) = wG(i); 

             

            cont1 = cont1 +1; 

            break; 

            end 

         end 

    end 

end 

%%%%%%we have seen the wavelengths on the different materials, now the 

%%%%%%resulting image 

totalwav = zeros(1,cont1-1); 
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contador = 1;  %%%    so no number is repeated and get the wavelengths that 

I need and fit the profile range 

for i = 1:cont1 

    if wG(i) < wG(i+1) 

          totalwav(contador) = wG(i); 

            contador = contador +1; 

    else break; % once found we don't need to keep on searching 

    end 

end 

%%%%%%%%%%find best sequence range%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%i divide into four sections so that the steps won't be too far off each 

%%%other 

totalwav = totalwav'; 

div = size(totalwav(:,1))/4   

redondeo = round(div(1)) 

if redondeo > div(1)    %%si round - div > 0 -> high number 

    twav = redondeo-1; 

 else twav = redondeo; 

  

end 

  

steps = ones(twav,1); 

steps1 = ones(twav,1); 

steps2 = ones(twav,1); 

steps3 = ones(twav,1); 

steps4 = ones(twav,1); 

  

  

  

      for n = 1: size(totalwav)-1 

         steps(n) = totalwav(n+1,1) - totalwav(n,1); 

      end 

      size(steps) 

      for n = 1:twav-1 

         steps1(n) = totalwav(n+1,1) - totalwav(n,1); 

      end 

          for n = twav: 2*twav-1 

         steps2(n-twav+1) = totalwav(n+1,1) - totalwav(n,1); 

          end 

         for n = 2*twav: 3*twav-1 

         steps3(n-2*twav+1) = totalwav(n+1,1) - totalwav(n,1); 

         end 

         for n = 3*twav: 4*twav-1 
         steps4(n-3*twav+1) = totalwav(n+1,1) - totalwav(n,1); 

         end 

   
 rang1=find(steps== mode(steps1)); 

 repetidos1=length(rang1); 
 rang2=find(steps== mode(steps2)); 

 repetidos2=length(rang2); 
  rang3=find(steps== mode(steps3)); 

 repetidos3=length(rang3); 
  rang4=find(steps== mode(steps4)); 

 repetidos4=length(rang4); 
  rep =  [repetidos1, repetidos2, repetidos3, repetidos4]; 

  valorRep = max(rep);   %% range where we find the most common step 

   
      if valorRep == repetidos1 
        stepsize = mode(steps1); 
        firstWave = rang1(1); 
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      end 
          if valorRep == repetidos2 
        stepsize = mode(steps2); 

        firstWave = twav +rang2(1); 
      end 

         if valorRep == repetidos3 
        stepsize = mode(steps3); 

        firstWave = 2*twav+rang3(1); 
         end  

      if valorRep == repetidos4 
        stepsize = mode(steps4); 

        firstWave = 3*twav+rang4(1); 
      end 

           

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
cont2 = 1; 

wT = -1*ones(size(wres)); 
wresult = [wres; -3]; 

  
for i = 1: size(totalwav) 
    for  j = 1: size(wres) 

      if wresult(j)~=wresult(j+1) 
        if totalwav(i) == wresult(j)             

                 wT(cont2) = wresult(j); 
                 cont2 = cont2 + 1;    

                 break; 

                 
        end  
       end 
    end 

end 

  
%%%%now we insert the reflectance to those wavelengths 

  
 sA = zeros(cont2-1,1);    %%%%with the resulting spectrum 

for i = 1:size(spAs) 
  for  j = 1:cont2-1   %%cont2 = number of equal wavelengths in all the 

materials 
    if wA(i)==wT(j) 

        sA(j) = spAs(i); 
    end 
  end 
end 

 sB = zeros(cont2-1,1); 
for i = 1:size(spBs) 
  for  j = 1:cont2-1 
    if wB(i)==wT(j) 

        sB(j) = spBs(i); 
    end 
  end 
end 

sC = zeros(cont2-1,1); 
for i = 1:size(spCs) 
  for  j = 1:cont2-1 
    if wC(i)==wT(j) 

        sC(j) = spCs(i); 
    end 
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  end 
end 

sD = zeros(cont2-1,1); 
for i = 1:size(spDs) 
  for  j = 1:cont2-1 
    if wD(i)==wT(j) 

        sD(j) = spDs(i) ; 
    end 
  end 
end 

  
sRes = zeros(cont2-1,1); 

for i = 1:size(ABs) 
  for  j = 1:cont2-1 
    if wres(i)==wT(j) 

        sRes(j) = ABs(i); 
        break; 

         
    end 
  end 
end 

%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% find the best values 

  
div = size(sA(:,1))/4   
redondeo = round(div) 

if redondeo(:,1) > div(:,1)    %%si round - div > 0 -> high number 
    tram = redondeo-1; 

  
else tram = redondeo; 

  
end 

  
 A = zeros(4,4);  

  for f = 1:tram  %%int(43/4) 
  A = [sA(f),sB(f),sC(f), sD(f);  %%I want to start off where the 

wavelength is now repeated 
       sA(2*f),sB(2*f),sC(2*f),sD(2*f); 
       sA(3*f),sB(3*f),sC(3*f), sD(3*f); 
       sA(4*f),sB(4*f),sC(4*f), sD(4*f)]; 

 if cond(A) < 7.5*10^4 
     t  = cond(A) 

     wavel= [wT(f);wT(2*f); wT(3*f);wT(4*f)] 
    Prueba = A;  

     S = [sRes(f),sRes(2*f), sRes(3*f), sRes(4*f)] 

   

  
  p4=A\S'; 

   prob4 = p4./sum(p4)  
 end 

  
  end 

 advice = ['for best results try in sequence step =  ', num2str(stepsize)]; 
 advice = [advice, ' and first wavelength = ']; 

 advice = [advice, num2str(wG(firstWave))] 
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Annex F. Scenarios 

Scenario Snow Simple:  

This function generates a specific scene and then generates the output results by 

calling on the different modules in DART. As output, this function will display the 

hyperspectral image of the scene. It will also display the reflectance value of the scene 

simulated and the reflectance value of the measurements of the real scene. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% SCENARIO 1 : SNOW %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% % Snow 
%  
clc 

clear all 
close all  

  
%% INPUT OPTIONS 

  
% Options 

opt.name='TestV2\Sc1Snow'; 
opt.N=50; % Size of the map (in pixels) 
opt.Celldim=1; %Size of a cell (in m) 

  
opt.spband.first=0.4; %First spectral band of the sequence 
opt.spband.step=0.05; %Interval between each spectral band 

opt.spband.delt=0.05; %Width of the spectral bands 
opt.spband.nb=20; %Number of Spectral Bands 

  
 opt.nbiter=5; % More precise for the snow 

  

  
%% INPUT MATERIALS 

  
% Default Options 

matdef.name='None'; % Name of the material 
matdef.index=0; % Index 

matdef.plot=1; % Presence of plot (should stay at 1) 
matdef.plottype=0; % Plot Type : Ground=0, Vegetation=1, G+V=2, Air=3 
matdef.soiltype=0; % Soil Type : Lambertian=0, lamb+specular=2, Hapke=3 

matdef.soildb='0'; 
matdef.soilsp='0'; 
matdef.vegdb='0'; 
matdef.vegsp='0'; 
matdef.LAI=0; 
matdef.Hbase=0; 
matdef.H=0; 

matdef.Hsigma=0; 
matdef.Tmean=300; 
matdef.Tdelt=0; 

matdef.clumpmin=0; 
matdef.clumpmax=0; 
matdef.cluma=0; 
matdef.clumb=0; 
matdef.LAD=0; 
matdef.ALA=0; 
matdef.eccen=0; 
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matdef.LeafSize=0; 

  
% Real Mats 

mat(1)=matdef; 
mat(1).name='NeigeFine'; mat(1).index=1;  

mat(1).soildb='Lambertian.db';mat(1).soilsp='snow_fine'; 

  
mat(2)=matdef; 

mat(2).name='NeigeStandard'; mat(2).index=2;  
mat(2).soildb='Lambertian.db';mat(2).soilsp='snow'; 

  
mat(3)=matdef; 

mat(3).name='NeigeEpaisse'; mat(3).index=3;  
mat(3).soildb='Lambertian.db';mat(3).soilsp='snow_coarse'; 

  
clear matdef; 

  
opt.Nmat=size(mat,2); %Supposing mat is only an array 

  
%% CREATION OF MAPS 

  
% Land Cover Map 

lcm = randi([1 opt.Nmat],opt.N,opt.N); %random 
lcm = zeros(opt.N,opt.N); 
for j=1:10; lcm(:,j)=1; end 
for j=11:20; lcm(:,j)=3; end 
for j=21:30; lcm(:,j)=2; end 
for j=31:40; lcm(:,j)=1; end 
for j=41:50; lcm(:,j)=3; end 

  
figure 

imagesc(lcm); 
title(['Land Cover Map with ',int2str(opt.Nmat),' materials']); 

  
% Topography 

topo=zeros(opt.N,opt.N); 

  
sigma1=100; 
sigma2=7; 

mpic1=opt.N/5; 
mpic2=4*opt.N/5; 

m=opt.N/2; 
for i=1:opt.N 
    for j=1:m 

        topo(i,j) =10*exp(-((((i-m)^2)/(2*sigma1^2))/2+(((j-

mpic1)^2)/(2*sigma2^2)))); 
    end 

    for j=m:opt.N 
        topo(i,j) =10*exp(-((((i-m)^2)/(2*sigma1^2))/2+(((j-

mpic2)^2)/(2*sigma2^2)))); 
    end 

end 

% % for i=1:opt.N 
% %  for j=1:opt.N 

% %     topo(i,j) = 0;   %if we want a scene without topography 
% %  end 
% % end 
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% clear m; clear sigma1; clear sigma2; clear i; clear j; 
%  

figure 
imagesc(topo);  

title('Topography of the scene') 

 

  

  
%%%%%%%%%%%%%% BLACK BOX LAUNCHER %%%%%%%%%%%%%% 

  

  
%% LAUNCH THE BLACK BOX 

  

  
opt.atm = 1; 

 [bands,IMG]=BlackBox(opt,mat,lcm,topo); 

  

  
%% SAVE OUTPUT FILES 

% DisplayImages(IMG,opt,mat,lcm,bands) 

  
%% Display the Hyperspectral image 

figure 
imshow3D(IMG); % need to install imshow3D in the toolbox 

title('Hyperspectral image') 

  
%% Generate a 2D spectre 

spx=floor(opt.N/2); 
spy=floor(opt.N/2); 

spectre=zeros(1,opt.spband.nb); 

  
for i=1:opt.spband.nb 

    spectre(i)=IMG(spx,spy,i); 
end 

  
snow=importdata('..\DARTdefaultsimulation\2D-LAM_snow.txt',';'); 

figure 
plot(snow.data(:,1),snow.data(:,2)/100,'--g'); 

hold on; 
plot(bands,spectre); 

xlim([bands(1) bands(size(bands,2))]); 
xlabel('Wavelength (µm)'); 
ylabel('Reflectance'); 

legend('Original Snow spectre','Snow from the scene') 
spin=lcm(spx,spy); 

title(['Spectre of the central pixel of the scene, composed of 

',mat(spin).name]) 
clear i spx spy ; 

 

 

Snow Simple:  

 Different versions of a scene can be simulated in one go. In this case, this function 

will simulate the same scene with different types of topography. It can also be configured so 

that it does not take into account the effects of the atmosphere. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% SCENARIO 1: SNOW %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Snow 

  
clc 

clear all 
close all 

  
%% INPUT OPTIONS 

  
% Options 

opt.name='TestV1\Sc1Snow'; 
opt.N=50; % Size of the map (in pixels) 
opt.Celldim=1; %Size of a cell (in m) 

  
opt.spband.first=0.4; %First spectral band of the sequence 
opt.spband.step=0.05; %Interval between each spectral band 

opt.spband.delt=0.05; %Width of the spectral bands 
opt.spband.nb=20; %Number of Spectral Bands 

  
opt.nbiter=5; % More precise for the snow 

  
%% INPUT MATERIALS 

  
% Default Options 

matdef.name='None'; % Name of the material 
matdef.index=0; % Index 

matdef.plot=1; % Presence of plot (should stay at 1) 
matdef.plottype=0; % Plot Type : Ground=0, Vegetation=1, G+V=2, Air=3 
matdef.soiltype=0; % Soil Type : Lambertian=0, lamb+specular=2, Hapke=3 

matdef.soildb='0'; 
matdef.soilsp='0'; 
matdef.vegdb='0'; 
matdef.vegsp='0'; 
matdef.LAI=0; 
matdef.Hbase=0; 
matdef.H=0; 

matdef.Hsigma=0; 
matdef.Tmean=300; 
matdef.Tdelt=0; 

matdef.clumpmin=0; 
matdef.clumpmax=0; 
matdef.cluma=0; 
matdef.clumb=0; 
matdef.LAD=0; 
matdef.ALA=0; 
matdef.eccen=0; 

matdef.LeafSize=0; 

  
% Real Mats 

mat(1)=matdef; 
mat(1).name='NeigeFine'; mat(1).index=1;  

mat(1).soildb='Lambertian.db';mat(1).soilsp='snow_fine'; 

  
mat(2)=matdef; 

mat(2).name='NeigeStandard'; mat(2).index=2;  
mat(2).soildb='Lambertian.db';mat(2).soilsp='snow'; 
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mat(3)=matdef; 

mat(3).name='NeigeEpaisse'; mat(3).index=3;  
mat(3).soildb='Lambertian.db';mat(3).soilsp='snow_coarse'; 

  
clear matdef; 

  
opt.Nmat=size(mat,2); %Supposing mat is only an array 

  
%% CREATION OF MAPS 

  
% Land Cover Map 

% lcm = randi([1 opt.Nmat],opt.N,opt.N); %random 
lcm = zeros(opt.N,opt.N); 
for j=1:10; lcm(:,j)=1; end 
for j=11:20; lcm(:,j)=3; end 
for j=21:30; lcm(:,j)=2; end 
for j=31:40; lcm(:,j)=1; end 
for j=41:50; lcm(:,j)=3; end 

  
figure(1) 

imagesc(lcm); 
title(['Land Cover Map with ',int2str(opt.Nmat),' materials']); 

  
% Topography 

topo=zeros(opt.N,opt.N); 
% topo2=zeros(opt.N,opt.N); 
% topo3=zeros(opt.N,opt.N); 

  
sigma1=100; 
sigma2=7; 

mpic1=opt.N/5; 
mpic2=4*opt.N/5; 

m=opt.N/2; 
for i=1:opt.N 
    for j=1:m 

        topo(i,j) =10*exp(-((((i-m)^2)/(2*sigma1^2))/2+(((j-

mpic1)^2)/(2*sigma2^2)))); 
        topo2(i,j) =10*exp(-((((i-m)^2)/(2*sigma1^2))/2+(((j-

mpic1)^2)/(2*sigma2^2)))); 
    end 

    for j=m:opt.N 
        topo(i,j) =10*exp(-((((i-m)^2)/(2*sigma1^2))/2+(((j-

mpic2)^2)/(2*sigma2^2)))); 
        topo3(i,j) =10*exp(-((((i-m)^2)/(2*sigma1^2))/2+(((j-

mpic2)^2)/(2*sigma2^2)))); 
    end 

end 
clear m; clear sigma1; clear sigma2; clear i; clear j; 

  
figure(2) 

imagesc(topo); 
title('Topography of the scene') 

figure 
imagesc(topo2); 

title('Topography of the scene') 
figure 

imagesc(topo3); 
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title('Topography of the scene') 

  
%%%%%%%%%%%%%% BLACK BOX LAUNCHER %%%%%%%%%%%%%% 

  

  
%% LAUNCH THE BLACK BOX 

  
opt.atm=1; 

[bands1,IMG1]=BlackBox(opt,mat,lcm,topo); 
% [bands2,IMG2notopo]=BlackBox(opt,mat,lcm); 

  
%% With Atmosphere 

opt.atm=1; 
% [bands3,IMG3atm]=BlackBox(opt,mat,lcm,topo); 

  
[bands4,IMG4top2]=BlackBox(opt,mat,lcm,topo2); % non-reflecting mountain 
[band5,IMG5top3]=BlackBox(opt,mat,lcm,topo3); % only reflecting mountain 

  
%% SAVE OUTPUT FILES 

% DisplayImages(IMG,opt,mat,lcm,bands) 

  
%% Display the Hyperspectral image 

figure(3) 
imshow3D(IMG1); % need to install imshow3D in the toolbox 

title('Hyperspectral image') 
% figure 

% imshow3D(IMG2notopo); % need to install imshow3D in the toolbox 
% title('Hyperspectral image') 

% figure 
% imshow3D(IMG3atm); % need to install imshow3D in the toolbox 

% title('Hyperspectral image') 
figure(4) 

imshow3D(IMG4top2); % need to install imshow3D in the toolbox 
title('Hyperspectral image') 

figure(5) 
imshow3D(IMG5top3); % need to install imshow3D in the toolbox 

title('Hyperspectral image') 

  
%% Generate a 2D spectre 

spx=floor(opt.N/2); 
spy=floor(opt.N/2); 

% spectre1=zeros(1,opt.spband.nb); 
% spectre2=zeros(1,opt.spband.nb); 
spectre3=zeros(1,opt.spband.nb); 
spectre4=zeros(1,opt.spband.nb); 
spectre5=zeros(1,opt.spband.nb); 

  
for i=1:opt.spband.nb 

    spectre1(i)=IMG1(spx,spy,i); 
%     spectre2(i)=IMG2notopo(spx,spy,i); 
%     spectre3(i)=IMG3atm(spx,spy,i); 
    spectre4(i)=IMG4top2(spx,spy,i); 
    spectre5(i)=IMG5top3(spx,spy,i); 

end 

  

  
snow=importdata('..\DARTdefaultsimulation\2D-LAM_snow.txt',';'); 

atm=importdata('..\DARTdefaultsimulation\gTRANS_USSTD76_gTRANS.txt',';'); 
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figure(6) 
plot(snow.data(:,1),snow.data(:,2)/100,'--g');                                                        

hold on; 
plot(bands1,spectre1); % Topo + No atm 

plot(bands1,spectre2,'r'); % No Topo + No atm 
plot(bands1,spectre3,'m'); % Topo + atm 

hold off 
plot(bands1,spectre4,'o k'); % Topo un coté + atm 

plot(bands1,spectre5,'--c'); % Topo autre coté + atm 
xlim([bands1(1) bands1(size(bands1,2))]); 

xlabel('Wavelength (µm)'); 
ylabel('Reflectance'); 

legend('Original Snow spectre','Snow with topography and no atm','Snow 

without topography nor atm','Snow with atmosphere','Snow with non-

reflecting mountain','Snow with reflecting mountain') 
spin=lcm(spx,spy); 

title(['Spectre of the central pixel of the scene, composed of 

',mat(spin).name]) 
clear i spx spy ; 

  
%% Atmosphere  

spx=floor(opt.N/2); 
spy=floor(opt.N/2); 

  
opt.simtype='brf'; 

IMGbrf=OpenAllImages(opt,lcm); 
opt.simtype='sensor'; 

IMGsen=OpenAllImages(opt,lcm); 
opt.simtype='toa'; 

IMGtoa=OpenAllImages(opt,lcm); 

  
spectre1=zeros(1,opt.spband.nb); 
spectre2=zeros(1,opt.spband.nb); 
spectre3=zeros(1,opt.spband.nb); 

  
for i=1:opt.spband.nb 

    spectre1(i)=IMGbrf(spx,spy,i); 
    spectre2(i)=IMGsen(spx,spy,i); 
    spectre3(i)=IMGtoa(spx,spy,i); 

end 

  
bands1=bands3;  

snow=importdata('..\DARTdefaultsimulation\2D-LAM_snow.txt',';'); 
figure(7) 

plot(snow.data(:,1),snow.data(:,2)/100,'--g'); 
hold on; 

plot(bands1,spectre1); %BRF 
plot(bands1,spectre2,' r'); %Sensor 
plot(bands1,spectre3,' m'); %TOA 

xlim([bands1(1) bands1(size(bands1,2))]); 
xlabel('Wavelength (µm)'); 
ylabel('Reflectance'); 

legend('Original Snow spectre','BRF','Sensor','TOA') 
spin=lcm(spx,spy); 

title(['Spectre of the central pixel of the scene, composed of 

',mat(spin).name]) 
clear i spx spy ; 

  
figure 
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imshow3D(IMGbrf); % need to install imshow3D in the toolbox 
title('Hyperspectral image BRF') 

figure 
imshow3D(IMGsen); % need to install imshow3D in the toolbox 

title('Hyperspectral image Sensor') 
figure 

imshow3D(IMGtoa); % need to install imshow3D in the toolbox 
title('Hyperspectral image TOA') 

 

Scenario Unmixing:  

In scenario unmixing, MATLAB will make use of images already created in DART. 

The image will be regenerated and saved in MATLAB in order to later modify it. Before 

opening the images the file phase.xml must be modified since the function Sequence will be 

called on. That is so for the module sequence will be executed in order to generate the images 

and, in order to do so, the file wavelength must be created. After the images are loaded in 

MATLAB, the program will recreate the image as if it were been seen by a specific sensor (in 

this case there are three sensor to choose from: Ikonos, Quickbird and WV2). 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% SCENARIO 2 : UNMIXING %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Unmixing : using different spatial resolution to  
close all 

clc 

  
% Options 

opt.name='Simulation_randomHouses'; %The simulation is already done 
opt.sen.sensor='IKONOS'; 

opt.N = 40;   %%%%we need it for Blackbox 
opt.nbiter = 5; %%%for  DART options 

  

  
opt.spband.first=0.56; %First spectral band of the sequence 
opt.spband.step=0.02; %Interval between each spectral band 

opt.spband.delt=opt.spband.step; %Width of the spectral bands 

  
opt.spband.nb=4; %Number of Spectral Ban 

  
    BlackBox1(opt); 

  
 SensorCall(opt) 

  

 

 


