Reference ar chitecturefor robot teleoper ation:
development details and practical use

Barbara Alvarez*, AndrésIborra*, Algjandro Alonso’, Juan Antonio de la Puente’

*Universidad Politécnica de Cartagena, Dpto.Tecnologia Electrénica,Paseo Alfonso X1, 50, 30203-Cartagena, Spain

TUniversidad Politécnica de Madrid, Depto. Ingenieria de Sistemas Telematicos,Ciudad Universitaria s.n., E-28040
Madrid, Spain

Abstract: The need to avoid redundant efforts in software development has been recognized
for along time. Currently, work is focused on the generation of products that are designed to
be reused. A reference architecture for robot tel eoperation systems has been devel oped using
the domain-engineering process and certain architectural patterns. The architecture has
been applied successfully to the development of different teleoperation platforms used in the
maintenance activities of nuclear power plants. In particular, this paper presents how the
reference architecture has been implemented in different systems, such as the Remotely
Operated Service Arm (ROSA), the Teleoperated and Robotized System for Maintenance
Operation in Nuclear Power Plants Vessels (TRON) and the Inspection Retrieving Vehicle

(IRV).
Keywords: Software architecture; Robots control; Real-time systems; Teleoperation; Soft-

ware engineering

1. Introduction

Software reuse has become an important factor in cur-
rent developments due to market competitiveness and
time-to-market requirements. Although the interest in
reusing software arose with the origins of the program-
ming, this issue has not been practiced with success as yet
(Prieto-Diaz, 1991) (Tracz, 1995). One reason is the diffi-
culty of combining existing software components. In addi-
tion, although reusability at this level isagood practice, it
is not enough. One way of raising the degree of reuseisto
apply this approach to software architecture, which com-
prises the software components, their visible properties
and their relationships (Bass, Clements & Kazman, 1998).

In the next section, the stages of the domain engineer-
ing process are described (Withey, 1994). Its goad is to
obtain a Domain Specific Software Architecture (DSSA).
This process was developed in the context of the program
Software Technology for Adaptable and Reliable Software
(Prieto-Diaz & Arango, 1991). Its success is derived from
the fact that the software requirements can be satisfied in
different ways, and implementation limitations restrict the
ways in which these requirements can be fulfilled. Previ-
ous works on domain analysis did not allow for obtaining
adesign model.

The question is how to develop a software architecture
that can be effectively reused. The common approach isto
concentrate on a domain area. It seems feasible to reuse a
software architecture in a set of systems with common

* Corresponding author: Tel: +34 968 325 654;
Fax:+34 968 325 345
E-mail address: barbara.alvarez@upct.es

features. Then, asuitable practiceisto develop areference
architecture that takes into account the special properties
of atype of system in adomain area. A reference architec-
ture is defined as a division of functionality together with
data-flow between pieces mapped onto software compo-
nents (Bass et al., 1998).

The authors were involved in the development of a
teleoperation system. In addition to the common func-
tional requirements of this type of system, the product
should be easily maintained and adaptable to different
operational environments and robots. Many investigators
have described robot-control architectures based on a spe-
cific operating system and programming language. In
these cases, the usual approach isto replace the robot con-
trollers by generic controllers (Hayward & Paul, 1986)
(Hayward & Hayati, 1988), (Li, Tarn, & Berjczy, 1991).
These systems are focused on robot control and tasks
planning, and little support is given to teleoperation. In
other cases, the system does not allow the operator to
interact dynamically with the system (Brooks, 1986). In
Albus, McGain & Lumia (1989) a reference architecture
for robot teleoperation, that focuses on the control of
autonomous systems, operating in non-structured environ-
ments is described. It uses complex and expensive artifi-
cia intelligence techniques. None of these approaches
fulfils the non-functional requirements previously
described.

The domain engineering process was used by the
authors and, as aresult, (A. Alonso, Alvarez, Pastor, de la
Puente & Iborra, 1997) a Domain Specific Software
Architecture (DSSA) for robot teleoperation systems was
developed. Since the publication of that paper, the refer-

ence architecture has been used with great success in
the development of a number of teleoperation systems
for different robots and tools. The goal of this article
is to revisit the approach taken from a more abstract
and mature point of view, and to describe the cases
where it has been used.

Section 2 shows the process followed to identify
the components, relations and requirements of teleop-
eration systems. In Section 3, the way certain archi-
tectural styles were selected for the interaction among
subsystemsis described. In Sections 4, 5 and 6 several
teleoperation robot systems developed with the pro-
posed reference architecture are described. Section 7
includes some conclusions.

2. Domain engineering

The process of domain engineering covers all the
activities required to build a common software core
for a family of systems (Withey, 1994). This process
was applied to building a reference architecture for
robot teleoperation systems (Alonso et al., 1997). The
following activities were performed (Fig. 1 showsthis
process):

1) Domain analysis: in order to identify the set of
components that are common to teleoperation
applications. The result was a domain model.

2)Domain design: in order to obtain a generic
design, based on the previous result and on the
study of patterns or common models.

3) Implementation of the design: based on reusa-
ble components that can be used in different

products.
Applications
Domain
Analysis Architectures
Model Design

v

Generic — |Implementation

Design
Fig. 1 Domain-engineering process

There are several methods of performing a domain
analysis but most them do not offer techniques to cap-
ture and to represent the information related to afam-
ily of systems. FODA (Featured-Oriented Domain
Analysis) (Kang & Cohen, 1990) offers these tech-
niques and supports reusability, not only at the purely
functional level, but at the architectural level as well.
The FODA method proposes the use of certain mod-
els for performing a domain analysis. In particular, it
proposes the following activities: (1) a context analy-
sis, that allows the environment of the domain to be
defined and (2) afunctional analysis, in order to iden-
tify the similarities and differences of the existent sys-
tems. As aresult of the application of this method to
teleoperation systems, a generic specification of
requirements has been obtained. In Alonso et a.

(1997) functional and non-functional requirements for
a general teleoperation system are described, as well
as the basic functional requirements or services that
the system should provide to the end users, and the
timing requirements. In these systems, time require-
ments should be met in order to ensure that the infor-
mation that the operator receivesis valid and reflects
the current state of the robot.

The following step in the domain-engineering pro-
cess is domain design. There are many studies that
describe how to perform a domain analysis, however
these do not explain how to use the results of such an
analysis to obtain a generic design. The approach
described in Peterson & Stanley (1994) was used. It
groups the elements that work together for performing
acertain task in subsystems.

The next step in defining the reference model for
teleoperation systems is to split the functionality
among a number of components and to identify the
data flow among the pieces. Fig. 2 shows how the
teleoperation reference model is mapped onto soft-
ware components. In short, the functionality of these
components or subsystems is the following:

» Graphical representation. This subsystemisin
charge of showing the operator the current state
of the robot and the environment in which it is
operating. It provides operations for initializing
the representation and for updating the status of
the robot, according to the information received
from the remote control unit.

» Collisions detection. This subsystem provides
the required functions for checking whether a
given movement command is safe, in the sense
that the robot does not collide with the operating
environment or with itself.

» User Interface. It is in charge of interacting
with the operator. It allows him to issue com-
mands to the robot and to know their execution
status.

e Communications. This subsystem embodies
the communication protocol with the remote
control unit. It provides a means to send com-
mands and to receive status information. In this
module, a mechanism for fault treatment should
be included to guarantee safety, in case commu-
nication with the control unit islost.

» Controller. It is the core of the system and it is
in charge of executing the commands from the
user, by using the other components and sending
the appropriate orders to the robot. It also
receives the robot”s status from the remote con-
trol unit, to check its consistency and to show it
to the operator.

In this domain, it is common to have a robot with
different controllers. Thisistrue in the case of a mov-
ing arm, where it is necessary to consider the control
of an articulated arm whose base can be fixed on a
vehicle and whose end joint holds a tool for perform-
ing specific operations. In this case, the teleoperation
system has to deal with three controllers and the
proper synchronization mechanisms should be imple-
mented.

Collisions User Interface

Detection

Graphical
Representation

Vehice [SiK- . NS T Tool

\ L./
Controller | Y L}H /*\7Y Controller
N — N
S | Arm
‘QY Controller
N

Remote

| _ Control Unit|
Commlllnlcatlons

| I
Fig. 2 High level architecture description.

Refinement of the reference model

In order to get the reference architectureit is neces-
sary to specify how the different components are
going to interact. For this purpose, the approach fol-
lowed is based on characterizing the interaction
between the components and selecting an appropriate
architectural style, which defines a particular pattern
for run-time control and the data transfer mode. The
use of architectural styles allows the use of well-
defined, well-understood and successfully tested
interaction mechanisms. They help to develop sys-
tems with desirable properties, such as maintainability
and portability.

Two architectural styles were used to define the
interaction between the components. client-server
(Berson, 1992) and communicating processes,
according to the classification in L. Bass et al. (1998).
The client-server style is appropriate when there is a
component that provides a service and another that
requests it. It allows the server or the client to be
changed, as long as the defined services are requested
and provided following the designed interface. Thisis
the case in the interactions between the Graphical
Representation and the Collisions Detection compo-
nents with the Controller component. The first com-
ponent provides services for showing the status of the
robot. The second checks whether or not could result
in acollision a possible robot movement. In these two
cases, the interfaces were implemented based on mes-
sages, in order to allow distribution. The interactionis
asynchronous, because the controller cannot be
blocked for along time while it waits for a service to
be completed.

A general communicating processes style was used
for the interaction between the User Interface and the
Communication components with the Controller. This
is because there is not necessarily a cause and effect
relationship that guides these interactions Any of the
components can take the initiative to send data. For
example, consider the information that the Communi-
cation component sends to the Controller. It can be

periodic status data or aperiodic alarms, caused by
some unexpected robot behavior. On the other hand,
the controller may send commands to the robot at any
time. The same holds for the relationship between
user interface and the controller(s). A controller sends
sporadic messages to the user interface when the
robot’s status changes or some failure occurs in the
system. The user sends commands to the controller
when a certain robot behavior is required.

In the internal design of the components, two
styles were used: layered and object-oriented. The
layered style is useful to achieve portability and easy
modification. It is based on structuring the compo-
nents as a set of layers and it was used in the design of
the Communications component. Only some of the
layers need to be changed if the system has to be
ported to different hardware or has to use aternative
protocols.

The internal design and implementation of the rest
of the subsystems is based on object-oriented and
abstract data-types styles. These paradigms empha-
size the bundling of data and how to manipulate and
access that data. Data encapsulation promotes reus-
ability and easy modification.

The robot’s control should not be interrupted for
any reason. Therefore, certain mechanisms have been
introduced for decoupling the control task from the
rest of the subsystems and for receiving the informa-
tion from them. In this way, if a failure occurs in
another subsystem, the controller can continue operat-
ing. These mechanisms are modules in charge of com-
municating with the rest and translating data. The
communication of these modules with the interfaces
is by means of procedure calls. When a message is
sent to a controller, these decoupling modules store it
in a buffer, so that the controller is not interrupted.
Each controller can be seen as a control loop which
continuously checks the received messages buffer.

The general controller that has been designed per-
forms the following operations. (1) it receives com-
mands from the operator, (2) it checks if the
operations are feasible, (3) it simulates the move-
ments before executing them, (4) it sends commands
to the remote control unit, and (5) it updates the state
of the system. This design has shown to be general
enough to be used for the implementation of control-
lers for different robots. In case a robot has severa
controllers, as mentioned in the previous section, step
2 includes synchronizing them.

This kind of system may have time requirements
that must be met. The Rate Monotonic Analysis
(RMA) (Klein, Ralya, Pollak, Obenza & Gonzdlez-
Harbour, 1993) theory allows the designer to reason
with confidence about timing correctness at the task-
ing level and to analyze whether tasks deadlines can
be met. In this way, a reference architecture has been
developed and a framework for analyzing its timing
response has been built, as described in Alvarez,
Alonso & de la Puente (1998).

The three teleoperation systems where the refer-
ence architecture is used do not have hard real-time

regquirements. The three robots move quite slowly and
hence the time requirements were relatively long and
soft. In addition, there was no special safety require-
ment. As a result the only component with hard real-
time requirements was the Remote Control Unit.

The rest of the article presents the development of
different teleoperation systems using this reference
architecture.

4. The ROSA system

The Remotely Operated Service Arm (ROSA) sys-
tem provides a remote user interface for controlling a
jointed arm with six axis (Fig. 3). Different tools are
used for inspecting and repairing the tubes in the
steam generators.

Fig. 3 The ROSA arm.

The development platform is a Hewlett Packard
9000 model 725 workstation, with the HP-UX operat-
ing system. A local area network connects the teleop-
eration platform with the robot control unit. The
remote controller is based on an Heurikon HK68/
V30XE processor, a VME bus, an amplifier, and sev-
eral control cards attached to it.

Collisions Graphical User
Detection Representation Interface
Tool | Arm
Controller Controller
. Control
Communications Unit

Fig. 4 High-level architecture for ROSA.

Fig. 4 shows a high level description of the archi-
tecture for the ROSA system. This scheme includes
two controllers: arobot and tool. A generic controller
was developed in Ada, since its modular characteris-
tics and generic facilities make the development of

reusable code easier.

The implementation of the components for the
graphics and the collision detection were based on a
commercia tool called Robcad. It allows the user to
define the robot and its operation environment in 3-D.
It automates the operations for collision detection and
its graphical output is excellent. These components
were developed in the progranmming language C++,
since the libraries offered by this commercia tool
were developed in this language.

The user interface was developed in the program-
ming language ANSI-C. The resources offered by X
Windows were used by means of User Interface Lan-
guage (UIL) and Matif.

The rest of the architecture has been implemented
in Ada. In particular, the communications subsystem
was based on TCP and UDP sockets. A package of
asynchronous real-time Ada drivers for intercon-
nected systems exchange (PARADISE) was used.
This package offers an interface to the communication
routines of the Unix operating system. Generic mod-
ules were developed for the interfaces among the sub-
systems. They offer services for communication
among processes.

For the planned steam generator mai ntenance oper-
ations, it was necessary to develop a number of
mechanical tools to perform specific operationsin the
tubesheet of steam generators, such as: detecting the
wrong tubes. An inspection process based on eddy
currentsis used, to cancel the wrong tubes, to recover
them, to drill plugs and to place the nozzle-dams.

Tools controllers have been developed for dealing
with these tools. They are different instances of the
generic controller described in the previous section.
The required parameters of these software packages
are related to the elements used to characterize the
mechanisms (jointed arm and tools). These elements
are specific commands and state machines. This
allows the definition of: (1) robot status, (2) its evolu-
tion after a command execution and (3) the com-
mands that are feasible for each state.

Fig. 5 Electro-disintegration machine.

A controller was developed for an electro-disinte-
gration machine (Fig. 5). This tool was designed for
the disintegration of unwanted elements which could
be located in the tubesheet (plugs, drills, etc.). The

tool consists of the following parts. a cone for its
anchoring to the robot's end, a fixed platform on
which the vision devices are installed, linear potenti-
ometers for aligning it with the tubesheet and some
camlocks for anchoring it to the tubesheet. The elec-
tro-disintegration head is located on the surface of a
sliding table. Commands were provided to insert the
electro-disintegration head in the wrong tube, to acti-
vateit, to set the intensity and voltage, and to load and
unload the tool.

Two tool controllers are used to tighten and to con-
trol a gripper which is used for the positioning of the
nozzledams. Fig. 6 shows a gripper. Thistool consists
of four pneumatic pistons. These activate four pincers
that are used for positioning the nozzledams in the
primary circuits.

Fig. 6 Gripper.

The fasteners and nuts that hold the nozzledams
areinstalled by means of ascrewdriver (Fig. 7). Inthe
case of the gripper, commands are provided to control
the pincers and anchor the tool to the robot. To control
the screwdriver, some commands to adjust the head,
to screw and to unscrew are provided.

Fig. 7 Screwdriver.

A commercial machine was adapted for welding
plugs in the tubesheet of the steam generator. Fig. 8
shows this tool. Commands to activate the head, to
gauge the tool and to load and unload the tool are pro-
vided.

For each tool, a common model was used for
developing the user interface and the generic commu-
nication module. In this case, appropriate parameters
were provided for connecting with the tool processes

of the remote control unit.

Fig. 8 Welding machine

5. ThelRV system

The Inspection Retrieving Vehicle (IRV) system is
a teleoperated vehicle with sensors, lights, cameras
and interchangeable end-effectors. The vehicle can
operate ten meters underwater, inside pipes of 400
mm and larger. This system is used for retrieving for-
eign objects from inside the primary circuit nozzles of
nuclear power plants. Fig. 9 shows the vehicle.

Fig. 9 Vehicle of the system IRV.

The hardware platform for this teleoperation sys-
tem is the same as that in the ROSA system. Most of
that system was directly reused. In particular, it was
necessary to implement three controllers: for the vehi-
cle, arm and tool. These controllers communicate
among themselves in order to synchronize the opera-
tions of the controlled elements. In order to imple-
ment the controllers, the generic packages devel oped
in the ROSA system were instanced for the IRV sys-
tem. The generic parameters are related to the opera-
tions of the devices (commands and state machines).

The Graphic Representation component consists
of an artificial vision system. Its function was to iden-
tify the edges of the objects and the most significant
elements of the environment and to superimpose a
wire frame representation of these onto real images
provided by cameras (Iborra, Lazaro, Dominguez &
Campoy, 1993). The input information for this mod-
uleis sent, due to efficiency reasons, through an inde-
pendent channel directly from the cameras. This

subsystem is implemented on a different hardware
platform (apersonal computer). Therest of the teleop-
eration system runs on a HP 9000/725.

In the current implementation there is no collision
detection subsystem, and the graphical representation
subsystem does not include a model of the environ-
ment or devices. They are not necessary for the cur-
rent operations, but they can be added using
commercial tools. The user interface subsystem is
based on Motif. The vision system and the communi-
cations modules have been developed in the program-
ming language C. It is important to note that the
changes in the Graphical Representation component
did not require modification of the rest of the system.

6. The TRON system

Teleoperated and Robotized System for Mainte-
nance Operation in Nuclear Power Plants Vessels
(TRON) is a robotized system used for retrieving
objects in the nuclear plant’s reactor vessels. Fig. 10
shows this system. Due to human errors during the
recharging fuel operation, objects can fall into the
vessel. This system can be introduced trough holes,
which are called bottom internals, to inspect the ves-
sel and to recover the objects without having to dism-
antel the nucleus.

The whole system comprises a jointed pole, the
end-effectors and a navigation system based on artifi-
cial vision techniques, that hel ps the operator to move
through really complex environments (dark and full
of obstacles). The pole consists of four joints. The
end-effector and the inspection cameras are attached
to the end link. The reduced dimensions of the inlet
(3.8 cm) prevents the use of more complex mecha-
nisms.

In this system, a real-time operating system was
not required. The pole moves very slowly. Therefore,
potential collisions with the environment can be
detected and the motors can be disabled before it hap-
pens. For this reason, the controllers and user inter-
face components were implemented on a Pentium PC,
running Windows. The programming language was
C++. New interface modules among subsystems were
developed without modifying the communication
mechanisms among them.

In this case, the architecture design was reused.
The implementation language and the execution plat-
form were different to those in the previous cases,
hence there was no code reuse. The generic controller
class was implemented at the top of the hierarchy
class. The pole and end-effector controllers were
derived from such a mechanism controller class. The
object-oriented programming paradigms allow soft-
ware designs to be adapted or extended if new func-
tionality has to be added. Asin previous systems, the
pole and the end-effector were described in terms of
their basic commands, their state machine and their
structural and dynamic models.

The Graphical Representation and Collisions
Detection components run on a HP 9000/725 work-

Fig. 10 TRON system.

station and the utilities provided by Robcad were
used. In this case, the collision detection module is
very simple because it does not require inverse kine-
matics. Communications links between processes run-
ning on the PC (user interface and controllers) and the
processes running on the workstation (graphical rep-
resentation and collisions detection) are done with
TCP/IP sockets.

7. Applications development summary

This section, describes the differences and similar-
ities between the previous systems. In this way, it will
be easier to understand the development decisions
taken. Table 1 tries to summarize this information.

Table 1. Characteristics of the robot systems

System ROSA IRV TRON
Mation

Speed Slow Slow Slow
Real-Time

Requirem. Soft Soft Soft
Operation

Environm. Known Unknown Unknown
Execution)
Platform HP 9000 HP 9000 Win. NT

The basic requirements for a teleoperation system
are similar in most cases, to provide a means for
allowing an operator to send commands to the robot
and to retrieve its state information. For the three
reuse scenarios, a common characteristic of the robots
isthat their speed of motion is slow. Thisimplies that
the real-time requirements are not very tight and
therefore easy to fulfil. Hence, the worst response
time required for acommand to be sent to the robot or
to receive the status was relatively long, and in the
range of one to three hundred milliseconds. This
implies that the hardest real-time requirements were

to do with the control of the motors and the process-
ing of the sensors of the robot. These functions are
implemented in the Remote Control Unit component,
which is outside the scope of this paper.

The working environments of the robots were
another important issue that affected the decisions
taken. In the case of the ROSA system, it was neces-
sary to know very precisely the structure of the steam
generator and the geometry of its tubes, in order to
perform the maintenance operations correctly. This
information allowed the environment to be modeled
with an appropriate tool and to have this information
accessible during the system’s operation. The advan-
tage of using the facilities of the commercial tool was
that it was very easy to dynamically change the view-
point of the representation. This facility was very
appreciated by the operators that used the system.

In the case of the IRV and TRON systems, it was
not feasible to know their operational environment
with the same level of detail. For this purpose, cam-
eras were mounted on the robots. Instead of showing
the operator a graphical representation of the robot
and its environment, the images taken by the cameras
were used.

The final aspect that has an important influence on
the system implementation was the execution envi-
ronment of the teleoperation system. In the case of the
IRV and the ROSA systems, exactly the same plat-
form was used. Obviously, this allows the developers
to raise the level of reuse, which dramatically reduces
the development time and effort. In the TRON case,
the requirements imposed by the contractor made it
necessary to choose a different platform. Thisimplied
that athough the reference architecture was reused,
most of the code was rewritten.

8. Conclusions and futurework

The application of the domain-engineering process
and software architecting techniques were the basis
for the development of a reference architecture for
robot teleoperation systems. Several architectura
styles have been selected for describing the interac-
tion rules among the components. Each style depends
on which qualities are required.

The suitability of this architecture has been vali-
dated by its use in the development of different prod-
ucts with the same basis and its application to other
robots. The use of the Ada language facilitated the
development of generic components that could be
reused for different products of the same system. Fur-
thermore, the interaction between components written
in Ada with other subsystems written in C has not
been a problem.

In the three systems, the software has been tested
successfully with a real robot and a 1:1 mock-up of
the nuclear plant part where it will work. The devel-
opment of these tools and their control software
results in the acquisition of a proprietary technology
for maintenance works in nuclear plants. Due to the
qualities of the reference architecture, the cost of this

development was affordable.

The reference architecture was demonstrated to be
appropriate for systems such as those presented in
previous sections. One common characteristic of
these systems is their slow motion speed. The devel-
opment team would like to use the reference architec-
ture with faster robots. It could behave correctly,
although some modifications may be necessary for
guaranteeing time reguirements, such as the need to
use a separate computer for the graphical representa-
tion and using a real-time operating system.

There are plans to modify the reference architec-
ture in order to alow it to teleoperate more that one
robot from the same computer. Thisimprovement will
be probably used for dealing with a number of slow-
motion robots designed for cleaning ships surfaces.

Finally, some components of the implementation
of the architecture in Ada will be rewritten using the
new language standard approved in 1995. In this way,
it would be possible to take advantage of language
features, such as the object-oriented facilities, hierar-
chical packages, and the real-time and distributed
annexes.

9. Acknowledgments

This work has been partially supported by the
Spanish Government Programmes for Research in
Electrica Power (project PIE-041049), and for Tech-
nological Actuation in Industry (PAUTA projects 753/
95 y 53/96). TRON is supported inside EUREKA—
MAINE program (EU1565).

10. References

Albus, J. S, McGain, H. G., & Lumia, R. (1989),
NASA/NBS Standard Reference model for
Telerobot Control System Architecture
(NASREM), National Inst. Standards and Tech.,
Technical Report 1235, Gaithersburg, USA.

Alonso, A., Alvarez, B., Pastor, JA., delaPuente, JA.
& lborra, A. (1997). Software Architecture for a
Robot Teleoperation System. 4th IFAC Workshop
on Algorithms and Architectures for Real-Time
Control. Vilamoura, Portugal.

Alvarez, B., Alonso, A., & de la Puente, JA. (1998).
Timing Analysis of a generic robot teleoperation
software architecture, Control Engineering
Practice 6(6), 409-416.

Bass, L., Clements, P. & Kazman, R. (1998), Software
Architecture in Pratice, Addison-Wesley.
Masschusssets, U.S.A.

Berson, A. (1996). “Client/Server Architecture”.
McGraw-Hill. New York, U.S.A.

Brooks, R. A. (1986) A Robust Layered Control
System for a Mobile Robot. | EEE Transactions of
Robotics and Automation, 2(1).

Hayward, V. & Hayati, S, (1988) KALI: An
environment for the programming and control of

cooperative manipulators, American Control
Conference. Atlanta, USA.

Hayward, V. & Paul, R. (1986). Robot manipulator
control under Unix: A robot control C library.
The International Journal of Robotics Research
5(4).

Iborra, A., Lazaro, M. A., Dominguez, S., Campoy, P.,
Alvarez, M. & R.Aracil (1993). An automatic
system for the real time integration of live action
and synthetic 3-D computer images. 4th
Eurographics Animation and Smulation
Workshop. Grenoble, France.

Kang, K. C. & Cohen, S. (1990), Feature-Oriented
Domain Analysis (FODA) feasibility study.
Technica report, CMU/SEI-90-TR-21.
Software Engineering Institute, Carnegie Mellon
University. Pittsburgh, USA.

Klein, M. H., Ralya, T., Pollack, B., Obenza, R. & M.
Gonzalez Harbour, (1993). A Practitioner’s
Handbook for Rate Monotonic Analysis. Kluwer
Academics Publishers. Massachussets, USA.

Li, Z., Tan, T. J. & Berjczy, A. K. (1991) Dinamic
Workspace Analysis of Multiple Cooperating
Robot Arms, |EEE Transanctions on Robotic and
Automation, 7(5).

Peterson, A. S., & Stanley Jr, J.L. (1994), Mapping a
Domain Model and Architecture to a Generic
Design. Technical report, CMU/SEI-94-TR-008.
Software Engineering Institute, Carnegie Mellon
University. Pittsburgh, USA.

Prieto-Diaz, R. (1991), “Reuse in the U.SA.”. In
Proceedings of the 13" Annua International
Conference on Software Engineering. IEEE
Computer Society Press. Austin, USA.

Prieto-Diaz, R., Arango, G. (1991). Domain analysis
and software systems modeling. IEEE Computer
Society Press. Los Alamitos, USA.

Tracz, W. (1995) Confessions of a Used Program
Salesman: Institutionalizing Software Reuse.
Addison Wesley Publishing Company.
Massachusetts, USA.

Withey, J. V. (1994). Implementing Model Based
Software Engineering in your Organization: An
Approach to Domain Engineering Technical
report, CMU/SEI-90-TR-21. Software
Engineering Institute, Carnegie Meéllon
University. Pittsburgh, USA.

