
Development of a home automation system
using the communication protocol MQTT

through TCP/IP home network

Juan Jose Ros Gimeno

Supervised by:
Juan Carlos Sanchez Aarnoutse

October 2016

Table of Contents

Table of Contents i

Tables iv

Figures v

1 Introduction 1
1.1 Context . 1
1.2 Purpose . 1
1.3 Scope . 2
1.4 Objective . 2

2 Scenarios 3
2.1 Comfort scenario “El patrón” . 3
2.2 Leisure and security scenario “El vividor” 3
2.3 Energy efficiency scenario “La verde” 4

3 Characteristics of Home Automation 5
3.1 Architecture . 5

3.1.1 Centralized architecture . 5
3.1.2 Distributed architecture . 5
3.1.3 Hybrid architecture . 6

3.2 Components of a home automation system 6
3.2.1 Sensing Devices . 6
3.2.2 Controlled Devices . 10
3.2.3 User Interfaces . 11
3.2.4 Controllers . 11
3.2.5 Communication protocol . 12

4 Documentation and study of MQTT protocol 13
4.1 Introduction to MQTT . 13
4.2 Architecture . 14
4.3 History of the protocol . 14
4.4 Benefits of MQTT . 15

i

Table of Contents

4.4.1 Publish/Subscribe pattern . 15
4.4.2 Scalability . 16
4.4.3 Space decoupling . 16
4.4.4 Time decoupling . 16
4.4.5 Synchronization decoupling . 16
4.4.6 Authentication . 17
4.4.7 Quality of Service (QoS) . 18
4.4.8 Last Will and Testament . 18
4.4.9 Subject-based filtering . 19

4.5 Drawbacks of MQTT . 20
4.5.1 Central broker . 20
4.5.2 Transport layer protocol . 20
4.5.3 Security . 21
4.5.4 No TTL (Time-To-Live) on messages 21

4.6 MQTT Control Packet format . 21
4.7 Description of MQTT Control Packets 23

4.7.1 CONNECT . 23
4.7.2 CONNACK . 26
4.7.3 PUBLISH . 27
4.7.4 PUBACK . 32
4.7.5 PUBREC . 32
4.7.6 PUBREL . 34
4.7.7 PUBCOMP . 35
4.7.8 SUBSCRIBE . 35
4.7.9 SUBACK . 37
4.7.10 UNSUBSCRIBE . 38
4.7.11 UNSUBACK . 39
4.7.12 PINGREQ . 40
4.7.13 PINGRESP . 40
4.7.14 DISCONNECT . 41

5 Solution design 43
5.1 Design overview . 43
5.2 Functional design . 43

5.2.1 Musquetteer nodes . 43
5.2.2 ESPutnik nodes . 43
5.2.3 MQTT convention . 44

5.3 Technical design . 45
5.3.1 Raspberry Pi 3 . 45
5.3.2 NodeMCU DEVKIT / D1 mini 47

ii

5.3.3 Additional electronics . 53

6 Conclusion 57
6.1 Results . 57
6.2 Known limitations . 57
6.3 Future improvements . 57

Bibliography 58

APPENDIX 1 59

APPENDIX 2 60

iii

Tables

4.1 Structure of an MQTT Control Packet 21
4.2 Fixed header format . 22
4.3 Control Packet types . 22
4.4 CONNACK Return code values . 27
4.5 SUBACK Return code values . 38

5.1 Device properties . 44

iv

Figures

3.1 Smart Home . 7

4.1 CONNECT packet structure . 24
4.2 CONNACK packet structure . 27
4.3 PUBLISH packet structure . 28
4.4 Choreography of a publication with QoS 0 29
4.5 Choreography of a publication with QoS 1 30
4.6 Choreography of a publication with QoS 2 31
4.7 PUBACK packet structure . 33
4.8 PUBREC packet structure . 33
4.9 PUBREL packet structure . 34
4.10 PUBCOMP packet structure . 35
4.11 SUBSCRIBE packet structure . 36
4.12 SUBACK packet structure . 37
4.13 UNSUBSCRIBE packet structure . 38
4.14 UNSUBACK packet structure . 39
4.15 PINGREQ packet structure . 40
4.16 PINGRESP packet structure . 41
4.17 DISCONNECT packet structure . 42

5.1 Raspberry Pi single-board computer . 46
5.2 Raspbian logo . 47
5.3 Mosquitto logo . 48
5.4 NodeMCU development board . 48
5.5 D1 Mini development board . 49
5.6 Flowchat . 52
5.7 NA03-T2S05 power supply module . 53
5.8 Solar+Battery powered ESPutnik node 54
5.9 Relay module . 55
5.10 Optocoupler . 55
5.11 Rectifier before the optocoupler . 56
5.12 Schmitt trigger . 56

v

1 Introduction

1.1 Context

Home Automation is the residential extension of building automation and involves the
control and automation of lighting, HVAC1, and security. Modern systems generally
consist of switches and sensors connected to a central hub sometimes called a gateway
from which the system is controlled with a user interface that is interacted either with
a wall-mounted terminal, mobile phone software, tablet computer or a web interface,
often but not always via internet cloud services.

A Smart Home, is a home that incorporates advanced automation systems to provide
the inhabitants with sophisticated monitoring and control over the building’s functions.
Smart homes use home automation technologies to provide home owners with intelligent
feedback and information by monitoring many aspects of a home. For example, a smart
home’s refrigerator may be able to catalogue its contents, suggest menus, recommend
healthy alternatives, and order replacements as food is used up. A smart home might
even take care of feeding the cat and watering the plants.

Many new homes are being built with the additional wiring and controls which are
required to run advanced home automation systems. Retro-fitting (adding smart home
technologies to an existing property) a house to make it a smart home is obviously
significantly more costly than adding the required technologies to a new home due to
the complications of routing wires and placing sensors in appropriate places.

The range of different smart home technologies available is expanding rapidly along
with developments in computer controls and sensors. This has inevitably led to compat-
ibility issues and there is therefore a drive to standardise home automation technologies
and protocols.

1.2 Purpose

Regardless of the technology, smart homes present some very exciting opportunities to
change the way we live and work, and to reduce energy consumption at the same time.

1Heating, Ventilation and Air Conditioning

1

1 Introduction

While the cost of living is going up, there is a growing focus to involve technology to
lower those prices. With this in mind the Smart Home project allows the user to build
and maintain a house that is smart enough to keep energy levels down while providing
more automated applications. A smart home will take advantage of its environment
and allow seamless control whether the user is present or away.

In the other hand, Home Automation suffers from platform fragmentation and lack of
technical standards a situation where the variety of Home Automation devices, in terms
of both hardware variations and differences in the software running on them, makes the
task of developing applications that work consistently between different inconsistent
technology ecosystems hard. Customers may be hesitant to bet their IoT future on
a proprietary software or hardware devices that uses proprietary protocols that may
fade or become difficult to customize and interconnect.

1.3 Scope

The implementation of multiple hardware components is necessary to provide the func-
tionality that will be further discussed in this document. Behind the complex hardware
involved in controlling the smart home project there is a fair amount of software ar-
chitecture that is responsible for driving the hardware components. Each part of the
project is built and designed with a different functionality in mind that will be deter-
mined by the use cases.

1.4 Objective

The main objective of the project is to propose and design a solution that is simple
and effective to overcome typical retro-fitting scenarios. To develop the project, various
scenarios has been proposed with different functional focus on which a home automation
deployment will be proposed.

2

2 Scenarios

Scenarios are proposed based on different user archetypes, each one with different
interest and expectations.

2.1 Comfort scenario “El patrón”

A smart home contributes to the comfort in the daily activity of the inhabitants,
increasing their quality of life.

• Lighting Control. The control of lighting is the usual first port of call for any
home automation system.

• Blinds, curtains, louvres and shutter Control. Controlling heat entering a
room is a great way to keep your house cool in summer but warm in winter.

• Air-Conditioning and environmental control. The control of heating and
cooling within the smart house is one of the key areas where money can be saved
on power bills through more extensive automation control. Sub-Segmentation and
occupancy control allows only the area needed to be heated or cooled while other
areas fall back to a different temperature making considerable energy savings.

• Remote Control Systems. For convenience value, The Smart Home of today
tends to use your personal devices to double up as remote controls for your
home, Whilst dedicated remote devices are also available to enhance your ability
to control your Smart Home, increasingly people are becoming more confortable
using just one device that they are very familiar with.

2.2 Leisure and security scenario “El vividor”

The fundamental objective is to avoid risks and domestic accidents and to ensure and
protect users and their goods.

• Access control. Access Control is controlling who enters your home using an
entry system that can use Smart Card readers, radio key tags, Near Field Com-
munications NFC sensing, fingerprint recognition or even facial recognition to

3

2 Scenarios

ensure a person should have access.

• Security system control and integration. A stand-alone security system
for your home is a good investment, but link and integrate it with your Smart
Home automation system and you will multiply its value. Security sensors can be
used in a dual role as occupancy sensors, keeping your home automation system
informed of your whereabouts allowing the home to make adjustments to the
environment based on these input.

• Entertainment System control and integration. There are many areas
of home entertainment that can be enhanced through Smart Home integration.
Media storage and distribution, multi-zone audio and video systems, personal
music device integration, broadband Internet access and game system integration
are just a few of the standard techniques that can be implemented.

2.3 Energy efficiency scenario “La verde”

The mission of home automation in the field of energy management is to meet the
household needs at minimum cost.

• Control Energy Efficiency by Monitoring Energy Use. Every time you
turn something on, you’re increasing the amount of electricity that’s been con-
sumed. Not to mention the appliances that are on and using power 24 hours a
day. With an automated Smart Home you have the ability to keep track of the
energy use of all components drawing power.

• Watering system control. Having a watering system can be a very water
efficient concept and saves you lots of time manually watering your garden.

• External equipment control. Why stop inside the house? Control the garage
door, car access gate, front gate, extending pergola, ponds, water features through
the same automation system giving strict scheduled control of these features and
full remote control.

4

3 Characteristics of Home
Automation

3.1 Architecture

The architecture of a home automation system determines how the system components
(sensors, actuators, controllers, etc.) are connected. From the commercial point of view
we have two different types of automation systems: centralized systems and distributed
systems, although there are hybrid systems of both.

3.1.1 Centralized architecture

The control is performed by a central element of which depend on other elements, ie,
all signals detection and action are addressed in a single point which is the central unit.

The main advantage of this architecture is its low cost, since the elements do not need
routing modules or interfaces for different buses. In addition, installation is simple and
can be used a large number of commercial items as the requirements that are required
are minimal.

The main drawback is the limited flexibility, which leads us to have costly reconfig-
urations. In addition, if the central processing unit fails, this would make the whole
system stops working.

3.1.2 Distributed architecture

No need of a central element, but each element must have a certain intelligence to
know who to send the information they collect (sensors) or what information to use
(actuators), ie, each element has sufficient capacity to work autonomously.

The main advantage of this topology is that it has great ease for subsequent reconfigu-
racon of the system, making it very flexible. On the other hand, allows the possibility
of using plug&play technology, resulting in installation simplicity.

5

3 Characteristics of Home Automation

The biggest drawback is that the additional electronics that is needed in the system
elements expensive project. In addition, most of the communication protocols used are
proprietary and incomplative amongdifferent vendors.

3.1.3 Hybrid architecture

Systems that use a hybrid architecture, also called decentralized systems, are halfway
between centralized and distributed systems, so try to take advantage of both.

3.2 Components of a home automation system

A home automation system is composed of a series of elements that detect a change in
status of a variable and transmit this information so other elements can act according
to rules or standards set by the user.

3.2.1 Sensing Devices

Sensing devices can report values or states. The signals sent by sensors are converted
into data that can be displayed to the user or used by a controller program to make
informed decisions based on certain conditions. The signals can be converted at the
sensor itself, by an intermediate converter or by the system controller.

3.2.1.1 Light sensors

A light sensor may also be known as a photosensor or photodiode. It is used to monitor
the ambient light levels and report them back to your home automation controller.
This is often used in conjunction with a motion or presence sensor to switch lights on
automatically when someone enters a room - but only if they are needed. They can
also be used to ensure that security lights only operate after dark, or make outdoor
lighting come on automatically at dusk.

6

3 Characteristics of Home Automation

Figure 3.1: Smart Home

7

3 Characteristics of Home Automation

3.2.1.2 Temperature and Humidity Sensors

When temperature sensors are used they often come built into a thermostat unit or
radiator actuator valve, but there are times when you may like to fit an independent
thermometer. Small temperature sensors can easily be embedded into walls to avoid
having more unsightly boxes stuck to your walls or ceiling.

Combined with a humidity sensor, they can be used to automatically control air con-
ditioners or de-humidifiers, or even to automatically open windows if a room starts to
get too ‘muggy’.

3.2.1.3 Motion and Occupancy Sensors

One of the most popular sensor technologies for domestic automation systems is the
motion detector. Often they will be put to multiple uses, such as triggering a burglar
alarm if movement is detected when the house is supposed to be empty, or automatically
switching lights on and off when you enter or leave a room.

The most common type of motion detector is the PIR1. This works by detecting changes
in infrared light radiation within its field of vision. When choosing a PIR it is important
to make sure that the effective range is sufficient. Although most PIRs will easily be
able to cover a room, larger rooms, especially in open plan design buildings may require
more than one.

3.2.1.4 Fire Alarm Sensors

There are three main types of fire alarm sensors which are used in domestic properties:

• Optical / Photoelectric: This is the most common type. It uses light beams, and
the alarm is triggered if particles of smoke interrupt the beam.

• Ionization: These detect ionized particles in the air, and are more sensitive that
the optical type. This can mean, however, than it is more prone to false alarms
than an optical sensor. Many modern systems use a combination of optical and
ionization.

• Heat: detects anomalous temperatures.

1Passive Infrared sensor

8

3 Characteristics of Home Automation

3.2.1.5 Gas Sensors

Gas sensors allow us to deal with possible leaks of natural gas, butane, propane or
methane. When a gas leak occurs, the internal sensors by catalytic oxidation are
capable of detecting if the concentration of these gases is greater than allowed.

3.2.1.6 Flood and Leak Sensors

Flood or leak sensors are commonly fitted underneath baths and kitchen sinks, or in
other locations with an elevated risk of leaks. If your plumbing does spring a leak then
catching it early can save you a lot of trouble and expense, as water damage can have
a major impact on your property.

3.2.1.7 Proximity Sensors

In some systems proximity sensors are used in place of switches. This would allow the
user to simply wave their hand over a wall mounted sensor to, for example, switch on
the lights, rather than having to actually press a switch.

3.2.1.8 Contact Sensors

Contact sensors are used for a range of applications, the most common of which is in
burglary alarms. The sensor itself is basically just a kind of switch, which sends an
electrical signal when two surfaces make contact. They can be used to monitor whether
a door or window is open or closed.

3.2.1.9 Glass Break Sensors

There are two different kinds of sensor which can detect an intruder breaking glass to
enter your building.

The first type is installed on the window itself, limiting its usefulness for protecting an
entire property. This is also known as a ‘shock sensor’ and is triggered by sudden high
frequency vibrations when the glass it is attached to breaks.

9

3 Characteristics of Home Automation

The second type is basically a microphone tuned specifically to pick up the sound of
breaking glass. This is more useful, because a single detector can cover even a relatively
large room with many windows.

3.2.1.10 Weather Sensors

The number of instruments can vary, but most personal weather stations include in-
struments to measure temperature, relative humidity, pressure, rain fall, and wind
speed and direction.

3.2.2 Controlled Devices

Controlled devices include the tremendous range of equipment that a home automation
system is capable of controlling. This components receive orders the controller sends
and transform them into physical actions.

3.2.2.1 Motors

They are asynchronous and single phase motors installed inside the control element
axis. They are used to raise and lower blinds, running curtains, awnings, etc. You can
be activated manually with buttons or switches, or response to a stimulus captured by
a sensor

3.2.2.2 Solenoid valves

They are electronic valves that control water connections, gas or electricity housing
that open or close as needed or emergency.

3.2.2.3 Relays

Relays are used to open or close a circuit based on an external signal and functions as
if it were a switch. A relay can trigger various circuits or several systems at once.

10

3 Characteristics of Home Automation

3.2.2.4 Buzzers and speakers

They are sound elements that are activated in response to alarms raised in the installa-
tion. They can be accompanied by lighting elements. They are connected to batteries
for greater autonomy.

3.2.3 User Interfaces

User interfaces allow the user to interact with the system by sending information to
the controller or by presenting information to the user about the system. The form
and capabilities vary widely. Typical user interface devices include:

• Push-button panels, with or without visual displays.
• Touch-panel displays, with fixed or programmable screen layouts.
• Computer keyboards and monitors.
• Hand-held remote controls.
• Telephone interfaces to allow long-distance remote control.
• Television controllers with on-screen menus.

3.2.4 Controllers

Controllers are the elements responsible for receiving data from the sensors and user
interfaces to analyze and transmit commands to the actuators.

Controllers generally run complex software, allowing them to execute single or multiple
actions based on a variety of events. These events can come in many forms but can
essentially be broken down to just two categories: timed and triggered

3.2.4.1 Timed events

Most home automation systems integrate an astronomic time clock. By knowing a
home’s geographic location, the astronomic time clock keeps up with changing sunrise
and sunset events and syncs its clock over the Internet to remain accurate. With this
feature, the home can perform tasks at specific times every day

11

3 Characteristics of Home Automation

3.2.4.2 Trigeered events

Triggered events are actions that the automation system executes based on something
happening. Common triggers include:

• A button press, when I press this button, do this action
• A door opening, when this door opens, turn on the light
• Motion being detected, if there is no motion for 5 minutes, turn off this light
• A sensor tripping, if the temperature in this room exceeds 80 degrees, send me

an email

3.2.5 Communication protocol

A home automation system is characterized by the communications protocol used,
which is nothing other than the language or message format that different control
elements of the system should use to understand each other and exchange their infor-
mation in a coherent way.

While there are many competing vendors, there are very few world-wide accepted
industry standards and the smart home space is heavily fragmented. Popular commu-
nications protocol for products include X10, Ethernet, RS-485, 6LoWPAN, Buetooth
LE, ZigBee and Z-Wave, or other proprietary protocols all of which are incompatible
with each other.

12

4 Documentation and study of
MQTT protocol

4.1 Introduction to MQTT

MQTT is a Client/Server publish/subscribe messaging transport protocol. It is
lightweight, open, simple, and designed so as to be easy to implement. These charac-
teristics make it ideal for use in many situations, including constrained environments
such as for communication in Machine to Machine (M2M) and Internet of Things
(IoT) contexts where a small code footprint is required and/or network bandwidth is
at a premium. Its features include:

• Use of the publish/subscribe message pattern which provides one-to-many mes-
sage distribution and decoupling of applications.

• A messaging transport that is agnostic to the content of the payload.
• Three qualities of service for message delivery:

– “At most once”, where messages are delivered according to the best efforts
of the operating environment and underlying transport protocol. Message
loss can occur. This level could be used, for example, with ambient sensor
data where it does not matter if an individual reading is lost as the next
one will be published soon after.

– “At least once”, where messages are assured to arrive but duplicates can
occur.

– “Exactly once”, where message are assured to arrive exactly one time.
This level could be used, for example, with billing systems where duplicate
or lost messages could lead to incorrect charges being applied.

• A small transport overhead and protocol exchanges minimized to reduce network
traffic.

• A mechanism to notify interested parties when an abnormal disconnection occurs.

13

4 Documentation and study of MQTT protocol

4.2 Architecture

MQTT has a Client/Server model, where every node is a client and connects to a
server, known as a broker, usually over TCP1/IP2, but can run over any other network
protocols that provide ordered, lossless and bi-directional connections.

MQTT is message oriented. Every message is a discrete chunk of data, opaque to the
broker.

Every message is published to an address, known as a topic. Clients may subscribe to
multiple topics. Every client subscribed to a topic receives every message published to
the topic.

4.3 History of the protocol

MQTT was invented by Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom Control
Systems) back in 1999, when their use case was to create a protocol for minimal battery
loss and minimal bandwidth connecting oil pipelines over satellite connection. They
specified the following goals, which the future protocol should have:

• Simple to implement
• Provide a Quality of Service Data Delivery
• Lightweight and Bandwidth Efficient
• Data Agnostic
• Continuous Session Awareness

These goals are still the core of MQTT, while the focus has changed from proprietary
embedded systems to open Internet of Things use cases.

The name MQTT comes from “MQ Telemetry Transport”, referencing to IBM MQ
Series, a family of message-oriented middleware products which originally supported
MQTT, however, MQTT don’t use queues as in traditional message queuing solutions,
although in some cases is possible to hold certain messages on memory until they are
delivered to the client.

After MQTT had been used by IBM internally, version 3.1 was released royalty free in

1Transmission Control Protocol
2Internet Protocol

14

4 Documentation and study of MQTT protocol

2010. Since then everybody could implement and use it. In addition to the protocol
specification, also various client implementation were contributed to the newly founded
Paho project underneath the Eclipse Foundation. This was definitely positive for the
protocol because there is little chance for wide adoption when there is no ecosystem
around it.

Around 3 years after the initial publication, it was announced that MQTT should be
standardized under the wings of OASIS3, a global non-profit consortium that works
on the development, convergence, and adoption of standards for security, Internet of
Things, energy, content technologies, emergency management, and other areas.

The standardization process took around 1 year and on October 29th 2014 MQTT was
officially approved as OASIS Standard.

MQTT 3.1.1 is now the actual version of the protocol. The minor version change from
3.1 to 3.1.1 symbolizes that there were only little changes made to the previous version.
The primary goal was to deliver a standard as soon as possible and improve MQTT
from there on. There is also a variant of the main protocol called MQTT-SN addressed
to devices integrated into sensor networks using UDP4 transport layer or mesh network
topology like ZigBee.

MQTT 3.1.1 was accepted as an ISO5/IEC6 standard at the end of January 2016.
Voting for the ISO/IEC 20922 standard it was closed with the approval of 100% and
was published in mid-June 2016.

4.4 Benefits of MQTT

4.4.1 Publish/Subscribe pattern

The Pub/Sub (Publish/Subscribe) pattern is an alternative to the traditional Clien-
t/Server model, where a client communicates directly with an endpoint. However,
Pub/Sub decouples a client who is sending a particular message, called publisher, from
one or more clients who are receiving the message, called subscribers. This means that
the publisher and subscriber don’t know about the existence of one another. There is a

3Organization for the Advancement of Structured Information Standards
4User Datagram Protocol
5International Organization for Standardization
6International Electrotechnical Commission

15

4 Documentation and study of MQTT protocol

third component, called broker, which is known by both the publisher and subscriber,
which filters all incoming messages and distributes them accordingly.

The broker is responsible for subscriptions, persistent sessions, lost messages and se-
curity in general, including authentication and authorization.

4.4.2 Scalability

Pub/Sub also provides a greater scalability than the traditional client-server approach.
This is because operations on the broker can be highly parallelized and processed event-
driven. Also often message caching and intelligent routing of messages is decisive for
improving the scalability. But it is definitely a challenge to scale publish/subscribe to
millions of connections. This can be achieved using clustered broker nodes in order to
distribute the load over more individual servers with load balancers.

4.4.3 Space decoupling

While the node and the broker need to have each other’s IP address, nodes can publish
information and subscribe to other nodes’ published information without any knowl-
edge of each other, since everything goes through the central broker. This reduces
overhead that can accompany TCP sessions and ports, and allows the end nodes to
operate independently of one another.

4.4.4 Time decoupling

A node can publish its information regardless of other nodes’ states. Other nodes can
then receive the published information from the broker when they are active. This
allows nodes to remain in sleepy states even when other nodes are publishing messages
directly relevant to them.

4.4.5 Synchronization decoupling

A node that’s in the midst of one operation is not interrupted to receive a published
message to which it’s subscribed. The message is queued by the broker until the
receiving node is finished with its existing operation. This saves operating current and

16

4 Documentation and study of MQTT protocol

reduces repeated operations by avoiding interruptions of ongoing operations or sleepy
states.

4.4.6 Authentication

When it comes to authentication, MQTT protocol itself provides user and password
fields in the CONNECT message. Therefore, a customer has the ability to send a
username and password when connecting to a broker MQTT

The username is a UTF-8 encoded string and password is binary data with a maximum
length of 65535 bytes. The specification also states that a username without password
is possible, in the other hand, it’s not possible to just send a password without a
username.

When using the built-in username/password authentication, the MQTT broker will
evaluate the credential based on the implemented authentication mechanism and return
one of the following return codes: - 0 (Connection Accepted) - 4 (Connection Refused,
bad username or password) - 5 (Connection Refused, not authorized)

When setting username and password on the client, it will be sent to the broker in plain
text which would allow eavesdropping by an attacker and an easy way of obtaining the
credentials. The only way to guarantee a completely secure transmission of username
and password is to use transport layer encryption.

4.4.6.1 Client Identification

Every MQTT client has a unique identifier which is provided by himself in the MQTT
CONNECT message. This unique identifier can be up to 65535 characters making
a common practice to use 36 character long UUIDs7 or any other unique information
available to the client like the MAC address of the network module or the serial number
of the device itself. In the authentication process client ids are often used in addition
to username and password. A common example to confirm if a client can access the
MQTT broker is to validate username/password and the correct client id for that
credential combination. While it’s not a good security practice, it’s also possible to
ignore the username/password and just authenticate against the client identifier. For
a closed system this kind of authentication may be enough.

7Universally Unique Identifier

17

4 Documentation and study of MQTT protocol

4.4.6.2 X.509 Certificates

Another possible authentication source from the client is a X.509 client certificate,
which will be presented to the broker during the TLS handshake. Some brokers allow
to use the information in the certificate for application layer authentication after the
TLS handshake already succeeded. This enables the broker to read all informations
contained in the certificate and use it for authentication purposes as well.

4.4.7 Quality of Service (QoS)

Quality of Service is a major feature of MQTT as it makes communication in unreliable
networks a lot easier because the protocol handles retransmission and guarantees the
delivery of the message, regardless how unreliable the underlying transport is. Also
it empowers a client to choose the QoS level depending on its network reliability and
application logic.

• UseQoS 0 when you have a complete or almost stable connection between sender
and receiver or you don’t care if one or more messages are lost once a while. That
is sometimes the case if the data is not that important or will be send at short
intervals, where it is OK that messages might get lost.

• Use QoS 1 when you need to get every message and your use case can handle
duplicates. The most often used QoS is level 1, because it guarantees the message
arrives at least once. Of course your application must be tolerating duplicates
and process them accordingly

• Use QoS 2 when it is critical to your application to receive all messages exactly
once. This is often the case if a duplicate delivery would do harm to application
users or subscribing clients. You should be aware of the overhead and that it
takes a bit longer to complete the QoS 2 flow.

4.4.8 Last Will and Testament

MQTT is often used in scenarios were unreliable networks are very common. Therefore
it is assumed that some clients will disconnect ungracefully from time to time, because
they lost the connection, the battery is empty or any other imaginable case. There-
fore it would be good to know, if a connected client has disconnected with a MQTT

18

4 Documentation and study of MQTT protocol

DISCONNECT message or not, in order to take appropriate action.

A connecting client will provide his will in form of an MQTT message and topic in
the CONNECT message. If this clients disappears without previous notification, the
broker sends this message on behalf of the client to all subscribers.

4.4.9 Subject-based filtering

MQTT uses subject-based filtering of messages. So each message contains a topic,
which the broker uses to find out, if a subscribing client will receive the message or
not. Topics are created by the publisher node and nodes wishing to receive messages
should subscribe to them. The communication can be one to one or one to many.

A topic is represented by a string and has a hierarchical structure whose levels are
separated using the slash (/) character. In this way customers can create hierarchies
that publish and receive data.

A MQTT node can subscribe to any specific topic within the hierarchy or use single-
level (+) or multi-level (#) wildcards to subscribe several topics at once. This allows
a minimal amount of code and, therefore, reduce memory size and cost.

MQTT differs from traditional message queue protocols in the following points:

• A message queue stores messages until they are consumed. When using
message queues, each incoming message will be stored on that queue until it is
picked up by any client (often called consumer). Otherwise the message will just
be stuck in the queue and waits for getting consumed. It is not possible that
message are not processed by any client, like it is in MQTT if nobody subscribes
to a topic.

• A message will only be consumed by one client. Another big difference is
the fact that in a traditional queue a message is processed by only one consumer.
So that the load can be distributed between all consumers for a particular queue.
In MQTT it is quite the opposite, every subscriber gets the message, if they
subscribed to the topic.

• Queues are named and must be created explicitly. A queue is far more
inflexible than a topic. Before using a queue it has to be created explicitly with a
separate command. Only after that it is possible to publish or consume messages.

19

4 Documentation and study of MQTT protocol

In MQTT topics are extremely flexible and can be created on the fly.

4.5 Drawbacks of MQTT

4.5.1 Central broker

The use of a central broker can be inconvenient for distributed IoT systems. For
example, a system can start small with a remote control and a window shade, which
does not require a central broker. Then, as the system grows, for example, adding
safety sensors, light bulbs or other blinds, the network naturally grows and expands,
and may have need for a central broker. However, none of the individual nodes want
to assume the cost and responsibility, as it requires resources, software and complexity
that are not critical to the function of end node.

In systems that already have a central broker, it can become a single point of failure
for the entire network. For example, if the broker is a node powered without a battery
backup, then battery-powered nodes can continue to function during a power outage,
while the broker is offline, leaving the network inoperable.

4.5.2 Transport layer protocol

Even though MQTT is designed to be lightweight, every MQTT client must support
TCP and will typically hold a connection open to the broker at all times. For some
environments where packet loss is high or computing resources are scarce, this is a
problem.

TCP was originally designed for devices with more memory and processing resources
than may be available in typical IoT constrained-node networks. The TCP protocol
requires that connections be established in a multi-step handshake process before any
messages are exchanged. This drives up wake-up and communication times, and re-
duces battery life over the long run. Also, in TCP, it’s ideal for two communicating
nodes to hold their TCP sockets open for each other continuously with a persistent
session, which again may be difficult with energy- and resource-constrained devices.

Using TCP without session persistence can require incremental transmit time for con-
nection establishment. For nodes with periodic, repetitive traffic, this can lead to lower

20

4 Documentation and study of MQTT protocol

operating life.

These shortcomings are addressed by the MQTT-SN protocol, which defines a UDP
mapping of MQTT and adds broker support for indexing topic names so it can be
implemented in a practical IEEE 802.15.4 deployments.

4.5.3 Security

MQTT uses unencrypted TCP and is not “out-of-the-box” secure. However, because
it uses TCP, it can and should use TLS/SSL Internet security. TLS is a very secure
method for encrypting traffic, but is also resource-intensive for lightweight clients due
to its required handshake and increased packet overhead. For networks where energy
is a very high priority and security much less so, encrypting just the packet payload
may suffice.

4.5.4 No TTL (Time-To-Live) on messages

The protocol does not allow to add a TTL attribute per message. So if you use the
cleanSession parameter, the message will be held indefinitely in the broker. As time
goes by, it could create a lot of messages on the broker, so it could affect the overall
performances, and use some disk space if you persist the messages.

A possible workaround for this is to periodically check the topics for old messages, but
you only get a TTL per topics, not at message level. But it seems that this limitation
should be addressed in a next release of the protocol. This way refers to broker’s
internal TTL mechanisms.

4.6 MQTT Control Packet format

The MQTT protocol works by exchanging a series of MQTT Control Packets in a
defined way. This section describes the format of these packets.

Table 4.1: Structure of an MQTT Control Packet

Structure of an MQTT Control Packet

Fixed header, present in all MQTT Control Packets

21

4 Documentation and study of MQTT protocol

Structure of an MQTT Control Packet

Variable header, present in some MQTT Control Packets
Payload, present in some MQTT Control Packets

Each MQTT Control Packet contains a fixed header part, a variable header part and
payload based depending on its type.

Table 4.2: Fixed header format

Packet Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PUBLISH TYPE TYPE TYPE TYPE DUP QoS QoS RETAIN
PUBREL TYPE TYPE TYPE TYPE 0 0 1 0
SUBSCRIBE TYPE TYPE TYPE TYPE 0 0 1 0
UNSUBSCRIBE TYPE TYPE TYPE TYPE 0 0 1 0
OTHER TYPE TYPE TYPE TYPE 0 0 0 0

The fixed part of the header consists of 4 bits indicating the packet type and specific
packet type flags.

Table 4.3: Control Packet types

Name Value Direction of flow Description

Reserved 0 Forbidden Reserved
CONNECT 1 Client to Server Client request to connect to Server
CONNACK 2 Server to Client Connect acknowledgment
PUBLISH 3 Both Publish message
PUBACK 4 Both Publish acknowledgment
PUBREC 5 Both Publish received (assured delivery part 1)
PUBREL 6 Both Publish release (assured delivery part 2)
PUBCOMP 7 Both Publish complete (assured delivery part 3)
SUBSCRIBE 8 Client to Server Client subscribe request
SUBACK 9 Server to Client Subscribe acknowledgment
UNSUBSCRIBE 10 Client to Server Unsubscribe request
UNSUBACK 11 Server to Client Unsubscribe acknowledgment
PINGREQ 12 Client to Server PING request
PINGRESP 13 Server to Client PING response

22

4 Documentation and study of MQTT protocol

Name Value Direction of flow Description

DISCONNECT 14 Client to Server Client is disconnecting
Reserved 15 Forbidden Reserved

The table shows all messages that make up the MQTT protocol. The most impor-
tant are CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and DISCONNECT.
Others are confirmation messages (CONNACK, PUBACK, SUBACK, UNSUBACK)
or messages related to quality of service messages PUBLISH (PUBACK, PUBREL,
PUBREL and PUBCOMP).

Some types of MQTT Control Packets contain a variable header component. It resides
between the fixed header and the payload. The content of the variable header varies
depending on the packet type.

4.7 Description of MQTT Control Packets

4.7.1 CONNECT

After a network connection is established by a client to a server, the first packet sent
from the client to the server must be a CONNECT packet

A client can only send the CONNECT packet once over a network connection. The
server must process a second CONNECT packet sent from a client as a protocol vio-
lation and disconnect the client

The payload contains one or more encoded fields. They specify a unique identifier
for the client, a will topic, will message, username and password. All but the client
identifier are optional and their presence is determined based on flags in the variable
header.

4.7.1.1 Client Id

The client identifier (short ClientId) is an identifier of each MQTT client connecting to
a MQTT broker. It should be unique per broker as it is used for identifying the client
and the current state of the client. If you don’t need a state to be hold by the broker,

23

4 Documentation and study of MQTT protocol

Figure 4.1: CONNECT packet structure

it is also possible to send an empty ClientId, which results in a connection without any
state.

4.7.1.2 Clean Session

The clean session flag indicates the broker, if the client wants to establish a persistent
session or not. A persistent session (CleanSession is set to 0) means that the broker will
store all subscriptions for the customer and also all lost messages when they subscribe
with QoS 1 or 2. If CleanSession is set to 1, the broker does not store anything for
the customer and also purges all the existing information from a previous persistent
session. The following information is stored in the broker for a persistent session:

• The existence of a Session, even if the rest of the Session state is empty.
• The client’s subscriptions.
• QoS 1 and QoS 2 messages pending transmission to the client.
• QoS 1 and QoS 2 messages which have been sent to the client, but have not been

completely acknowledged.
• QoS 2 messages which have been received from the client, but have not been

completely acknowledged.

24

4 Documentation and study of MQTT protocol

Like the broker, each MQTT client must have the responsibility to keep certain infor-
mation itself:

• QoS 1 and QoS 2 messages which have been sent to the server, but have not been
completely acknowledged.

• QoS 2 messages which have been received from the server, but have not been
completely acknowledged.

4.7.1.3 Username/Password

MQTT allows to send a username and password for authentication and authorization
of the client. However, the password is sent in plain text so it is highly recommended to
use username and password along with safe transportation of it, for example, a hashing
algorithm is applied or TLS is used below.

4.7.1.4 Last Will and Testament (LWT)

The LWT feature is used in MQTT to notify other clients about an ungracefully discon-
nected client. Each client can specify its last will message (a normal MQTT message
with topic, retained flag, QoS and payload) when connecting to a broker. The broker
will store the message until it detects that the client has disconnected ungracefully. If
the client disconnect abruptly, the broker sends the message to all subscribed clients on
the topic, which was specified in the last will message. The stored LWT message will
be discarded if a client disconnects gracefully by sending a DISCONNECT message.

According to the MQTT 3.1.1 specification the broker will distribute the LWT of a
client in the following cases:

• An I/O error or network failure is detected by the server.
• The client fails to communicate within the Keep Alive time.
• The client closes the network connection without sending a DISCONNECT

packet first.
• The server closes the network connection because of a protocol error.

25

4 Documentation and study of MQTT protocol

4.7.1.5 Keep Alive

The keep alive functionality assures that the connection is still open and both broker
and client are connected to one another. Therefore the client specifies a time interval in
seconds and communicates it to the broker during the establishment of the connection.
The interval is the longest possible period of time, which broker and client can endure
without sending a message.

That means as long as messages are exchanged frequently and the keep alive interval is
not exceeded, there is no need to send an extra message to ensure that the connection
is still open. But if the client doesn’t send any messages during the period of the keep
alive it must send a PINGREQ packet to the broker to confirm its availability and
also make sure the broker is still available. The broker must disconnect a client, which
doesn’t send PINGREQ or any other message in one and a half times of the keep alive
interval. Likewise should the client close the connection if the response from the broker
isn’t received in a reasonable amount of time.

4.7.2 CONNACK

The CONNACK packet is the packet sent by the server in response to a CONNECT
packet received from a client. If the client does not receive a CONNACK packet from
the server within a reasonable amount of time, the client should close the network
connection.

4.7.2.1 Session Present

The session present flag indicate, whether the broker already has a persistent session
of the client from previous interactions. If a client connects and has set CleanSession
to 1, this flag is always 0, because there is no session available. If the client has set
CleanSession to 0, the flag is depending on, if there are session information available
for the ClientId. If stored session information exist, then the flag is 1 and otherwise it
is 0.

26

4 Documentation and study of MQTT protocol

Figure 4.2: CONNACK packet structure

4.7.2.2 Return Code

The second flag in the CONNACK is the connect acknowledge flag. It signals the
client, if the connection attempt was successful and otherwise what the issue is. If
a well formed CONNECT packet is received by the server, but the server is unable
to process it for some reason, then the server should attempt to send a CONNACK
packet containing the appropriate non-zero Connect return code from this table.

Table 4.4: CONNACK Return code values

Return Code Return Code Response

0 Connection Accepted
1 Connection Refused, unacceptable protocol version
2 Connection Refused, identifier rejected
3 Connection Refused, server unavailable
4 Connection Refused, bad username or password
5 Connection Refused, not authorized

4.7.3 PUBLISH

After a MQTT client is connected to a broker, it can publish messages that must contain
a topic, which will be used by the broker to forward the message to interested clients.
Each message typically has a payload which contains the actual data to transmit in
byte format. MQTT is data-agnostic and it totally depends on the use case how the
payload is structured.

4.7.3.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. This is only relevant for QoS greater than zero.

4.7.3.2 Topic

A simple string, which is hierarchically structured with forward slash characters (/) as
delimiters.

27

4 Documentation and study of MQTT protocol

Figure 4.3: PUBLISH packet structure

In comparison to a message queue a topic is very lightweight. There is no need for
a client to create the desired topic before publishing or subscribing to it, because a
broker accepts each valid topic without any prior initialization. Noticeable is that each
topic must have at least 1 character to be valid and it can also contain spaces, also a
topics are case-sensitive.

When a client subscribes to a topic it can use the exact topic the message was published
to or it can subscribe to more topics at once by using wildcards. A wildcard can only
be used when subscribing to topics and is not permitted when publishing a message.
In the following we will look at the two different kinds one by one: single-level and
multi-level wildcards.

• As the name already suggests, a single-level wildcard is a substitute for one
topic level. The plus character (+) represents a single level wildcard in the topic.
Any topic matches to a topic including the single level wildcard if it contains an
arbitrary string instead of the wildcard.

• While the single-level wildcard only covers one topic level, the multi-level wild-
card covers an arbitrary number of topic levels. The hash character (#) rep-
resents a multi-level wildwcard. In order to determine the matching topics it is
required that the multi-level wildcard is always the last character in the topic

28

4 Documentation and study of MQTT protocol

and it is preceded by a forward slash character (/)

In general you are totally free in naming your topics, but there is one exception. Each
topic, which starts with a dollar sign ($) will be treated specially and is for example not
part of the subscription when subscribing to #. These topics are reserved for internal
statistics of the MQTT broker. Therefore it is not possible for clients to publish
messages to these topics. At the moment there is no clear official standardization of
topics that must be published by the broker. It is common practice to use $SYS/ for
all these information and a lot of brokers implement these, but in different formats.

4.7.3.3 Quality of Service (QoS)

MQTT delivers Application Messages according to the QoS levels defined here. The
delivery protocol is symmetric, in the description below the client and server can each
take the role of either Sender or Receiver. The delivery protocol is concerned solely
with the delivery of an application message from a single Sender to a single Receiver.
When the server is delivering an Application Message to more than one client, each
client is treated independently.

In the figures, the PUBLISH message is accompanied by three numbers. The first
number corresponds to the level of QoS, the second to the duplicate flag, the third
represents the package ID.

• QoS 0: At most once delivery. The message is delivered according to the
capabilities of the underlying network. No response is sent by the receiver and
no retry is performed by the sender. The message arrives at the receiver either
once or not at all.

Figure 4.4: Choreography of a publication with QoS 0

29

4 Documentation and study of MQTT protocol

• QoS 1: At least once delivery. This quality of service ensures that the
message arrives at the receiver at least once. A QoS 1 PUBLISH packet has
a packet identifier in its variable header and is acknowledged by a PUBACK
packet.
– The Sender must assign an unused packet identifier each time it has a new

Application Message to publish and treat the PUBLISH packet as “unac-
knowledged” until it has received the corresponding PUBACK packet from
the receiver.

– The Receiver must respond with a PUBACK packet containing the packet
identifier from the incoming PUBLISH packet, having accepted ownership
of the Application Message. After it has sent a PUBACK packet the Re-
ceiver must treat any incoming PUBLISH packet that contains the same
packet identifier as being a new publication, irrespective of the setting of its
duplicate flag.

Figure 4.5: Choreography of a publication with QoS 1

• QoS 2: Exactly once delivery. This is the highest quality of service, for
use when neither loss nor duplication of messages are acceptable. There is an
increased overhead associated with this quality of service.
– The Sender must assign an unused packet identifier when it has a new Ap-

plication Message to publish and treat the PUBLISH packet as “unacknowl-
edged” until it has received the corresponding PUBREC packet from the
receiver. Also it must send a PUBREL packet when it receives a PUBREC
packet from the receiver (with the same packet identifier as the original

30

4 Documentation and study of MQTT protocol

PUBLISH packet) and treat the PUBREL packet as “unacknowledged” un-
til it has received the corresponding PUBCOMP packet from the receiver.
Finally, it must not re-send the PUBLISH once it has sent the corresponding
PUBREL packet.

– The Receiver must respond with a PUBREC containing the packet identifier
from the incoming PUBLISH packet until it has received the corresponding
PUBREL packet and acknowledge any subsequent PUBLISH packet with
the same packet identifier by sending a PUBREC. Also it must respond to
a PUBREL packet by sending a PUBCOMP packet containing the same
packet identifier as the PUBREL.Finally, after it has sent a PUBCOMP,
the receiver must treat any subsequent PUBLISH packet that contains that
packet identifier as being a new publication.

Figure 4.6: Choreography of a publication with QoS 2

31

4 Documentation and study of MQTT protocol

4.7.3.4 Retain

This flag determines if the message will be saved by the broker for the specified topic
as last known good value. New clients that subscribe to that topic will receive the last
retained message on that topic instantly after subscribing.

4.7.3.5 Payload

This is the actual content of the message. MQTT is totally data-agnostic, it’s possible
to send images, texts in any encoding, encrypted data and virtually every data in
binary.

4.7.3.6 Duplicate

The duplicate flag indicates, that this message is a duplicate and is resent because
the other end didn’t acknowledge the original message. This is only relevant for QoS
greater than 0.

4.7.4 PUBACK

A PUBACK packet is the response to a PUBLISH packet with QoS level 1.

4.7.4.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. This contains the packet identifier from the PUBLISH
packet that is being acknowledged.

4.7.5 PUBREC

A PUBREC packet is the response to a PUBLISH packet with QoS 2. It is the second
packet of the QoS 2 protocol exchange.

32

4 Documentation and study of MQTT protocol

Figure 4.7: PUBACK packet structure

Figure 4.8: PUBREC packet structure

33

4 Documentation and study of MQTT protocol

4.7.5.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. This contains the packet identifier from the PUBLISH
packet that is being acknowledged.

4.7.6 PUBREL

A PUBREL packet is the response to a PUBREC packet. It is the third packet of the
QoS 2 protocol exchange.

Figure 4.9: PUBREL packet structure

4.7.6.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. This contains the packet identifier from the PUBREC
packet that is being acknowledged.

34

4 Documentation and study of MQTT protocol

4.7.7 PUBCOMP

The PUBCOMP packet is the response to a PUBREL packet. It is the fourth and final
packet of the QoS 2 protocol exchange.

Figure 4.10: PUBCOMP packet structure

4.7.7.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. This contains the packet identifier from the PUBREL
packet that is being acknowledged.

4.7.8 SUBSCRIBE

Publishing messages doesn’t make sense if no one ever receives the message, or, in other
words, if there are no clients subscribing to any topic. The SUBSCRIBE packet is sent
from the client to the server to create one or more Subscriptions. Each Subscription
registers a client’s interest in one or more Topics. The server sends PUBLISH Packets
to the client in order to forward Application Messages that were published to Topics

35

4 Documentation and study of MQTT protocol

that match these Subscriptions. The SUBSCRIBE packet also specifies (for each Sub-
scription) the maximum QoS with which the server can send Application Messages to
the client.

Figure 4.11: SUBSCRIBE packet structure

4.7.8.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. This is only relevant for QoS greater than zero.

4.7.8.2 Topics

A SUBSCRIBE message can contain an arbitrary number of subscriptions for a client.
Each subscription is a pair of a topic topic and QoS level. The topic in the subscribe
message can also contain wildcards, which makes it possible to subscribe to certain
topic patterns. If there are overlapping subscriptions for one client, the highest QoS
level for that topic wins and will be used by the broker for delivering the message.

36

4 Documentation and study of MQTT protocol

4.7.9 SUBACK

Each subscription will be confirmed by the broker through sending an acknowledgement
to the client in form of the SUBACK message. This message contains the same packet
identifier as the original SUBSCRIBE message in order to identify the message and a
list of return codes.

Figure 4.12: SUBACK packet structure

4.7.9.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. This contains the packet identifier from the SUBSCRIBE
packet that is being acknowledged.

4.7.9.2 Return Code

The broker sends one return code for each topic/QoS-pair it received in the SUB-
SCRIBE message. So if the SUBSCRIBE message had 5 subscriptions, there will be
5 return codes to acknowledge each topic with the QoS level granted by the broker.
If the subscription was prohibited by the broker (e.g. if the client was not allowed to

37

4 Documentation and study of MQTT protocol

subscribe to this topic due to insufficient permission or if the topic was malformed),
the broker will respond with a failure return code for that specific topic.

Table 4.5: SUBACK Return code values

Return Code Return Code Response

0 Success - Maximum QoS 0
1 Success - Maximum QoS 1
2 Success - Maximum QoS 2

128 Failure

4.7.10 UNSUBSCRIBE

The counterpart of the SUBSCRIBE message is the UNSUBSCRIBE message which
deletes existing subscriptions of a client on the broker. The UNSUBSCRIBE message
is similar to the SUBSCRIBE message and also has a packet identifier and a list of
topics.

Figure 4.13: UNSUBSCRIBE packet structure

38

4 Documentation and study of MQTT protocol

4.7.10.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. The acknowledgement of an UNSUBSCRIBE message will
contain the same identifier.

4.7.10.2 Topics

The list of topics contains an arbitrary number of topics, the client wishes to unsub-
scribe from. It is only necessary to send the topic as string (without QoS), the topic
will be unsubscribed regardless of the QoS level it was initially subscribed with.

4.7.11 UNSUBACK

The broker will acknowledge the request to unsubscribe with the UNSUBACK message.
This message only contains a packet identifier.

Figure 4.14: UNSUBACK packet structure

39

4 Documentation and study of MQTT protocol

4.7.11.1 Packet Identifier

The packet identifier is a unique identifier between client and broker to identify a
message in a message flow. It is the same as in the UNSUBSCRIBE message.

4.7.12 PINGREQ

The PINGREQ is sent by the client and indicates to the broker that the client is still
alive, even if it hasn’t send any other packets (PUBLISH, SUBSCRIBE, etc..). The
client can send a PINGREQ at any time to make sure the network connection is still
alive. The PINGREQ packet doesn’t have any payload.

Figure 4.15: PINGREQ packet structure

4.7.13 PINGRESP

When receiving a PINGREQ the broker must reply with a PINGRESP packet to
indicate its availability to the client. Similar to the PINGREQ the packet doesn’t
contain any payload.

40

4 Documentation and study of MQTT protocol

Figure 4.16: PINGRESP packet structure

4.7.14 DISCONNECT

The DISCONNECT packet is the final Control Packet sent from the client to the
server. It indicates that the client is disconnecting cleanly. The PINGREQ packet
doesn’t have any payload.

• After sending a DISCONNECT packet the client must close the network connec-
tion and must not send any more Control Packets on that network connection.

• On receipt of DISCONNECT, the server must discard any will message associated
with the current connection without publishing it.

41

4 Documentation and study of MQTT protocol

Figure 4.17: DISCONNECT packet structure

42

5 Solution design

5.1 Design overview

The solution will use a decentralized approach composed of a central node, aka the
Musquetteer, and several smart nodes, aka the ESPutniks. Musquetteer and ESPutniks
communicate to each other using the existing WiFi/Ethernet network.

5.2 Functional design

5.2.1 Musquetteer nodes

Musquetteer nodes are small single-board computers and at least one is required in the
system.

• Broker, it host the MQTT broker and coordinates messages between clients.
• Access Point, it can generate the WiFi network that ESPutnik nodes connect

to.
• Gateway, it can act as interface between the sensor network and the internet.
• Server, it host a web server and the applications requiered .

5.2.2 ESPutnik nodes

ESPutnik nodes are the smallest smart controllers available in the system.

• Connected, it connects to the MQTT broker hosted by the Musquetteer and
sends/receives commands.

• Controller, sensors and actuators are connected physically to it.
• Decentralized, it have the capability to control its own channels, even if network

is down.

43

5 Solution design

5.2.3 MQTT convention

To efficiently parse messages, I will define a few rules related to topic names. This
rules will follow a convention to easily offer an abstraction layer between the funtional
and technical requirements.

An instance of a physical controller is called a device. A device has device properties,
like the current local IP, the Wi-Fi signal, etc. A device can expose multiple channels.
For example, a weather device might expose a temperature channels and an humidity
channels. A channels can have multiple channels properties which can be settable. The
temperature channels might for example expose a temperature property containing the
actual temperature, and an unit property.

I will work in a state-based approach. You don’t turn on the actuators directly, instead
you command your device channel to put it’s state to on. This especially fits well
with MQTT because of retained messages and provides pessimistic feedback, which is
important for home automation.

• ESPutnik / device ID / $ device property: a property starting with a $ at
the third level of the path is related to the device.

• ESPutnik / device ID / channel ID / property: as defined in the $channels
device property, channel ID is the ID of the channel. property is the property
of the channel that is getting updated.

• ESPutnik / device ID / channel ID / property / set: the device can sub-
scribe to this topic if the property is settable from the controller, in case of
actuators.

Table 5.1: Device properties

Property Description

$online true when the device is online, **false*‘ when the device is offline
(through LWT)

$name Friendly name of the device
$localip IP of the device on the local network
$uptime Time elapsed in seconds since the boot of the device
$signal Integer representing the Wi-Fi signal quality in percentage if applicable
$fwname Name of the firmware running on the device.
$fwversion Version of the firmware running on the device

44

5 Solution design

Property Description

$channels Channels the device has, with format id:type separated by a , if there
are multiple channels

$ota Latest OTA version available for the device
$reset true when the controller wants the device to reset its configuration.

false otherwise.

5.3 Technical design

5.3.1 Raspberry Pi 3

Raspberry Pi is a series of credit card-sized single-board computers developed in the
United Kingdom by the Raspberry Pi Foundation to promote the teaching of basic
computer science in schools and developing countries.

The Raspberri Pi will fit the puspose on the Musquetteer node.

5.3.1.1 Hardware

Several generations of Raspberry Pis have been released. All models feature a Broad-
com SOC1, which includes an ARM compatible CPU2 and an on chip GPU3. CPU
speed ranges from 700 MHz to 1.2 GHz for the Pi 3 and on board memory range from
256 MB to 1 GB RAM. SD4 cards are used to store the operating system and pro-
gram memory in either the SDHC or MicroSDHC sizes. Most boards have between
one and four USB slots, HDMI and composite video output, and a 3.5 mm phone jack
for audio. Lower level output is provided by a number of GPIO5 pins which support
common electronic protocols. The B-models have an 8P8C Ethernet port and the Pi
3 has on board Wi-Fi 802.11n and Bluetooth.

1System on a Chip, an integrated circuit that integrates all components of a computer or other
electronic system into a single chip

2Central Processing Unit
3Graphics Processing Unit
4Secure Digital, is a non-volatile memory card format developed by the SD Card Association for use
in portable devices

5General Purpose Input/Output, is a generic pin on an integrated circuit or computer board whose
behavior (including whether it is an input or output pin) is controllable by the user at run time

45

5 Solution design

• SOC: Broadcom BCM2837
• CPU: 4x ARM Cortex-A53, 1.2GHz
• GPU: Broadcom VideoCore IV
• RAM: 1GB LPDDR2 (900 MHz)
• Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless
• Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy
• Storage: microSD
• GPIO: 40-pin header, populated
• Ports: HDMI, 3.5mm analogue audio-video jack, 4x USB 2.0, Ethernet, Camera

Serial Interface (CSI), Display Serial Interface (DSI)

Figure 5.1: Raspberry Pi single-board computer

5.3.1.2 Software

The following software is installed in the node to fullfil it’s funtional requirements.

5.3.1.2.1 Raspbian Raspbian is a free operating system based on Debian optimized
for the Raspberry Pi hardware.

46

5 Solution design

Figure 5.2: Raspbian logo

5.3.1.2.2 Eclipse Mosquitto Eclipse MosquittoTM is an open source[ˆMosquitto-
license] message broker that implements the MQTT protocol versions 3.1 and 3.1.1.
MQTT provides a lightweight method of carrying out messaging using a publish/sub-
scribe model. This makes it suitable for “Internet of Things” messaging such as with
low power sensors or mobile devices such as phones, embedded computers or micro-
controllers like the Arduino.

5.3.2 NodeMCU DEVKIT / D1 mini

NodeMCU is an open source IoT platform. It includes firmware which runs on the
ESP8266 Wi-Fi SoC and hardware which is based on the ESP-12 module. The term
“NodeMCU” by default refers to the firmware which uses the Lua scripting language.
The Development Kit integrates GPIO, PWM, I2C, 1-Wire and ADC in one board.

The D1 Mini is a mini wifi board based on ESP-8266EX. It features 11 digital in-
put/output pins, 1 analog input and a Micro USB connection. All of the IO pins
(except D0) support interrupt/PWM/I2C/one-wire.

47

5 Solution design

Figure 5.3: Mosquitto logo

Figure 5.4: NodeMCU development board

48

5 Solution design

Figure 5.5: D1 Mini development board

49

5 Solution design

5.3.2.1 Hadware

The ESP8266 WiFi Module is a self contained SOC produced by Espressif Systems
with integrated TCP/IP protocol stack and MCU6 capability that can provide access
to your WiFi network. The ESP8266 is capable of either hosting an application or
offloading all Wi-Fi networking functions from another application processor through
its AT command set.

As Arduino began developing new MCU boards based on non-AVR processors like
the ARM/SAM MCU, they needed to modify the Arduino IDE so that it would be
relatively easy to change the IDE to support alternate tool chains to allow Arduino
C/C++ to be compiled down to these new processors. They did this with the in-
troduction of the Board Manager and the SAM Core. A “core” is the collection of
software components required by the Board Manager and the Arduino IDE to compile
an Arduino C/C++ source file down to the target MCU’s machine language. Some
creative ESP8266 enthusiasts have developed an Arduino core for the ESP8266 WiFi
SoC that is available at the ESP8266 Core7 webpage.

• SOC: Espressif ESP8266
• CPU: 32-bit RISC Tensilica Xtensa LX106 running at 80 MHz (CPU can be

overclocked to 160 MHz)
• RAM: 64 KiB of instruction RAM, 96 KiB of data RAM
• Storage: External QSPI flash - 512 KiB to 16 MiB (flash can be overclocked

from 40 MHz to 80 MHz)
• Networking: IEEE 802.11 b/g/n Wi-Fi with integrated TR switch, balun, LNA,

power amplifier and impedance matching circuit
• GPIO: 16 GPIO pins
• Ports: SPI8, I2C9, I2S10 interfaces with DMA11, UART12 on dedicated pins plus

6Micro Controller Unit
7https://github.com/esp8266/Arduino [[ˆPOE]]: Power over Ethernet
8Serial Peripheral Interface, is a synchronous serial bus interface specification used for short distance
communication, primarily in embedded systems

9Inter-Integrated Circuit, is a synchronous serial bus interface specification used for short distance
communication, primarily in embedded systems

10Integrated Interchip Sound, is a synchronous serial bus interface standard used for connecting digital
audio devices together

11Direct Memory Access, is a feature of computer systems that allows certain hardware subsystems
to access main system memory independently of the CPU

12Universal Asynchronous Receiver/Transmitter, is a computer hardware device for asynchronous
serial communication in which the data format and transmission speeds are configurable

50

5 Solution design

a transmit-only UART can be enabled on GPIO2, PWM13 and one 10-bit ADC14

5.3.2.2 Software

Custom firmware based on the Arduino ESP8266 Core. Main features include:

• Parameterizable.
– Node information
– Network connection
– MQTT connection
– Input/Output configuration

• Persistence
– The set values are stored in flash memory
– Configuration changes are applied after a restart of the node
– If the configuration is invalid or nonexistent during startup, default values

are initialized.
• Operating Modes.

– CONFIGURATION
– STANDALONE
– NETWORKED

• OTA15 updates
• Web server or REST16 API17

5.3.2.2.1 Libraries

• Async MQTT client, an asynchronous MQTT client implementation for
ESP8266 Arduino.

• ESPAsyncWebServer, async HTTP and WebSocket Server for ESP8266 and
ESP31B Arduino.

• ESPAsyncTCP, a fully asynchronous TCP library, aimed at enabling trouble-
free, multi-connection network environment for Espressif’s ESP8266 MCUs.

13Pulse-Width Modulation, is a modulation technique used to encode information into a pulsing signal
or to control the amount of power sent to a load

14Analog-to-Digital Converter, is a system that converts an analog signal into a digital signal
15Over-the-air programming
16Representational State Transfer
17Application Programming Interface

51

5 Solution design

Figure 5.6: Flowchat

52

5 Solution design

5.3.3 Additional electronics

Depending on the final application of each node, you may need different interfaces
between the node inputs/outputs and the sensors/actuators. In this section you can
find the most common circuitry needed.

5.3.3.1 Power supply

For gerenal purpose indoor ESPutnik nodes, power supply is provived a 220V AC to
5V isolated converter.

Figure 5.7: NA03-T2S05 power supply module

For nodes that require to have backup power, a lithium 18650 cell with a battery chag-
ing circuit will do. If the node is outdor, i.e. barometric pressure sensing, a photovoltaic
cell can be added to the battery charger so it will not need a 220V outlet.

53

5 Solution design

Figure 5.8: Solar+Battery powered ESPutnik node

54

5 Solution design

5.3.3.2 Output interface

To drive different voltage or high current loads you need an adaptation circuit, the
most simple and reliable is relay based. To further isolate the control signal from the
load alimentation, it is advisable to use always optocoupler relay modules. To get rid
of the characteristics relay sound when switching is advised to use a solid state relay.

Figure 5.9: Relay module

5.3.3.3 Input interface

Again I will be using optocouplers to isolate input signal at different voltage levels. If
the signal is AC, a rectifier circuit is needed.

Figure 5.10: Optocoupler

If we need to transform analog input to a digital one based on a voltage threshold, a
schmitt trigger allow us to control the set and reset values for the digital signal.

55

5 Solution design

Figure 5.11: Rectifier before the optocoupler

Figure 5.12: Schmitt trigger

56

6 Conclusion

6.1 Results

We are able to control the actuators attached to different nodes either interacting
directly with the regular control interfaces of the home, ie switches, or using a smart-
phone or tablet conneted to the same network as the Musquetteer node which is acting
as a gateway between the regular home network and the home automation network.

6.2 Known limitations

• It is only implemented communication over the MQTT protocol.
• Remote control interface is only available to smartphone and tablet devices.
• Area of control is limited to the range of the wifi network.
• The amount of controlled end devices per ESPutnik node is rather small.

6.3 Future improvements

• To reduce cost and increase network reliability, Musquetteer nodes can be mi-
grated to a router running openWRT.

• To overcome the risk of having a central point of failure, mosquitto broker soft-
ware should be remplazed by other broker which accepts clustering.

• To increase interoperability, openHAB software can be installed and configured
in the Musquetteer nodes.

• To extend the wifi area coverage without additional hardware, a mesh network
could be used.

57

Bibliography

[BG14] Andrew Banks and Rahul Gupta. MQTT Version 3.1.1. Oct. 29, 2014. url:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf.

[Hiv15] HiveMQ. MQTT essentials. 2015. url: http ://www.hivemq.com/mqtt -
essentials/.

[ISO16] 20922 ISO/IEC. Information technology – Message Queuing Telemetry
Transport (MQTT) v3.1.1. June 15, 2016. url: http://www.iso.org/iso/
catalogue_detail.htm?csnumber=69466.

[Mos16] Mosquitto. MQTT v5 draft features. Aug. 15, 2016. url: https://mosquitto.
org/2016/08/mqtt-v5-draft-features/.

[Pip13] Andy Piper. MQTT community wiki. Dec. 2, 2013. url: https ://github.
com/mqtt/mqtt.github.io/wiki.

[Sta15] James Stansberry. MQTT and CoAP: Underlying Protocols for the IoT. Oct.
2015. url: http://electronicdesign.com/iot/mqtt- and- coap- underlying-
protocols-iot.

58

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://www.hivemq.com/mqtt-essentials/
http://www.hivemq.com/mqtt-essentials/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466
https://mosquitto.org/2016/08/mqtt-v5-draft-features/
https://mosquitto.org/2016/08/mqtt-v5-draft-features/
https://github.com/mqtt/mqtt.github.io/wiki
https://github.com/mqtt/mqtt.github.io/wiki
http://electronicdesign.com/iot/mqtt-and-coap-underlying-protocols-iot
http://electronicdesign.com/iot/mqtt-and-coap-underlying-protocols-iot

APPENDIX 1

59

APPENDIX 2

60

	Table of Contents
	Tables
	Figures
	Introduction
	Context
	Purpose
	Scope
	Objective

	Scenarios
	Comfort scenario El patrón
	Leisure and security scenario El vividor
	Energy efficiency scenario La verde

	Characteristics of Home Automation
	Architecture
	Centralized architecture
	Distributed architecture
	Hybrid architecture

	Components of a home automation system
	Sensing Devices
	Controlled Devices
	User Interfaces
	Controllers
	Communication protocol

	Documentation and study of MQTT protocol
	Introduction to MQTT
	Architecture
	History of the protocol
	Benefits of MQTT
	Publish/Subscribe pattern
	Scalability
	Space decoupling
	Time decoupling
	Synchronization decoupling
	Authentication
	Quality of Service (QoS)
	Last Will and Testament
	Subject-based filtering

	Drawbacks of MQTT
	Central broker
	Transport layer protocol
	Security
	No TTL (Time-To-Live) on messages

	MQTT Control Packet format
	Description of MQTT Control Packets
	CONNECT
	CONNACK
	PUBLISH
	PUBACK
	PUBREC
	PUBREL
	PUBCOMP
	SUBSCRIBE
	SUBACK
	UNSUBSCRIBE
	UNSUBACK
	PINGREQ
	PINGRESP
	DISCONNECT

	Solution design
	Design overview
	Functional design
	Musquetteer nodes
	ESPutnik nodes
	MQTT convention

	Technical design
	Raspberry Pi 3
	NodeMCU DEVKIT / D1 mini
	Additional electronics

	Conclusion
	Results
	Known limitations
	Future improvements

	Bibliography
	APPENDIX 1
	APPENDIX 2

