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Abstract. The assumption that the Weinberg rotation between the gauge fields associated

with the third component of the “weak isospin” (T3) and the hypercharge (Y ) proceeds in a

natural way from a global homomorphism of the SU(2)⊗U(1) gauge group in some locally iso-

morphic group (which proves to be U(2)), imposes strong restrictions so as to fix the single value

sin2 θW = 1/2. This result can be thought of only as being an asymptotic limit corresponding

to an earlier stage of the Universe. It also lends support to the idea that e2/g2 and 1−M2
W /M2

Z

are in principle unrelated quantities.

There are two basic ingredients in the constitution of a model to describe the unified

electroweak interactions, the Weinberg-Salam-Glashow Standard Model, which deserve
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further study and which lessen the (mathematical) beauty of the theory as a whole. One

is the way in which the W-Z-bosons acquire mass, the Higgs mechanism, and the other

is the rotation between the gauge fields associated with the third component of weak

isospin (A3
µ) and the hypercharge (A4

µ), intended to define the proper electromagnetic

field, without any (apparent) connection to the “weak” Gell’man-Nishijima relation

Q = T3 +
1

2
Y , (1)

meant to define a proper electric charge in the Lie algebra. We shall focus on the latter

question.

In this paper we wish to explore the restrictions that appear on the mixing angle θW

as a consequence of the natural consistence requirement that the rotation in the gauge

fields

Z0
µ = cos θW A3

µ − sin θW A4
µ (2)

Aµ = sin θW A3
µ + cos θW A4

µ

comes from an exponentiable (linear) transformation on the Lie algebra of SU(2)⊗U(1).

Since the gauge group is not simply connected, it is not true that any automorphism of

the Lie algebra can be realized as the derivative of a global group homomorphism or, in

other words, a differentiable mapping between two locally isomorphic groups providing

a given automorphism of the (commom) Lie algebra, can in general destroy the global

group law.

To analyse the set of global homomorphism from SU(2)⊗U(1) to a locally isomorphic

group we can proceed in two different ways: either we study the set of discrete normal

subgroups of SU(2) ⊗ U(1), which are the possible kernels of those homomorphisms, or

we write the explicit group law of SU(2) ⊗ U(1), perform an arbitrary homomorphism
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and analyze the conditions under which the group law is not destroyed. We shall follow

the second approach although some comments on the first one will be added at the end.

Let us parametrize the group SU(2) in a co-ordinate system adapted to the Hopf

fibration SU(2) → S2, the sphere S2 being parametrized by stereographic projection.

The SU(2) ⊗ U(1) group law in the local chart at the identity, which nevertheless keeps

the global character of the toral subgroup, is:

η′′ =
z′′1
|z′′1 |

=
η′η − η′η∗C ′C∗

√

(1 − η∗2C ′C∗)(1 − η2CC∗′)

C ′′ =
z′′2
z′′1

=
Cη2 + C ′

η2 − C ′C∗
(3)

C∗′′ =
z′′2

∗

z′′1
∗ =

C∗η−2 + C∗′

η−2 − C∗′C

ζ ′′ = ζ ′ζ

where η ∈ U(1) ⊂ SU(2), ζ ∈ U(1), C ∈ C and z1, z2 characterize a SU(2) matrix






z1 z2

−z2
∗ z1

∗





. The commutation relations between the (right) generators T+ ≡ XC∗ , T− ≡

XC , T3 ≡ Xη and Y ≡ Xζ are:

[T3, T±] = ±2T±

[T+, T−] = T3 (4)

[Y, all] = 0

We shall consider transformations induced by an homomorphism of the torus:

η̃ = ηpζp′
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ζ̃ = ηqζq′ (5)

C̃ = C , C̃∗ = C∗,

where the parameters p, p′, q, q′ have to be integers for the univalueness requirement.

After we apply this transformation the group law becomes:

η̃′′ =







η̃′
1

p η̃
1

p − η̃′
1

p η̃− d+2qp′

dp ζ̃
2p′

d C̃∗C̃ ′

√

(1 − η̃− 2q′

d ζ̃
2p′

d C̃ ′C̃∗)(1 − η̃
2q′

d ζ̃− 2p′

d C̃C̃∗
′
)







p

C̃ ′′ =
C̃η̃

2q′

d ζ̃− 2p′

d + C̃ ′

η̃
2q′

d ζ̃− 2p′

d − C̃ ′C̃∗
(6)

C̃∗
′′

=
C̃∗η̃− 2q′

d ζ̃
2p′

d + C̃∗
′

η̃− 2q′

d ζ̃
2p′

d − C̃∗
′
C̃

ζ̃ ′′ = ζ̃ ′ζ̃(η̃′′η̃′−1η̃−1)
q

p ,

where d is the determinant of the matrix







p p′

q q′





, and this group law is well-behaved if

2p′

d
= m,

2q′

d
= n,

q

p
= k, m, n, k ∈ Z (7)

which, in particular, imply p = ±1,±2. This particular result simply states the well-

known fact that the only invariant subgroups of SU(2) itself are I (the identity) and Z2,

respectively.

The commutation relations between the new generators (with a definition analogous

to that given above),

[

T̃3, T̃±

]

= ±2q′

d
T̃±

[

Ỹ , T̃±

]

= ±−2p′

d
T̃± (8)

[

T̃+, T̃−

]

= pT̃3 + qỸ ,
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can be obtained directly from (7) or by applying the tangent mapping to (5) to the old

ones. This transformation gives:

T̃3 =
q′

d
T3 −

q

d
Y

Ỹ =
−p′

d
T3 +

p

d
Y (9)

and provides a generalized Gell’Mann-Nishijima relation and its counterpart, which now

appear quantized.

Let us now examine the transformation induced by (5) in the (3rd − 4th internal

components of the) gauge fields. It is given by:







Ã3
µ

Ã4
µ





 =







1
r̃

0

0 1
r̃′













p p′

q q′













r 0

0 r′













A3
µ

A4
µ





 (10)

where r, r′ are the original coupling constants associated with isospin and hypercharge

respectively, and r̃, r̃′ are the final ones. In fact, the covariant derivative Dµ = ∂µ −
igk

i TkA
i
µ, where i, k run over 1,2,3,4 (T4 ≡ Y ) goes to D̃µ = ∂µ−ig̃k

i T̃kÃ
i
µ = Dµ. Therefore,

Ãl
µ = (g̃−1)l

j aj
k gk

i Ai
µ (11)

where aj
k is the transformation matrix changing co-ordinates in the Lie algebra, which

contains the central matrix in (10) as a box, and g = diag(r, r, r, r′) and g̃ = diag(r̃, r̃, r̃, r̃′)

are the initial and final (bare) coupling constants matrices.

We now impose the requirement that the complete transformation (10), rather than

the central matrix in it, be the Weinberg rotation (3) (Z0
µ ≡ Ã3

µ, Aµ ≡ Ã4
µ). This results

in

r̃2

r̃′2
= −pp′

qq′
,

r2

r′2
= −q′p′

qp
, tan2 θW = −qp′

pq′
, r̃ =

p

cos θW

r , (12)
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which contain a further restriction: the product of the four integers pp′qq′ < 0, a condition

afterwards necessary to have a (non-trivial) rotation. If the transformation (5) is an

automorphism of the torus (d = ±1), then the only possible rotations between the gauge

fields are the trivial ones (tan2 θW = 0,∞), so that the final group has to be the quotient

of SU(2)⊗U(1) by a non-trivial normal (discrete) subgroup. Adding (12) to (7) we arrive

at the final result:

{p = ±1 and (p′ = −kq′, k = ±1)} ⇒
{

tan2 θW = 1 , d = ±2q′
}

(13)

For these values of p, p′, q, q′ the kernel of the homomorphism (see the transformation (5))

is the normal subgroup

Hd ≡
{

(C, C∗, η; ζ) = (0, 0, 1; ei 2s
d

2π), (0, 0,−1; ei 2s+1

d
2π)/s = 0, 1, ...,

|d|
2

− 1

}

(14)

which is isomorphic, as a group, to Z|d|. All these homomorphisms lead to the same value

for tan2 θW (= 1) and indeed, all can be written as:







p p′

q q′





 =







±1 −kq′

±k q′





 =







1 −k

k 1













±1 0

0 q′





 (15)

where the second factor has determinant ±q′, and represents a transformation from

SU(2) ⊗ U(1) to SU(2) ⊗ (U(1)/Z|q′|), and the first one has determinant 2 and would

take SU(2) ⊗U(1) to (SU(2)⊗ U(1))/H2 ≈ U(2) by itself. The second factor affects the

quotient between the original coupling constants (not the final one), as can be seen in

(12), and the generalized Gell’Man-Nishijima relation (9). Among the possible values for

q′ only q′ = ±1 provides us with a proper electric charge; the choice of the signs of p, q, p′

is a matter of convention and will define either T̃3 or Ỹ as ± the electric charge Q. The

corresponding homomorphism has Kernel H2 = {(0, 0, 1; 1), (0, 0,−1;−1)} and U(2) as

the image group (true gauge group) [2, 3, 4].
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With the usual choice of multiplets in the Lagrangian of the Standard Model (see e.g.

[5]) T3 and Y have the expressions

T3 =















1 0 0

0 −1 0

0 0 0















, Y =















1 0 0

0 1 0

0 0 2















(16)

which agrees with the usual expressions if the U(1) subgroups are trivially reparametrized

by α = −2i ln η, β = i ln ζ (T3 → 1
2
T3, Y → −Y ). The particular choice of signs p = p′ =

q′ = −q = −1 yields:

Q = Ỹ =















0 0 0

0 −1 0

0 0 −1















, T̃3 =















−1 0 0

0 0 0

0 0 −1















(17)

The first surprising result is the fact that only one value of tan2 θW is allowed, which

means only one coupling constant (the electric charge, essentially, i.e. e ≡ r̃′ =
√

2r ≡
g/

√
2), even though the gauge group (U(2)) is not a simple group. According to gen-

eral settings [6], however, the theory must contain a coupling constant for each simple

or abelian term in the Lie algebra decomposition. An immediate conclusion is that the

assignment of constants should be done according to factors in the direct product decom-

position of the group, rather than the algebra.

The second result is the particular structure of the neutral weak current derived from

the expression of T̃3 above, according to which the gauge field Z0 interacts with the (left-

handed) neutrino and the right-handed electron only; i.e. the neutral weak current is pure

V-A for the neutrino and pure V+A for the electron.

Last, but not least, is the striking value of sin2 θW = 1
2

(tan2 θW = 1), far from the

experimental value ≈ 0.23 [7]. In the light of this result, only the hope remains that

our theoretical value of θW really corresponds to that state of the Universe in which the
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electroweak interaction was not yet spontaneously broken, and that the process of spon-

taneous symmetry breaking, not fully understood (at least from a pure group-theoretical

point of view) could relax the strong conditions (7). For instance, breaking down the

SU(2) group law (7) and preserving the Uem(1), leads to tan2 θW = − q

q′
, allowing any

rational value.

In any case, the discrepancy between our theoretical value for sin2θW as given by a

ratio of coupling constants, e2

g2 = r̃′2

(2r)2
, and the experimental one obtained through the

expression 1 − M2
W

M2
Z

, lends support to the idea that in principle both quantities are not

related [8].
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