
QUANTUM FIELD THEORY IN A SYMMETRIC CURVED SPACE

FROM A SECOND QUANTIZATION ON A GROUP∗

M. Calixto1,3†, V. Aldaya2,3‡ and M. Navarro3§

1. Department of Physics, University of Wales Swansea, Singleton Park, Swansea, SA2
8PP, U.K.
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Abstract

In this article we propose a “second quantization” scheme especially suitable to deal
with non-trivial, highly symmetric phase spaces, implemented within a more general Group
Approach to Quantization, which recovers the standard Quantum Field Theory (QFT) for
ordinary relativistic linear fields. We emphasize, among its main virtues, greater suitability
in characterizing vacuum states in a QFT on a highly symmetric curved space-time and
the absence of the usual requirement of global hyperbolicity. This can be achieved in the
special case of the Anti-de Sitter universe, on which we explicitly construct a QFT.
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1 Introduction

This paper is devoted basically to generalizing the Minkowskian concept of “second quan-
tization” to certain, non-trivial symmetric space-times. By second quantization we mean
the (canonical) quantization of an infinite-dimensional classical system constituted by the
linear space of wave functions associated with a quantum mechanical particle, the evolu-
tion of which is considered as a trajectory of a classical field. More precisely, the Fourier
coefficients of the wave functions a(k), a(k)∗ are considered to be the co-ordinates of the
phase space of the classical field to be quantized, and the corresponding quantum oper-
ators â(k), â(k)† are interpreted as the annihilation and creation operators of identical
copies of the particle originally (firstly) quantized. The fundamental problem in going
from Minkowski space-time to any other universe is the translation of the notion of an-
nihilation and creation operators. If the mono-particle configuration space, where wave
functions are defined, is not flat, there is a problem in interpreting the field operators in
terms of annihilation and creation operators. The standard decomposition of the field, in
flat space, into positive and negative frequency parts, f̂ =

∑

k(φk â(k) + φ̄kâ(k)
†), has no

invariant meaning in curved space-time; that is, the choice of positive frequency modes
may not be unique, hence the notion of creation and annihilation are inherently ambiguous
[1, 2, 3]. This ambiguity frustrates any attempt to define uniquely the energy-momentum
tensor by the usual method of normal ordering, and also implies a lack of a preferred
definition of particles; the Hawking effect [4] for evaporating black holes, and the Unruh
effect [5] for vacuum radiation in non-inertial reference frames, are a consequence of this
last fact (see also [6] for a connection between the Unruh effect and conformal symmetry
breaking).

In general terms, the crucial point in any geometrical quantization procedure of a phase
space with non-trivial geometry is the global reduction of the prequantization mapping (in
the sense of Lie representation theory [7]), which is only able to account for the semiclas-
sical or Bohr-Sommerfeld quantization condition. This reduction is achieved in practice
by restricting the arguments of the wave functions with the help of a set of partial differ-
ential equations, usually referred to in the literature as Polarization or Plank conditions
[8, 9, 10, 11, 12], leading to a given “representation” space (q-space, p-space, a∗-space,
etc.). The problem that then arises is to determine the extent to which those restriction
conditions can be consistently (globally) written. The second quantization scheme obvi-
ously inherits the difficulty of globally stating the arguments of the first-quantized wave
functions associated with the “first-quantized” problem.

Here we propose a “second quantization” scheme especially suitable to deal with non-
trivial, highly symmetric phase spaces, implemented within a more general Group Ap-
proach to Quantization (GAQ) (see, for instance, Refs. [13, 14]) , which recovers the
standard Quantum Field Theory (QFT) for known cases such as standard relativistic lin-
ear fields. The starting point is just the group of quantum symmetries of the model from
which GAQ extracts the corresponding dynamical system.

The paper is organized as follows. In Sec. 2, we give a brief description of the GAQ
formalism (Subsec. 2.1), as self-contained as possible, and particularize it for the case of
Quantum Mechanics on highly symmetric, curved space-times. The simple example of the
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relativistic free particle, which contains most of all the essential elements of more general
cases to which GAQ is applied, is worked out in Subsec. 2.2. The general approach to
Quantum Mechanics on symmetric curved spaces of Subsec. 2.1 is illustrated with the
specific and interesting example of the Anti-de Sitter universe, which is fully developed in
Subsec. 2.3 in an unconventional picture (Fock-like picture). In Subsec. 3.1 we present the
general scheme of “second quantization” on a group, and again use the case of the Anti-de
Sitter universe to illustrate our procedure in Subsec. 3.2. In particular, we provide an
explicit expression for propagators and an algebraic characterization of vacuum states for
symmetric curved spaces. Finally, Sec. 4 is devoted to a discussion on the restriction to
the standard configuration-space picture and makes some comments as to how the method
of GAQ differs from previous approaches to AdS space. In particular, we discuss how the
problem of a lack of global hyperbolicity for the case of a symmetric curved space, such
as the AdS space, fades away in working with the corresponding symmetry group.

2 Quantum mechanics on a symmetric curved space

In the standard approach, Quantum Mechanics on a curved space Q is explicitly built
in a configuration-space picture making use of the intrinsic differentiable structure of Q
(usually a globally hyperbolic pseudo-Riemanian manifold with pseudo-Riemannian metric
gµν). A natural generalization of this picture points towards the possibility of considering
the space Q as embedded within a larger differentiable structure containing the phase
space of the theory. Physically suitable for this is a group G, which will be the driver of
the quantization procedure. We shall concentrate on the cases in which Q (or, rather, its
universal covering Q̄) can be considered as (or is diffeomorphic to) a homogeneous space
Q = G/P of G, where P is a subgroup of G containing momentum-like coordinates p and
other non-dynamical (non-symplectic) coordinates such as rotations, gauge symmetries,
etc. This case corrresponds to a highly symmetric curved space, although more general
situations are being investigated in connection with some sort of “perturbative-group”
quantization [15, 16].

We shall demonstrate the possibility of considering representation spaces (momentum,
holomorphic, etc.) other than the standard configuration-space picture (see, for instance,
the explicit example of the free relativistic particle in Sec. 2.2). A given phase space may
possibly be embedded in different groups. In this case, either the physical situation is
able to select the appropriate group, or each of these selections might give rise to different
quantum theories having, in particular, non-equivalent vacua. This fact is partially shared
with more standard approaches to QFT on curved space-time [1, 2, 17] (see also [6], where
we discuss the different structure of the “Poincaré” vacuum with respect to the “conformal”
vacuum for a massless quantum field theory, and the effect of radiation under relativistic
accelerations).

In working on a group, the problem of first and second canonical quantization on a
(symmetric) curved space (which, relies heavily on both the structure of space-time itself
and the structure of the classical solution manifold of the field equations) is translated to
the problem of finding unitary, irreducible representations of a suitable group. From this
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viewpoint, the traditional and difficult problem of the lack of global hyperbolicity for a
curved space is diluted in a group framework. Rather, the problem that really matters
is of algebraic character: that of finding an appropriate polarization intended to reduce
unitarily the group representation (see below). To clarify this situation briefly, let us
remark that for a non-globally hyperbolic space-time, the incompleteness of the dynamics
in the standard formulation shows up as the lack of self-adjointness of the elliptic operator
K̂ associated with the classical wave equation [17, 18]

(
∂2

∂t2
+K)φ = 0 . (1)

The description of the dynamics in our group approach, however, is not forced to adopt
this form. In fact, in a non-anomalous group [19, 20] (non-anomalous groups corre-
spond to those possessing an admissible subalgebra [12]), there always exists a first-order
polarization (providing a first-order differential system) which leads to a unitary, irre-
ducible representation. Only when one attempts to describe, alternatively, the system in
a configuration-space-like “representation” [paralleling (1)], does a higher-order polariza-
tion become required and hermiticity problems with some operators can appear. However,
this lack of hermiticity is not directly attached to the lack of global hyperbolicity of space-
time but, rather, to the lack of “classical integrability” of the higher-order polarization in
the sense that it does not define a proper classical submanifold where the wave functions
have support (see the example of the Poincaré group in the next section and Ref. [20]).

Irrespective of the above mentioned disruptive effects of non-globally hyperbolic space-
times, there is at present increased interest in QFT on these spaces —for example, QFT
on time machine universes [21, 22], and space-times which can be backgrounds for super-
gravity theories [23]. In fact, we have chosen the case of the AdS universe to illustrate our
method of quantization because it shares both appealing properties: it is highly symmetric
and non-globally hyperbolic.

2.1 Quantization on a group G̃

GAQ makes use of fibre-bundle-theory concepts, which are among the most powerful
tools for exploring the interplay between groups and topology, and highlight topological
quantum effects (see e.g. [24] for a relevant application).

The GAQ formalism was originally conceived [13] to improve Geometric Quantization
(GQ) by freeing it from several limitations and technical obstructions. Among these, we
point out the impossibility of considering quantum systems without classical limit, the
lack of a proper (and naturally defined) Schrödinger equation in many simple cases and
the ineffectiviness in dealing with anomalous systems [19, 25].

The main ingredient which enables GAQ to avoid these limitations is a Lie group
structure on the manifold G̃ replacing the quantum manifold QP of GQ. G̃ is also a
principal bundle with structure group U(1), but now G̃/U(1) is not forced to wear a
symplectic structure. In this way, non-symplectic parameters associated with symmetries
such as time translations, rotations, gauge transformations, etc. are naturally allowed and
give rise to relevant operators (Hamiltonian, angular momentum, null charges, etc.). In
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addition, on any Lie group, there are always two sets of mutually commuting vector fields.
In fact, the sets of left- and right-invariant vector fields constitute two realizations of the
Lie algebra of the group, one of which can be used to represent the group, and the other
to reduce the representation in a compatible manner (see below).

Needless to say, the requirement of a group structure in G̃ represent some drawback,
although it is lesser, in practice, than it might seem. After all, any consistent (non-
perturbative) quantization is only a unitary irreducible representation of a suitable (Lie,
Poisson) algebra. Also, constrained quantization (see below and Refs. [14, 24]) increases
the range of applicability of the formalism.

Nonetheless, we should remark that the GAQ formalism is not meant to quantize a
classical system (a phase space) but, rather, the quantizing group is the primary quantity
and in some cases (anomalous groups [19, 20, 25], for instance) it is unclear how to associate
a phase space with the quantum theory obtained.

The starting point of GAQ is a group G̃ (the quantizing group) with a principal fibre
bundle structure G̃(M,T ), having T as the structure group and M being the base. The
group T generalizes the phase invariance of Quantum Mechanics. Although the situation
can be more general [14], we shall start with the rather general case in which G̃ is a
central extension of a group G by T [T = U(1) or even T = C∗ = ℜ+ × U(1)]. For the
one-parametric group T = U(1), the group law for G̃ = {g̃ = (g, ζ)/g ∈ G, ζ ∈ U(1)}
adopts the following form:

g̃′ ∗ g̃ = (g′ ∗ g, ζ ′ζeiξ(g′,g)) , (2)

where g′′ = g′ ∗ g is the group operation in G and ξ(g′, g) is a two-cocycle of G on ℜ
fulfilling:

ξ(g2, g1) + ξ(g2 ∗ g1, g3) = ξ(g2, g1 ∗ g3) + ξ(g1, g3) , gi ∈ G. (3)

In the general theory of central extensions [26], two-cocycles are said to be equivalent
if they differ in a two-coboundary, i.e. a two-cocycle which can be written in the form
ξ(g′, g) = δ(g′ ∗ g) − δ(g′) − δ(g), where δ(g) is called the generating function of the
two-coboundary (from now on we shall omit the prefix “two” when referring to both
cocycles and coboundaries). However, although cocycles differing on a coboundary lead
to equivalent central extensions as such, there are some coboundaries which provide a
non-trivial connection on the fibre bundle G̃ and Lie-algebra structure constants different
from that of the direct product G×U(1). These are generated by a function δ with a non-
trivial gradient at the identity, and can be divided into Pseudo-cohomology equivalence
subclasses: two pseudo-cocycles are equivalent if they differ in a coboundary generated by
a function with trivial gradient at the identity [27, 28, 20]. Pseudo-cohomology plays an
important role in the theory of finite-dimensional semi-simple groups, as they have trivial
cohomology. For them, Pseudo-cohomology classes are associated with coadjoint orbits
[29].

The right and left finite actions of the group G̃ on itself provide two sets of mutually
commuting (left- and right-, respectively) invariant vector fields:

X̃L
g̃i =

∂g̃′′j

∂g̃i

∣

∣

∣

∣

∣

g̃=e

∂

∂g̃j
, X̃R

g̃i =
∂g̃′′j

∂g̃′i

∣

∣

∣

∣

∣

g̃′=e

∂

∂g̃j
,
[

X̃L
g̃i , X̃

R
g̃j

]

= 0, (4)
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where {g̃j} is a parameterization of G̃. The GAQ program continues by finding the
left-invariant 1-form Θ (the Quantization 1-form) associated with the central generator
X̃L

ζ = X̃R
ζ , ζ ∈ T ; that is, the T -component θ̃L(ζ) of the canonical left-invariant 1-form

θ̃L on G̃. This constitutes the generalization of the Poincaré-Cartan form of Classical
Mechanics (see [30]). The differential dΘ is a presymplectic form and its characteristic

module, KerΘ ∩ KerdΘ, is generated by a left subalgebra GΘ named the characteristic

subalgebra. The quotient (G̃,Θ)/GΘ is a quantum manifold in the sense of Geometric
Quantization [8, 9, 10, 11]. The trajectories generated by the vector fields in GΘ constitute
the generalized equations of motion of the theory (temporal evolution, rotations, gauge
symmetries, etc.), and the Noether invariants under those equations are Fg̃j ≡ iX̃R

g̃j
Θ; that

is, the contraction of right-invariant vector fields with the Quantization 1-form. Vector
fields with null Noether invariant are called gauge and close an horizontal ideal of the
whole Lie algebra of G̃ (see Ref. [31]).

Let B(G̃) be the set of complex-valued T -functions on G̃ in the sense of principal
bundle theory:

ψ(ζ ∗ g̃) = DT (ζ)ψ(g̃), ζ ∈ T , (5)

whereDT is the natural representation of T on the complex numbersC. The representation
of G̃ on B(G̃) generated by G̃R = {X̃R} is called Bohr Quantization and is reducible. The
reduction can be achieved by means of left restrictions on wave functions ψ compatible
with (5); that is, by imposing a full polarization P:

X̃Lψ
P

= 0, ∀X̃L ∈ P , (6)

which is a maximal, horizontal (excluding X̃L
ζ ) left subalgebra of G̃L which contains GΘ.

There is a one-to-one correspondence between full polarizations and classes of inequivalent
irreducible representations (physical systems). This problem was firstly studied by A.A.
Kirillov (Ref. [12]) under the different denomination of “admissible subalgebras”.

It should be noted that the existence of a full polarization, containing the whole sub-
algebra GΘ, is not guaranteed. In case of such a breakdown, called an anomaly, or simply
the desire to choose a preferred representation space, a higher-order polarization PHO

must be imposed [19, 20]. A higher-order polarization is a maximal, horizontal subal-
gebra of the left enveloping algebra U G̃L which contains GΘ. The kind of theory that
interests us is a particular case of this last situation; for the case of a representation
space Q = G/P ∼ (t, ~x), the higher-order polarization must be made of the extended vec-
tor fields corresponding to the Lie algebra of the subgroup P (which is parametrized by
the co-ordinates hi complementary to the space-time ones, i.e., boosts, rotations, gauge
symmetries, etc) and a “deformation” X̃HO

t of the vector field X̃L
t associated with the

temporal evolution which, for most cases, can be chosen to be a Casimir operator of G.
In summary,

PHO =< X̃HO
t , X̃L

hi >, hi ∈ P . (7)

If the group contains more than one Casimir operator, the extension procedure G → G̃
chooses one of them and the higher-order polarization condition X̃HO

t ψ = 0 will represent
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the equation of motion of the theory (a generalization of the relativistic wave equations:
Klein-Gordon, Dirac, etc., when the curved space Q is not locally Lorentzian).

The group G̃ is irreducibly represented on the space H(G̃) ≡ {|ψ〉} of polarized wave
functions, and on its dual H∗(G̃) ≡ {〈ψ|}. If we denote by

ψ
P
(g̃) ≡ 〈g̃

P
|ψ〉 , ψ′∗

P
(g̃) ≡ 〈ψ′|g̃

P
〉 (8)

the coordinates of the “ket” |ψ〉 and the “bra” 〈ψ′| in a representation defined through a
polarization P (first- or higher-order), then, a scalar product on H(G̃) can be naturally
defined as:

〈ψ′|ψ〉 ≡
∫

G̃
µ(g̃)ψ′∗

P
(g̃)ψ

P
(g̃), (9)

where
µ(g̃) ≡ θL

g̃1∧ dim(G̃). . . ∧θL
g̃n (10)

is the left-invariant integration volume in G̃ and

1 =

∫

G̃
|g̃

P
〉µ(g̃)〈g̃

P
| (11)

formally represents a closure relation. A direct computation proves that, with this scalar
product, the group G̃ is unitarily represented through the left finite action (ρ denotes the
representation)

〈g̃
P
|ρ(g̃′)|ψ〉 ≡ ψ

P
(g̃′−1 ∗ g̃) (12)

The adjoint action is then defined as

〈ψ′|ρ†(g̃′)|ψ〉 ≡ 〈ψ|ρ(g̃′)|ψ′〉∗, i.e 〈g̃
P
|ρ†(g̃′)|ψ〉 = ψ

P
(g̃′ ∗ g̃) . (13)

We can relate the coordinates of |ψ〉 in two given representations, corresponding to
two different polarizations P1 and P2, as follows

ψ
P1

(g̃) = 〈g̃
P1

|ψ〉 =

∫

G̃
µ(g̃′)〈g̃

P 1
|g̃′

P 2
〉〈g̃′

P 2
|ψ〉 ≡

∫

G̃
µ(g̃′)∆

P1P2
(g̃, g̃′)ψ

P 2
(g̃′) , (14)

where ∆
P1P2

(g̃, g̃′) is a “polarization-changing operator” (for example, the Fourier trans-
form 〈x|p〉, the Bargmann transform 〈x|a〉, etc). The finiteness of the integration (14) for
non-compact semi-simple groups is controlled by the partial weights in the wave functions,
as a consequence of the polarization equations, which damps the wave functions down for
specific values of the pseudo-cohomology extension parameters —see later on Eq. (45) for
the specific case of SU(1, 1) and Ref. [32]. For non-semisimple and non-compact (but non-
anomalous) groups, iX̃L

h1
iX̃L

h2
. . . iX̃L

hj
µ(g̃), X̃L

hi ∈ PHO , is an invariant restricted measure

on Q. However, a minimal representation on a Cauchy hypersurface Σ ⊂ Q would require
a regularization procedure for each particular case.

An explicit expression of ∆
P1P2

is possible by using a basis B(H(G̃)) = {|n〉}n∈I (I is

a set of index, non-necessarily discreet) of H(G̃), as follows

∆
P1P2

(g̃, g̃′) = 〈g̃
P 1

|g̃′
P 2

〉 =
∑

n∈I

ψ∗
P1,n(g̃)ψ

P 2,n(g̃′) , (15)
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where ψ
P i,n(g̃) ≡ 〈g̃

P i
|n〉 are the coordinates of |n〉 in a polarization Pi. The basis {|n〉}n∈I

is made of eigenvectors of the right counterpart of an Abelian subalgebra of P; in partic-
ular, of the Hamiltonian X̃R

t .
Constraints are consistently incorporated into the theory by enlarging the structure

group T (which always includes U(1)), i.e, through T -function conditions:

ρ(τ̃)|ψ〉 = D
(ǫ)
T (τ̃)|ψ〉 , τ̃ ∈ T (16)

or, for continuous transformations,

X̃R
τ̃ |ψ〉 = dD

(ǫ)
T (τ̃ )|ψ〉 , (17)

D
(ǫ)
T means a specific representation of T [the index ǫ parametrizes different (inequivalent)

quantizations] and dD
(ǫ)
T is its differential. As a particular example, let us mention the

case when Quantum Mechanics on Q (non-simply connected) is recovered from Quantum
Mechanics on its universal covering Q̄ by choosing T = Π1(Q) × U(1) as the structure
group [Π1(Q) means the first homotopy group of Q], thus leading to topological quantum
effects commonly known as ϑ-structure [33] (see also Ref. [24]).

It is clear that, for a non-central structure group T , not all the right operators X̃R
g̃ will

preserve these constraints; a sufficient condition for a subgroup G̃T ⊂ G̃ to preserve the
constraints is (see [24]):

[

G̃T , T
]

⊂ KerD
(ǫ)
T (18)

[note that, for the trivial representation of T , the subgroup G̃T is simply the normalizer

of T ]. G̃T belongs to the set of good operators [14], for which the subgroup T behaves as
a gauge group (see [31] for a thorough study of gauge symmetries and constraints from
the standpoint of GAQ). A more general situation can be posed in which the constraints
are lifted to higher-order level, not necessarily first-order as in (17); that is, when the
constraints constitute a subalgebra of the right enveloping algebra U G̃R. A useful example
of this last case results when we select representations labelled by a value ǫ of some Casimir
operator K of a subgroup G̃K of G̃ (see later on in Sec. 3.1 and Ref. [6] for a relevant
application). The good operators have to be found, in general, in the right enveloping
algebra with the only condition of preserving the constraint.

In a more general case, in which T is not a trivial central extension, T 6= Ť × U(1),
where Ť ≡ T/U(1) —i.e. T contains second-class constraints— the conditions (17) are not
all compatible and we must select a subgroup TB = Tp × U(1), where Tp is the subgroup
associated with a right polarization subalgebra of the central extension T (see [14]).

For simplicity, we have sometimes made use of infinitesimal (geometrical) concepts,
but all of this language can be translated to their finite (algebraic) counterparts (see [14]),
a desirable way of proceeding when discrete transformations are incorporated into the
theory.
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2.2 Quantization of the free relativistic particle

Let us illustrate the abstract construction above with the help of the simple example of
the free relativistic particle. Our starting point is the group law for the ordinary (non-
extended) Poincaré group G in 1+1D (see [34] and references therein for the 1+3D case).
It is easily derived from its action on the 1+1D Minkowski space-time parametrized by
{aµ} ≡ {a0, a1 = a}: a′µ = Λµ

.ν(p
0, p)aν + xµ, where {xµ} are the translations and Λ, the

boosts, are parametrized by either p or

χ ≡ sinh−1 p

mc
≡ sinh−1(γ

V

c
) . (19)

χ is the hyperpolar co-ordinate parametrizing the (upper sheet of the) hyperboloid p02 −
p2 = m2c2, often referred to as the Lobachevsky space (see [35] and references therein). In
terms of p, we have

Λ =

(

p0

mc
p

mc
p

mc
1 + p2

mc(p0+mc)

)

. (20)

As a manifold, the group can be seen as the direct product of Minkowski space-time and
the mass hyperboloid.

The consecutive action of two Poincaré transformations leads to the composition law

x0′′ = x0′ +
p0′

mc
x0 +

p′

mc
x ,

x′′ = x′ +
p0′

mc
x+

p′

mc
x0 , (21)

p′′ =
p0

mc
p′ +

p0′

mc
p .

The Poincaré group admits only trivial central extensions by U(1), i.e. extensions
of the form (2) where the cocycle ξ is a coboundary generated by a function δ on G,
ξ(g′, g) = δ(g′ ∗ g) − δ(g′) − δ(g). We choose δ(g) = mcx0, so that the U(1) law to be
added to (21) is

ζ ′′ = ζ ′ζeimc(x0′′−x0′−x0) . (22)

¿From (21) and (22) we immediately derive both left- and right-invariant vector fields:

X̃L
x0 =

p0

mc

∂

∂x0
+

p

mc

∂

∂x
+
p0(p0 −mc)

mc
iζ
∂

∂ζ
,

X̃L
x =

p0

mc

∂

∂x
+

p

mc

∂

∂x0
+
p(p0 −mc)

mc
iζ
∂

∂ζ
,

X̃L
p =

p0

mc

∂

∂p
+
p0

mc
xiζ

∂

∂ζ
,

X̃L
ζ = X̃R

ζ = ζ
∂

∂ζ
, (23)
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X̃R
x0 =

∂

∂x0
,

X̃R
x =

∂

∂x
+ piζ

∂

∂ζ
,

X̃R
p =

p0

mc

∂

∂p
+
x0

mc

∂

∂x
+

x

mc

∂

∂x0
+

(

p

mc
x0 +

p0

mc
x− x

)

iζ
∂

∂ζ
.

The pseudo-extended Poincaré algebra become

[

X̃R
x0 , X̃

R
x

]

= 0 ,
[

X̃R
x0 , X̃

R
p

]

=
1

mc
X̃R

x , (24)

[

X̃R
x , X̃

R
p

]

=
1

mc
X̃R

x0 − iX̃R
ζ .

Notice the appearance of the central generator X̃R
ζ in the third commutator above, making

the extension by U(1) less trivial and justifying the name of pseudo-extension.
The Quantization 1–form and the Characteristic Module are:

Θ = −(p0 −mc)dx0 − xdp− iζ−1dζ , (25)

GΘ = < X̃L
x0 > .

The pseudo-extended Poincaré group admits a first-order full polarization Pp, which is
generated by

Pp =< X̃L
x0 , X̃

L
x > , (26)

leading to the momentum representation. The corresponding polarized U(1)-functions (5),
X̃R

ζ ψ = ψ, are ψ
Pp

= ζ exp[−i(p0 −mc)x0]φ(p), and the right generators act on them as
quantum operators:

p̂0 ψ
Pp

≡ i(X̃R
x0 + imcX̃R

ζ )ψ
Pp

= p0ψ
Pp

⇒ p̂0 φ(p) = p0 φ(p) ,

p̂ ψ
Pp

≡ −iX̃R
x ψPp

= pψ
Pp

⇒ p̂ φ(p) = pφ(p) ,

k̂ ψ
Pp

≡ iX̃R
p ψPp

= ζi p0

mc
e−i(p0−mc)x0 ∂φ

∂p
⇒ k̂ φ(p) = i p0

mc
∂φ(p)

∂p
.

(27)

In this identification of quantum operator with right generators the rest mass energy
has been added to the time generator to obtain the true energy operator p̂0. This is a
consequence of the fact that the pseudo-extension is simply a redefinition of the U(1)
parameter. The representation (27) is unitary with the natural measure (10) restricted to
the momentum space:

µ(g̃) = −imc
p0
dx0 ∧ dx ∧ dp ∧ ζ−1dζ → iX̃L

ζ
iX̃L

x
iX̃L

x0
µ(g̃) =

mc

p0
dp . (28)

We should realize, however, that the boost operator k̂ is not a true position operator, i.e.
it is not i ∂

∂p
and does not generate ordinary translations in the spectrum of the momentum

operator p̂.
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Unfortunately, there is no first-order full polarization leading to the configuration-
space representation. In fact, X̃L

p and X̃L
x0 do not close a proper horizontal subalgebra.

However, we can resort to a higher-order polarization (7) including the X̃L
p generator:

PHO
x =< X̃L

x0
HO ≡ X̃L

x0 + i

[
√

m2c2 − (X̃L
x )2 −mc

]

X̃L
ζ , X̃

L
p > . (29)

We should note in passing that the infinite-order character of X̃L
x0

HO is due to the re-
striction to the upper sheet of the mass hyperboloid and that a second-order operator
exists,

X̃L
a0
2nd = X̃L

x0 +
ih̄

2mc

[

(

X̃L
x0

)2
−
(

X̃L
x

)2
]

, (30)

which leads to the Klein-Gordon equation. We can say that the polarization containing

X̃L
x0

HO gives a highest-weight representation, whereas that containing X̃L
a0
2nd gives a (re-

ducible, since it contains the two signs of the energy) representation characterized by a
given value (the mass) of the Casimir operator of the group. This duality is also valid for
more general non-compact Lie groups.

By solving the polarization equations associated with (29), we arrive to the general
expression for wave functions

ψ
Px

= ζ exp(−ixp) exp







−imcx0





√

m2c2 − ∂2

∂x2
−mc











φ(x) . (31)

Since the form of the polarized wave functions (31) is preserved by the right-invariant
vector fields, it makes sense to restrict the operators to the arbitrary functions φ(x). The
resulting operators are:

p̂0φ(x) =

√

m2c2 − ∂2

∂x2
φ(x)

p̂φ(x) = −i ∂
∂x

φ(x) (32)

k̂φ(x) =





x

mc

√

m2c2 − ∂2

∂x2



 φ(x) .

Unlike the non-relativistic configuration-space representation, this minimal realization (re-
stricted to x and ∂

∂x
) is not unitary with the trivially regularized restriction of the measure

(28), µ(g̃) → dx, even though the representation is unitary on the complete wave func-
tions, because the k̂ operator is not hermitian. This breakdown is a direct consequence
of the weak closure of the higher-order polarization (29). Although it closes on polarized
wave functions, thus giving a well-defined, irreducible carrier subspace, the polarization
itself is not integrable in the classical sense. The transverse space to the polarization
subalgebra, that which should be the x-space, is not properly defined in the weak case.
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Nonetheless, the transformation φ(x) ≡ e−ix0p̂0√

p̂0ϕ(x, x0) restores unitarity, taking the
boost operator to the symmetrized form

1
√

p̂0
k̂
√

p̂0 =
1

2





x

mc

√

m2c2 − ∂2

∂x2
+

√

m2c2 − ∂2

∂x2

x

mc



 . (33)

In fact, this transformation agrees with the standard prescription for the scalar product

of relativistic fields:
∫

dxφ∗(x)φ′(x) = 1
2

∫

dxϕ∗(x, x0)
↔
∂ 0 ϕ

′(x, x0).
Another way of looking at the unitarity problem of minimal configuration-space rep-

resentations consists of finding a strongly closing higher-order polarization. This can be
achieved, in the case of the Poincaré group, by adding a new momentum operator π̂ and
a new central extension reproducing a canonical commutation relation [k̂, π̂] = i1̂, thus
leading to a finite-dimensional enlarged Poincaré algebra: the S-Poincaré algebra [36]. The
operator π̂ ≡ iX̃R

κ generates true translations on the spectrum of k̂, κ, the extra parameter
of the group. The spectrum of π̂, π ≡ mcχ, is related to p through (19). The explicit
expression for the abovementioned higher-order polarization is:

PHO
κ =< X̃L

x0 + imc

[

cosh(
i

mc
X̃L

κ ) − 1

]

X̃L
ζ , X̃

L
x + imc sinh(

i

mc
X̃L

κ ) X̃L
ζ , X̃

L
p > . (34)

The resulting minimal configuration-space representation proves to be:

p̂0φ(κ) = mc cosh(
−i
mc

∂

∂κ
)φ(κ) ,

p̂φ(κ) = mc sinh(
−i
mc

∂

∂κ
)φ(κ) ,

k̂φ(κ) = κφ(κ) , (35)

π̂φ(κ) = −i ∂
∂κ

φ(κ) ,

which is unitary with respect to the restricted measure dκ (see [36] for more details).

2.3 Quantum mechanics on the Anti-de Sitter space-time

Anti-de Sitter space-time (AdS) [37, 38] in 1+1 dimensions can be seen as a homogeneous
space of the group G = SO(1, 2) (SO(3, 2) in 3+1 dimensions). It is then a particular
case of curved space on which a group quantization method is especially suited. We
must remark that, in restricting to 1+1 dimensions, we find an apparent ambiguity as
SO(1, 2) ∼ SO(2, 1). However, the distinction between de Sitter and Anti-de Sitter spaces
in 1+1 dimensions is realized by means of two different central extensions, associated with
non-equivalent co-adjoint orbits (see [6] for two different pseudo-extensions of SO(1, 2); see
also [20] for a general discussion on pseudo-extensions and co-adjoint orbits). Furthermore,
and except for discrete transformations, which are not relevant for our purpose, G can be
replaced by its two-covering

SU(1, 1) =

{

U =

(

z1 z2
z∗2 z∗1

)

, zi, z
∗
i ∈ C/det(U) = |z1|2 − |z2|2 = 1

}

, (36)
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which is more directly related to the representation (and central extension) we are going
to handle. The group SU(1, 1) has the topological structure of a trivial fibre bundle with
fibre U(1) and base the hyperboloid (or its projection on the plane: the open unit disk
D1). A system of coordinates adapted to this fibration is the following:

η ≡ z1
|z1|

, α ≡ z2
z1
, α∗ ≡ z∗2

z∗1
, η ∈ U(1), α, α∗ ∈ D1 , (37)

where y0 ≡ −i log η will play the role of a (dimensionless) time coordinate and α,α∗ is a
couple of complex-conjugated (Fock-like) variables [see later on in Eq. (107) for a rela-
tionship between these variables, the space-time position xµ and the covariant momenta
pµ, corresponding to the more usual “configuration-space” image].

The group law U ′′ = U ′U in η, α, α∗ coordinates,

η′′ =
z′′1
|z′′1 |

=
η′η + η′η∗α′α∗

√

(1 + η∗2α′α∗)(1 + η2αα∗′)
,

α′′ =
z′′2
z′′1

=
αη2 + α′

η2 + α′α∗
, (38)

α∗′′ =
z′′2

∗

z′′1
∗ =

α∗η−2 + α∗′

η−2 + α∗′α
,

can be centrally-extended by U(1) through a cocycle (in fact, coboundary) generated by
the function δ(g) = −2iNy0 on the basic group G, in the following form:

ζ ′′ = ζ ′ζeiξ(g
′,g) = ζ ′ζ

(

η′′η′
−1
η−1

)−2N
; ζ, ζ ′ ∈ U(1) , (39)

where the parameter N appears to be quantized for globallity conditions [compactness of
the variable ζ and η; 2N is the “winding number” of applications from U(1) ⊂ SU(1, 1) →
U(1)], the possible values for N being N = n

2 , n ∈ Z, and characterizes each irreducible

representation of G̃. The integrallity condition for 2N disappears on the universal covering
CAdS of AdS space-time.

The explicit expression of the left- and right-invariant vector fields of the extended
group G̃ is:

X̃L
ζ = X̃R

ζ = ζ
∂

∂ζ
(40)

X̃L
η = η

∂

∂η
− 2α

∂

∂α
+ 2α∗ ∂

∂α∗

X̃L
α = −1

2
ηα∗ ∂

∂η
+

∂

∂α
− α∗2 ∂

∂α∗
+Nα∗ζ

∂

∂ζ

X̃L
α∗ =

1

2
ηα

∂

∂η
− α2 ∂

∂α
+

∂

∂α∗
−Nαζ

∂

∂ζ

X̃R
η = η

∂

∂η

12



X̃R
α =

1

2
η−1α∗ ∂

∂η
+ η−2(1 − αα∗)

∂

∂α
−Nη−2α∗ζ

∂

∂ζ

X̃R
α∗ = −1

2
η3α

∂

∂η
+ η2(1 − αα∗)

∂

∂α∗
+Nη2αζ

∂

∂ζ
.

Both sets close the Lie algebra:
[

X̃L
η , X̃

L
α

]

= 2X̃L
α

[

X̃L
η , X̃

L
α∗

]

= −2X̃L
α∗

[

X̃L
α , X̃

L
α∗

]

= X̃L
η − 2NX̃L

ζ
[

X̃L
ζ , all

]

= 0 , (41)

and the corresponding right counterparts change a sign in the structure constants. The
Casimir operator for this Lie algebra is (except for a central term ambiguity):

Ĉ = (X̃R
η − 2NX̃R

ζ )2 +2X̃R
α X̃

R
α∗ +2X̃R

α∗X̃R
α = −(X̃R

y0
− 2NX̃R

y3
)2 +(X̃R

y1
)2 +(X̃R

y2
)2 , (42)

where we have denoted α ≡ y1 + iy2 and ζ ≡ eiy3 for future use.
The Quantization 1-form and the Characteristic Module have the following form:

Θ =
iN

1 − αα∗

(

4αα∗η−1dη + α∗dα− αdα∗
)

− iζ−1dζ

GΘ = < X̃L
η > . (43)

We realize that a full polarization (first-order and complete) exist for this holomorphic
picture and it is made up of

P =< X̃L
η , X̃

L
α > . (44)

The solution of the T -function condition (5), together with the polarization conditions
(6), lead to the following wave functions:

ψ(N)(η, α, α∗, ζ) = WN (α,α∗, ζ)φ(s)

WN (α,α∗, ζ) = ζ(1 − αα∗)N , (45)

where WN plays the role of a vacuum and φ is an arbitrary power series

φ(s) =
∞
∑

n=0

ans
n, (46)

in the variable

s ≡ η−2α∗ =
z∗2
z1
. (47)

The group G̃ acts on this one-dimensional space by left translation (g̃′′ = g̃′ ∗ g̃) as follows:

s→ s′ =
s+ α∗′

η′2(1 + sα′)
. (48)
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The left-invariant integration volume has the form

µ(α,α∗, η, ζ) =
−(2π)−3

(1 − αα∗)2
η−1dη ∧ dRe(α) ∧ dIm(α) ∧ ζ−1dζ . (49)

Let us denote ψ̌
(N)
n (η, α, α∗, ζ) = WN (α,α∗, ζ)sn a basic wave function. The scalar product

of two of them is:

〈ψ̌(N)
n |ψ̌(N)

m 〉 =
n!(2N − 2)!

(2N + n− 1)!
δnm ≡ C(N)

n δnm, (50)

which is well-defined (finite) for values N > 1
2 . This condition can be relaxed to N > 0

by going to the universal covering group of G. The set

B(HN (G̃)) =







ψ(N)
n ≡ 1

√

C
(N)
n

ψ̌(N)
n







(51)

is then orthonormal and complete, i.e, an orthonormal base of HN (G̃).
The action of the right-invariant vector fields (operators in the theory) on polarized

wave functions in (45) has the explicit form:

X̃R
η ψ

(N) = WN · (−2s
∂

∂s
)φ(s) ,

X̃R
α ψ

(N) = WN · (−s2 ∂
∂s

− 2Ns)φ(s) ,

X̃R
α∗ψ(N) = WN · ( ∂

∂s
)φ(s) ,

X̃R
ζ ψ

(N) = ψ(N), (52)

providing an action on the φ-space once the common factor WN has been factored out.
The action of the Casimir operator (42) on polarized wave functions is:

Ĉψ(N) = 4N(N − 1)ψ(N) . (53)

The finite (left) action (12) of an arbitrary element g̃′ = g̃′(η′, α′, α∗′, ζ ′) ∈ G̃ on an
arbitrary wave function

ψ(N)(g̃) =
∞
∑

n=0

anψ
(N)
n (g̃) , (54)

can be given through the matrix elements ρ
(N)
mn (g̃′) ≡ 〈ψ(N)

m |ρ(g̃′)|ψ(N)
n 〉 of ρ in the base

B(HN (G̃)). They have the following expression:

ρ(N)
mn (g̃) =

√

√

√

√

C
(N)
m

C
(N)
n

ζ−1
n
∑

l=Max(0,n−m)

(

n
l

)(

2N +m+ l − 1
m− n+ l

)

×

(−1)lη2mα∗lαm−n+l(1 − αα∗)N . (55)

Let us show how to second-quantize this first-quantized theory.
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3 Quantum Field Theory on a symmetric curved space

3.1 “Second Quantization” on a group

In this subsection we shall develop a general approach to the quantization of linear,
complex quantum fields defined on a group manifold G̃ [more precisely, on the quotient
G̃/(T ∪P )]. This formalism can be seen as a “second quantization” of a “first-quantized”
theory defined by a group G̃ and a Hilbert space H(G̃) of polarized wave functions.

The construction of the quantizing group G̃(2) for this complex quantum field is as
follows. Given a Hilbert space H(G̃) and its dual H∗(G̃), we define the direct sum

F(G̃) ≡ H(G̃) ⊕H∗(G̃)

=
{

|f〉 = |A〉 + |B∗〉; |A〉 ∈ H(G̃), |B∗〉 ∈ H∗(G̃)
}

, (56)

where we have denoted |B∗〉 according to 〈g̃∗
P
|B∗〉 ≡ 〈B|g̃

P
〉 = B∗

P
(g̃). The group G̃ acts

on this vectorial space as follows:

ρ(g̃′)|f〉 = ρ(g̃′)|A〉 + ρ(g̃′)|B∗〉 , (57)

where
〈g̃∗

P
|ρ(g̃′)|B∗〉 ≡ 〈B|ρ†(g̃′)|g̃

P
〉 = B∗

P
(g̃′−1 ∗ g̃). (58)

We can also define the dual space

F∗(G̃) ≡ H∗(G̃) ⊕H∗∗(G̃)

=
{

〈f | = 〈A| + 〈B∗| ; 〈A| ∈ H∗(G̃), 〈B∗| ∈ H∗∗(G̃) ∼ H(G̃)
}

, (59)

where G̃ acts according to the adjoint action

〈f |ρ†(g̃′) = 〈A|ρ†(g̃′) + 〈B∗|ρ†(g̃′) (60)

and now
〈B∗|ρ†(g̃′)|g̃∗

P
〉 ≡ 〈g̃

P
|ρ(g̃′)|B〉. (61)

Using the closure relation (11), the product of two arbitrary elements of F(G̃) is

〈f ′|f〉 = 〈A′|A〉 + 〈A′|B∗〉 + 〈B′∗|A〉 + 〈B′∗|B∗〉 = 〈A′|A〉 + 〈B′∗|B∗〉 , (62)

since the integrals

∫

G̃
µ(g̃)A′

P

∗(g̃)B∗
P
(g̃) = 0 =

∫

G̃
µ(g̃)B′

P
(g̃)A

P
(g̃) (63)

are zero because of the integration on the central parameter ζ ∈ U(1). Thus, the subspaces
H(G̃) and H∗(G̃) are orthogonal with respect to this scalar product in F(G̃). A basis for
F(G̃) is provided by the set B(F(G̃)) = {|n〉 + |m∗〉}n,m∈I .
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The space M(G̃) ≡ F(G̃) ⊗F∗(G̃) can be endowed with a symplectic structure

S(f ′, f) ≡ −i
2

(〈f ′|f〉 − 〈f |f ′〉) , (64)

thus defining M(G̃) as a phase space. This symplectic structure in M(G̃) is paralleled
by the symplectic structure, Ω, in the solution manifold S of the classical equations (1)
in other approaches to QFT in globally hyperbolic curved space (see, for example, [3]), or
by the canonical product Ω in Ref. [31].

This phase space can be naturally embedded into a quantizing group

G̃(2) ≡
{

g̃(2) = (g(2); ς) = (g̃, |f〉, 〈f |; ς)
}

, (65)

which is a (true) central extension by U(1), with parameter ς, of the semidirect product
G(2) ≡ G̃ ⊗ρ M(G̃) of the basic group G̃ and the phase space M(G̃). The group law of
G̃(2) is formally:

g̃′′ = g̃′ ∗ g̃
|f ′′〉 = |f ′〉 + ρ(g̃′)|f〉
〈f ′′| = 〈f ′| + 〈f |ρ†(g̃′)
ς ′′ = ς ′ςeiξ

(2)(g(2)′, g(2)) , (66)

where ξ(2)(g(2)′, g(2)) is a cocycle defined as

ξ(2)(g(2)′, g(2)) ≡ κS(f ′, ρ(g̃′)f) (67)

and κ is intended to kill any possible dimension of S. The group law (66) generalizes in
a natural way the semi-direct action of the time evolution uniparametric group by the
Heisenberg-Weyl group modeled on the solution manifold of a linear field, which has the
structure of an infinte-dimensional symplectic vector space. Although the representation
ρ(g̃) of the space-time symmetry group G̃ on the fields f could be more general (even
more, G̃(2) might admit other structure than the semi-direct product), we shall restrict
ourselves in this paper to the left-finite action (12) coming from a first quantization on the
group G̃, thus leading to a “second quantization on a group G̃” paralleling the standard
concept in QFT of “second quantization”. The unitarity of ρ ensures the hermiticity of
the space-time symmetry operators (in particular, the Hamiltonian), something which is
guaranteed when ρ comes from a first quantization on G̃.

A system of coordinates for G̃(2) corresponds to a choice of representation associated
with a given polarization P

f (+)
P

(g̃) ≡ 〈g̃
P
|f〉 , f (−)

P
(g̃) ≡ 〈g̃∗

P
|f〉 ,

f∗(+)
P

(g̃) ≡ 〈f |g̃∗
P
〉 , f∗(−)

P
(g̃) ≡ 〈f |g̃

P
〉 . (68)

This splitting of f is the group generalization of the more standard decomposition of
a field in positive and negative frequency parts. If we make use of the closure relation
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1 =
∫

G̃ µ(g̃){|g̃
P
〉〈g̃

P
| + |g̃∗

P
〉〈g̃∗

P
|} for F(G̃), the explicit expression of the cocycle (67) in

this coordinate system (for simplicity, we discard the semidirect action of G̃),

ξ(2)(g(2)′, g(2)) =
−iκ
2

∫ ∫

G̃
µ(g̃′)µ(g̃)

{

f ′∗(−)
P

(g̃′)∆(+)
P

(g̃′, g̃)f (+)
P

(g̃)

− f∗(−)
P

(g̃′)∆(+)
P

(g̃′, g̃)f ′(+)
P

(g̃) + f ′∗(+)
P

(g̃′)∆(−)
P

(g̃′, g̃)f (−)
P

(g̃) (69)

− f∗(+)
P

(g̃′)∆(−)
P

(g̃′, g̃)f ′(−)
P

(g̃)
}

,

where

∆(+)
P

(g̃′, g̃) ≡ 〈g̃′
P
|g̃

P
〉 =

∑

n∈I

ψ
P ,n(g̃′)ψ∗

P ,n(g̃) ,

∆(−)
P

(g̃′, g̃) ≡ 〈g̃′∗
P
|g̃∗

P
〉 = ∆(+)

P
(g̃, g̃′) , (70)

shows that the vector fields associated with the co-ordinates in (68) are canonically con-
jugated

[

X̃L

f
∗(−)
P

(g̃′)
, X̃L

f
(+)
P

(g̃)

]

= κ∆(+)
P

(g̃′, g̃)X̃L
ς ,

[

X̃L

f
∗(+)
P

(g̃′)
, X̃L

f
(−)
P

(g̃)

]

= κ∆(−)
P

(g̃′, g̃)X̃L
ς . (71)

Here, the functions ∆(±)
P

(g̃′, g̃) play the role of propagators (central matrices of the cocycle).

The propagators in two different parametrizations of G̃(2), corresponding to two different
polarization subalgebras P1 and P2 of G̃L (or U G̃L), are related through polarization-
changing operators (15) as follows:

∆(±)
P2

(h̃′, h̃) =

∫ ∫

G̃
µ(g̃′)µ(g̃)∆(±)

P2P1
(h̃′, g̃′)∆(±)

P1
(g̃′, g̃)∆(±)

P 1P2
(g̃, h̃) ,

∆(+)
P iP j

(h̃, g̃) ≡ ∆
P iP j

(h̃, g̃) , ∆(−)
P iP j

(h̃, g̃) ≡ ∆
P iP j

(g̃, h̃) . (72)

A particular case of the last expression is the transformation which relate the propagator
〈p′|p〉 in momentum-space to the propagator 〈x′|x〉 in configuration-space.

At this point, it is important to stress that a globally hyperbolic structure (ℜ× Σ) in
the space Q = G/P is not a prerequisite for having a well-defined quantum field theory
constructed from the group G̃(2). The necessity of a spatial hypersurface Σ ⊂ Q —on
which Cauchy data are freely specified in the standard approach— to quantize a field on
Q is now inessential because we can perform the quantization program in an alternative
representation space (momentum p-space, Bargmann-Fock α∗-space, etc) for which the
possible undesirable global properties of Q might be absent. Even for the quantization
in configuration space, it should be stressed that the existence of Σ (i.e., the necessity of
a well-posed classical initial value formulation) is not the problem that really matters in
GAQ but, rather, the existence of an appropriate polarization intended to reduce unitar-
ily the group representation, as already commented. Note that we are computing inner
products by integrating on the whole group G̃, not just on Σ. There may be some cases
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where we could factorize out the integration on the time parameter in
∫

G̃ µ(g̃), together
with the extra (momentum) variables (by following a regularization process in the case in
which the co-ordinates are non-compact), keeping an integration

∫

Σ dσ(x) on Σ ⊂ Q only;
however, this is not the general case, and an integration on the time parameter (even on
the whole group G̃) could be necessary to keep hermiticity in the symmetry generators
[remember the comments after (32) and see later on in Sec. 4].

As regard the general problem of the “back-reaction” effects of the quantum field on the
curved space-time [39], it might also be worthmentioning the Hadamard condition on states
of the first-quantized theory as a necessary condition for a state to have a finite expected
value for the stress-energy tensor [39, 40]. For Hadamard states, two-point functions (the
analog of our ∆(+)

P
+ ∆(−)

P
) satisfy a certain asymptotic condition [41]. Nevertheless, the

proper discussion of this general problem in a group framework requires the stress-energy
tensor to be incorporated as an infinite set of extra generators (related to a gauge-like
algebra) in the group G̃(2) of the second quantized theory. This enlargement of G̃(2) is
beyond the scope of this article; however, a treatment of this kind has been performed in
connection with 2d-Gravity [42].

In applying the GAQ formalism to G̃(2), it is appropriate to use a “Fourier-like”
parametrization asociated with the basis B(F(G̃)) = {|n〉 + |m∗〉}n,m∈I made of Hamil-

tonian eigenstates, alternative to the field-like parametrization above [see (68)]¶. If we
denote by

an ≡ 〈n|f〉 , bm ≡ 〈m∗|f〉 ,
a∗n ≡ 〈f |n〉 , b∗m ≡ 〈f |m∗〉 , (73)

the Fourier coefficients of the “particle” and the “antiparticle”, a polarization subalgebra
P(2) for G̃(2) can always be given by

P(2) =< X̃L
an
, X̃L

bm
; GΘ(2) ≃ G̃L > , ∀n,m ∈ I, (74)

that is, the corresponding left-invariant vector fields X̃L
an
, X̃L

bn
and the whole Lie algebra

G̃L of G̃, which is the characteristic subalgebra GΘ(2) of the second-quantized theory (see
next subsection). The operators of the theory are the right-invariant vector fields of
G̃(2); in particular, the basic operators are: the annihilation operators of particles and
anti-particles, ân ≡ X̃R

a∗
n
, b̂m ≡ X̃R

b∗m
, and the corresponding creation operators â†n ≡

− 1
κ
X̃R

an
, b̂†m ≡ − 1

κ
X̃R

bm
. The operators corresponding to the subgroup G̃ [the second-

quantized version X̃
R(2)
g̃j of the first-quantized operators X̃R

g̃j in (4)] are written in terms

of the basic ones (it is worthmentioning that they appear, in a natural way, normally

ordered), since they are in the characteristic subalgebra GΘ(2) of the second-quantized
theory.

The group G̃ plays a key role in characterizing vacuum states in the curved space Q, in
the same way as the Poincaré group plays a central role in relativistic quantum theories de-
fined on Minkowski space. In general, standard QFT in curved space suffers from the lack

¶Of course, a “manifestly covariant” parametrization f(x) = 〈x|f〉 in configuration-space relative to
boost-like eigenstates |g̃

P
= x〉 is also possible [31], although the characterization of the Polarization

subalgebra (see bellow) is much more involved as it makes use of the manifestly covariant propagator
∆(x, x′) = 〈x|x′〉 (see e.g. Eq. (90)), versus the more manageable ∆(n, n′) = 〈n|n′〉 = δn,n′ .
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of a preferred definition of particles. The infinite-dimensional character of the symplectic
solution manifold of a field system is responsible for the existence of an infinite number of
unitarily inequivalent irreducible representations of the Heisenberg-Weyl (H-W) relations
and there is no criterion to select a preferred vacuum of the corresponding quantum field
(see, for example, [2, 3, 45, 46]). This situation is not present in the finite-dimensional case,
according to the Stone-von Neuman theorem [43, 44]. In our language, the origin of this
fact is related to the infinite, arbitrary, non-equivalent directions that the wave functions
Ψ(a, a∗, b, b∗) can be polarized for the infinite-dimensional H-W subgroup G̃(2)/G̃ of G̃(2)

itself. In practice, this means that arbitrary choices of annihilation operators, through the
canonical transformation (Bogolyubov transformation)

â′l =
∑

n∈I

αlnân + βlnâ
†
n , â′†l =

∑

n∈I

β̄lnân + ᾱlnâ
†
n (75)

(and similarly for the antiparticle) lead to non-identical (non-unitarily equivalent) vacua
charactericed by ân|0〉 = 0 and â′l|0′〉 = 0 ,∀n, l ∈ I, when βln is not a Hilbert-Schmidt
operator (see [46]). The situation is rather different, however, when we can embed the
curved space Q into a given group G̃. In fact, the existence of a characteristic module
—generated by GΘ(2) ∼ G̃L— in the polarization subalgebra P(2) strongly restricts the
possible transformations (75) to automorphysms of P(2), that is, the transformation (75)
has now to preserve the maximality and horizontality properties characterizing a full
polarization subalgebra like (74). In other words, the transformation (75) has to be one-
to-one (in order for P(2) to be maximal), and to fulfill:

[

X̃
L(2)
g̃j , X̃L

a′
l

]

= ρ′jlkX̃
L
a′

k
, ∀g̃ ∈ G̃, ∀l ∈ I , (76)

in order to close a horizontal subalgebra, where the transformed structure constants ρ′jlk
must be related to the original ρj

mn ≡ ∂ρmn(g̃)/∂g̃j
∣

∣

g̃=e
by

ρ′jlk = αlmρ
j
mnα

−1
nk = βlmρ

j∗
mnβ

−1
nk . (77)

The last equation imposes strong restrictions to the coeficients α, β, which also have to
fulfill the typical relations for an infinite-dimensional symplectic transformation (see e.g.
[2, 3, 45, 46]), leaving a limited number of possible polarization subalgebras P(2). For each
P(2), the corresponding vacuum state will be characterized as being annihilated by the
right version of the polarization subalgebra dual to P(2). For example, in the case of (74),
the vacumm will be invariant under the action of G̃ ⊂ G̃(2) and annihilated by the right-
invariant vector fields X̃R

a∗
n
, X̃R

b∗n
(the standard annihilation operators ân, b̂n, respectively).

In more physical terms, the vacuum states are those which “look the same” to any freely
falling observer, anywhere in the curved space Q = G/P .

Moreover, it is also always possible to choose particular states which behave as vacua
with respect to a given subgroup G̃K ⊂ G̃; that is, those states which are invariant under
G̃K only. For example, G̃K could be the uniparametric subgroup of time evolution (see
e.g. [47] for a discussion of vacuum states in de Sitter space). Extremely interesting are
the physical phenomena related to the choice of Weyl (Poincaré + dilatation) invariant
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pseudo-vacua (zero-mode coherent states) in a conformally invariant QFT. Vacuum radi-
ation in relativistic acceletated frames and Fulling-Unruh effect [1, 5] are discussed in this
framework in Ref. [6].

¿From a formal point of view, the choice of particular pseudo-vacua would correspond
to a breakdown of the symmetry and could be understood as a constrained version of the
original theory. Indeed, let us comment on the influence of the constraints in the first-
quantized theory at the second quantization level. Associated with a constrained wave
function satisfying (17), there is a corresponding constrained quantum field subjected to
the condition:

ad
X̃

R(2)
τ̃

(

X̃R
|f〉

)

≡
[

X̃
R(2)
τ̃ , X̃R

|f〉

]

= dD
(ǫ)
T (τ̃ )X̃R

|f〉 , (78)

where X̃
R(2)
τ̃ stands for the “second-quantized version” of X̃R

τ̃ . It is straightforward to
generalize the last condition to higher-order constraints:

X̃R
1 X̃

R
2 ...X̃

R
j |ψ〉 = ǫ|ψ〉 →

ad
X̃

R(2)
1

(

ad
X̃

R(2)
2

(

...ad
X̃

R(2)
j

(

X̃R
|f〉

)

...

))

= ǫX̃R
|f〉 . (79)

The selection of a given Hilbert subspace H(ǫ)(G̃) ⊂ H(G̃) made of wave functions obeying
a higher-order constraint Kψ = ǫψ, where K = X̃R

1 X̃
R
2 ...X̃

R
j is some Casimir operator

of G̃K ⊂ G̃, manifests itself, at second quantization level, as a new (broken) QFT. The
vacuum for the new observables of this broken theory (the good operators in (79)) does
not have to coincide with the vacuum of the original theory, and the action of the rest of
the operators (the bad operators) could make this new vacuum radiate (see Ref. [6]).

In general, constraints lead to gauge symmetries in the constrained theory and, also,
the property for a subgroupN ⊂ G̃ of being gauge is inheritable at the second-quantization
level.

To conclude this subsection, it is important to note that the representation of G̃ on
M(G̃) is reducible, but it is irreducible under G̃ together with the charge conjugation

operation an ↔ bn, which could be implemented on G̃(2). For simplicity, we have preferred
to discard this transformation; however, a treatment including it, would be relevant as a
revision of the CPT symmetry in quantum field theory. The Noether invariant associated

with X̃
R(2)
ζ is nothing other than the total electric charge (the total number of particles

in the case of a real field bn ≡ an) and its central character, inside the “dynamical”
group G̃ of the first-quantized theory, now ensures its conservation under the action of
the subgroup G̃ ⊂ G̃(2). To account for non-Abelian charges (iso-spin, color, etc), a
non-Abelian structure group T ⊂ G̃ is required.

3.2 Example of the AdS space

Let us apply the GAQ formalism to the centrally extended group G̃(2) given through the
group law in (66) for the case of G = SO(2, 1) and the “holomorphic polarization” used
in Subsec. 2.3. For simplicity, we shall consider the case of a real field and we shall use
the “Fourier” parameterization (73) in terms of the coefficients an rather than the “field”
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parameterization (68) in terms of f (±)
P

(g̃). The explicit group law is:

g̃′′ = g̃′ ∗ g̃ (80)

a′′m = a′m +
∞
∑

n=0

ρ(N)
mn (g̃′)an

a∗m
′′ = a∗m

′ +
∞
∑

n=0

ρ(N)
mn

∗
(g̃′)a∗n

ς ′′ = ς ′ς exp
κ

2

∞
∑

m=0

∞
∑

n=0

(a∗m
′ρ(N)

mn (g̃′)an − a′mρ
(N)
mn

∗
(g̃′)a∗n) .

Let us denote ∂m ≡ ∂
∂am

, ∂∗m ≡ ∂
∂a∗

m
and use the parameterization g̃(η, α, α∗, ζ) =

g̃(yν), ν = 0, 1, 2, 3 after (37) and (42), in order to deal with hermitian operators X̃
R(2)
yν .

With this notation, the left- and right-invariant vector fields are:

X̃L
ς = X̃R

ς = ς
∂

∂ς

X̃L
an

=
∞
∑

m=0

ρ(N)
mn (y)∂m +

κ

2

∞
∑

m=0

ρ(N)
mn (y)a∗mX̃

L
ς

X̃L
a∗

n
=

∞
∑

m=0

ρ(N)
mn

∗
(y)∂∗m − κ

2

∞
∑

m=0

ρ(N)
mn

∗
(y)amX̃

L
ς

X̃L(2)
yν

= X̃L
yν

X̃R
an

= ∂n − κ

2
a∗nX̃

L
ς

X̃R
a∗

n
= ∂∗n +

κ

2
anX̃

L
ς

X̃R(2)
y0

= X̃R
y0

+ 2i
∞
∑

m=0

m(am∂m − a∗m∂
∗
m)

X̃R(2)
y1

= X̃R
y1

+
∞
∑

m=0

√

(m+ 1)(2N +m)(am∂m+1 − am+1∂m + a∗m∂
∗
m+1 − a∗m+1∂

∗
m)

X̃R(2)
y2

= X̃R
y2

+ i
∞
∑

m=0

√

(m+ 1)(2N +m)(am∂m+1 + am+1∂m − a∗m∂
∗
m+1 − a∗m+1∂

∗
m)

X̃R(2)
y3

= X̃R
y3

− i
∞
∑

m=0

(am∂m − a∗m∂
∗
m) . (81)

The non-trivial commutators among those vector fields are:
[

X̃L(2)
y0

, X̃L(2)
y1

]

= −2X̃L(2)
y2

[

X̃L(2)
y0

, X̃L(2)
y2

]

= 2X̃L(2)
y1

[

X̃L(2)
y1

, X̃L(2)
y2

]

= −2X̃L(2)
y0

+ 4NX̃L(2)
y3
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[

X̃L(2)
y0

, X̃L
an

]

= 2inX̃L
an

[

X̃L(2)
y1

, X̃L
an

]

= −
√

n(2N + n− 1)X̃L
an−1

+
√

(n+ 1)(2N + n)X̃L
an+1

[

X̃L(2)
y2

, X̃L
an

]

= i
√

n(2N + n− 1)X̃L
an−1

+ i
√

(n+ 1)(2N + n)X̃L
an+1

[

X̃L(2)
y3

, X̃L
an

]

= −iX̃L
an

[

X̃L(2)
y0

, X̃L
a∗

n

]

= −2inX̃L
a∗

n

[

X̃L(2)
y1

, X̃L
a∗

n

]

= −
√

n(2N + n− 1)X̃L
a∗

n−1
+
√

(n+ 1)(2N + n)X̃L
a∗

n+1
[

X̃L(2)
y2

, X̃L
a∗

n

]

= −i
√

n(2N + n− 1)X̃L
a∗

n−1
− i
√

(n+ 1)(2N + n)X̃L
a∗

n+1
[

X̃L(2)
y3

, X̃L
a∗

n

]

= iX̃L
a∗

n
[

X̃L
an
, X̃L

a∗
m

]

= −κδnmX̃
L
ς . (82)

The quantization 1-form and the characteristic module are:

Θ(2) =
iκ

2

∞
∑

n=0

(anda
∗
n − a∗ndan) − iς−1dς

GΘ(2) = < X̃L(2)
yν

>, ν = 0, 1, 2, 3. (83)

The Noether invariants of the second-quantized theory are:

Fan = iX̃R
an

Θ(2) = −iκa∗n
Fa∗

n
= iX̃R

an
Θ(2) = iκan

F (2)
y0

= i
X̃

R(2)
y0

Θ(2) = 2κ
∞
∑

n=0

na∗nan

F (2)
y1

= i
X̃

R(2)
y1

Θ(2) = iκ
∞
∑

n=0

√

(n+ 1)(2N + n)(a∗nan+1 − a∗n+1an)

F (2)
y2

= i
X̃

R(2)
y2

Θ(2) = κ
∞
∑

n=0

√

(n+ 1)(2N + n)(a∗nan+1 + a∗n+1an)

F (2)
y3

= i
X̃

R(2)
y3

Θ(2) = −κ
∞
∑

n=0

a∗nan . (84)

A full polarization subalgebra can be:

P(2) =< X̃L(2)
yν

, X̃L
an
>, ∀n ≥ 0, ν = 0, 1, 2, 3 , (85)

and the polarized U(1)-functions have the form:

Ψ[an, a
∗
n, yν , ς] = ς exp

{

−κ
2

∞
∑

n=0

a∗nan

}

Φ[a∗] ≡ ΩΦ[a∗] , (86)
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where Ω is the vacuum of the second quantized theory and Φ is an arbitrary power series
in its arguments. As already commented, Ω looks the same to any freely falling observer
anywhere in the AdS space. It is annihilated by the right version of the dual of (85) as
can be seen from the general action of the right-invariant vector fields (operators in the
second-quantized theory) on polarized wave functions in (86). This action has the explicit
form:

X̃R
an

Ψ = Ω · (−κa∗n)Φ ≡ Ω · (−κâ†n)Φ

X̃R
a∗

n
Ψ = Ω · (∂∗n)Φ ≡ Ω · (ân)Φ

X̃R(2)
y0

Ψ = Ω ·
(

−2i
∞
∑

n=0

nâ†nân

)

Φ ≡ −iΩF̂ (2)
y0

Φ

X̃R(2)
y1

Ψ = Ω ·
(

∞
∑

n=0

√

(n+ 1)(2N + n)(â†nân+1 − â†n+1ân)

)

Φ ≡ −iΩF̂ (2)
y1

Φ

X̃R(2)
y2

Ψ = Ω ·
(

−i
∞
∑

n=0

√

(n+ 1)(2N + n)(â†nân+1 + â†n+1ân)

)

Φ ≡ −iΩF̂ (2)
y2

Φ

X̃R(2)
y3

Ψ = Ω ·
(

i
∞
∑

n=0

â†nân

)

Φ ≡ −iΩF̂ (2)
y3

Φ , (87)

where ân and â†n are interpreted as annihilation and creation operators, F̂
(2)
y0 is interpreted

as the total energy operator (Hamiltonian), F̂
(2)
y3 represents the total number of particles

(the total electric charge in the complex case), and the remainder corresponds to other
conserved quantities of the theory. As already said, all those quantities appear, in a natural
way, normally ordered. This is one of the advantages of this method of quantization:
normal order does not have to be imposed by hand but, rather, it is implicitly inside the
formalism.

Let us go back to the expression (83) of the Quantization 1-form. Note that its simple
appearance is due to the fact that it is written in terms of the initial condition variables
(84) masking the dynamical content of it. Let us perform a change of variables induced
by a general action of the group G̃ (80)

an =
∞
∑

m=0

ρ(N)
nm (y)cm , (88)

and express Θ(2) in terms of the “evolving” variables cm. The final form of it is as follows:

Θ(2) =
iκ

2

∞
∑

n=0

(cndc
∗
n − c∗ndcn + T ν

n (y)dyν) − iς−1dς

T ν
n (y) ≡

∞
∑

m=0

∞
∑

l=0



ρ(N)
nm (y)

∂ρ
(N)
nl

∗
(y)

∂yν
− ρ

(N)
nl

∗
(y)

∂ρ
(N)
nm (y)

∂yν



 c∗l cm. (89)

The quantities T ν
n (y) play the role of momenta (for instance, T 0

n(y) is the n-mode energy).
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For completeness, we shall give the explicit expression of the propagator (70) in the
present holomorphic polarization case. After some calculations, it proves to be:

∆(+)(g̃′, g̃) =
∞
∑

n=0

ψ(N)
n (g̃′)ψ(N)∗

n (g̃) = (2N − 1)
ζ ′ζ∗(1 − α′α∗′)N (1 − αα∗)N

(1 − α∗′αη′−2η2)2N
. (90)

In the configuration-space image, the corresponding propagator can be calculated by mak-
ing use of the expression (72) and the polarization-changing operator given in [48] (“rela-
tivistic Bargmann transform”). Let us discuss a bit more on the connection between the
“holomorphic picture” used through the paper and the more usual “configuration-space
picture” used in standard approaches to QFT, within the GAQ framework.

4 Configuration-space image

The Quantum Mechanics on AdS can be also built in the position representation, which
is the usual image when one makes use of the intrinsic differentiable structure of this
space-time. In order to make contact with this standard approach, let us consider the 3D
hyperboloid defining the de Sitter and AdS universes (see e.g. [38, 37])

ηµνx
µxν +

λ2

k
=

1

k
, (91)

where ηµν = (+,−), xµ = (x0, x1), λ is the extra co-ordinate and k stands for the curvature
of the space. For k > 0, Eq. (91) defines the AdS space-time (SO(1, 2) homogeneous
space), for k < 0, it defines the de Sitter space-time (SO(2, 1) homogeneous space), and
for k = 0, we get the Minkowski space-time.

The line element in the flat 3-D space defined by (91) is

c2(dτ)2 = ηµνdx
µdxν +

1

k
(dλ)2, (92)

where τ stands for the proper time. We solve for λ in (91) and differentiate,

λ =
√

1 − kηµνxµxν

dλ = −kηµνx
µdxν

λ
, (93)

and, introducing (93) into (92),

c2(dτ)2 = ηµνdx
µdxν +

k

λ2
xρηρµx

σησνdx
µdxν , (94)

we obtain the metric induced by (92) in the tangent space to the hyperboloid (91); this is
the de Sitter metric:

gµν = ηµν + k
ηµλx

ληνκx
κ

1 − kηρσxρxσ
, (95)
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with inverse

gµν = ηµν − kxµxν . (96)

Let us define the contravariant momenta for a particle of mass m, pµ = mdxµ

dt
. Then,

Eq. (94) may be regarded as a constraint between the momenta pµ, i.e. the de Sitter mass
shell

(p0)2 − (p)2 +
k

λ2
(p0x0 − px1)2 = m2c2. (97)

Solving p0 in terms of p and xµ, we get

p0 =
kpx1x0 + λ

√

m2c2 + p2 +m2c2kx12

1 + kx12 . (98)

From (95) it follows the connection

Γµ
νλ = kxµgνλ , (99)

so that the geodesics are given by the solutions of the equation

d2xµ

dτ2
= −kxµ, (100)

which could also be interpreted as the equation of motion of a (general) relativistic oscil-
lator [48].

To give the action of the (anti-)de Sitter group G over space-time, we shall adopt the
prescription that AdS-parameters become those of the Poincaré group action under the
limit k → 0. By denoting a0, a1, p the AdS space-time translation parameters and boost
parameters, respectively, as well as Λ the group version of the extra co-ordinate λ, the
above mentioned group action proves to be:







x′0

x′1

λ′






=









p0

mc
p

mc
a0

p
mc

p0

mc
a1

−k p0a0−pa1

Λmc
kK Λ















x0

x1

λ






, (101)

where we have defined

K ≡ p0a1 − pa0

mc
; Λ ≡

√

1 − k(a02 − a12) , (102)

and p0 is defined in terms of a0, a1, p as in (98). ¿From the action (101) it is straightforward
to derive the group law by letting it act twice (g′′ = g′ ∗g). The explicit form of this group
law is:

a0′′ =
p′0

mc
a0 +

P ′

mc
a1 + Λa0′

a1′′ =
p′

mc
a0 +

P 0′

mc
a1 + Λa1′ (103)

p′′ =
p′p0

mc
+
P 0′p

mc
− k

Λ
(p0a0 − pa1)a1′,

25



where we have defined

P 0 ≡ p0 +mcka1K

Λ
; P ≡ p+mcka0K

Λ
. (104)

It is a very convenient practice to chose a compact time parameter in order to work
out the quantum dynamics of a system with bound states. If we denote

t ≡ 1

ω
arcsin

ωa0

cβ
; β ≡

√

1 + kx2; ω ≡
√
kc; x ≡ a1 (105)

and then consider g = g(t, x, p) a parameterization of G, a pseudo-extension by U(1) (i.e.
a cocycle generated by a function δ(g) on the basic group, usually linear in time) can be
chosen to be:

ζ ′′ = ζ ′ζe
i
h̄
(δ(g′′)−δ(g′)−δ(g)) ,

δ(g) ≡ −mc2
(

t+
1

mc2
f(x, p)

)

,

f(x, p) ≡ −2mc2

ω
arctan

[

mc2

ωpx
(β − 1)(

P0

mc
− β)

]

,

P0 ≡
√

mc2 + p2 +m2ω2x2 . (106)

The new coordinates x, p, t are related to the old coordinates α,α∗, η as follows:
√

mω

2h̄
x+

i√
2mh̄ω

p ≡
√

2N
α

1 − αα∗
, (107)

exp−i ω

2mc2
δ ≡ η = exp iy0 ,

where the extension parameter N proves to be N = mc2

h̄ω
, and suffers from the same

requirements as before [see the comment after (39)]. The function f(x, p) generalizes the
simple expression f(x, p) ∼ xp, for the flat and non-relativistic case, to the curved case.

The commutation relations among left-invariant vector fields associated with the co-
ordinates t, x, p, ζ of G̃ are:

[

X̃L
t , X̃

L
x

]

= −mkc2X̃L
p

[

X̃L
t , X̃

L
p

]

=
1

m
X̃L

x

[

X̃L
x , X̃

L
p

]

=
1

mc2
X̃L

t − i
1

h̄
X̃L

ζ
[

X̃L
ζ , all

]

= 0 , (108)

and the quantization 1-form and its characteristic module are:

Θ =
p
(

P 2
0 +m2ω2x2

)

β2P0 (P0 +mc)
dx− m2c2x

P0 (P0 +mc)
dp− c (P0 −mc) dt + h̄

dζ

iζ

GΘ = < X̃L
t > . (109)
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The Noether invariants are immediately calculated as iX̃RΘ:

iX̃R
t
Θ = −c(P0 −mc) ≡ E

iX̃R
x
Θ =

p

β
cosωt+

P0

mcβ
mωx sinωt ≡ P (110)

i
X̃R

p
Θ = − P0

mcβ
x cosωt+

p

mωβ
sinωt ≡ −K ,

which fulfill the classical mass-shell restriction

E2 −m2c2ω2K2 − c2P 2 = m2c4. (111)

Let us now consider the set B(G̃) of complex valued U(1)-functions on G̃. As we have
already mentioned, the representation of G̃ on B(G̃) is reducible. The reduction can be
achieved by means of polarization conditions (6). We seek an explicit representation of
G̃ on wave functions defined on the AdS space-time, this implying that the generator
X̃L

p (generator corresponding to the subgroup P ) has to be included in the polarization.

The commutation relations (108) force us to “deform” the characteristic module X̃L
t to a

“higher order” X̃HO
t operator, which we can choose to be basically the left version of the

Casimir operator plus an arbitrary central term; more explicitly:

PHO =< X̃HO
t ≡ (X̃L

t )2 − c2(X̃L
x )2 − 2imc2

h̄
X̃L

t − mc2ω

h̄
X̃L

ζ , X̃
L
p > , (112)

The U(1)-function condition (5) together with the polarization conditions lead to wave
functions which fulfill:

X̃L
ζ ψ = ψ → ψ = ζφ(x, p, t)

X̃L
p ψ = 0 → ψ = ζe

i
h̄
(f+mc2)ϕ(x, t)

X̃HO
t ψ = 0 →

(

⊔⊓x +
m2c2

h̄2 + νR

)

ϕ = 0 , (113)

where R ≡ −2k can be viewed as the scalar curvature (see [2] for instance), ν ≡ N
2 and

⊔⊓x ≡ 1

c2β2

∂2

∂t2
− 2ω2x

c2
∂

∂x
− β2 ∂

2

∂x2
, (114)

is the D’ Alambertian operator on AdS space-time. Clearly, for k → 0, equation (113) goes
to the usual Klein-Gordon equation for a free particle moving on Minkowski space-time.

The general equation (113) can be solved by power-series expansion, leading to func-
tions

ϕn ≡ e−iE
(N)
n ωtβ−E

(N)
n H(N)

n , (115)

27



where E
(N)
n = N +n, and H

(N)
n (χ) are polynomials in the variable χ ≡

√

mω
h̄
x, which can

be written via the Rodrigues formula (λ = 1 in Ref. [48]) as

H(N)
n (χ) = (−1)n

(

1 +
χ2

N

)N+n
dn

dχn





(

1 +
χ2

N

)−N


 . (116)

There is a polarization-changing operator 〈x|α〉 (called “relativistic Bargmann transform”
and explicitly calculated in [48]) relating wave functions (115) in configuration space rep-
resentation to those given in (51) as corresponding to a holomorphic (Fock-like) repre-

sentation. The polynomials H
(N)
n are related to the Gegenbauer [49] and Jacobi [50]

polynomials. The wave functions (115) reproduce, for the 1+1D case, those found in [51]
(see also the 2nd paper in Ref. [52]) for the massive case, provided that we perform the
change of variables x→ ρ ≡ arctan(ω

c
x), t→ τ ≡ π

2−ωt. In fact, except for normalization
constants and time dependence, our even wave functions can be written as

ϕ2n ∼ β−Nβ−2nH
(N)
2n (χ)

∼ β−NP
(n− 1

2
,− 1

2
)

n

(

χ2 −N

χ2 +N

)

∼ (cos ρ)NP
(− 1

2
,N− 1

2
)

n (cos 2ρ) , (117)

which correspond to the 1+1D version of the wave functions in Ref. [51]. The restriction
to even wave functions is simply because we are comparing 1+1D wave functions with
the radial part of the 3+1D ones. Note also that, in 1+1D, the range of M = N would
be M = 1, 2, 3, . . . instead of M = 3, 4, 5 . . . [N is half-integer when working in the two-
covering of AdS group SO(1, 2)].

The invariant integration volume in G̃ now adopts the following form:

µ(g̃) = −idp ∧ dx ∧ dt ∧ dζ
ζP0

, (118)

respect to which the group G̃ is unitarily represented in the present configuration-space.
Thus, quantization in a highly symmetric non-globally hyperbolic space-time Q, such as
AdS, can proceed on the basis of symmetry by translating the problem of existence of
a well-defined, deterministic classical evolution in the standard (canonical) quantization
scheme, to a problem of unitarily reducing the representations of G̃ ⊃ Q in the GAQ
framework. In general, unitarity implies self-adjointness of the generators of the group
and, in particular, of the time generator, leading to an inherently conserved Noether
invariant (the energy) in GAQ. Both properties are not always ensured in the canonical
quantization on non-globally hyperbolic spaces, unless additional boundary conditions are
imposed [51, 23].

As mentioned above, the reduction
∫

G̃ µ(g̃) →
∫

Σ dσ(x) to a minimal canonical repre-

sentation of G̃ on Σ ⊂ Q could lead, in general, to a loss of hermiticity of some part of the
operators in G̃R. Indeed, we must stress the different structure of the time evolution in
Minkowski space in Subsec. 2.2 (or, in general, globally hyperbolic space-times) as com-
pared with the AdS case. The time parameter cannot be factorized out in a natural way.
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The appearance of the partial weights β−n in the wave functions in configuration space is
traced back to the presence of a time derivative term in the quantum operators. Another
consequence of the structure of time evolution (manifest covariance of our configuration
space representation) is the need for the time integration in the scalar product defined
through the left-invariant integration volume in (118). In fact, a naive factorization of the
time dependence in the wave functions, operators and scalar product leads to a non-unitary
representation; the functions in (115) are no longer orthogonal nor the operators X̃R

x , X̃
R
p

are hermitian. The x-representation can nevertheless be “unitarized” by changing the in-
tegration measure, dx→ dx

β2 , and by redefining the operators X̃R
x and X̃R

p accordingly. The

redefinition process really parallels the multipliers method used in the literature [32, 53, 54]
to construct unitary representations of a group G when a natural invariant volume is ab-
sent. The measure dx

β2 is left invariant under the U(1) subgroup of SO(1, 2), i.e. the time
evolution, so that the energy operator is not affected by the multipliers. Furthermore, the
space-time parts of our wave functions ϕ(x, t) satisfy a Klein-Gordon-like equation (113)
with an operator ⊔⊓x (114) associated with the metric ds2 = c2β2dt2−β−2dx2 and, accord-
ing to the standard techniques in Quantum Mechanics, one would define the time-invariant
scalar product

∫

dx
β2ϕ

∗ϕ′ in order to have a conserved probability density current. The new
representation obtained by this way is a minimal representation and it really constitutes
a well-defined theory of orthogonal functions (polynomials with partial weights; see e.g.
[48, 49]).

We should remark that, even though the Bargmann-Fock-like representation (45, 52)
can be directly restricted to the α,α∗-dependence without losing unitarity, a time-independent
polarization-changing operator is not directly defined.
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