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Abstract

The exceptional electrooptical, thermal, and mechanical properties of graphene has motivated an enormous interest from

the scienti�c community in a wide variety of �elds in recent years. In particular, the capability of mono- and multi-

layer graphene to support highly con�ned recon�gurable surface plasmon polaritons in the terahertz (THz) and infrared

regime has motivated an explosive growth of graphene plasmonics, a discipline which is paving the way towards fully

integrated THz transceivers and sensing systems. In this project, we �rst present the novel design and analysis of planar

recon�gurable THz �lters hosted in graphene nanoribbons, which are e�ciently designed taking advantage of the quasi-

static nature of graphene surface plasmon polaritons (SPPs) in nanostructures and graphene's �eld e�ect. The proposed

�lters are highly miniaturized and present recon�guration capabilities not possible with other technologies in the THz

band. Spatial dispersion in graphene sheets is then reviewed. This e�ect is closely related to the quantum capacitance of

graphene and strongly a�ects surface wave propagation under certain circumstances. This phenomenon is studied in the

THz and near infrared frequency bands, and accurate equivalent circuits that provide deep physical insight and simplify

design tasks are developed. The practical implications of spatial dispersion regarding THz graphene-based plasmonic

devices like the �lters mentioned above are discussed.

Resumen

Las excepcionales propiedades térmicas, mecánicas y electro-ópticas del grafeno han atraído un enorme interés de las

comunidades cientí�cas de diversas áreas en los últimos años. La capacidad del grafeno de soportar la excitación y

propagación de plasmones de super�cie en la bandas de terahercios (THz) e infrarrojos han motivado un crecimiento

explosivo del estado del arte en cienca y tecnología de plasmones en estas bandas de frecuencias, una disciplina que

podría ser crucial para el futuro desarrollo de sistemas integrados y altamente miniaturizados de comunicación, detección

y sensores. En este proyecto, se presenta en primer lugar la síntesis y análisis de �ltros planares recon�gurables en la

banda de THz mediante control electrostático de plasmones en tiras de grafeno. Se ha desarrollado una técnica de diseño

e�ciente, explotando la naturaleza cuasi-estática de este tipo de ondas electromagnéticas en tiras de ancho mucho menor

que la longitud de onda. Se ilustra el rendimiento de estos �ltros con múltiples ejemplos, demostrando capacidades de

recon�guración que no son posibles con otras tecnologías.

Posteriormente se estudia de forma analítica el fenómeno de dispersión espacial en guías de onda mono- y multicapa de

grafeno. Se establece una conexión entre este fenómeno y la capacidad cuántica intrínseca del material, y se estudia cómo

afecta a las propiedades electromagneticas del grafeno en la banda de THz. Se han desarrollado circuitos equivalentes

capaces de modelar la propagación de plasmones en estas estructuras, proporcionando una importante comprensión de

los diferentes mecanismos de propagación una herramienta útil para el diseño de dispositivos. Por último, se analizan

mediante ejemplos numéricos las implicaciones prácticas de la dispersión espacial en la respuesta de los �ltros diseñados.
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Chapter 1
Introduction

1.1 Terahertz Science and Technology

Terahertz radiation, loosely de�ned by the frequency range of 0.1 THz to 10 THz,

has potential application in a plethora of �elds, including material characterization,

tomographic imaging, space science and communications, sensing, chemistry, biol-

ogy, explosives inspection, integrated circuit testing, skin-cancer diagnosis, security,

physics or broadband picocell communications [1].

However, THz waves are di�cult to handle and cannot be treated with the well

developed and mature techniques from the microwaves and optics. In this frequency

range, electronic and optical phenomena combine, and a multi-perspective approach

is required in order to develop e�ective devices. Unfortunately, current technology

is unable to provide satisfactory results, and great e�orts are being made towards

�lling the "THz Gap". Realizing e�cient THz sources and detectors remains an

unsolved problem that severely limits the viability of most applications, and the

typical metallic and dielectric guiding structures from the neighbouring bands lead

to prohibitively high losses and manufacture issues.

However, important advances have been made recently in THz sources and there

is currently a variety of possibilities being intensively researched, each with its ad-

vantages and shortcomings. Sources can be broadly classi�ed as either incoherent

thermal sources, broadband pulse techniques, or narrowband methods [1, 2]. Broad-

band sources are based on the excitation of speci�c materials with ultrashort laser

pulses (femtosecond pulses), enabling the generation of THz power through phenom-

6



CHAPTER 1. INTRODUCTION 1.2 Graphene plasmonics for THz applications

ena such as non-linear e�ects in crystals or plasma oscillations [2]. Narrowband THz

generation is done by frequency up-conversion from microwave oscillators through

Schottky-diode multipliers, or directly from gas or semiconductor lasers, which tend

to be very voluminous.

A large motivation for the development of THz technology is related to the po-

tential to analyse materials through spectroscopy, to extract information that is

unavailable when using other frequencies, especially from lightweight molecules and

semiconductors [2]. Astronomy has traditionally been the main driving force behind

the development of this �eld, because of the vast amount of information available

through the study of molecules such as carbon monoxide, water, and oxygen in stel-

lar bodies. This is crucial in space exploration and in the monitoring of atmospheric

gases. In recent years, THz spectroscopy is also being applied in a much wider

range of �elds, from fundamental materials science to quality assurance of com-

mercial products. Imaging with THz waves also has multiple pratical applications,

since THz radiation penetrates materials that are opaque to light, and give a much

higher resolution than microwaves. THz imaging has been succesfully used in cancer

diagnosis due to unusual interactions with cancer cells (and other types of tissue),

and nanoscale resolution is expected in recent years from near-�eld THz microscopy

[1]. In the communication and information sector, there is an unexploited large po-

tential market, since unpredecented wireless bandwidth may be achieved over short

distances with THz technologies. These are merely a few critical applications of the

THz spectrum, but it is clear that there is an urgent need of more e�cient THz

sources, more sensitive detectos, and better fundamental passive electrooptic com-

ponents. This project aims to make a contribution to the latter �eld, through the

utilization of graphene plasmonics.

1.2 Graphene plasmonics for THz applications

Surface plasmon polaritons (SPPs, or simply plasmons hereafter), the collective os-

cillations of surface charges, usually occur at the interface between materials with

di�erent-signed permittivity values and are commonly observed in optics at metal-

dielectric interfaces. Over the past decades, metal plasmons have been an important

sub�eld of photonics, and they current constitute the foundation for applications
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CHAPTER 1. INTRODUCTION 1.2 Graphene plasmonics for THz applications

such as integrated photonic systems, nanostructures, single photon transistors, or

biosensing [3]. Metal plasmons do not exist as such at low THz frequencies, due

to the non negative dielectric function of noble metals in this band, but composite

structures have been reported to support localized surface plasmons [4, 5]. More

recently, graphene has emerged as a promising candidate to �ll this gap. Extensive

theoretical works have been published in the span of a few years, and graphene

plasmons have been experimentally observed by several groups [6, 7, 8, 9, 10]. This

technology holds great promise as a platform for the e�ective manipulation of THz

radiation at the nanoscale, with immediate application in various scienti�c �elds.

The explosive growth of graphene plasmonics is motivated by its true 2D nature

(graphene is 1 atom thick) and the extraordinary electrooptical properties of this

carbon allotrope [11]. Graphene is a semi-metal, characterized by a linear, conical

energy dispersion and high carrier mobility, with a Fermi velocity vF ≈ 106 light,

and its conductivity can be controlled via electrostatic gating or chemical doping.

Free electrons or holes can be induced through moderate bias voltages, resulting in a

control over charge concentrations not possible with metals. Typical doping concen-

trations of up to 1×1013 cm−2 can be achieved with relative ease, which translates to

a chemical potential µc ≈ 1 eV [12, 13]. This enables unprecedented control over the

plasmon modes supported by graphene guiding structures and extreme con�nement

of waves.

In this context, this project proposes novel graphene lowpass �lters with recon-

�guration capabilities that are not found with the current state of the art in this fre-

quency range (chapter 2), and studies non-local electromagnetic e�ects in graphene

at THz frequencies (chapter 3). Simple yet rigourous studies shed light into the fun-

damental physics of this complex phenomenon, and simple equivalent transmission

line models are developed to accurately predict the behaviour of graphene SPPs

when local models fail. In electromagnetics, graphene is typically studied through

its surface conductivity σ, which is dependent on temperature, chemical potential,

frequency, and a phenomenological carrier relaxation time that accounts for plas-

mon loss, mainly caused by charged impurities, lattice defects, and electron-phonon

scattering [14]. In the semiclassical (local) model and in the absence of magnetic

bias [15] σ is independent of the wavevector kρ, and it can be modeled using the
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CHAPTER 1. INTRODUCTION 1.2 Graphene plasmonics for THz applications

Kubo formalism [16, 17] as

σlocal = σr − jσi =

− j e2kBT

π~2(ω − jτ−1)
ln

{
2

[
1 + cosh

(
µc
kBT

)]}
,

(1.1)

where τ is the electron relaxation time, ω is the angular frequency, e is the charge of

an electron, ~ is the reduced Planck's constant, T is temperature, kB is Boltzmann's

constant, and µc is the chemical potential. Note that Eq. (1.1) only takes into

account intraband contributions of graphene conductivity and thus is accurate up

to tens of THz [18], as interband contributions are only signi�cant when photon

energy is near and above 2|µc|. For energies higher than this value, i.e. ~ω > 2|µc|,
interband transitions from valence electrons dominate [19, 20].

9



Chapter 2
Graphene-based recon�gurable THz �lters

In this chapter we propose the concept, synthesis, analysis, and design of graphene-

based planar, plasmonic low-pass �lters operating in the THz band. The proposed

�lters will be hosted in simple graphene waveguide con�gurations that allow straight-

forward biasing schemes, but the proposed design technique can be adapted in a

straightforward manner to other graphene plasmonic waveguides, potentially com-

bining graphene plasmonics with other technologies such as metamaterials or bidi-

mensional metasurfaces to optimize performance. Such challenges lie outside the

scope of this document, but would indubitably make for valuable and interesting

research.

Currently, graphene-based plasmonic components ranging from waveguides [9,

21, 22, 15], antennas [23, 24, 25, 26, 27], re�ectarrays [28], ampli�ers [29], switches

[30], modulators [31], or phase-shifters [32] to sensors [33, 34] have already been

proposed and investigated. These devices may �nd application in di�erent areas such

as chemical and biological remote sensing, high resolution imaging and tomography,

time-domain spectroscopy, atmospheric monitoring, and broadband picocellular or

intrasatellite communication networks [35, 36, 37, 38].

Terahertz systems also require �ltering elements to select target frequency bands

and reject thermal radiation that may otherwise saturate sensitive detectors [39, 40].

Several types of THz �lters can be found in the literature, such as low pass [41], high-

pass [42], band-pass [43], and band-stop �lters [44]. However, these implementations

are based on bulky and heavy quasi-optical components that cannot be tuned elec-

trically. In addition, planar plasmonic guided �lter have been developed using noble

metals [45, 46, 47], but they can operate only at optics and infrared frequencies.
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Figure 2.1: Proposed graphene-based THz low pass �lter of N th degree. The structure consists

of a monolayer graphene strip, with width W , and N gating pads located beneath it.

Consequently, there is a clear need to develop planar and miniaturized THz �lters

able to be integrated in future recon�gurable communications and sensing systems.

In this context, we propose the concept, analysis, and design of graphene-based

THz plasmonic recon�gurable low-pass �lters. The structure is composed of a

graphene strip and several independent polysilicon DC gating pads located beneath

it, as depicted in Fig. 2.1. The strip supports the propagation of extremely-con�ned

transverse-magnetic (TM) plasmons [21, 22] whose guiding characteristics can be dy-

namically modi�ed along the structure by applying di�erent DC bias voltages to the

gating pads. If all pads are equally biased, the structure behaves as a simple plas-

monic transmission line (TL) propagating the input waves towards the output port.

When a di�erent DC bias is applied to a gating pad, the guiding properties of the

strip area located above are modi�ed thanks to graphene's �eld e�ect. We apply

this concept to implement stepped impedance low pass �lters, which are composed

of a cascade of transmission lines alternating sections of high and low characteris-

tic impedance. Importantly, the cuto� frequency of the �lters can be dynamically

tuned by simultaneously modifying the DC bias applied to the gates. A synthe-

sis procedure is then presented to design �lters with the desired cuto� frequency,

in-band return loss, and rejection characteristics, directly providing the physical

length of the gating pads and the required biasing voltages. The electromagnetic

modeling of the structure is performed combining a transmission line model with
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CHAPTER 2. GRAPHENE-BASED FILTERS 2.1 Proposed Structure

a transfer-matrix approach. To this purpose, a recently introduced graphene elec-

trostatic scaling law [22] is applied to e�ciently compute the propagation constant

of the modes supported by the strip as a function of its width, surrounding media,

and applied electrostatic DC bias. The proposed approach allows the accurate anal-

ysis of the desired �lters in just seconds, avoiding large simulation times of general

purpose full-wave software.

The fabrication of the proposed �lters could be carried out through standard

e-beam lithography techniques, and the coupling of power to the structure may

be accomplished through several recently developed techniques for the excitation

of SPPs in graphene [26, 27, 48, 49, 50, 51, 52, 53, 54]. Rapid advancements are

occurring in these areas, and the proposed �lters may represent an important step

towards innovative THz communication solutions as a key constituting element of

future THz plasmonic systems.

In order to illustrate these concepts, several low-pass �lters are designed and

analyzed, evaluating their performance and recon�guration capabilities in the THz

band. In addition, some practical considerations concerning the implementation of

the proposed �lters are addressed, discussing in detail the real gating structure and

the in�uence of graphene's losses in the �lters performance.

2.1 Proposed Structure

The proposed structure, depicted in Fig. 2.1, comprises a graphene ribbon trans-

ferred onto a dielectric substrate and a number of polysilicon gating pads beneath

the strip.

Graphene's surface conductivity is modeled through Kubo's formalism, as intro-

duced in Chapter 1. One of the most interesting features of graphene is that its

chemical potential can be tuned over a wide range (typically from -1 eV to 1 eV)

by applying a transverse electric �eld via a DC biased structure, such as the one

proposed here. An approximate closed-form expression to relate µc and the applied

DC voltage (VDC), is given by

µc ≈ ~vF

√
πCox(VDC − VDirac)

e
, (2.1)

where VDirac is the voltage at the Dirac point, Cox ≈ εrε0/t is the gate capacitance
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CHAPTER 2. GRAPHENE-BASED FILTERS
2.2 Synthesis and Modeling of

Graphene-based Lowpass Filters

Figure 2.2: Equivalent TL model of the graphene-based �lter shown in Fig 2.1.

using the standard parallel-plate approximation, εr and t are the permittivity and

thickness of the gate dielectric, and vF is the Fermi velocity in graphene (vF ≈ 106).

In addition, graphene monolayers support the propagation of surface plasmons po-

laritons at THz frequencies with moderate losses and extreme con�nement. Several

authors have studied the characteristics of the SPPs propagating along graphene

ribbons [21, 22],

and transmission line models have been successfully utilized to describe this

type of structure [29, 55, 56]. Using this approach, the structure of Fig. 2.1 can

be modeled as a cascade of transmission lines, as shown in Fig. 2.2. The complex-

valued characteristic impedance and propagation constant of the transmission lines

depend on graphene's chemical potential, and can be largely modi�ed by the DC

voltage applied to the gating pads, allowing the synthesis of the proposed �lters.

2.2 Synthesis and Modeling of

Graphene-based Lowpass Filters

2.2.1 Synthesis Procedure

The goal of this section is to design a lowpass �lter using the structure of Fig. 2.1,

with the desired cuto� frequency, rejection characteristics, and inband performance.

This structure implements a so-called stepped impedance lowpass �lter [57], whose

equivalent network is presented in Fig. 2.2. As seen, it is composed of the connec-

tion of N transmission line sections with lengths lk, propagation constants γk, and

characteristic impedances Zk. The design procedure starts with the calculation of

a set of characteristic polynomials able to satisfy the desired speci�cations in terms

of in-band and out-of-band characteristics. Scattering parameters are expressed in

13



CHAPTER 2. GRAPHENE-BASED FILTERS 2.2 Synthesis and Modeling

terms of these polynomials as follows

S21(ω) =
1

εE(ω)
and S11 =

F (ω)

E(ω)
. (2.2)

The calculation of the F (ω) and E(ω) polynomials is done analytically for most use-

ful transfer functions, including Butterworth and generalized Chebyshev responses.

Some useful techniques are reported in [57]. The next step in the design procedure is

the election of the electrical length θc of the individual line sections. This parameter

directly determines the periodicity of the frequency response when the ideal polyno-

mials are implemented with transmission lines. Smaller values of θc result in a wider

spurious-free range, while requiring more abrupt changes in the line impedances.

Having decided the value of θc, a recursive technique [57] is applied to extract the

normalized values of characteristic impedances (Z̄k). Then, the de-normalization of

the calculated characteristic impedances to the real port impedances (Z0) used in

the �lter implementation is done as Zk = Z̄kZ0.

The �nal and crucial design step consists in �nding the design parameters of the

physical structure in Fig. 2.1, to implement the prototype circuit at the desired cut-

o� frequency. To this purpose, the required de-normalized impedance values (Zk)

obtained during the above procedure are synthesized using the SPP properties of

graphene strips. This can be most e�ciently accomplished by appropriately adjust-

ing the chemical potential (µc) along the strip through electrostatic gating. As an

illustrative example of this electrical control, we show in Fig. 2.3 the real part of the

characteristic impedance and normalized phase constant of the �rst waveguide-like

mode propagating along a graphene strip, computed versus the chemical potential

for graphene strips of di�erent characteristics. It can be observed in the �gure

that, for several strip widths and frequencies, the impedances achievable vary from

around 20 kΩ to several hundreds of ohms for practical chemical potentials in the

range 0−1 eV. Importantly, the calculation of the chemical potentials for all sections

also �xes the values of their propagation constants (βk). This information, combined

with the election of θc done during the synthesis phase, allows the calculation of the

physical lengths of all graphene strip sections in Fig. 2.1 using the straightforward

relation

lk =
θc

βk(µc)
. (2.3)

Note that this synthesis procedure is only strictly valid when lossless transmission

14
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Figure 2.3: Characteristic impedance (a) and normalized phase constant (b) of the �rst

waveguide-like surface plasmon propagating along di�erent graphene strip con�gurations versus

the chemical potential µc. Solid lines have been obtained using the electrostatic approach de-

scribed in Section 2.2.2, and markers indicate values computed with HFSS. Graphene parameters

are τ = 1 ps and T = 300 K.

lines are considered. The presence of losses in the real structure leads to small

deviations between the actual �lter response and the expected synthesized function

[57], adding some extra round-o� inside the �lter passband. Also, the connection

of transmission lines of di�erent characteristic impedances is considered to be ideal.

In practice, the presence of real gating pads has some in�uence on the propagation

characteristics of the SPP modes propagating along the di�erent graphene strip

sections. All these non-ideal e�ects will be discussed in the last section of the

chapter.

2.2.2 Electromagnetic Modeling

The electromagnetic modeling of the structure shown in Fig. 2.1 is based on the

analysis of its equivalent network (see Fig. 2.2) using a transmission line formalism

combined with an ABCD transfer-matrix approach [58].

For the sake of brevity, the details of the synthesis procedure and the numerical

examples shown throughout this chapter will focus solely on a graphene strip of

arbitrary width. By the end of this chapter, the potential design of �lters in other

host graphene waveguides will become apparent to the reader. For su�ciently wide

strips, i.e. W � λspp, all features of the fundamental SPP mode can be analytically
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CHAPTER 2. GRAPHENE-BASED FILTERS 2.2 Synthesis and Modeling

calculated assuming a laterally in�nite waveguide [59], greatly simplifying the design

and study of these �lters. Unfortunately, narrow strips of a few dozens or hundreds

of nanometers, which may be more useful for highly miniaturized integrated THz

transceivers, do not allow this luxury [21, 22], and one has to resort to full-wave

numerical techniques. Consequently, the use of a transmission line model in this

case would generally require the numerical analysis of the propagating modes along

multiple isolated graphene strips of varying characteristics, which remains a com-

putationally costly task. This shortcoming, however, can be elegantly overcome by

making use of the quasi-electrostatic nature of surface plasmons in narrow graphene

strips, enabling an extremely e�cient design and analysis tool. To this end, the

scaling law proposed in [22], based in the quasi-electrostatic nature of surface plas-

mons in graphene strips, will be used. This approach, which assumes that the strip

width is much smaller than the wavelength, establishes that plasmon properties are

solely determined by the strip width (W ), surrounding media (εr), and graphene

conductivity (σ). Then, once the propagating features of a given plasmonic mode

have been obtained, they can be scaled to any arbitrary strip by using the scaling

parameter

η(β,W ) =
Im[σ(fβ)]

fβWεeff
, (2.4)

where fβ is the frequency where the surface plasmon propagates with a phase con-

stant β, and εeff = (1 + εr)/2 models the dielectric media. Note that, due to the

electrostatic approach employed to derive Eq. 2.4 (see [22]), the scaling parameter

η is independent of the operation frequency.

This scaling law is applied to e�ciently compute the SPP propagating features

along any graphene strip. The process is as follows. First, the scaling parameter η

related to the desired surface mode is obtained using a single full-wave simulation.

Note that this simulation is performed only once, and the η − βW curve computed

will be employed for the design of any �lter, regardless of the strip width, graphene

conductivity, or supporting substrate. Fig. 2.4 con�rms that η only depends on

the product βW [22] and that surface plasmons propagating on di�erent strips lead

to the same scaling parameter. Second, the phase constants of surface plasmons

propagating along strips of arbitrary characteristics are computed using η. To this

purpose, the scaling parameter is computed at the desired operation frequency fβ
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Figure 2.4: Scaling parameter η versus the product of the phase constant and the strip width

(βW ) for di�erent graphene strip con�gurations. Graphene parameters are τ = 1 ps and T = 300K.

and strip width W using Eq. 2.4, and the corresponding value of β is then retrieved

using the information of Fig. 2.4. Finally, the attenuation constant is found as

α = 1/(2Lp), where Lp is the 1/e decay distance of the power. The propagation

distance of plasmons (Lp) is mainly controlled by the electron relaxation time of

graphene τ , and it can be approximately obtained by vgτ , where vg is the plasmon's

group velocity (vg = dωp/dβ) [22]. Therefore, the attenuation constant may be

expressed as

α =
1

2vgτ
. (2.5)

Once the complex propagation constant γ = α+ jβ of the propagating TM plasmon

is known, its characteristic impedance is obtained as [58]

ZC =
γ

jωε0εeff
. (2.6)

The accuracy of this approach is validated in Fig. 2.3, where the characteristic

impedance and phase constant of plasmons propagating along di�erent strip con-

�gurations are computed using both the proposed technique and the �nite element

method (FEM) software Ansoft HFSS. There, the graphene strip is modeled as an

in�nitesimally thin layer where surface impedance boundary conditions are imposed

(Zsurf = 1/σ).
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The combination of the graphene strip scaling law with a transmission line and

transfer-matrix approach permits an extremely fast electromagnetic analysis of the

proposed �ltering structure (see Fig. 2.1), allowing an e�cient implementation of

the synthesis technique described in the previous section.

2.3 Design Examples

In this section we design and analyze two low-pass �lters implemented using the

structure shown Fig. 2.1. For the sake of generality, the �lters have been designed

to have di�erent order and cuto� frequencies, considering various strip widths and

dielectrics. The performance of the �lters is presented in terms of their scattering

parameters, referred to the characteristic impedance of the graphene sections at the

input and output ports. A comparison between the transmission line model com-

bined with the scaling law and full-wave results using HFSS is shown for both cases,

validating the accuracy of the proposed electromagnetic modeling. In addition, the

recon�guration capabilities of the �lters are investigated in detail. In this study,

we consider a temperature of T = 300 K and graphene with a relaxation time τ of

1 ps, which corresponds approximately to a carrier mobility of 50000 cm2/(V s) for

a chemical potential of µc = 0.2 eV [60]. Here we focus on the �ltering performance

of the proposed structures, whereas other practical considerations, such as the pres-

ence of the gating pads and their e�ect on the �lter performance, or the in�uence

of losses, will be discussed in the next section.

In the �rst example, we consider a graphene strip of 150 nm transferred onto a

dielectric of relative permittivity 1.8, e.g. ion gel [60]. Using this host waveguide, we

have designed a 7th degree �lter with a cuto� frequency of 2.3 THz. The Chebyshev

polynomials were computed using standard techniques [57] for a maximum theoret-

ical return loss of 30 dB, and the electrical length θc at the cuto� frequency was

set to 37◦. These values were chosen to yield practical values of chemical potential

through the synthesis procedure explained in the previous section. The �nal design

parameters of the �lter are shown in Table 2.1. Note that �lters of this degree with

better roll-o� characteristics could be synthesized, but this would further increase

the required range of chemical potential values achievable in the structure.

Fig. 2.5a shows the frequency response of the �lter, computed using the proposed
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Table 2.1: Design parameters of the �rst example: a 7th degree �lter.

Section Z̄ l (nm)
µc,nominal

(eV)

µc,tuned1

(eV)

µc,tuned2

(eV)
Ports 1 500 0.17 0.27 0.41
1,7 1.37 382 0.1 0.15 0.23
2,6 0.57 929 0.51 0.74 1
3,5 2.26 232 0.026 0.06 0.1
4 0.45 1172 0.79 1 1
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Figure 2.5: Scattering parameters of a 7th degree �lter implemented using the structure depicted

in Fig. 2.1. The design parameters are shown in Table 2.1, the strip width is 150 nm, and a dielectric

of εr = 1.8 is employed as a substrate. (a) Nominal �lter designed to have a cuto� frequency of

2.3 THz. Results are obtained using the ideal synthesis procedure, the transmission line approach

combined with the scaling law, and the commercial software HFSS. (b) Recon�guration possibilities

of the �lter obtained by adequately controlling the DC bias of the di�erent gating pads.

transmission line approach and the full-wave commercial software HFSS. A good

degree of agreement is observed, with very similar attenuation pro�le and average

level of return loss in the passband. Moreover, the structure presents a low insertion

loss level, around 3 dB, which is a remarkable value at this frequency range. The

slight di�erence in the cuto� frequency between both approaches is due to the mono-

modal nature of the transmission line approach, which neglects higher order e�ects

at the connection between two adjacent graphene strip sections. This results in

small modi�cations in the phase condition of the circuit, which is now ful�lled at

a slightly di�erent cuto� frequency. Interestingly, this e�ect appears to be uniform

along the structure, allowing to adjust the �lter's cuto� frequency by a small overall
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Table 2.2: Design parameters of the second example: a 9th degree �lter.

Section Z̄ l (nm)
µc,nominal

(eV)

µc,tuned1

(eV)

µc,tuned2

(eV)
Ports 1 200 0.17 0.35 0.46

1,9 1.36 156 0.1 0.21 0.274

2,8 0.58 367 0.43 0.93 1

3,7 2.24 94 0.035 0.01 0.12

4,6 0.44 483 0.69 1 1

5 2.48 85 0.023 0.078 0.1

scaling of the section lengths. Fig. 2.5b illustrates the recon�guration possibilities

of the designed �lter. By adequately controlling the DC voltage applied to the

gating pads, following the synthesis procedure described in Section 2.2.1, the overall

electrical length of the device can be modi�ed thus leading to an electric control

of the �lter's cuto� frequency. For the sake of clarity, only two additional possible

recon�guration states are shown in the �gure (their corresponding design parameters

are shown in Table 2.1). However, a continuous range of cuto� frequencies can be

easily synthesized. Importantly, the proposed �lter allows a dynamic control of the

cuto� frequency over 50%. This value is mainly limited by two factors. First, the

�xed physical length of the gating pads imposes a limit to the maximum frequency

shift attainable while maintaining an acceptable variation of the attenuation pro�le

and return loss. Second, the values of the chemical potential employed are limited,

by technological reasons [61], to the range of 0− 1 eV.

The second example is composed of a strip of width W = 100 nm transferred

onto a quartz substrate of εr = 3.9. The �lter's degree has been increased to N = 9

and the cuto� frequency is set to 3.3 THz, with θc = 39◦. The complete design

parameters of the �lter are shown in Table 2.2 and the frequency response is plotted

in Fig. 2.6a. Very similar conclusions compared to the previous design can be drawn

from the �lter response. Importantly, the small di�erence in the cuto� frequency

between the two electromagnetic analysis is also of similar relative magnitude to

that of the previous example. Finally, the tunable features of this �lter are shown in

Fig. 2.6b, where around 50% of cuto� frequency dynamic control is again obtained.
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Figure 2.6: Scattering parameters of a 9th degree �lter implemented using the structure depicted

in Fig. 2.1. The design parameters are shown in Table 2.2, the strip width is 100 nm, and a dielectric

of εr = 3.9 is used as substrate. (a) Nominal �lter designed to have a cuto� frequency of 3.3 THz.

Results are obtained using the ideal synthesis procedure, the transmission line approach combined

with the scaling law, and the commercial software HFSS. (b) Recon�guration possibilities of the

�lter obtained by adequately controlling the DC bias of the di�erent gating pads.

2.4 Practical Considerations

This section brie�y discusses several technological aspects related to the possible

practical implementation of the proposed �lters, such as the strip biasing and the

in�uence of graphene losses.

2.4.1 Rigourous electrostatic biasing of graphene strips

The results presented in previous section assumed, as a �rst approximation, an ideal

carrier distribution along the graphene strip. However, this distribution requires

strong discontinuities between adjacent sections. In practice, this carrier density

pro�le cannot be achieved because i) there is a physical space between two adjacent

gating pads (see Fig. 2.1), and ii) there are fringing e�ects at the edges of the

gating pads, which may modify the carrier density pro�le. Here, we show that good

performance is maintained after rigourously considering these e�ects.

The analysis of the �lter is performed in two di�erent steps. First, a electrostatic

study is performed in order to determine the real carrier density pro�le induced on

the graphene strip by the di�erent gating pads. Then, this carrier density is em-

ployed to compute the electromagnetic behavior of the �lter, as detailed in Section
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Table 2.3: Gate Voltages for the 7th degree �lter

Section ports 1,7 2,6 3,5 4
Initial Voltage (V) 5.4 1.9 48.4 0.13 116

Optimized Voltage (V) 5.4 1.8 40 0.1 90

Table 2.4: Gate Voltages for the 9th degree �lter

Section ports 1,9 2,8 3,7 4,6 5
Initial Voltage (V) 2.5 0.86 15.9 0.11 41 0.05

Optimized Voltage (V) 2.5 0.68 12 0.06 31 0.05

III. The electrostatic problem has been solved using the commercial software AN-

SYS Maxwell, considering that the graphene strip is connected to the ground, and

assigning adequate biasing voltages to the di�erent gating pads. These voltages are

initially computed with Eq. 2.1 to provide the ideal values of chemical potential.

The gating pads are placed 25 nm below the graphene strip and 35 nm apart from

adjacent pads (t = 25 nm and d = 35 nm in Fig. 2.1), with a pad thickness of

50 nm. This approach allows to obtain the charge distribution at the graphene-

substrate interface, ρ(z), which in turn permits computing the real distribution of

chemical potential along the strip as [62]

µc(z) =
~vF
e

√
πρ(z)

e
. (2.7)

Once the chemical potential is known, the complex-valued conductivity at each

point of the strip is computed with (1.1). Due to the �nite distance between pads

and the e�ect of fringing DC �elds, using the initial voltages computed with Eq.

2.1 may result in a �lter with a shifted frequency response, requiring an additional

optimization step. Tables 2.3-2.4 show the initial and optimized values of voltage

assuming no previous chemical doping. Figs. 2.7a-2.7b depict the chemical potential

pro�le along the strip computed with this approach for the �lters proposed in the

previous section.

Note that �lters with lower gate voltages can be easily designed by setting a

more relaxed initial speci�cation, speci�cally by increasing the electrical length of

the transmission line sections (θc) in the synthesis of the polynomials. However, this

comes at the expense of a worse spurious free range in the �nal �lter.

Once the electrostatic problem has been solved, we analyze the EM response
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Figure 2.7: Comparison between ideal and realistic longitudinal chemical potential distributions

of the (a) 7th and (b) 9th degree �lters. (c) and (d) show the frequency response of the resulting

�lters computed using the transmission line approach combined with the scaling law, and the

commercial software HFSS.

of the proposed structures taking into account the presence of the gating pads,

which can be modelled at THz frequencies as a dielectric with permittivity εr ≈ 3

[26, 27, 63]. The inclusion of the gating pads in the dynamic analysis barely a�ects

the EM response of the �lters, because they are electrically very thin and with rel-

ative permittivity very similar to the background substrate. Figs. 2.7c-2.7d show

the frequency response of these �lters, computed via full-wave simulations and with

the the scaling law, obtaining again good accuracy while requiring negligible com-

putational resources. This study further con�rms the robustness and usefulness of

the proposed analysis technique, since performing full-wave analysis of continuously

varying conductivity pro�les is a tedious and time-consuming process. The overall

performance of both �lters remains satisfactory, despite the slight deterioration of

the in-band re�ection pro�le. This e�ect is caused by the smooth transitions in the
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Figure 2.8: In�uence of graphene's relaxation time in the frequency response of the (a) 7th and

(b) 9th degree �lters.

spatial distribution of chemical potential, not accounted for in prototype network,

and is more severe in the 9th degree �lter due to very strong and narrow variation of

conductivity in the central sections of the �lter. This known limitation of stepped

impedance low-pass �lters [57] could be overcome by implementing more complex

circuits that use impedance inverters or lumped elements to account for higher order

e�ects at the junctions.

2.4.2 In�uence of Graphene losses

The presence of potentially high losses is an important factor to take into account

while evaluating the performance of the proposed �lters. To assess this point, the

7th and 9th degree �lters have been analysed assuming di�erent values of graphene

relaxation time (τ). Figs. 2.8a-2.8a show the frequency response of both �lters for

values of τ ranging from 0.1 ps to 1 ps. It is observed that graphene's relaxation

time strongly a�ects the insertion loss of the �lter and the sharpness of the tran-

sition between the pass-band and the rejected band. For relaxation times as low

as τ = 0.1 ps, losses are too high for the �lter to present practical utility, whereas

values nearing 0.5 ps and above show very good performance. Importantly, values of

electron mobility in graphene on a boron nitride substrate of up to 40000 cm2/V s,

which corresponds to τ ≈ 0.8 ps, have been experimentally observed at room tem-

perature [64]. This measured value con�rms that the proposed �lters are of practical

value using state of the art graphene technology.
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Chapter 3
Spatial Dispersion in Graphene:

Equivalent Circuits and E�ect on Device

Performance

As discussed in previous chapters, the propagation of surface waves along graphene-

based structures has attracted signi�cant attention at microwaves, millimeter-waves,

and low THz frequencies [9, 15, 65, 66]. This has led to a plethora of exciting the-

oretical research on graphene-based devices, like the THz-infrared lowpass �lters

proposed in the previous chapter. However, the possible in�uence of spatial disper-

sion in the propagation characteristics of surface plasmons in graphene has usually

been neglected, and a clear interpretation of this phenomenon, for instance in terms

of equivalent simple circuit models, is still missing.

Recent studies have demonstrated that spatial-dispersion may signi�cantly a�ect

the propagation of surface plasmons in graphene-based strips and 2D waveguides

even at the very low THz regime [67, 68, 18]. Initial works [67, 68] were based on a

low-kρ conductivity model based on the relaxation-time approximation (RTA) [69],

which is accurate up to the THz band (it only considers intraband contributions)

for su�ciently fast surface waves. However, spatial dispersion becomes especially

important for extremely slow-waves [67], a scenario in which this approximate model

is not strictly valid [69]. Note that although the excitation of surface plasmons in

graphene is di�cult due to the large momentum mismatch between plasmons and

incoming electromagnetic waves, di�erent techniques have already been successfully
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Figure 3.1: Graphene-based waveguides. (a) Single graphene sheet. The �gure shows the charge

distribution and electric �eld of a surface plasmon propagating on the sheet. (b) Graphene-based

parallel-plate waveguide. The �gure shows the �eld distributions of the dominant modes: odd

quasi-TEM mode (blue) and even TM mode (red). The width of both waveguides is much larger

than the guided wavelength, i.e. W � 1/kρ.

developed for this purpose [70, 71, 72, 26]. On the other hand, the use of equivalent

circuits has recently been proposed to model wave propagation along graphene sheets

[29, 55], similar to the case of plasmons along noble metals in optics [73]. The

analytical relation between the circuit elements and graphene's conductivity [55]

allows to clearly identify the di�erent mechanisms involved in plasmon propagation,

explaining their connection with the intrinsic properties of graphene. However, in

contrast to carbon nanotubes [74], current equivalent circuit models cannot handle

the propagation of surface plasmons along spatially dispersive graphene.

In this context, this chapter is dedicated to the study of graphene SPPs in spa-

tially dispersive graphene-based 2D waveguides via analytical methods. First, a

full-kρ RTA tensorial conductivity model [18] is used to derive the exact dispersion

relation of the waveguides under study. These consist of a single graphene sheet and
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a parallel-plate waveguide (PPW) (see Fig. 3.1). The full-kρ conductivity model

provides accurate results for any plasmon wavenumber, and, since it considers intra-

band contributions of graphene, it is valid up to infrared frequencies. Importantly,

rigorous analytical expressions are provided for the �rst time to characterize surface

plasmons propagation along a spatially dispersive graphene sheet. We demonstrate

both analytically and numerically that spatial dispersion signi�cantly decreases the

mode con�nement and the losses of extremely slow waves, which usually appear in

practical waveguide structures composed of dielectrics with high permittivity val-

ues. Furthermore, we compare our results with previously reported studies [67, 68],

con�rming that in these scenarios, the use of a conductivity model able to handle

large values of the wavenumber is required to accurately take the spatial dispersion

phenomenon into account. The analytical results obtained using the RTA model are

further validated numerically using the full-kρ Bhatnagar-Gross-Krook (BGK) con-

ductivity model [18], which enforces charge conservation and is expected to be more

accurate than the RTA model. Both approaches leads to extremely similar results,

thus demonstrating the usefulness of the RTA-based analytical developments. How-

ever, note that due to the mathematical complexity of the BGK model, it cannot

be applied to derive analytical expressions for the characteristics of graphene-based

surface plasmons.

Second, we derive simple equivalent transmission line models able to model TM

surface wave propagation along these waveguides, encapsulating all non-local e�ects

into a shunt quantum capacitance exclusively dependent on the characteristics of

graphene. Third, we discuss the implications of these �ndings in realistic devices,

such as the �lters studied in chapter 2.

3.1 RTA Non-Local Model for the Intraband Con-

ductivity of Graphene

An analytical spatially dispersive model for the intraband conductivity tensor of

graphene valid for arbitrarily wavevector values was derived [18] from the semiclas-

sical Boltzmann transport equation under the relaxation-time approximation (RTA)

and using a linear electron dispersion near the Dirac points. Using a cartesian co-
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ordinate system (x− y), this conductivity tensor can be expressed as

σ
RTA

= γIφ, (3.1)

where

γ = −j e
2kBT

π2~2
log

{
2

[
1 + cosh(

µc
kBT

)

]}
, (3.2)

and

Iφxx(kx, ky) = 2π
v2Fk

2
yk

2
ρR− ξvFkxp2 − ξ2p2(1−R)

v2F (ξ + vFkx)k4ρ
, (3.3)

Iφyy(kx, ky) = 2π
v2Fk

2
xk

2
ρR + ξvFkxp

2 + ξ2p2(1−R)

v2F (ξ + vFkx)k4ρ
, (3.4)

Iφxy(kx, ky) =Iφyx(kx, ky) = −2πkxky

·
v2Fk

2
ρR + 2ξvFkx + ξ2p2(1−R)

v2F (ξ + vFkx)k4ρ
,

(3.5)

with k2ρ = k2x + k2y, ξ = ω − jτ−1, R(kx, ky) = ξ+vF kx√
ξ2−v2F k2

, and p2 = k2x − k2y.
Let us consider the case of a laterally in�nite graphene sheet, which supports a

surface wave with wavenumber kρ propagating along the x-axis (see Fig. 3.1a). This

sheet is isotropic in the xy plane, which means that the relation between the electric

�eld and the surface current does not depend on the orientation of the sheet in the

plane [18]. Using this coordinate system, Eq. (3.1) can be expressed as

σ =

 σxx 0

0 σyy

 , (3.6)

where σxx 6= σyy [18]. This reference system leads to non-equal diagonal terms of

the conductivity tensor, which hinder the application of the approaches developed

in [67, 68] to study plasmon propagating along laterally in�nite graphene sheets.

In order to simplify the expressions of the conductivity model, we take advantage

of the isotropic property of graphene sheets [18] to chose an speci�c reference system

(x′ − y′), where the axis x′ and y′ are rotated 45◦ with respect to the ρ direction of

the propagating wave. In this reference system the relations k2x′ = k2y′ and k
2
ρ = 2k2x′

hold, which allows to simplify the conductivity tensor to

σx′x′ = σy′y′ = γ
π√

(ω − jτ−1)2 − v2Fk2ρ
, (3.7)
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σx′y′ = σy′x′ = −γπ

 1√
ξ2 − v2Fk2ρ

+

2ξkρ/
√

2

vF (ξ + vF (kρ/
√

2))k2ρ
+

2ξ2

√
ξ2 − v2Fk2ρ + (ξ + vF (kρ/

√
2))

k2ρ(ξ + vF (kρ/
√

2))
√
ξ2 − v2Fk2ρ

 .
(3.8)

Importantly, Eqs. (3.7)-(3.8) are expressed only as a function of the wavenumber

kρ and satisfy the desired symmetries [18] σx′x′ = σy′y′ and σx′y′ = σy′x′ . These

equations allow an easy treatment of laterally in�nite graphene sheets following

previously introduced approaches [67], [68]. In addition, it should be noted that a

graphene sheet is isotropic in nature [18], and therefore the cross conductivity terms

σx′y′ = σy′x′ do not couple TM and TE modes.

Finally, note that, since this model is based on the semiclassical Boltzmann

transport equation, it is not accurate when the spatial variations of the �elds is

comparable to the de Broglie wavelength of the particles [18].

3.2 Single Graphene Sheet

3.2.1 Dispersion relation

Consider a TM surface plasmon, with frequency ω and wavevector kρ, propagating

along the +x direction of a graphene sheet, assuming that the sheet width is much

larger than the guided wavelength, i.e. W � 1/kρ. This is a particular case of

the strip structure considered in the lowpass �lters studied in the previous chapter,

where arbitrary width was allowed. This fact does not hinder the usefulness of such

study, as the qualitative conclusions reached in this chapter could be applied to

more complex structures, albeit without the possibility of such simple and accurate

equivalent circuits.

A rigorous transverse equivalent circuit of the structure is shown in Fig. 3.2a.

The equivalent admittances of the circuit are de�ned as

Y TM
1 =

ωεr1ε0
kz1

, Y TM
2 =

ωεr2ε0
kz2

, Y TM
σ = σ(kρ, ω),

kz1 = ±
√
εr1k20 − k2ρ, kz2 = ±

√
εr2k20 − k2ρ.

(3.9)
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Figure 3.2: Transverse equivalent network of a graphene sheet (a) and a graphene-based parallel

plate waveguide (b).

The dispersion relation of the plasmons propagating along the graphene sheet can

be rapidly obtained by applying a transverse resonance equation [66, 67, 75] to this

circuit, leading to

Y TM
1 + Y TM

2 = −Y TM
σ , (3.10)

which may be rewritten as [9]

ωε0εr1

±
√
εr1k20 − k2ρ

+
ωε0εr2

±
√
εr2k20 − k2ρ

= −σ(kρ, ω), (3.11)

where kρ = β − jα is the complex propagation function of the plasmon wave, εri

is the relative permittivity of the region (i = 1, 2), k0 = ω
√
µ0ε0 is the free-space

wavenumber, and σ(kρ, ω) is the graphene's conductivity. Note that we allow ac-

counting for potential spatial dispersion e�ects by explicitly writing the dependence

of the conductivity with the wavevector kρ.

Let us �rst review, for clarity of exposition, the case of surface plasmons propa-

gating on a laterally in�nite sheet described using a local (semi-classical) graphene

conductivity model. In this well-known case [9] graphene's conductivity σ = σlocal

is a frequency dependent variable that does not depend on the plasmon wavevec-

tor, de�ned in chapter 1, Eq. (1.1). This allows to easily obtain the propagation

constant kρ from the transcendental Eq. (3.11) using simple numerical techniques.

Moreover, when the graphene sheet is embedded in a homogeneous dielectric, i.e.

εr1 = εr2 = εr, the desired propagation constant can be obtained as

kρ,local = βlocal − jαlocal = k

√
1−

(
2

ησlocal

)2

, (3.12)
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where η =
√
µ0/(ε0εr) and k = ω

√
µ0ε0εr are the medium impedance and wavenum-

ber, respectively. Furthermore, in the usual non-retarded regime, i.e. when kρ � k0,

the plasmon wavevector can be accurately approximated as [9]

kρ,local ≈ −jωε0
εr1 + εr2
σlocal

. (3.13)

However, neglecting the in�uence of spatial dispersion may lead to signi�cant er-

rors when computing the properties of propagating waves at microwaves, millimeter

wave and low THz frequencies. Speci�cally, spatial dispersion plays an important

role for very slow waves (kρ � k0) [69], which usually appear when graphene is

surrounded by dielectrics with high-permittivity values [67].

Here, we analytically compute the dispersion relation of surface plasmon propa-

gating along spatially dispersive graphene sheets using the conductivity model out-

lined earlier. Following the approach developed in [67], the dispersion relation of

spatially dispersive TM surface plasmons along the x axis reads

ωε0εr1√
εr1k20 − k2ρ

+
ωε0εr2√
εr2k20 − k2ρ

= −γ π√
(ω − jτ−1)2 − v2Fk2ρ

, (3.14)

where

γ = −j e
2kBT

π2~2
log

{
2

[
1 + cosh

(
µc
kBT

)]}
. (3.15)

Note that Eq. (3.14) is similar to the dispersion relation of surface plasmons on

graphene when a local conductivity model is employed. The only di�erence here is

the presence of the term v2Fk
2
ρ, where vF ≈ 106m/s is the velocity of electrons in

graphene (Fermi velocity). This term explicitly indicates that the in�uence of spatial

dispersion increases with larger wavenumbers, in agreement with the conclusions

obtained using low-kρ approaches [67, 18].

Importantly, and in contrast to previous studies [9, 67], Eq. (3.14) admits ana-

lytical solution when the graphene sheet is surrounded by a homogeneous dielectric,

i.e. εr1 = εr2 = εr, which is obtained as

kρ = β − jα = k

√
1− 4εr [(ω − jτ−1)2 − k20εrv2F ]

η20γ
2π2 − 4v2Fk

2
0ε

2
r

. (3.16)

Interestingly, the availability of kρ in closed-form allows to obtain an explicit ex-

pression for the e�ective conductivity seen by the propagating TM surface plasmon.
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This conductivity reads

σTMxx = σTMyy =
1

η0

√
π2η20γ

2 − 4v2Fk
2
0ε

2
r

(ω − jτ−1)2 − v2Fk20εr
. (3.17)

Note that this equation explicitly shows how the permittivity of the surrounding

media controls the in�uence of spatial dispersion in graphene's conductivity.

In the non-retarded regime, the spatially dispersive plasmon wavenumber can be

accurately approximated as

kρ ≈
ωε0(εr1 + εr2)(ω − jτ−1)√
ε20(εr1 + εr2)2v2F − γ2π2

=kρ,local
(ω − jτ−1)√

(ω − jτ−1)2 + v2Fk
2
ρ,local

,
(3.18)

and graphene's e�ective TM conductivity reads

σTMxx = σTMyy =
1

ω − jτ−1
√
γ2π2 − ω2ε20(εr1 + εr2)2v2F . (3.19)

As expected, Eqs. (3.16)-(3.19) reduce to their respective well-known local ex-

pressions when spatial-dispersion e�ects are not considered.

3.2.2 Equivalent Circuit

We will derive here rigorous per unit length equivalent circuits to characterize the

longitudinal wave propagation of TM surfaces plasmon along a graphene sheet,

considering both the local and non-local conductivity models.

In the local case, i.e. neglecting the presence of spatial-dispersion, this propa-

gation can be modeled using the equivalent longitudinal circuit shown in Fig 3.3a.

This circuit was recently proposed in [55] and is composed of e�ective TM-mode

components: Faraday inductance L′F , kinetic inductance L
′
K , kinetic resistance R

′
K

and electrostatic capacitance C ′ES. The per unit length impedance (Z ′) and per unit

length admittance (Y ′) of the circuit are

Z ′ = R′K + jω(L′F + L′K) and Y ′ = jωC ′ES, (3.20)

which allows to compute the local propagation constant kρ,local using standard trans-

mission line theory [58] as

kρ,local = j
√
Z ′Y ′ =

√
ω2C ′ES(L′K + L′F )− jωR′KC ′ES. (3.21)
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Figure 3.3: Equivalent longitudinal circuit model for plasmon propagation on a graphene sheet.

(a) Local model. (b) Non-local (spatially dispersive) model.

The elements of the equivalent circuit are computed using the approach detailed

in [55]. This approach �rst derives the e�ective TM-mode electrostatic capacitance

and Faraday inductance assuming a propagating surface plasmon with reduced at-

tenuation factor (i.e., βlocal � αlocal) by using electrostatic analysis [73], and then

obtains the e�ective TM-mode kinetic inductance and resistance associated to the

propagating wave by imposing that the circuit propagation constant must be equal

to the plasmon wavenumber. Intuitively, one expects that, under certain conditions,

the e�ective TM-mode kinetic inductance and resistance should be proportional to

graphene surface impedance. Assuming that graphene is embedded within a homo-

geneous dielectric, the resulting expressions for the circuit elements are [55]

C ′ES = 2εrε0βlocalW, L′F =
µ0

2βlocalW
,

L′K =
2ε0εr(σ

2
i − σ2

r)

βlocalW |σ|4
, R′K =

4σrσiωε0εr
Wβlocal|σ|4

. (3.22)

This approach is further applied here to derive the circuit elements when graphene

is surrounded by di�erent media, assuming the non-retarded regime (kρ � k0). In

this case, the values of the di�erent e�ective TM-mode circuit elements are

C ′ES = ωWε20(εr1 + εr2)
2 σi
σ2
i + σ2

r

, L′F = 0,

L′K =
1

ωW

σ4
i − σ4

r

σi|σ|4
, R′K =

2

W

σr(σ
2
i + σ2

r)

|σ|4
. (3.23)

It is important to remark that the Faraday inductance in this case is strictly zero,

the electrostatic capacitance depends on the surrounding dielectric and graphene's

properties, and the kinetic inductance and resistance are mainly a function of the

intrinsic characteristics of graphene. The Faraday inductance arises due to the mag-

netic �elds created around the sheet by the time-dependent oscillations of surface
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charges. In case that kρ � k0, the plasmon wavelength is very short and the charge

oscillations are limited thus reducing the in�uence of their associated magnetic �eld.

This behavior is explicitly shown in Eq. (3.22), where the value of the Faraday in-

ductance is inversely proportional to the propagation phase βlocal. Consequently, the

physical assumption of the so-called non-retarded regime is to neglect the in�uence

of the Faraday inductance.

Interestingly, in a low loss scenario (σi � σr), the lumped e�ective TM-mode

circuit elements can be approximated as

R′K ≈
2

W
RKS

and L′K ≈
1

W
LKS

, (3.24)

where ZKS
= 1/σlocal = RKS

+ jωLKS
is graphene's surface impedance, where

LKS
=

1

ω

σi
σ2
i + σ2

r

and RKS
=

σr
σ2
i + σ2

r

, (3.25)

with LKS
= τRKS

.

Eq. (3.24) explicitly shows a clear, simple, and intuitively expected relation be-

tween the equivalent circuit of TM surface plasmons and the intrinsic physical pa-

rameters of graphene.

The equations given in this Section provide simple and intuitive analytical ex-

pressions for L′K and R′K in terms of the real and imaginary parts of graphene

conductivity. Speci�cally, the kinetic inductance L′K (associated to the inertia of

carriers in alternating electric �elds) is directly related to σi, which provides to

graphene its large inductive behavior. As expected, losses contribute to reduce such

e�ect, intuitively explaining that the real part of the conductivity results in a reduc-

tion of the kinetic inductance. In addition, the sign of R′K determines if the wave

is attenuated or ampli�ed while propagating along the sheet. In general, σr > 0,

which leads to a positive value of R′K associated to dissipation losses. However,

under population inversion conditions, negative values of σr can also be obtained

[29], leading to a net plasmon gain characterized by a negative resistance.

Let us focus now on the interesting case of surface plasmons propagating along

a spatially dispersive laterally in�nite graphene sheet. Similarly to the case of wave

propagation along carbon nanotubes [74], the in�uence of spatial dispersion can be

modeled by including an e�ective TM-mode quantum capacitance C ′Q in series with

the electrostatic capacitance (see Fig. 3.3b). This term is intrinsically related to
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spatial dispersion [18] and arises due to the di�erence between hole and electron

carrier densities in the graphene sheet [76, 77, 78]. Importantly, the local compo-

nents in the circuit model (see Fig. 3.3a) remain unchanged, i.e. Eqs. (3.22)-(3.24)

hold. Taking into account the presence of the quantum capacitance, the non-local

propagation constant of the circuit shown in Fig. 3.3b can be obtained as

kρ =
√
ω2Ctotal(L′K + L′F )− jωR′KCtotal, (3.26)

where C ′−1total = C ′−1ES + C ′−1Q . Following the same procedure as in the local case,

i.e. imposing that this circuit propagation constant must be equal to the plas-

mon wavenumber [see Eq. (3.16) or Eq. (3.18)], the e�ective longitudinal TM-mode

quantum capacitance yields

C ′Q =
C ′ES(β2 − α2)

ω2C ′ES(L′K + L′F )− (β2 − α2)
. (3.27)

This expression can be simpli�ed assuming a low-loss scenario (σi � σr) and the

non-retarded regime (kρ � k0), by inserting Eqs. (3.18) and (3.23) into Eq. (3.27).

Under these assumptions, the e�ective longitudinal TM-mode quantum capacitance

of plasmon wave propagation can be expressed as

C ′Q,approx =
W

2
CQS

, (3.28)

where CQS
is the intrinsic quantum capacitance of graphene, which is independent

of the surrounding media and is de�ned as [77], [78]

CQS
=

2e2kBT

π~2v2F
log

{
2

[
1 + cosh

(
µc
kBT

)]}
. (3.29)

The importance of the derived quantum capacitance for TM surface plasmons is

twofold. First, it explicitly provides a clear and simple connection between the circuit

component C ′Q and the physics governing the intrinsic behavior of graphene. Second,

it allows an accurate characterization of surface plasmons on spatially dispersive

graphene by using a simple circuit model. Note that although the nonlocality of

graphene's conductivity in�uences both the phase and attenuation constant of the

plasmons, these variations are elegantly absorbed in the circuit by the e�ective TM-

mode quantum capacitance, leaving the remaining components of the local circuit

model unchanged.
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Once analytical expressions are available for all circuit elements, additional pa-

rameters such as the characteristic impedance Z ′C may be obtained using classic

transmission line theory [58].

3.3 Graphene-based Parallel Plate Waveguides

3.3.1 Dispersion relation

Consider a surface wave mode propagating along the graphene-based parallel-plate

waveguide illustrated in Fig. 3.1b. A rigorous transverse equivalent circuit of this

structure is depicted in Fig. 3.2b, where the admittances shown in the �gure are

de�ned in Eq. (3.9). The dispersion relation of the supported plasmons can be

obtained applying a transverse resonance equation to this circuit, as detailed in [68].

Employing odd and even symmetries, the dispersion relations of the modes become

(Y TM
2 + Y TM

σ ) tan

(
kzs

d

2

)
− jY TM

1 = 0, (3.30)

(Y TM
2 + Y TM

σ ) + jY TM
1 tan

(
kz1

d

2

)
= 0. (3.31)

The former mode can be seen as a perturbation of the usual TEMmode of a PPW

with two perfect electric conductors [58] (odd quasi-TEM mode), whereas the latter

behaves as a perturbation of the TM mode supported by a single graphene sheet

[9, 68, 79] (even TM mode). Eqs. (3.30)-(3.31) do not admit analytical solutions,

and purely numerical methods, such as the Newton-Raphson algorithm [80], have

to be applied. Note that, in order to achieve convergence, these types of algorithms

are highly dependent on the starting points employed in the complex rootsearch.

Below, we provide some approximate wavenumber expressions that constitute very

good starting points for this numerical search.

Let us consider �rst the case of surface plasmons propagating along graphene-

based waveguides described using a local graphene conductivity model (Y TM
σ =

σlocal, see Chapter 1). The use of this model allows to obtain analytical approximate

solutions for the transcendental equations shown above. Speci�cally, under the long

wavelength approximation (d� √εr1λ0 and σkz/ωεr1 � 1), the wavenumber of the

odd quasi-TEM mode [see Eq. (3.30)] can be simpli�ed to [68, 79]:

kρ,local ≈ k0
√
εr1

√
1− j 2

k0η1σlocald
, (3.32)
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Figure 3.4: Electric �eld lines in graphene waveguides. (a) Graphene sheet TM mode.

(b) Graphene parallel plate waveguide odd quasi-TEM mode. (c) Graphene parallel plate waveg-

uide even TM mode

where η1 is the impedance of the inner media. Note that the characteristics of this

mode are mostly independent of the outer dielectric permittivity (ε2), implying that

the mode is highly con�ned between the graphene sheets (see Fig. 3.4b).

In addition, when the separation between the PPW plates is in the deep subwave-

length scale (d � √εr1λ0), the TM surface plasmons supported by each individual

graphene sheet are strongly coupled, and the waveguide behaves as a single sheet

with an equivalent conductivity (σeq) approximately double than that of a single

graphene sheet, i.e. σeq = 2σlocal [23]. For the transverse equivalent circuit shown

in Fig. 3.2b, this approximation implies that the two graphene conductivities are

in shunt, neglecting the in�uence of the inner dielectric. Consequently, contrary to

the quasi-TEM mode, it is the outer material that mainly a�ects the characteris-

tics of the TM plasmonic mode (see Fig. 3.4c). This allows to approximately solve
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Figure 3.5: Equivalent longitudinal circuit model for the propagation of the quasi-TEM mode in

graphene-based parallel-plate waveguides.

Eq. (3.31) as

kρ,local ≈
√
εr2k0

√
1−

(
2

η2σeq

)2

, (3.33)

where η2 is the impedance of the outer media.

Let us now consider the in�uence of the spatial dispersion in the waveguides

under analysis. For this purpose, the equivalent graphene admittance is set to

Y TM
σ = σxx = σyy, where σxx and σyy are de�ned in the previous section. Similarly

to the local case, it is not possible to obtain analytical solutions to Eq. (3.30)-(3.31),

and one has to resort to purely numerical methods. Importantly, the approximate

wavenumbers of local [see Eq. (3.32)-(3.33)] and spatially-dispersive (see next Sec-

tion) graphene-based waveguides constitute excellent initial points for the algorithm,

thus allowing an e�cient numerical evaluation of Eq. (3.30)-(3.31).

3.3.2 Equivalent Circuit

Approximate longitudinal equivalent circuits are derived to study the propagation

characteristics of the quasi-TEM and TM modes supported by spatially dispersive

graphene-based PPW. In both cases, the proposed circuital models are constructed

based on the circuit introduced in section 3.2, which is now extended considering

the physics governing each mode.

In order to derive the equivalent circuit model of the odd quasi-TEM mode, we

follow the approach detailed in [73] for surface plasmons propagating along metallic

PPW at optics. This approach introduces a cross-plate inductance (L′c) and ca-

pacitance (C ′c) to characterize the interaction between the parallel plates. These
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components can be obtained as [73]

C ′c = ε0εr1
W

d
e−βlocald, L′c = µ0

d

W
eβlocald, (3.34)

where βlocal is the phase constant of a plasmon along an isolated graphene sheet

placed at the interface between media 1 and 2 [see Eq. (3.13)]. The resulting per-

unit length circuit is depicted in Fig. 3.5. In addition, the intra-sheet elements are

also modi�ed to consider the coupling between the two graphene layers. Speci�cally,

R′K , L
′
K and L′F are multiplied by a factor of 2 to account for the series behavior

of both sheets. Likewise, the intra-sheet capacitances of the graphene layers appear

as reactive impedances in series, so C ′ES and C ′Q must be reduced by half [73]. The

resulting circuit elements are

C ′ES =
1

2
(εr1 + εr2)ε0βlocalW, L′F =

µ0

βlocalW
,

L′K =
2

W
LKS

, R′K =
4

W
RKS

, C ′Q =
W

4
CQS

. (3.35)

The approach followed to derive the equivalent circuit of the even TM plasmonic

mode is based on the approximation made in Eq. (3.33). In the conditions where

Eq. (3.33) is valid, the equivalent longitudinal circuit is obtained exactly as in the

case of a single sheet [see Fig. 3.3b and Eqs. (3.23)-(3.28)] which has an equivalent

graphene conductivity σeq = 2σ and is embedded in a material equal to the outer

cladding (εr = εr2).

The limitations of the proposed equivalent circuits mainly depend on the sepa-

ration distance between the graphene sheets (d). Importantly, both circuits provide

accurate results in the deep subwavelength scale (d � √ε1λ0, which is the typical

case of practical graphene-based PPW [81, 82]) and progressively loses accuracy as

this separation increases [83]. In addition, since the quasi-TEM equivalent circuit

of Fig. 3.5 takes into account the coupling between the two graphene plates [see

Eq. (3.34)], it is much more robust to variations of the sheet separation distance

than the TM equivalent circuit.

3.4 Numerical results

In this section, we �rst investigate the in�uence of spatial dispersion in the charac-

teristics of TM surface plasmons propagating along single and parallel plate waveg-

uides in the frequency range where intraband contributions of graphene dominate
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(i.e. from microwaves to the low THz band), focusing on the impact of the surround-

ing media in this propagation. Furthermore, we show that the full-kρ conductivity

model [18] employed here leads to accurate results for all surface plasmon wavenum-

bers, in contrast to low-kρ models [69] previously employed in the literature [67],

[68]. Second, we demonstrate how this complex propagation phenomena can be

characterized by the simple per-unit length circuital models derived in the previous

sections. In addition, we analyze the behavior of the e�ective TM-mode circuit ele-

ments as a function of di�erent parameters of graphene and surrounding media thus

providing physical insight in the propagation of surface plasmons in graphene-based

waveguides.

3.4.1 Single Graphene Sheet

Consider a surface plasmon propagating along a laterally in�nite graphene sheet

with relaxation time τ = 0.5 ps and chemical potential µc = 0.05 eV at temperature

T = 300◦ K. The characteristics of the plasmon are computed using the approach

derived above and are compared to the results obtained using a low-kρ [67] and

non spatially dispersive conductivity models. Note that using the low-kρ conduc-

tivity model of [69] a spurious TM mode is found as an additional solution [67].

This is a non-physical mode, and has not been considered here. Moreover, the re-

sults obtained using the full-kρ RTA model have been further validated numerically

using the Bhatnagar-Gross-Krook (BGK) conductivity model [18], con�rming the

accuracy of the analytical developments of Section 3.2. Figs. 3.6a-3.6b show the

normalized phase (Re[kρ/k0]) and attenuation (Im[kρ/k0]) constants of the surface

plasmon when graphene is standing in free-space (i.e. εr1 = εr2 = εr = 1). As

expected [67], [69], since the propagating plasmons are not extremely slow waves

(kρ > k0), the in�uence of spatial dispersion is negligible in this case and the three

di�erent conductivity models provide the same results. Figs. 3.6c-3.6d present the

characteristics of the surface plasmons when the graphene sheet is embedded in sili-

con with εr = 11.9. In this case, the presence of a dielectric with a high permittivity

constant leads to very slow plasmon waves (kρ � k0), a scenario in which spatial

dispersion plays a signi�cant role in determining the properties of the plasmons (see

Section II and [67]). Importantly, the �gures show signi�cant di�erences between

the results obtained using the full-kρ approach detailed here and the low-kρ method
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Figure 3.6: Characteristics of surface waves propagating along a spatially dispersive graphene

sheet versus frequency . (a) and (b) show the normalized phase and attenuation constants of

surface plasmons along a free-standing graphene sheet (εr = 1). (c) and (d) show the normalized

phase and attenuation constants of surface plasmons along a graphene sheet embedded in silicon

with εr = 11.9. Graphene parameters are µc = 0.05 eV, τ = 0.5 ps, and temperature T = 300◦ K.

[67]. These di�erences arise because the low-kρ conductivity model [69] is only

strictly valid for non extremely slow surface waves, speci�cally those which ful�ll

|kρ| � |ω−jτ−1|
vf

. Note that this assumption is not fully satis�ed in this particular

case, and consequently, the results obtained using this approach are not accurate.

On the other hand, the approach derived here is based on the full-kρ conductivity

model [18], which does not have such limitation and is valid for any value of the

plasmon wavenumber. Based on this model, results show that spatial dispersion

strongly depends on the surrounding media, and that it modi�es the propagating

plasmons by decreasing their phase and attenuation constant.

The values of the e�ective TM-mode circuit model's elements able to accurately
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Figure 3.7: Study of the e�ective TM-mode circuit elements able to characterize surface plasmon

propagation in the scenarios described in Fig. 3.6. (a) and (b) show the kinetic inductance (L′K)

and resistance (R′K) of the circuit for di�erent values of graphene chemical potential µc. Results,

which are independent of the surrounding media, are computed using exact [see Eq. (3.22), solid

line] and approximate [see Eq. (3.24), dashed] formulas. (c) Faraday inductance L′F for various

surrounding dielectric and chemical potential values. (d) Electrostatic capacitance C ′ES , exact

and approximated quantum capacitances [C ′Q and C ′Q,approx, related to Eq. (3.27) and Eq. (3.28),

respectively] and total capacitance CQ,total of the circuit.

characterize plasmon propagation along spatially dispersive graphene in the two

scenarios studied above are shown in Fig. 3.7. Figs. 3.7a-3.7b present the kinetic

inductance and resistance of the TM surface plasmons, computed using the ex-

act [Eq. (3.22)] and approximated [Eq. (3.24)] formulas. Results demonstrate that

these elements have an almost constant behavior versus frequency, and con�rm,

as expected by examining Eq. (3.23) and Eq. (3.24), that the permittivity of sur-

rounding media barely a�ects their value. Fig. 3.7c shows the e�ective TM-mode
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Faraday inductance L′F of plasmons for a range of graphene chemical potentials. As

expected, L′F presents values much lower than L′K in all cases, con�rming that its

in�uence is negligible in most scenarios. Fig. 3.7d depicts the e�ective TM-mode

quantum (C ′Q), electrostatic (C
′
ES), and total (C ′total) capacitance of the equivalent

circuit. Results show that the in�uence of the surrounding dielectrics and frequency

on the e�ective quantum capacitance is very limited, con�rming that the expression

involving the graphene intrinsic quantum capacitance [see Eq. (3.28] is an excel-

lent approximation of the exact quantum capacitance for TM surface plasmons [see

Eq. (3.27)]. However, as explicitly indicated in Eq. (3.22), these factors strongly

modify the value of the electrostatic capacitance C ′ES. In the �rst scenario, consid-

ering a free-standing graphene sheet (εr = 1), C ′ES is much smaller (around three

orders of magnitude) than the e�ective quantum capacitance. Consequently, since

the two capacitances are in series, C ′ES is extremely dominant and directly provides

the total capacitance C ′total of the circuit model. This picture is completely di�erent

in the second scenario, where the presence of a dielectric with a high permittivity

constant (εr = 11.9) dramatically increases the value of C ′ES. In this situation,

both capacitances have values within the same order of magnitude and thus simul-

taneously contribute to the total capacitance of the circuit. This study provides

an alternative and simple explanation to describe the in�uence of spatial dispersion

in the characteristics of TM surface plasmons, and allows to easily identify when

this phenomenon can be important by simply comparing the quantum capacitance

of graphene C ′Q, which is an intrinsic parameter and independent of both the sur-

rounding media and frequency, to the analytical electrostatic capacitance of the

propagating plasmon.

Finally, note that the in�uence of spatial dispersion on the characteristics of

the propagating surface plasmon mainly depends on graphene's chemical potential.

Speci�cally, increasing the chemical potential µc up-shifts the frequency region where

the spatial dispersion phenomenon is noticeable. Note that spatial dispersion and

graphene's relaxation time are uncorrelated. These conclusions can be reached by

closely examining Eq. (3.16) and Eq. (3.18), and have been con�rmed by numerical

simulations not shown here for the sake of compactness. Importantly, this behavior

can easily be explained using the derived equivalent circuit. First, decreasing µc

(1) increases the electrostatic capacitance, which implies that the intrinsic quantum
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Figure 3.8: Characteristics of dominant modes propagating along a spatially dispersive graphene

PPW versus frequency. (a) and (b) show the normalized propagation constant and losses of the

quasi-TEM mode. (c) and (d) show the normalized propagation constant and losses of the TM

mode. Graphene parameters are µc = 0.05 eV, τ = 0.5 ps, εr1 = εr2 = 11.9, d = 20 nm, and

temperature T = 300◦ K

.

capacitance cannot be neglected, and (2) increases the kinetic inductance L′K asso-

ciated to the plasmon (see Fig. 3.7a) thus leading to slower surface waves. Second,

the relaxation time controls the resistance R′K and the frequency range where the

asymptotic approximation of L′K and C ′Q are accurate but it does not modify the

speed of the propagating waves, on which the in�uence of spatial dispersion relies.
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3.4.2 Graphene-based Parallel Plate Waveguides

Consider a parallel-plate graphene-based waveguide with plate separation d = 20 nm,

permittivities εr1 = εr2 = 11.9, graphene's relaxation time τ = 0.5 ps and chemical

potential µc = 0.05 eV at temperature T = 300◦ K. We have chosen this structure,

composed of dielectrics with high permittivity values and sheets separation within

the nanometer scale, in order to clearly identify the in�uence of spatial dispersion in

the propagating waves. Note that very similar graphene-based PPWs have recently

been fabricated, measured, and applied to modulate free-space propagating electro-

magnetic waves [81], [82][83]. The full-kρ results obtained in this Section have been

computed using the RTA conductivity model. Importantly, the use of the full-kρ

Bhatnagar-Gross-Krook (BGK) model [18] leads to extremely similar results, not

shown here for the sake of clarity.

Figs. 3.8a-3.8b show the normalized phase and attenuation constants of the quasi-

TEM mode. A very slow mode is found, and consequently, spatial dispersion is a

dominant mechanism of wave propagation at all frequencies. Note that this phe-

nomenon dramatically decreases the phase constant of the propagating waves, while

it barely a�ects the losses. Moreover, the use of a low-kρ approximation cannot

accurately model plasmon propagation in this case. The equivalent circuit model

provides reasonable approximate results, with errors similar to those introduced

by the low-kρ approach. In addition, this analytical approximation serves as an

excellent starting point to solve the exact dispersion relation of Eq. (3.30) when

accurate results are required. The quasi-TEM mode of a graphene-based waveguide

was recently applied to design graphene phase shifters in the low THz band [32].

There, spatial dispersion was safely neglected because the waveguides were stand-

ing in free-space and the propagating plasmons were su�ciently fast. However, our

results demonstrate that this mode is signi�cantly a�ected by spatial dispersion,

and that this phenomenon must be rigorously taken into account in the design of

realistic graphene-based PPW phase-shifters and other THz components composed

of dielectrics with high permittivity values.

Figs 3.8c-3.8d present the same results for the even TM mode. Despite the high

permittivity of the materials composing the waveguide, this mode is found to be less

sensitive to spatial dispersion than the quasi-TEM mode. Consequently, the full-

kρ, low-kρ, and the circuit model lead to very similar results. This behavior is not
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surprising, because this mode can be understood as a surface plasmon propagating

along an equivalent graphene sheet of conductivity σeq = 2σ, which supports faster

surface plasmons than a single graphene sheet of conductivity σ [see Eqs. (3.12)-

(3.13)].

The behavior of the di�erent e�ective TM-mode circuits components and their

dependence with intrinsic graphene parameters and surrounding media is similar to

the case of a single graphene sheet. Regarding the cross-plate elements that appear

in the odd quasi-TEM mode, it is worth mentioning that the inductive part of the

circuit remains dominated by the kinetic inductance L′K , whereas the cross plate

capacitance C ′c presents a signi�cant contribution in most scenarios, giving to this

mode its distinct dispersion curve.

3.5 In�uence of Spatial Dispersion

in Device Performance

An in depth understanding of spatial dispersion in graphene surface waves at THz

frequencies has been gained from the previous section, so a natural next step in

this study concerns the e�ect that this phenomenon may have in the performance of

realistic plasmonic devices. When can the omission of spatial dispersion in the design

of a device lead to signi�cant errors? Can these errors or problems be overcome by

simply performing a better optimization of the parameter space, or does spatial

dispersion impose harsher limits on the achievable performance? These points will

be brie�y discussed in this section through the theory developed earlier and by

making use of the �ltering structure of chapter 2. In practice, spatial dispersion

in graphene plasmonics should be accounted for if the wavenumber tangential to

the graphene layer is at least two orders of magnitude larger than the free-space

wavenumber (kSPP > 100k0), as failing to do so would induce large errors in any

design.

Furthermore, high permittivity background substrates should generally be avoided

in the design of graphene plasmonic components [84], since spatial dispersion im-

poses fundamental physical constraints on the maximum localization of SPP modes,

therefore reducing the e�ective recon�guration capabilities for a given range of bias

voltages. This is of particular relevance in extreme subwavelength components and
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Table 3.1: Parameters of the 7th degree �lter (εr = 11.9).

lsheet(nm) µc,sheet (eV) lppw(nm) µc,ppw (eV)
Ports 50 0.13 50 0.14

1,7 81 0.08 66 0.09

2,6 247 0.26 142 0.32

3,5 47 0.04 43 0.03

4 308 0.33 175 0.46

nanofocusing applications, limiting the maximum achievable enhancement of local

�elds.

Let us now illustrate these points by analysing realistic examples of lowpass �lters

like the ones designed in chapter 2, calculating the performance over a wide frequency

range under the assumption of local and non-local conductivities. For convenience,

we use the wide strip and parallel plate waveguides studied in this chapter as host

media for these �lters, and perform the analysis by combining this theory with the

�lter design methodology devised in Chapter 2. Speci�cally, we implement a 7th

degree �lter with cuto� frequency fc = 3 THz. For the sake of comparison, we

design this �lter in free-space (εr = 1) and embedded in Si (εr = 11.9). The design

parameters of the Si-embedded �lter, computed following chapter 2, are shown in

Table 3.1. Figs. 3.9a-3.9b show the frequency response corresponding to the single

graphene sheet �lters, standing in free-space and embedded in Si, respectively. As

expected, for εr = 1 spatial dispersion proves to be irrelevant. On the other hand,

for εr = 11.9 the �lter response severely deteriorates, up-shifting its cuto� frequency

and unevenly increasing the re�ection

throughout the passband. Note that the presence of spatial dispersion prevents

the total compensation of this latter e�ect, due to the large frequency dispersion of

the mode's propagation constant and characteristic impedance. Fig 3.9c illustrates

the error in the �lter's cuto� frequency and the maximum return loss in the �lter's

passband for various low-pass �lters designed using dielectrics with increasing per-

mittivity values. The in�uence of spatial dispersion increases when the permittivity

of the surrounding medium increases. Figs. 3.9d-3.9f show the same study for the

PPW implementation. A larger shift in the cuto� frequency is observed in this

case, but interestingly, the maximum error of the return loss within the passband is

lower. Contrary to the single sheet implementation, we have veri�ed that a uniform
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Figure 3.9: In�uence of spatial dispersion in the response of 7th degree graphene-based low-pass

�lters. Scattering parameters of the single sheet implementation in (a) free-space and (b) embedded

in Si (εr1 = εr2 = 11.9, see Table 3.1). (c) Error in the cuto� frequency and maximum in-band

re�ection due to spatial dispersion as a function of surrounding permittivity. (d)-(f) show the same

data for the PPW implementation (see Table 3.1). Parameters are d = 100 nm, τ = 1 ps and

T = 300 K (solid line - results neglecting spatial dispersion e�ects, dashed line - results including

spatial dispersion e�ects)

level of in-band return loss can be achieved using graphene-based PPW, because

the characteristic impedance of each spatially-dispersive transmission line section

remains more linear with frequency. This indicates that the use of graphene PPW

structures could be advantageous over the use of single sheet structures, when low

return losses are essential in lowpass �lter applications.
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Chapter 4
Conclusions

The knowledge acquired through the development of this project is reviewed in this

chapter, followed by a brief exposition of potential lines of research that naturally

emerge from it.

Chapter 2 tackled the development of novel planar lowpass �lters based on

graphene plasmonics, for application in the THz and infrared bands. The synthe-

sis and analysis of these �lters involved the convergence of two disciplines, namely

microwave �lter synthesis theory and graphene plasmonics. The details regarding

�lter synthesis were not covered here, but are widely available in the literature. The

area of graphene modelling and electromagnetic numerical simulations was covered

in greater depth. In particular, we developed an e�cient design technique, or scaling

law, that exploits the quasi-static nature of graphene SPPs in subwavelength struc-

tures, i.e. narrow strips, to scale the numerical results of a single simulation to any

point of a vast parameter space. This enables the fast synthesis of gated graphene

sections with the required dimensions and characteristics that implement the trans-

mission line segments obtained through �lter synthesis theory, in a structure that

would otherwise require cumbersome and slow numerical solving techniques. Sev-

eral examples were studied and veri�ed with full-wave simulations, showcasing the

�ltering capabilities of the proposed structure and its good performance compared

to other alternatives in this frequency range, particularly in terms of miniaturiza-

tion and recon�gurability. Through adequate use of electrostatic gating, the cut-o�

frequency of the device can be continuously tuned over a wide frequency range, re-

sulting in a degree of tunability not achievable with any other existing technology

in the THz band.
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In chapter 3, the propagation of surface plasmons along spatially-dispersive

graphene-based 2D waveguides was investigated in detail. Since we aimed to gain

valuable physical insight and develop simple analytical tools, laterally in�nite struc-

tures were considered, i.e. with a width much greater than the guided wavelength,

allowing a simple analytical treatment of the problem. We used a full-kρ RTA con-

ductivity formulation, which is valid up to terahertz frequencies and does not su�er

from accuracy problems when dealing with extremely slow waves, as occurs with pre-

viously reported methods based on low-kρ approximations. The use of this model

led the derivation of an analytic expression for the wavenumber of plasmons sup-

ported by spatially dispersive graphene sheets. Several per unit length equivalent

circuits were introduced to accurately characterize the propagation of the di�erent

modes under study, and analytical relations between the e�ective TM-mode circuit

lumped elements and the intrinsic properties of graphene were derived. Importantly,

an e�ective TM-mode quantum capacitance lumped component accurately models

the spatial dispersion phenomenon in all equivalent circuits. Results obtained with

the derived equivalent circuits are in good agreement with the rigorous solutions ob-

tained from solving exact transverse resonance equations, thus validating the theory

proposed. The chapter demonstrated that spatial dispersion signi�cantly decreases

the con�nement and the losses of slow surface plasmons when dielectrics of high

permittivity values are used as supporting material. This indicates that spatial

dispersion must be rigorously taken into account when designing graphene-based

plasmonic components at millimeter-waves and low terahertz frequencies. To eval-

uate this �ndings in more practical scenarios, we studied the in�uence of non-local

e�ects in the response and performance of the �lters developed in the second chapter,

using now the spatially dispersive waveguides of chapter 3 as host medium. Due to

the extremely slow waves supported by graphene-based waveguides in the presence

of high permittivity media, it was clearly illustrated that spatial dispersion becomes

a signi�cant mechanism of propagation that modi�es the expected behavior of these

devices by up-shifting their operation frequency, limiting their tunable range, and

degrading their frequency response. Consequently, spatial dispersion must be ac-

curately taken into account in the development of graphene-based plasmonic THz

devices.

The work done in this project may serve as the foundation of future research in
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the �eld of graphene �lter design. Several aspects are open to further optimization,

and the possibility of synthesizing di�erent transfer functions and using alternate

physical implementations is an exciting topic. A prototype network based on nor-

malized transmission lines and impedance inverters could be used for the design of

the lowpass �lter functions, instead of the one employed here. Appropriate design

of the impedance inverters would minimize the degradation of performance cause

by the soft boundary conditions created by the fringing electrostatic �elds between

adjacent gates. This is analogous to what occurs in microwave waveguide �lters,

where impedance inverters are designed to include the e�ects of non-ideal irises,

so that the prototype network may be more accurately implemented. There also

exists the possibility of using more complex patterns or combining graphene with

other technologies such as metasurfaces to reduce losses or increase the spurious-

free range. The design of bandpass �lters through similar methods could also be

explored. This presents additional challenges, as the additional electrical length

required to implement resonators will inevitably increase the insertion loss of the

device. Regarding spatial dispersion e�ects, in order to fully grasp the potential

of graphene nanoplasmonics, it is of great importance to further explore the limits

that fundamental physics impose on the maximum con�nement and �eld enhance-

ment achievable. Such understanding will be necessary in future highly miniaturized

plasmonic systems and nanofocusing applications.

We hope the �ndings and design techniques presented in this work may serve

scientists and engineers interested in these topics, and those who work in related

�elds, as a foundation for exciting advances in THz technology.
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