
A layered architectural component model for service
teleoperated robots

Juan A. Pastor, Bárbara Álvarez, Pedro Sánchez, Francisco Ortiz

juanangel.pastor@upct.es
Universidad Politécnica de Cartagena (Spain)

Abstract.1. The teleoperated robots are used for performing works that human
operators can not carry out due to the very nature of their tasks or the hostile
nature of the working environment. Though many control architectures have
been defined for developing such kind of systems and reuse common
components, none of them have reached all its objectives due to the great
variability among systems behaviors. The purpose of this paper is to present a
new architectural approach for the development of these systems that takes into
account the current advances in robotic architectures as well as the component-
oriented approach. The described architectural approach provides a common
framework for developing robotized systems with very different behaviors and
for integrating intelligent components. The architecture is currently being used,
tested and improved in the development of a family of robots, teleoperated
cranes and vehicles, which perform an environmentally friendly cleaning of
hull-ship surfaces (the EFTCoR project). This paper summarises the
methodological approach taken, the features of the systems that constitute its
design drivers and finally the main characteristics of the proposed architecture.

 Keywords: software architecture, teleoperated robots, component-oriented approach.

1. Introduction

The purpose of this paper is to present a reference system architecture for service
robot control applications. These applications are used to teleoperate mechanisms,
such as robots, vehicles and tools (or a combination of them), which perform
inspection and maintenance activities in hostile environments. In general, these
activities are complex and it is not possible to work with completely autonomous
systems. Thus, the operator is in charge of monitoring and operating the mechanisms.
The system receives orders from a human operator and performs the corresponding
actions for executing them.

1 This work was partially supported by the CICYT (with reference TIC2003-07804-C05-02)

and the Regional Government of Murcia (Séneca Programmes with reference PB/5/FS/02)

Teleoperation systems cover a broad range of mechanisms and missions, each of them
with their specific features and requirements. However, at the same time, all of them
share many common characteristics making possible to describe an application
domain and its corresponding reference architecture. In fact, during the last years the
research group DSIE of the Technical University of Cartagena has been using a
reference architecture to afford several developments for the nuclear industry [1]:
• The teleoperation software of the ROSA III robot of Westinghouse, used for

maintenance operations inside the channels heads of the steam generators of the
pressurized water nuclear plants.

• The vehicle IRV used for the search and retrieval of fallen objects inside the pipes
of the primary circuit of nuclear plants.

• The TRON system design for the inspection of the lower internals of the PWR
vessels.

Despite their differences, these systems share some key characteristics from the point
of view of their control and therefore it is relatively easy to use the same architecture
to develop them:
• The working areas are fixed and well known.
• The behaviour is operator driven. Reactive behaviour is limited to some simple

safety actions.
• The applications control a single system.

However, none of these characteristics stand in the new developments considered in
the EFTCoR project [2], where the DSIE is currently working on. The EFTCoR
system comprises a family of teleoperated systems whose mission is to retrieve and
confine the paint, oxide and marines adherences of hull ships. In this case:
• The working environments are not fixed due to the great variability among the

different kind of ships, the different areas of a given ship and the differences
among shipyards.

• The systems should have a great degree of autonomy.
• It is possible that different systems have to work cooperatively at the same time.

These new characteristics make impossible the use of the original architecture for the
EFTCoR robots. However, the use of a common architecture for all the developments
is extremely useful. It allows the rapid development of the systems and the reuse of a
great variety of components, saving time and money. For this reason, the DSIE
research group is working on a new architecture that takes into account these new
characteristics and can be used for the development of the robots considered in the
EFTCoR project. This paper summarises the main characteristics of this architecture
and it is structured as follows: section 2 presents and justifies the methodological
approach taken; the section 3 describes the limits of the considered system and the
main issues for the architecture definition. The sections 4 and 5 describe the
architecture and section 6 summarises the conclusions.

2. Methodological approach

Although many robotics architectures can be found in bibliography [3], it is more
difficult to find examples of a development process for defining reference
architectures in the robotics domain. In our proposal to reach a reference architecture
for service robot control applications, the Architecture Based Design Method (ABD)
[4] has been followed, completing it with the 4 views of Hofmeister [5] with their
notation based on UML for components.

The development methods based on use-cases (mainly RUP [6] and others derived
from RUP) could be appropriate for defining the architecture of a given system, but
they are not suitable to define reference architectures. The use cases define concrete
functionality, however in the design of reference architectures the issue is not the
concrete, but the general, because the success or failure of such architectures depends
on its ability to deal with the variability among the systems of the considered domain.
In this sense, use cases that could be very relevant to one system are negligible for
others. Furthermore, at the level of abstraction required to manage the variability of
the systems, concrete use cases can not be properly defined. For this reason, we have
adopted another methodological approach: the ABD.

The ABD is a methodology proposed by the SEI (Software Engineering Institute of
The Carnegie Mellon University) to design software architectures for a given
application domain or product family. The ABD is based on:
 The functional decomposition of the problem based on the concepts of low

coupling and high cohesion and on the knowledge of the application domain.
 The realization of the functional and quality requirements by means of a correct

choice of architectural styles and design patterns.
 The notion of software templates that define the elements and responsibilities

common to a group of components, such as their interactions with the
infrastructure.

ABD decomposes the system into subsystems recursively. Thus, the same rules that
apply to decompose the system into subsystems apply to decompose the subsystems
in other simpler subsystems.

ABD offers as final model a conceptual view of the architecture, identifying the main
subsystems and their relationships described in terms of architectural styles and
design patterns. Hofmeister et al [5] propose another architectural oriented
development method, which can be superposed to ABD in their initial steps. The
approach of these authors is interesting because it includes the notions of port and
connectors among components, using a ROOM inspired notation [7]. In this case, the
UML notation has been extended with stereotyped classes and special symbols, for
expressing such components, ports and connectors. The Hofmeister’s approach also
makes easier the connection between the conceptual components and their
implementations.

3 Domain characterisation. Teleoperated service robots.

The service robots are mechatronic systems, usually designed for a concrete
application that could be extended with new functionality along the time. Though they
could be very different from a physical point of view, they use to be logically very
similar sharing many common components, both logical and physical ones. The
characterisation of the application domain is the starting point to define the functional
and quality requirements that guide the architecture design. In our experience, the
main features to be considered should be the following:
• High degree of specialisation and therefore a great variability of functionality and

physical characteristics.
• Different combinations of vehicles, manipulators and tools.
• A great variety of execution infrastructures, including different kinds of

processors, communication links and man-machine interfaces.
• A great variety of sensors and actuators.
• Different kinds of control algorithms, from very simple reactive actions to

extremely complex algorithms and navigation strategies, depending on the
applications.

• Different degree of autonomy, from completely operator-driven systems to semi-
autonomous robots.

• Presence of hard real time requirements.
• Hardware versus software intensive implementations with all the imaginable

intermediate cases.
• And last, but not least, safety is nearly always a main concern.

Considering the differences among systems described above, it is clear that the main
objective of the architecture is to deal with such variability. A more precise analysis
of the differences among systems [8] reveals that most of them refer not to the system
components, but to the components interactions. Therefore, when designing the
architecture the following points should be taken into account:
• It should be possible that very different instantiations of the architecture can

share the same “virtual” components.
• The designer should adopt policies that allow a clear separation between the

components and their interaction patterns.
• The implementation of such virtual components could be software or hardware,

being highly advisable that such components could be COTS.
• It should be possible to derive concrete architectures for both, deliberative

systems (operator-driven systems) and reactive systems (autonomous intelligent
systems).

Following the ABD terminology, these four points constitute the architectural drivers
of the architecture.

4. Architecture overview.

Since it should be possible that very different systems use the same components, the
first issue is to define the rules and common infrastructure that allow components to
be assembled or connected. To achieve this aim the key concepts are: component,
container, port and connector, as well as the Composite pattern [9]. The concept of
port provides a regular way of interchange data and control and therefore of
connecting and assembling components, independently of their functionality and
granularity. The concept of connector allows separating the functionality of the
components from their interaction patterns (choreographies [10]), because they are
included inside the connectors. The Composite pattern provides the means to deal
with complex and simple components in the same way, hiding the inner complexity of
the large components resulting of the assembly of many other components.

Once it has been defined how the components have to be or can be assembled, the
second point is to define what components have to exist. The third architectural driver
identified in the previous section states that the implementation of the components
could be software or hardware, being highly advisable that such components could be
COTS. To achieve this, it is necessary to define the typical components of this kind of
systems, which can be identified at different levels of granularity. At the lowest level
we can find the actuators and sensors. At a higher level we find the controllers for
simple actuators (for example a motor controller). At the next higher level, we find
the controllers for groups of actuators (for example a motion card capable of
controlling the joints of a mechanism) and so on. Many of these components can be
found in the market either as hardware devices and control cards or software packages
for a given platform. To facilitate the use of COST components, the most usual COST
should have its virtual counterpart. The attachment between the virtual component
and its implementation can be done using the Bridge pattern [9].

To define virtual components the architecture identifies four levels of granularity and
adopts the notion of hardware abstract layer described in the OROCOS framework
[11]. The hardware abstract layers model the features of the physical components of
the system, defining virtual sensors, actuators, motion controllers, etc. The hardware
abstract layers allow defining libraries of components and interchange both hardware
and software implementations (perhaps commercial) of the devices with a minimum
impact.

Finally, the last architectural driver identified was the possibility of deriving concrete
architectures for both deliberative and reactive systems. For this purpose, it is
necessary to separate the autonomous or programmed behaviour from the operator
driven behaviour, as shown in figure 1. This scheme also appears in the CLARAty
(Coupled Layered Architecture for Robotic Autonomy) architecture [12] used for the
development of the Mars rovers. CLARAty distinguishes a Functional Layer, where
the components of the system are defined, and a Decision Layer that encapsulates the
subsystems responsible for planning and executing the missions. Unlike CLARAty,
where some autonomous behaviours can be added to the functional layer, in our
approach the system’s intelligence is completely separate from its functionality

because it has been designed for the domain of teleoperated robots rather than
autonomous systems, so the conception of the intelligence as another user of the
functionality, like the teleoperator, was considered a more important issue.

Figure 1: An abstract overview of the proposed architecture.

5. An overview of the architecture layers and components.

The architecture proposed in this paper identifies four layers of granularity at which
the components can be defined:
• Layer 1: Abstract the characteristics of atomic components, such as sensors and

actuators.
• Layer 2: Simple Unit Controllers (SUCs).
• Layer 3: Mechanisms controllers (MUCs).
• Layer 4: Robot controllers (RUCs).

These layers are called hardware abstract layers because the components defined
inside them could be (and frequently are) implemented in commercial hardware. The
simplest components modelled by the architecture are the sensors and actuators,
which are defined at the lowest architectural layer. The sensors are components that
provide the information required for controlling a given active element, for example,
the encoder and switch limits associated to a given joint. The actuators model the
simplest active elements, for example a motor.

The SUCs (Simple Unit Controllers) are the components defined at the second
architecture layer. The SUC components (figure 2) model the control over the
actuators and the collection of data from sensors. For example, there will be SUCs
defined for controlling the joints of a given mechanism. The SUC generates the
commands for the actuator according to the order that it receives from another

Programmed
Intelligence Lv n

Programmed
Intelligence Lv 1

Reactive
Intelligence

Control & Coordination of physical devices.

Virtual Devices

Operator

Physical Devices

Devices and environment abstraction

Mision_Exec Dev_Control

Control &
Coordination

Policies

Coordination

Control

component (through the port controllerControl), the information received
from the sensors that describe the state of the actuator as well as the control policy
that comprises. This policy is an interchangeable part of the SUC. For example, the
ControlStrategy of a given joint could be a traditional control (PID) or be
changed for a fuzzy logic strategy.

Figure 2: SUC: Simple Unit Controller.

The SUCs usually need to accomplish hard real time requirements and therefore they
are generally implemented in hardware. When they are implemented in software they
use to impose severe real time requirements on operating systems and platforms.

At the third level of granularity it is defined the Mechanism Unit Controller (MUC).
The MUC component models the control over a whole mechanism (vehicle,
manipulator or end effector). As it is shown in figure 3, the MUC is a logical entity
composed of an aggregation of SUCs and a Coordinator responsible of coordinating
their actions according to the command and information that it receives, as well as the
coordination strategy that comprises. This strategy is an interchangeable part of the
SUC. For example, the CoordinationStrategy of a given manipulator could be
a given solution for its inverse kinematics, the coordinator strategy for a given vehicle
could be a given navigation strategy, etc.

Although the architecture defines the MUCs as relational aggregates, they can
become inclusive components (hard or soft) when the architecture is instantiated to
develop a concrete system. Whether or not the interfaces of the inner SUCs are
directly accessible is a decision of the architecture instantiation. In fact, though MUCs
could be implemented in hardware or software, it is very usual that they are
commercial motion control cards that constrain the range of possible command over
its internal components. The COTS limit the flexibility of the approach, in the sense
that COSTs do not always provide direct access to their inner sub-components neither
their inner state.

1

SUC + / requestStrategy -

+ / ControllerControl -

+ / controllerDataIn -

+ / controllerDataOut -

Control
Strategy

+ / sensorDataOut -

+ / controllerDataOut -

+ / actuatorControl -

Hardware Abstract Layer 1

Hardware Abstract Layer 2

Actuator
1

 Sensor
N ..

+ / devControl - + / devDataIn -

Figure 3: MUC: Mechanism Unit Controller.

Finally, at the fourth layer, the architecture defines the RUC (Robot Unit Controller)
component. The RUC component models the control over a whole robot. For
example, a robot composed of a vehicle with an arm and several interchangeable
tools. As figure 4 shows, the RUCs are an aggregation of MUCs and a global
coordinator that generates the commands for the MUCs and coordinates their actions,
according to the order and the information that it receives and the coordination
strategy that comprises. Such strategy is an interchangeable part of the RUC. For
example, the CoordinationStrategy of a robot composed of a vehicle with a
manipulator could be a generalised kinematics solution that takes into account the
possibility of moving the vehicle to reach a given target. As the MUCs, the RUCs are
logical components that can become into physical components depending on the
concrete instantiations. In general, the RUC is a rather complex component that
comprises hardware and software components and can expose a great variety of
interfaces depending on the complexity of the controlled system.

Having defined the SUCs, MUCs and RUCs, it seems logical to define a Group Unit
Controller (GUP) capable of managing and coordinating a group of cooperative
robots. However, the architecture does not go beyond the RUCs. There is a good
reason for this. The “usual intelligence” required for controlling a joint or the
mechanism that results from the assembly of joints or to teleoperate the robot that
results from the combination of various mechanisms is limited, well-known and can
be enclosed inside reusable components. The intelligence required to work
cooperatively usually demands a more flexible approach. It is also true for some
missions that concern the SUCs, MUCs and RUCs, likewise the algorithms for
collision avoidance or the navigation systems for vehicles. It is very difficult to define
a component to encapsulate “intelligence”. If a system or component is capable to

1

Coordinator + / requestStrategy -

+ / CoordControl -

+ / coordDataOut - + / coordDataIn -

+ / coordDataOut -

Coordinator
Strategy

Hardware Abstract Layer 2

Hardware Abstract Layer 3 MUC

N

SUC + / requestStrategy -

+ / ControllerControl -

+ / controllerDataIn -

+ / controllerDataOut -

Control
Strategy

Hardware Abstract Layer 1

Actuator 1

+ / devControl -

Sensor N ..

+ / devDataIn -

Sensor N ..

+ / devDataIn -

offer intelligence and to take non-trivial decisions it uses to be complex enough to
have defined their own architecture (for example, an artificial vision system capable
to determine paths free of obstacles). Thus, the approach should be different: Let’s the
intelligent components are as they want and provide a way to integrate them into the
system.

Figure 4: RUC: Robot Unit Controller.

6. Adding autonomous behaviour.

The composition of SUCs and MUCs results in a hierarchical architecture where the
decisions flow from top to down and the information flows from bottom to up. This
architecture fits well with operator-driven systems, where the autonomous behaviour
does not exist or it is reduced to some safety hardware actions. It also fits well with
systems where the reactive or autonomous behaviour responds to simple rules that can
be added to controllers and coordinators which, following these rules, can take
decisions and notify them to the upper level controller or coordinator. However, there
are systems where the autonomous behaviour is anything but simple. In such cases,
the intelligent component needs to integrate more information and access more
functionality than those embedded inside a given component. The approach taken
(showed in the figure 5) consists of superimposing the “intelligent” autonomous
behavior and the operator-driven behavior, providing the means for integrating both
and resolving the potential conflicts. This approach does not imply any change in the
components defined until now but new sources of commands for them. These sources
are constituted by new components that have access to the global system information
and are capable of deciding what to do according to some programmed rules,
algorithms or heuristics.

Hardware Abstract Layer 2

Hardware Abstract Layer 3

Hardware Abstract Layer 4

Hardware Abstract Layer 1

Actuator 1

+ / devControl -

Sensor N ..

+ / devDataIn -

Sensor N ..

+ / devDataIn -

1

Coordinator + / requestStrategy -

+ / CoordControl -

+ / coordDataOut - + / coordDataIn -

+ / coordDataOut -

Coordinator
Strategy

RUC

N

MUC + / requestStrategy -

+ / ControllerControl -

+ / controllerDataIn -

+ / controllerDataOut -

Control
Strategy

Figure 5: Superimposition of operator-driven and autonomous behaviour.

Every component of a given layer can access the information and control ports of the
lower layers components. From this point of view, every component of a given layer
is an intelligent component for the lower layer. For example, from the point of view
of a MUC, no matter whether the commands come from the coordinator of the RUC
that comprises it (see figure 5), from the operator or from some of the intelligent
components defined over the RUCs. As a component can receive commands from
more than one source, it is necessary to decide what command to perform. The logic
for this decision is outside the component. The figure 5 shows a new type of
component: the arbitrator. Arbitrators encapsulate the rules that determine
which command should be delivered to a given component. The arbitrator is
separately defined because the rules that it encloses (or even the arbitrator itself)
can vary from system to system, during the life of a given system or even at different
stages of the functioning of a system. The concept of arbitrator is inspired in the idea
of composition filter [13] and is strongly connected to the need of separating the
functionality from the interaction patterns among components.

Actuators and sensors

MUCs

RUCs

Operator

Navigation
System

Collision
Avoidance

Fault Tolerant
Policies ...Intelligent components

Control and information

Arbitrator

N

1

Arbitrator

N

1

SUCs

Arbitrator

N

1

Arbitrator

N

1

This approach is very flexible and allows integrating intelligence that does not
concern directly with the missions of the robotic devices, but with the management of
the application, such as fault tolerance policies or a meta-layer for reconfiguring the
application.

6. Summary and future work
The architecture described in this paper takes the most promising architectural
advances in the domain of teleoperation and put them together with a component-
oriented approach. The taken approach focuses in the definition of a common
component framework that allows the definition of components that can be reused in
different systems, as well as in the integration of intelligent systems capable to drive
the robot behaviour. Our main sources of inspiration have been both OROCOS [11],
CLARAty [12] (robotic architectures) and the PRISMA approach [10] (component
and aspect oriented approaches).

The architecture is currently being used in the development of a family of robots
whose mission is to retrieve and confine the paint, oxide and marines adherences of
hull ships (see figure [6]). This family of robots shows a broad variety of behaviours
and complexity degrees, being an excellent test bench for the architecture.

Figure 6: Three prototypes (cherry-picker model, elevation platform and mobile

vehicle, respectively) of the family of robots and a ship to be repaired.

Our experience using the architecture is satisfactory, however it is necessary to
remark, among others, two important challenges:
• There is no enough support for expressing the component abstractions and

modelling their interactions.

• Although there are well known approaches to cope with the variability [14], they
do not offer a concrete way to solve evolution of architectural components and
between their relationships.

These challenges can be afforded by means of the PRISMA approach. In this way, we
are currently working with the Technical University of Valencia (Spain) in the frame
of the national funded (CICYT) research project DYNAMICA with ref. TIC2003-
07804-C05. The first step could be the use of the PRISMA language for defining the
components and the above layered architecture. A second step could be the
consideration of changes in the interactions between these components.

7. References

1. Iborra A., J.A. Pastor, B. Álvarez, C. Fernández, J.M. Fdez-Meroño. “Operational
Experiences using Robotics during Maintenance Services in PWR Nuclear Power
Plants”. IEEE Robotics&Automation Magazine, ISSN 1070-9932, December 2003.

2. Environmental Friendly and Cost-Effective Technology for Coating Removal
(EFTCOR). Fith Framework Program, Growth (GRD2-2001-50004).

3. Coste-Manière E., R.Simmons, “Architecture, the Backbone of Robotic System”,
Proc. of the 2000 IEEE international conference on robotics & Automation, San
Francisco, abril 2000.

4. Bachmann F., L. Bass et al, “The Architecture Based Design Method”, Technical
Report CMU/SEI-200-TR-001, Carnegie Mellon University, USA. January 2000.

5. Hofmeister C., R. Nord, D. Soni, “Applied Software Architecture”, Addison-Wesley.
ISBN 0-201-32571-3. USA. Enero 2000.

6. Jacobson I., G. Booch, J. Rumbaugh, “The Unified Software development Process”.
Addison-Wesley 1999, ISBN 0-201-57169-2.

7. Selic B., G. Gullekson, P.T. Ward, “Real-Time Object-Oriented Modeling” (ROOM).
John Wiley and Sons, New York. 1994.

8. Pastor J., “Evaluación y desarrollo incremental de una arquitectura software de
referencia para sistemas de teleoperación utilizando métodos formales”, ph Thesis,
Universidad Politécnica de Cartagena (Spain), 2002.

9. Gamma E., R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of
Reusable Object Oriented Software”, Addison Wesley, Reading Mass. 1995.

10. Pérez J., I. Ramos, J. Jaen, P. Letelier and E. Navarro. PRISMA: Towards Quality,
Aspect Oriented and Dynamic Software Architectures 3rd IEEE International
Conference on Quality Software (QSIC 2003), Dallas, Texas, USA, Nov. 2003.

11. Bruyninckx H., B. Konincks, P. Soetens, “A Software Framework for Advanced
Motion Control”, Dpt. of Mechanical Engineering, K.U. Leuven. OROCOS project
inside EURON. Bélgica. Febrero 2002.

12. Nesnas I.A., A. Wright, M. Bajracharya, R. Simmons, T. Estlin, Won Soo Kim,
"CLARAty: An Architecture for Reusable Robotic Software," SPIE Aerosense
Conference, Orlando, Florida, April 2003.

13. Bergmans L., Composing Concurrent Objects, Ph.D. thesis, University of Twente,
The Netherlands, 1994.

14. Svahnberg, M, Van Gurp J., Bosch J. On the Notion of Variability in Software
Product Lines. Proceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’01), IEEE Computer Society, pages 45-54, 2001.

