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Abstract.1. The teleoperated robots are used for performing works that human 
operators can not carry out due to the very nature of their tasks or the hostile 
nature of the working environment. Though many control architectures have 
been defined for developing such kind of systems and reuse common 
components, none of them have reached all its objectives due to the great 
variability among systems behaviors. The purpose of this paper is to present a 
new architectural approach for the development of these systems that takes into 
account the current advances in robotic architectures as well as the component-
oriented approach. The described architectural approach provides a common 
framework for developing robotized systems with very different behaviors and 
for integrating intelligent components. The architecture is currently being used, 
tested and improved in the development of a family of robots, teleoperated 
cranes and vehicles, which perform an environmentally friendly cleaning of 
hull-ship surfaces (the EFTCoR project). This paper summarises the 
methodological approach taken, the features of the systems that constitute its 
design drivers and finally the main characteristics of the proposed architecture. 
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1. Introduction 

The purpose of this paper is to present a reference system architecture for service 
robot control applications. These applications are used to teleoperate mechanisms, 
such as robots, vehicles and tools (or a combination of them), which perform 
inspection and maintenance activities in hostile environments. In general, these 
activities are complex and it is not possible to work with completely autonomous 
systems. Thus, the operator is in charge of monitoring and operating the mechanisms. 
The system receives orders from a human operator and performs the corresponding 
actions for executing them.  
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Teleoperation systems cover a broad range of mechanisms and missions, each of them 
with their specific features and requirements. However, at the same time, all of them 
share many common characteristics making possible to describe an application 
domain and its corresponding reference architecture. In fact, during the last years the 
research group DSIE of the Technical University of Cartagena has been using a 
reference architecture to afford several developments for the nuclear industry [1]:  
• The teleoperation software of the ROSA III robot of Westinghouse, used for 

maintenance operations inside the channels heads of the steam generators of the 
pressurized water nuclear plants.  

• The vehicle IRV used for the search and retrieval of fallen objects inside the pipes 
of the primary circuit of nuclear plants.  

• The TRON system design for the inspection of the lower internals of the PWR 
vessels. 

 
Despite their differences, these systems share some key characteristics from the point 
of view of their control and therefore it is relatively easy to use the same architecture 
to develop them: 
• The working areas are fixed and well known. 
• The behaviour is operator driven. Reactive behaviour is limited to some simple 

safety actions.  
• The applications control a single system. 
 
However, none of these characteristics stand in the new developments considered in 
the EFTCoR project [2], where the DSIE is currently working on. The EFTCoR 
system comprises a family of teleoperated systems whose mission is to retrieve and 
confine the paint, oxide and marines adherences of hull ships. In this case: 
• The working environments are not fixed due to the great variability among the 

different kind of ships, the different areas of a given ship and the differences 
among shipyards. 

• The systems should have a great degree of autonomy.  
• It is possible that different systems have to work cooperatively at the same time. 
 
These new characteristics make impossible the use of the original architecture for the 
EFTCoR robots. However, the use of a common architecture for all the developments 
is extremely useful. It allows the rapid development of the systems and the reuse of a 
great variety of components, saving time and money. For this reason, the DSIE 
research group is working on a new architecture that takes into account these new 
characteristics and can be used for the development of the robots considered in the 
EFTCoR project. This paper summarises the main characteristics of this architecture 
and it is structured as follows: section 2 presents and justifies the methodological 
approach taken; the section 3 describes the limits of the considered system and the 
main issues for the architecture definition. The sections 4 and 5 describe the 
architecture and section 6 summarises the conclusions. 



2. Methodological approach 

Although many robotics architectures can be found in bibliography [3], it is more 
difficult to find examples of a development process for defining reference 
architectures in the robotics domain. In our proposal to reach a reference architecture 
for service robot control applications, the Architecture Based Design Method (ABD) 
[4] has been followed, completing it with the 4 views of Hofmeister [5] with their 
notation based on UML for components.  
 
The development methods based on use-cases (mainly RUP [6] and others derived 
from RUP) could be appropriate for defining the architecture of a given system, but 
they are not suitable to define reference architectures. The use cases define concrete 
functionality, however in the design of reference architectures the issue is not the 
concrete, but the general, because the success or failure of such architectures depends 
on its ability to deal with the variability among the systems of the considered domain. 
In this sense, use cases that could be very relevant to one system are negligible for 
others. Furthermore, at the level of abstraction required to manage the variability of 
the systems, concrete use cases can not be properly defined. For this reason, we have 
adopted another methodological approach: the ABD. 
 
The ABD is a methodology proposed by the SEI (Software Engineering Institute of 
The Carnegie Mellon University) to design software architectures for a given 
application domain or product family. The ABD is based on: 
 The functional decomposition of the problem based on the concepts of low 

coupling and high cohesion and on the knowledge of the application domain.  
 The realization of the functional and quality requirements by means of a correct 

choice of architectural styles and design patterns.  
 The notion of software templates that define the elements and responsibilities 

common to a group of components, such as their interactions with the 
infrastructure.  

 
ABD decomposes the system into subsystems recursively. Thus, the same rules that 
apply to decompose the system into subsystems apply to decompose the subsystems 
in other simpler subsystems.  
 
ABD offers as final model a conceptual view of the architecture, identifying the main 
subsystems and their relationships described in terms of architectural styles and 
design patterns. Hofmeister et al [5] propose another architectural oriented 
development method, which can be superposed to ABD in their initial steps. The 
approach of these authors is interesting because it includes the notions of port and 
connectors among components, using a ROOM inspired notation [7]. In this case, the 
UML notation has been extended with stereotyped classes and special symbols, for 
expressing such components, ports and connectors. The Hofmeister’s approach also 
makes easier the connection between the conceptual components and their 
implementations.  



3 Domain characterisation. Teleoperated service robots. 

The service robots are mechatronic systems, usually designed for a concrete 
application that could be extended with new functionality along the time. Though they 
could be very different from a physical point of view, they use to be logically very 
similar sharing many common components, both logical and physical ones. The 
characterisation of the application domain is the starting point to define the functional 
and quality requirements that guide the architecture design. In our experience, the 
main features to be considered should be the following: 
• High degree of specialisation and therefore a great variability of functionality and 

physical characteristics. 
• Different combinations of vehicles, manipulators and tools. 
• A great variety of execution infrastructures, including different kinds of 

processors, communication links and man-machine interfaces. 
• A great variety of sensors and actuators. 
• Different kinds of control algorithms, from very simple reactive actions to 

extremely complex algorithms and navigation strategies, depending on the 
applications. 

• Different degree of autonomy, from completely operator-driven systems to semi-
autonomous robots. 

• Presence of hard real time requirements. 
• Hardware versus software intensive implementations with all the imaginable 

intermediate cases.  
• And last, but not least, safety is nearly always a main concern. 
 
Considering the differences among systems described above, it is clear that the main 
objective of the architecture is to deal with such variability. A more precise analysis 
of the differences among systems [8] reveals that most of them refer not to the system 
components, but to the components interactions. Therefore, when designing the 
architecture the following points should be taken into account: 
• It should be possible that very different instantiations of the architecture can 

share the same “virtual” components. 
• The designer should adopt policies that allow a clear separation between the 

components and their interaction patterns. 
• The implementation of such virtual components could be software or hardware, 

being highly advisable that such components could be COTS. 
• It should be possible to derive concrete architectures for both, deliberative 

systems (operator-driven systems) and reactive systems (autonomous intelligent 
systems). 

 
Following the ABD terminology, these four points constitute the architectural drivers 
of the architecture.  
 
 



4.  Architecture overview.  
 
Since it should be possible that very different systems use the same components, the 
first issue is to define the rules and common infrastructure that allow components to 
be assembled or connected. To achieve this aim the key concepts are: component, 
container, port and connector, as well as the Composite pattern [9]. The concept of 
port provides a regular way of interchange data and control and therefore of 
connecting and assembling components, independently of their functionality and 
granularity. The concept of connector allows separating the functionality of the 
components from their interaction patterns (choreographies [10]), because they are 
included inside the connectors. The Composite pattern provides the means to deal 
with complex and simple components in the same way, hiding the inner complexity of 
the large components resulting of the assembly of many other components. 
 
Once it has been defined how the components have to be or can be assembled, the 
second point is to define what components have to exist. The third architectural driver 
identified in the previous section states that the implementation of the components 
could be software or hardware, being highly advisable that such components could be 
COTS. To achieve this, it is necessary to define the typical components of this kind of 
systems, which can be identified at different levels of granularity. At the lowest level 
we can find the actuators and sensors. At a higher level we find the controllers for 
simple actuators (for example a motor controller). At the next higher level, we find 
the controllers for groups of actuators (for example a motion card capable of 
controlling the joints of a mechanism) and so on. Many of these components can be 
found in the market either as hardware devices and control cards or software packages 
for a given platform. To facilitate the use of COST components, the most usual COST 
should have its virtual counterpart. The attachment between the virtual component 
and its implementation can be done using the Bridge pattern [9]. 
 
To define virtual components the architecture identifies four levels of granularity and 
adopts the notion of hardware abstract layer described in the OROCOS framework 
[11]. The hardware abstract layers model the features of the physical components of 
the system, defining virtual sensors, actuators, motion controllers, etc. The hardware 
abstract layers allow defining libraries of components and interchange both hardware 
and software implementations (perhaps commercial) of the devices with a minimum 
impact. 
 

Finally, the last architectural driver identified was the possibility of deriving concrete 
architectures for both deliberative and reactive systems. For this purpose, it is 
necessary to separate the autonomous or programmed behaviour from the operator 
driven behaviour, as shown in figure 1. This scheme also appears in the CLARAty 
(Coupled Layered Architecture for Robotic Autonomy) architecture [12] used for the 
development of the Mars rovers. CLARAty distinguishes a Functional Layer, where 
the components of the system are defined, and a Decision Layer that encapsulates the 
subsystems responsible for planning and executing the missions. Unlike CLARAty, 
where some autonomous behaviours can be added to the functional layer, in our 
approach the system’s intelligence is completely separate from its functionality 



because it has been designed for the domain of teleoperated robots rather than 
autonomous systems, so the conception of the intelligence as another user of the 
functionality, like the teleoperator, was considered a more important issue. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: An abstract overview of the proposed architecture. 

 
 
5. An overview of the architecture layers and components. 
 
The architecture proposed in this paper identifies four layers of granularity at which 
the components can be defined: 
• Layer 1: Abstract the characteristics of atomic components, such as sensors and 

actuators. 
• Layer 2: Simple Unit Controllers (SUCs). 
• Layer 3: Mechanisms controllers (MUCs). 
• Layer 4: Robot controllers (RUCs). 
 
These layers are called hardware abstract layers because the components defined 
inside them could be (and frequently are) implemented in commercial hardware. The 
simplest components modelled by the architecture are the sensors and actuators, 
which are defined at the lowest architectural layer. The sensors are components that 
provide the information required for controlling a given active element, for example, 
the encoder and switch limits associated to a given joint. The actuators model the 
simplest active elements, for example a motor. 
 
The SUCs (Simple Unit Controllers) are the components defined at the second 
architecture layer. The SUC components (figure 2) model the control over the 
actuators and the collection of data from sensors. For example, there will be SUCs 
defined for controlling the joints of a given mechanism. The SUC generates the 
commands for the actuator according to the order that it receives from another 
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component (through the port controllerControl), the information received 
from the sensors that describe the state of the actuator as well as the control policy 
that comprises. This policy is an interchangeable part of the SUC. For example, the 
ControlStrategy of a given joint could be a traditional control (PID) or be 
changed for a fuzzy logic strategy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: SUC: Simple Unit Controller. 
 
The SUCs usually need to accomplish hard real time requirements and therefore they 
are generally implemented in hardware. When they are implemented in software they 
use to impose severe real time requirements on operating systems and platforms. 
 
At the third level of granularity it is defined the Mechanism Unit Controller (MUC). 
The MUC component models the control over a whole mechanism (vehicle, 
manipulator or end effector). As it is shown in figure 3, the MUC is a logical entity 
composed of an aggregation of  SUCs and a Coordinator responsible of coordinating 
their actions according to the command and information that it receives, as well as the 
coordination strategy that comprises. This strategy is an interchangeable part of the 
SUC. For example, the CoordinationStrategy of a given manipulator could be 
a given solution for its inverse kinematics, the coordinator strategy for a given vehicle 
could be a given navigation strategy, etc. 
 
Although the architecture defines the MUCs as relational aggregates, they can 
become inclusive components (hard or soft) when the architecture is instantiated to 
develop a concrete system. Whether or not the interfaces of the inner SUCs are 
directly accessible is a decision of the architecture instantiation. In fact, though MUCs 
could be implemented in hardware or software, it is very usual that they are 
commercial motion control cards that constrain the range of possible command over 
its internal components. The COTS limit the flexibility of the approach, in the sense 
that COSTs do not always provide direct access to their inner sub-components neither 
their inner state. 
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Figure 3: MUC: Mechanism Unit Controller. 

 
Finally, at the fourth layer, the architecture defines the RUC (Robot Unit Controller) 
component. The RUC component models the control over a whole robot. For 
example, a robot composed of a vehicle with an arm and several interchangeable 
tools. As figure 4 shows, the RUCs are an aggregation of MUCs and a global 
coordinator that generates the commands for the MUCs and coordinates their actions, 
according to the order and the information that it receives and the coordination 
strategy that comprises. Such strategy is an interchangeable part of the RUC. For 
example, the CoordinationStrategy of a robot composed of a vehicle with a 
manipulator could be a generalised kinematics solution that takes into account the 
possibility of moving the vehicle to reach a given target. As the MUCs, the RUCs are 
logical components that can become into physical components depending on the 
concrete instantiations. In general, the RUC is a rather complex component that 
comprises hardware and software components and can expose a great variety of 
interfaces depending on the complexity of the controlled system.  
 
Having defined the SUCs, MUCs and RUCs, it seems logical to define a Group Unit 
Controller (GUP) capable of managing and coordinating a group of cooperative 
robots. However, the architecture does not go beyond the RUCs. There is a good 
reason for this. The “usual intelligence” required for controlling a joint or the 
mechanism that results from the assembly of joints or to teleoperate the robot that 
results from the combination of various mechanisms is limited, well-known and can 
be enclosed inside reusable components. The intelligence required to work 
cooperatively usually demands a more flexible approach. It is also true for some 
missions that concern the SUCs, MUCs and RUCs, likewise the algorithms for 
collision avoidance or the navigation systems for vehicles. It is very difficult to define 
a component to encapsulate “intelligence”. If a system or component is capable to 
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offer intelligence and to take non-trivial decisions it uses to be complex enough to 
have defined their own architecture (for example, an artificial vision system capable 
to determine paths free of obstacles). Thus, the approach should be different: Let’s the 
intelligent components are as they want and provide a way to integrate them into the 
system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: RUC: Robot Unit Controller. 
 
 
 
6. Adding autonomous behaviour. 
 
The composition of SUCs and MUCs results in a hierarchical architecture where the 
decisions flow from top to down and the information flows from bottom to up. This 
architecture fits well with operator-driven systems, where the autonomous behaviour 
does not exist or it is reduced to some safety hardware actions. It also fits well with 
systems where the reactive or autonomous behaviour responds to simple rules that can 
be added to controllers and coordinators which, following these rules, can take 
decisions and notify them to the upper level controller or coordinator. However, there 
are systems where the autonomous behaviour is anything but simple. In such cases, 
the intelligent component needs to integrate more information and access more 
functionality than those embedded inside a given component. The approach taken 
(showed in the figure 5) consists of superimposing the “intelligent” autonomous 
behavior and the operator-driven behavior, providing the means for integrating both 
and resolving the potential conflicts. This approach does not imply any change in the 
components defined until now but new sources of commands for them. These sources 
are constituted by new components that have access to the global system information 
and are capable of deciding what to do according to some programmed rules, 
algorithms or heuristics.  
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Figure 5: Superimposition of operator-driven and autonomous behaviour. 
 
Every component of a given layer can access the information and control ports of the 
lower layers components. From this point of view, every component of a given layer 
is an intelligent component for the lower layer. For example, from the point of view 
of a MUC, no matter whether the commands come from the coordinator of the RUC 
that comprises it (see figure 5), from the operator or from some of the intelligent 
components defined over the RUCs. As a component can receive commands from 
more than one source, it is necessary to decide what command to perform. The logic 
for this decision is outside the component. The figure 5 shows a new type of 
component: the arbitrator. Arbitrators encapsulate the rules that determine 
which command should be delivered to a given component. The arbitrator is 
separately defined because the rules that it encloses (or even the arbitrator itself) 
can vary from system to system, during the life of a given system or even at different 
stages of the functioning of a system. The concept of arbitrator is inspired in the idea 
of composition filter [13] and is strongly connected to the need of separating the 
functionality from the interaction patterns among components. 
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This approach is very flexible and allows integrating intelligence that does not 
concern directly with the missions of the robotic devices, but with the management of 
the application, such as fault tolerance policies or a meta-layer for reconfiguring the 
application. 

6. Summary and future work 
The architecture described in this paper takes the most promising architectural 
advances in the domain of teleoperation and put them together with a component-
oriented approach. The taken approach focuses in the definition of a common 
component framework that allows the definition of components that can be reused in 
different systems, as well as in the integration of intelligent systems capable to drive 
the robot behaviour. Our main sources of inspiration have been both OROCOS [11], 
CLARAty [12] (robotic architectures) and the PRISMA approach [10] (component 
and aspect oriented approaches).  
 
The architecture is currently being used in the development of a family of robots 
whose mission is to retrieve and confine the paint, oxide and marines adherences of 
hull ships (see figure [6]). This family of robots shows a broad variety of behaviours 
and complexity degrees, being an excellent test bench for the architecture.  
 

  

  
Figure 6: Three prototypes (cherry-picker model, elevation platform and mobile 

vehicle, respectively) of the family of robots and a ship to be repaired. 
 
Our experience using the architecture is satisfactory, however it is necessary to 
remark, among others, two important challenges:  
• There is no enough support for expressing the component abstractions and 

modelling their interactions.  



• Although there are well known approaches to cope with the variability [14], they 
do not offer a concrete way to solve evolution of architectural components and 
between their relationships.  

 
These challenges can be afforded by means of the PRISMA approach. In this way, we 
are currently working with the Technical University of Valencia (Spain) in the frame 
of the national funded (CICYT) research project DYNAMICA with ref. TIC2003-
07804-C05. The first step could be the use of the PRISMA language for defining the 
components and the above layered architecture. A second step could be the 
consideration of changes in the interactions between these components. 
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