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REDUCTION, RELATIVE EQUILIBRIA AND

STABILITY FOR A GYROSTAT IN THE

N-BODY PROBLEM

J. A. Vera and A. Vigueras

Abstract. We consider the non-canonical Hamiltonian dynamics of a gyrostat in the n-
body problem. Using the symmetries of the system we carry out a reduction process in
two steps, giving explicitly at each step the Poisson structure of the reduced system. Next,
we obtain general properties of the relative equilibria of the problem and if we restrict to
different approximations of the gravitational potential function, some particular cases are
studied and, by means of energy-Casimir and spectral methods, sufficient and necessary
conditions of stability can be obtained. We extend some results by Fanny and Badaoui
(1998) and by Mondéjar, Vigueras and Ferrer (2001). In [3] the case of a rigid body in
the three-body problem, in terms of the global variables in the unreduced problem, was
considered, and in [12] the case of a gyrostat in the three-body problem was studied, but
working now in the reduced system; in this way natural simplifications in the conditions
of the equilibria appear. As a particular case, the problem of three bodies is considered
for an arbitrary approximation of the potential function and the conditions for existence of
Eulerian and Lagrangian equilibria are given in different cases. Here, as in [12], we use
geometric methods, developed in part by Marsden, and others (see [6], [7], [8], [9] and
[10]).
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§1. Introduction

In the last years many papers about the problem of roto-translational motion of celestial bodies
have appeared. They show a new interest in the study of configurations of relative equilibria by
differential geometry methods or by more classical ones.

We will mention here the papers of Wang, Krishnaprasad and Madocks (1991) about the
problem of a rigid body in a central Newtonian field; Maciejewski (1995) about the problem
of two rigid bodies in mutual Newtonian attraction. These papers have been generalized to the
case of a gyrostat in a central Newtonian field by Wang, Lian and Chen (1995) and by Mondéjar
and Vigueras (1999) to the case of two gyrostats in mutual Newtonian attraction.
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In the problem of three rigid bodies we would like to mention that Vidiakin (1977) and
Duboshine (1984) proved the existence of Euler and Lagrange configurations of equilibria when
the bodies possess symmetries; Zhuralev and Petruskii (1990) made a review of the results up
to 1990; Fanny and Badaoui (1998) studied the configuration of the equilibria in terms of the
global variables in the unreduced problem, where the two bodies have spherical distribution
of mass and the third is rigid, and in Mondéjar, Vigueras and Ferrer (2001), the problem of
three bodies where two bodies have spherical distribution of mass and the third one of them
is a gyrostat is considered. Working in the reduced problem global considerations about the
conditions for relative equilibria are made. Finally, in an approximated model of the dynamics
(zero order approximation dynamics), a complete study of the relative equilibria is made.

Here, we will consider the non-canonical Hamiltonian dynamics of n + 1 bodies in New-
tonian attraction, where n of them are rigid bodies with spherical distribution of mass and the
other one is a triaxial gyrostat. First, we obtain the equations of the problem. Using the sym-
metries of the system we carry out two reductions, giving in each step the Poisson structure
of the reduced space. Then, we will obtain necessary and sufficient conditions for existence
of relative equilibria and its stability, by means of spectral and Energy-Casimir methods. As a
particular case, the problem of three bodies is considered for an arbitrary approximation of the
potential function and the conditions for Euler and Lagrange equilibria type are given in these
cases. The obtained results generalize other previous results but new problems are open. A
complete treatment and more details of these topics will appear in [14].

§2. Configuration and phase space

A gyrostat is a mechanical system G composed of a rigid body and other bodies (deformable
or rigid) connected to it such that their relative motion do not change the distribution of mass
of G .
Let S0 be a gyrostat of mass m0; S1, S2, ..., Sn, n rigid bodies with spherical symmetry of
masses m1, m2, ...,mn respectively; I = {O, u1, u2, u3} an inertial reference frame; B =
{C0, b1, b2, b3} a body frame fixed at the center of mass C0 of S0; Ri are the vector positions of
the center of masses of Si in I

Then a particle of S0 with coordinates Q in B is represented in the inertial frame I by the
vector

q = R0 + BQ,

where B ∈ SO(3).
The configuration space of the problem is the Lie group

Q = SE(3)× R3 × n). . . × R3

where SE(3) is the known semidirect product of SO(3) and R3, with elements ((B, R0), R1, ...,
Rn). And the Kinetic energy of the system is

T =
1

2

∫
So

| .
q |2 dm(Q) +

1

2

n∑
i=1

mi |
.

Ri |2 (1)

The previous expression of the Kinetic energy simplifies (Cid & Vigueras 1985) to

T =
1

2
Ω · IΩ + lr ·Ω+

1

2

n∑
i=0

mi |
.

Ri |2 +Tr (2)
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where I is the tensor of inertia of S0 in the body frame, Ω is the angular velocity of S0 defined
by Ḃ = BΩ̂, Lr and Tr are the momentum and the Kinetic energy of the moving part of the
gyrostat respectively and

X̂ =

⎛⎝ 0 −X3 X2

X3 0 −X1

−X2 X1 0

⎞⎠
The gravitational potential energy is the function V : Q→R given by

V = −
n∑

i,j=1
i�=j

Gmimj

| Ri −Rj |
−

n∑
i=1

∫
So

Gmidm(Q)

| BQ + R0 −Ri | (3)

In what follows we assume that Tr is a known function of the time and Lr is constant. Then,
the Lagrangian of the problem is L : TQ→ R

L = T − V ◦ τ (4)

where τ : TQ→ Q is the canonical projection.
The phase space is T∗Q, and its elements can be written as

Ξ = ((B,R0),R1, . . . ,Rn; (BΠ̂,P0),P1, . . . ,Pn) (5)

where Π = IΩ + Lr is the total angular momentum vector of the gyrostat in the body frame B,
Pi = miṘi (i = 0, 1, ..., n) are the linear momenta of the bodies in the fixed frame I, and T∗Q
carries a canonical symplectic structure ω defined as

w = wSE(3) + wR
3
+ n). . . + wR

3 (6)

Associated to the symplectic structure on T∗Q given by ω we have a Poisson structure
where the Poisson bracket takes the form

{f, g}T ∗Q(Ξ) =

(< DBf,
∂g

∂BΠ̂
> − < DBg,

∂f

∂BΠ̂
> +

n∑
i=0

(
∂f

∂Ri

∂g

∂Pi

− ∂g

∂Ri

∂f

∂Pi

)
)(Ξ)

(7)

By the Legendre transformation, we obtain the Hamiltonian of the problemH : T∗Q→ R

H =
1

2
Π · I−1Π− lr · I−1Π+

n∑
i=0

| Pi |2
2mi

+ V ◦ τT ∗Q (8)

§3. Symmetries and reduction

The problem can be reduced by the action of the group SE(3). In this case we can proceed by
stages (Marsden, 1992):
• In the first stage, in a similar way to [12], using the regular reduction theorem ([10]), a sym-
plectic reduction procedure by the translation group R3 is made and introducing the barycentric
coordinates in the following way: Ri,j = Rj −Ri (it is the mutual vector between Si and Sj),
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Gk are the center of mass of the systems {Sn, Sn−1, ..., Sn−k} (k = 1, 2, ..., n − 1), Mj =∑n
k=j−1 mk, (j = 1, . . . , n)

Then, we define these coordinates as

ρ1 = Rn−1,n ρ2 = Rn−2 −G1 ...
ρk = Rn−k −Gk−1 ... ρn = R0 −Gn−1

(9)

and the reduced masses by means of

g1 =
mnmn−1

Mn

g2 =
mn−2Mn

Mn−1

. . .

gi =
mn−iMn−i+2

Mn−i+1

. . . gn =
m0M2

M1

(10)

The linear momenta corresponding to these coordinates are

ρ̃1 = g1ρ1 ρ̃2 = g2ρ2 ρ̃3 = g3ρ3

ρ̃i = giρi . . . ρ̃n = gnρn
(11)

Then the reduced space is given by the symplectic manifold (M, ωm), where M = SO(3) ×
so(3)∗ × T∗R3 × n). . . × T∗R3, and the symplectic form is defined by ωM = ωSO(3) + ωR

3
+

n). . . + ωR
3
.

The Poisson bracket {f, g}M(m) associated to this symplectic form ωM is given by

(< DBf,
∂g

∂BΠ̂
> − < DBg,

∂f

∂BΠ̂
> +

n∑
i=1

(
∂f

∂ρi

∂g

∂ρ̃i

− ∂g

∂ρi

∂f

∂ρ̃i

)
)(m) (12)

for any f, g ∈ C∞(M).
The reduced Hamiltonian on M is the function

HI(m) =
n∑

i=1

| ∼
ρi |2
2gi

+
1

2
Π · I−1Π− lr · I−1Π + V (m) (13)

where

V (m) = −(
n∑

i,j=1
i�=j

Gmimj

| Ri,j |
+

n∑
i=1

∫
So

Gmidm(Q)

| BQ + Ri,0 |
) (14)

and Ri,j can be expressed as function of the ρi, (i = 1, . . . , n). In the case n = 2 we have:

R1,2 = ρ1 R1,0 = ρ2 +
m2

M2

ρ1 R2,0 = ρ2 −
m1

M2

ρ1 (15)

being now M2 = m1 + m2.

For n = 3:

R2,1 = ρ2 +
m3

M3

ρ1 R1,0 = ρ3 −
M3

M2

ρ2 R3,1 = ρ2 −
m2

M3

ρ1

R2,0 = ρ3 +
m1

M2

ρ2 +
m3

M3

ρ1 R2,3 = ρ1 R3,0 = ρ3 +
m1

M2

ρ2 −
m2

M3

ρ1

(16)
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where M3 = m2 + m3 and M2 = m1 + m2 + m3.
• In the second stage, as in [12], we do a Poisson reduction procedure by the rotation group
SO(3) and a model for M/SO(3) is obtained by means of the function
Ψ2 : (M/SO(3), {·, ·}M/SO(3)) → (R6n+3, {·, ·}II) defined as follows

Ψ2(m) = (Π, λ1,pλ1 , λ2,pλ2 , . . . , λn,pλn) (17)

where λi = Bt ρi, pλi
= Bt ρ̃i, (i = 1, . . . , n); being Ψ2 a Poisson diffeomorphism and the

corresponding Poisson bracket {·, ·}II is given by

{f, g}II(z) = (∇zf)tB(z)∇zg (18)

with the Poisson tensor B(z) given by the following expression

B(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π̂ λ̂1 p̂λ1 · · · · · · λ̂n p̂λn

λ̂1 0 IR3 0 · · · · · · 0

p̂λ1 −IR3 0
. . . . . . · · · · · ·

...
...

. . . . . . . . . . . . · · ·
...

...
...

. . . . . . . . . 0

λ̂n 0
...

...
. . . 0 IR3

p̂λn 0
...

... 0 −IR3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

If L is the total angular momentum of the system: L = Π+
n∑

i=1

λi ∧ pλi
, then for a smooth

function ϕ : R → R, ϕ(| L |) are Casimir functions.

The twice reduced Hamiltonian is the function

HII(z) = HM/SO(3)(Ψ
−1
2 (z)) =

n∑
i=1

| pλi
|2

2gi

+
1

2
Π · I−1Π− lr · I−1Π + V (z) (20)

where the potential function V is expressed in terms of the λi.

§4. Equations of motion. Relative equilibria

The relative equilibria are the equilibria for the twice reduced problem. Whose equations of
motion can be computed, using the Poisson brackets, by the following expression

.
z = {z, HII(z)}II(z) = B(z)∇zHII(z) (21)

Then, the relative equilibria are given by the system

Π ∧ Ω+
n∑

i=1

λi ∧ ∇λi
V = 0 (22)
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λi ∧ Ω+
1

gi

pλi
= 0 pλi

∧ Ω−∇λi
V = 0, (i = 1, . . . , n)

(23)

where Ω =I−1(Π− lr) is the angular velocity of S0.
If ze = (Πe, λ

e
1,p

e
λ1

, λe
2,p

e
λ2

, ..., λe
i ,p

e
λi, ..., λ

e
n,pe

λn
) is a relative equilibrium, by vector calcu-

lus we obtain the equations

λe
i | Ωe |2 −(λe

i ·Ωe)Ωe =
1

gi

∇λi
Ve, (i = 1, . . . , n) (24)

where ∇λi
Ve is ∇λi

V evaluated in ze and Ωe the same thing.
The dot product of each equation with the corresponding λe

i , yields

Πe ∧ Ωe +
n∑

i=1

λe
i ∧∇λi

Ve = 0

| Ωe |2| λe
i |2 −(λe

i ·Ωe)
2 =

1

gi

(λe
i · ∇λi

Ve), (i = 1, . . . , n)

(25)

Then, it is easy to prove the following result: In the equilibria ze the angular velocity Ωe of
S0 is parallel to the total angular momentum of the system. Similar results were obtained
in Maciejewski (1995) and Mondéjar and Vigueras (1999).
The general problem is open as in the case of the n-body problem. But the last equations
suggest the idea of considering two types of equilibria according to the vector Ω be orthogonal
or not to the vectors λi and these be coplanar. Then, the equations (25) for equilibria simplify
to

Πe ∧ Ωe +
n∑

i=1

λe
i ∧∇λi

Ve = 0

| Ωe |2| λe
i |2=

1

gi

(λe
i · ∇λi

Ve), (i = 1, . . . , n)

(26)

Other way in order to study the equations of equilibria is to impose the existence of equilib-
ria of Euler or Lagrange type and then, to obtain sufficient conditions about the angular velocity
and the gyrostatic momentum of the gyrostat. Other simplification of the problem consist in
assuming that the potential function is approximated by truncation of the corresponding Taylor
series expansion.

§5. Necessary and sufficient conditions for stability

5.1. Necessary conditions

The necessary conditions for stability of relative equilibria, ze, shall be obtained by spectral
analysis of the linearized equations at ze

.

δz = A(ze)δz (27)

being δz = z− ze and A(ze) is the Jacobian matrix of the system at ze.
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Spectral stability is necessary for stability, but to study spectral stability we must calculate
the eigenvalues of A(ze), whose characteristic polynomial has degree 6n + 3, as zero is an
eigenvalue of this polynomial, then the problem is reduced to give necessary and sufficient
conditions for the roots of

x6n+2 + a1x
6n + . . . + aix

6n−2i + . . . + a3n (28)

belong to the imaginary axis.
The matrix A(ze) can be obtained in the following way

A(ze) = B(ze)d
2F (ze) (29)

being F = HII + λ(1
2
| L |2) and λ a multiplier to be determinate with the condition

dF (ze) = 0 (30)

5.2. Sufficient conditions

We will use the energy-Casimir method as a tool to study the stability of these solutions, grant-
ing sufficient conditions of Lyapunov’s stability for equilibrium solutions of mechanical sys-
tems with symmetry. This theorem can be seen in [13]

Theorem 1. Let (M, {·, ·}, h) be a system of Poisson, m ∈ M an equilibrium solution of the
Hamiltonian vector field Xh and C1, C2, ..., Cn ∈ C∞(M) integrals of system, verifying

d(h + C1 + C2 + ... + Cn)(m) = 0

and that
d2(h + C1 + C2 + ... + Cn)(m) |W×W

is a positive or negative definite quadratic form on W ×W , where W is defined by

W = kerdC1(m) ∩ kerdC2(m) ∩ ... ∩ kerdCn(m)

Then, m ∈ M is stable. If W = {0}, m ∈ M is also stable.

Also, we prove the following previous results:

Lemma 1. Let be u ∈ R3, and û ∈ so(3) then we have the identities

(ûA)t = −Atû; (Aû)t = −ûAt (31)

with A ∈Mat3×3(R).

Lemma 2. Let be a1, a2, a3 ∈ R3, then we have the equalities

∇a1·(a1∧a2)
t=â2 ∇a2·(a1∧a2)

t= −â1

∇a1 ·(a3∧(a1∧a2))
t= −â2â3; ∇a2 · (a3∧(a1∧a2))

t = â1â3
(32)
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The proofs are a routine calculation.
The following result is important, because of the obtained equations help us to calculate the

matrix to consider in the energy-Casimir method.

Lemma 3. Let be φ(1
2
| L |2), where φ is a smooth real function and L is the total angular

momentum of the system, then this function verify the following relations
a)

∇Π(φ) = φ
′
L ∇λi

(φ) = φ
′
p̂λi

L ∇pλi
(φ) = −φ

′
λ̂iL (i = 1, . . . , n) (33)

b)
HessΠ,Π(φ) = AΠ,Π = φ

′
IR3 + φ

′′
LLt

HessΠ,λi
(φ) = AΠ,λi

= φ
′
p̂λi

+ φ
′′
p̂λi

LLt

Hessλi,Π(φ) = Aλi,Π = −(φ
′
p̂λi

+ φ
′′
LLtp̂λi

)

Hessλi,λj
(φ) = Aλi,λj

= −(φ
′
p̂λj

p̂λi
+ φ

′′
p̂λj

LLtp̂λi
)

Hessλi,pλj
(φ) = Aλi,pλj

=

⎧⎨⎩
φ

′
λ̂jp̂λi

+ φ
′′
λ̂jLLtp̂λi

, i �= j

φ
′
L̂ + φ

′
λ̂ip̂λi

+ φ
′′
λ̂iLLtp̂λi

, i = j

(i, j = 1, . . . , n)

(34)

HessΠ,pλi
(φ) = AΠ,pλi

= −(φ
′
λ̂i + φ

′′
λ̂iLLt)

Hesspλi
,Π(φ) = Apλi

,Π = Apλi
,Π = φ

′
λ̂i + φ

′′
LLtλ̂i

Hesspλi
,pλj

(φ) = Apλi
,pλj

= −(φ
′
λ̂jλ̂i + φ

′′
LLtλ̂jλ̂i)

Hesspλi
,λj

(φ) = Apλi
,λj

=

⎧⎨⎩
φ

′
p̂λj

λ̂i + φ
′′
p̂λj

LLtλ̂i, i �= j

−φ
′
L̂ + φ

′
p̂λi

λ̂i + φ
′′
p̂λi

LLtλ̂i, i = j

(i, j = 1, . . . , n)

(35)

besides, we have:
Aλi,Π = (AΠ,λi

)t Apλi
,Π = (AΠ,pλi

)t

Aλi,λj
= (Aλj ,λi

)t Apλi
,λj

= (Aλj ,pλi
)t

(36)

Apλi
,pλj

= (Apλj
,pλi

)t (37)

The proof use the results of the previous lemmas.
Now, we consider the following function

Hφ = HII + φ(1
2
| L |2) (38)
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if ze verify dHφ(ze) = 0 and d2Hφ(ze) is a (positive or negative) definite matrix, then ze is a
Lyapunov stable relative equilibrium of the system.

First, from dHφ(ze) = 0, we deduce

∇ΠHφ(ze) = 0; ∇λi
Hφ(ze) = 0; ∇p

λi
Hφ(ze) = 0, (i = 1, . . . , n)

(39)

and explicitly we have

Ωe + aLe = 0 ∇λi
Ve + a(pe

λi
∧Le) = 0,

pe
λi

gi

− a(λe
i∧Le) = 0, (i = 1, . . . , n)

(40)

where a = φ
′
(1

2
| Le|2) and Le is the total angular momentum of the system evaluated in the

equilibrium. Hence Le = −aΩe, with a = −| Ωe |
| Le |

. Then the previous equations are equivalent

to the (22)-(23).
In general, it is very difficult to give conditions in order to the matrix d2Hφ(ze) be defi-

nite and the algebraic manipulations of these conditions will be possible only by means of a
symbolic manipulator as Maple.

§6. Relative equilibria and stability for the three-body problem (n = 2)

Here we study the problem of three bodies when one of them is a triaxial gyrostat, with gyro-
static momentum constant, in Newtonian attraction with two spherical rigid bodies. Then, the
potential function can be written as

V (λ, µ) = −(
Gm1m2

| λ | + Gm1

∫
S0

dm(Q)

| Q + µ+m2

M2
λ | + Gm2

∫
S0

dm(Q)

| Q + µ−m1

M2
λ |) (41)

being M2 = m1 + m2 and where λ = λ1, µ = λ2.

We suppose that the dimensions of the gyrostat are smaller than the mutual distances be-
tween the bodies. We also assume that S0 is symmetric with respect to the third axis and to the
x-y plane of the body. With both assumptions, the gravitational potential function adopts the
following Taylor series expansion

V (λ, µ) = −(
Gm1m2

| λ | + Gm1

∞∑
i=0

A2i

| µ+m2

M2
λ |2i+1

+ Gm2

∞∑
i=0

A2i

| µ−m1

M2
λ |2i+1

) (42)

where A2i are coefficients given in Leimanis (1965).
The kth order approximation of the potential is given by the expression

Vk(λ, µ) = −(
Gm1m2

| λ | + Gm1

k∑
i=0

A2i

| µ+m2

M2
λ |2i+1

+ Gm2

k∑
i=0

A2i

| µ−m1

M2
λ |2i+1

) (43)
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Note that

∇λVk =
Gm1m2λ

| λ |3 +
Gm1m2

M2

k∑
i=0

(µ+m2

M2
λ)(2i + 1)A2i

| µ+m2

M2
λ |2i+3

− Gm1m2

M2

k∑
i=0

(µ−m1

M2
λ)(2i + 1)A2i

| µ−m1

M2
λ |2i+3

∇µVk = Gm1

k∑
i=0

(µ+m2

M2
λ)(2i + 1)A2i

| µ+m2

M2
λ |2i+3

+ Gm2

k∑
i=0

(µ−m1

M2
λ)(2i + 1)A2i

| µ−m1

M2
λ |2i+3

(44)
so

∇λVk = Ã11λ+Ã12µ ∇µVk = Ã21λ+Ã22µ (45)

being

Ã11(λ, µ) =
Gm1m2

| λ |3 +
Gm1m

2
2

M2
2

(
k∑

i=0

αi

| µ+m2

M2
λ |2i+3

)
+

Gm2
1m2

M2
2

(
k∑

i=0

αi

| µ−m1

M2
λ |2i+3

)

(46)

Ã12(λ, µ) =
Gm1m2

M2

(
k∑

i=0

αi

| µ+m2

M2
λ |2i+3

−
k∑

i=0

αi

| µ−m1

M2
λ |2i+3

) = Ã21(λ, µ)

Ã22(λ, µ) = Gm1

(
k∑

i=0

αi

| µ+m2

M2
λ |2i+3

)
+ Gm2

(
k∑

i=0

αi

| µ−m1

M2
λ |2i+3

) (47)

with the coefficients αi = (2i + 1)A2i.
The kth order approximation dynamics is given by the following differential equations

.
z = {z, Hk

II(z)}II(z) = B(z)∇zH
k
II(z)

where the Hamiltonian function is

Hk
II(z) =

| pλ |2
2g1

+
| pµ |2
2g2

+
1

2
Π · I−1Π− lr · I−1Π + Vk(λ, µ)

6.1. Relative equilibria in the kth order approximation dynamics

If ze = (Πe, λ
e,pe

λ, µ
e,pe

µ) is a relative equilibrium in the kth order approximation dynamics
then we have

Πe ∧ Ωe+λe ∧ (∇λVk)e + µe ∧ (∇µVk)e = 0 (48)

pe
λ

g1

+ λe ∧ Ωe = 0
pe

µ

g2

+ µe ∧ Ωe = 0

pe
λ ∧ Ωe = (∇λVk)e pe

µ ∧ Ωe = (∇µVk)e

(49)

and by (46)-(47) we obtain
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Πe ∧ Ωe = 0

| Ωe |2| λe |2 −(λe ·Ωe)
2 =

1

g1

(λe · (∇λVk)e)

| Ωe |2| µe |2 −(µe ·Ωe)
2 =

1

g2

(µe · (∇µVk)e)

(50)

Then we can deduce the following property:
In the relative equilibria for any approximation dynamics there are no moments about

the gyrostat, that is the gyrostat move under inertia.
Next, we are going to study the relative equilibria for any approximation dynamics, by

assuming that the vectors Ωe, λe, µe verify geometrical properties. So ze is a equilibrium
Euler type when, λe, µe are collinear, and Ωe is orthogonal to the line defined by the three
bodies. And ze is a equilibrium Lagrange type when λe, µe are coplanar but no collinear, and
Ωe is orthogonal to the plane spanned by λe, and µe. Other types will be considered in next
papers (Ωe is in the plane spanned by λe, and µe).
In what follows we only give necessary conditions for existence of Eulerian and Lagrangian
equilibria in different cases; it is easy to prove that these conditions are sufficient and a complete
study about these questions will be made in [14].

6.1.1. Existence of Eulerian equilibria

If ze is a Eulerian equilibrium for an approximated dynamics of order k, the following identities
hold

g1 | Ωe |2| λe |2= λe · (∇λVk)e; g2 | Ωe |2| µe |2= µe · (∇µVk)e (51)

as λe and µe are collinear, to simplify the notation we shall set

ρ =
| µe−m1

M2
λe |

| λe |
(52)

and three cases are possible, but we are going to study only the case in which the following
relations are verified

µe−m1

M2
λe = ρλe; µe+m2

M2
λe= (1 + ρ)λe (53)

hence

µe =
((1 + ρ)m1 + ρm2)

M2

λe (54)

And doing the suitable calculations we have

(∇λVk)e = Ã(ρ)λe; (∇µVk)e = B̃(ρ)λe (55)

being

Ã(ρ) =
Gm1m2

| λe |3 +
Gm1m2

M2

(
k∑

i=0

αi

| λe |2i+3
·
(

1

(1 + ρ)2i+2
− 1

ρ2i+2

)
)

B̃(ρ) =
k∑

i=0

Gαi

| λe |2i+3

(
m1

(1 + ρ)2i+2
+

m2

ρ2i+2

) (56)
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the following identities

λe · (∇λVk)e =| λe |2 Ã(ρ)

µe · (∇µVk)e =
((1 + ρ)m1 + ρm2)

M2

| λe |2 B̃(ρ)

(57)

help us to deduce the relations

| Ωe |2=
Ã(ρ)

g1

; | Ωe |2=
M2B̃(ρ)

g2 ((1 + ρ)m1 + ρm2)
(58)

and it is possible if and only if the equation

g2 ((1 + ρ)m1 + ρm2) Ã(ρ) = g1M2B̃(ρ) (59)

has positive real roots. In this case Ωe will be orthogonal to the line spanned by λe, and it will
verify

| Ωe |2=
Ã(ρ)

g1

=
M2B̃(ρ)

g2 ((1 + ρ)m1 + ρm2)
(60)

Hence, in this particular case, the problem is reduced to study the positive real roots of the
previous equation (59). Next, we are going to study the existence and number of equilibrium
solutions in two particular cases corresponding to k = 0 and k = 1.

Eulerian equilibria in the zero order approximation dynamics In this case the equation
(59) is reduced to the classical quintic equation of the three body problem

(m1 + m2)ρ
5 + (3m1 + 2m2)ρ

4 + (3m1 + m2)ρ
3+

−(3m0 + m2)ρ
2 − (3m0 + 2m2)ρ− (m0 + m2) = 0

(61)

This equation whose coefficients are functions of the masses has a unique positive real root,
then in this case the existence of Eulerian equilibria is proved being

| Ωe |2=
1

g1

(
Gm1m2

| λe |3 +
Gm1m2α0

M2 | λe |3
(

1

(1 + ρ)2
− 1

ρ2

))
where ρ is a positive real root of (61).

Eulerian equilibria in the first order approximation Now we have to study the algebraic
equation

m0a
2(m1 + m2)ρ

9 + m0a
2(5m1 + 4m2)ρ

8 + m0a
2(10m1 + 6m2)ρ

7+
+3m0a

2(3m1 + m2 −m0)ρ
6 + 3m0a

2(m1 −m2 − 3m0)ρ
5−

(6m0m2a
2 + 10m2

0a
2 + α1(m1 + m2 + 5m0))ρ

4−
(4m0m2a

2 + 5m2
0a

2 + α1(10m0 + 4m2))ρ
3−

(m0m2a
2 + m2

0a
2 + α1(6m2 + 10m0)re)ρ

2 − α1(5m0 + 4m2)ρ− α1(m0 + m2) = 0
(62)
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where a =| λe |, and α1 = 3
2
m0(C − A), being C y A the principal moments of inertia of the

gyrostat.
If C > A the equation (62) has a unique positive real root. In particular, we can consider

that m1 = m2 = m0, then this equation can be written as:

2ma2ρ9 + 9ma2ρ8 + 16ma2ρ7 + 9ma2ρ6 − 9ma2ρ5 − (7α1 + 16ma2)ρ4

−(14α1 + 9ma2)ρ3 − (16α1 + 2ma2)ρ2 − 9α1ρ− 2α1 = 0
(63)

6.1.2. Existence of Lagrangian equilibria

IF ze is a Lagrangian equilibrium for an approximated dynamics of order k, we deduce the
following identities

λe ∧ (∇λVk)e = 0 µe ∧ (∇µVk)e = 0
g1 | Ωe |2 (λe ∧ µe) = (∇λVk)e ∧ µe; g2 | Ωe |2 (λe ∧ µe) = λe ∧ (∇µVk)e

(64)

By the formulas

∇λVk = Ã11λ+Ã12µ ∇µVk = Ã21λ+Ã22µ (65)

in an equilibrium solution we have

(Ã12)e(λ
e ∧ µe) = 0; (Ã21)e(λ

e ∧ µe) = 0

g1 | Ωe |2 (λe ∧ µe) = (Ã11)e(λ
e ∧ µe); g2 | Ωe |2 (λe ∧ µe) = (Ã22)e(λ

e ∧ µe)
(66)

Thus

(Ã12)e = (Ã21)e = 0 | Ωe |2=
(Ã11)e

g1

=
(Ã22)e

g2

(67)

If we put | λe |= Z, | µe+m2

M2
λe |= X, | µe−m1

M2
λe |= Y, then a Lagrangian equilibrium

solution exists if the following algebraic system has positive real roots

X2k+3 =
k∑

i=0

βiZ
3X2(k−i); Y 2k+3 =

k∑
i=0

βiZ
3Y 2(k−i) k = 0, . . . , n (68)

where Z and βi = αi/m0 are known parameters of the problem

Lagrangian equilibria in the zero order approximation dynamics For k = 0, the equa-
tions can be written as follows

X3 = Z3; Y 3 = Z3 (69)

then X = Y = Z is a equilibrium solution and the three bodies S0, S1, S2 form an equilateral
triangle in a plane orthogonal to the angular velocity that verify

| Ωe |2=
GM1

| λe |3 (70)

Lagrangian equilibria in the first order approximation dynamics For k = 1, the equa-
tions to be considered are

X5 − Z3X2 − β1Z
3 = 0; Y 5 − Z3Y 2 − β1Z

3 = 0 (71)

being Z and α1 parameters of the problem.
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Lagrangian equilibria in the second order approximation dynamics For k = 2, the equa-
tions (68) reduce to

X7 − Z3X4 − β1Z
3X2 − β2Z

3 = 0

Y 7 − Z3Y 4 − β1Z
3Y 2 − β2Z

3 = 0
(72)

§7. Conclusions and open problems

This paper represents a first step to understand the geometry and dynamics of the general mo-
tion of a gyrostat in Newtonian attraction with n rigid bodies with spherical distribution of
mass.

We perform the reduction of the phase space by the semidirect product SE(3) in two step,
and we give the equations and some general remarks on the relative equilibria in the same line
noted by Mondéjar, Vigueras and Ferrer (2001).

In the second part of the paper we give general criterions to study the stability of the equi-
librium solutions of the problem in the general case.

After, we restrict to the three-body problem and different approximation dynamics are con-
sidered, giving necessary conditions for existence of equilibrium solutions of Euler and La-
grange type.

Finally, we note that some results of previous papers are included in our configurations
equilibria when the gyrostatic momentum is null, and/or the body is spherical. In particular,
we note that some results of Fanny and Badaoui (1998) are included in our relative equilib-
rium configurations when the gyrostatic momentum is null, and the same for our paper above
mentioned when k = 0.

Open problems: 1) the existence and number of roots of the different equations or systems
that appear in our problems, 2) the study of sufficient conditions for existence and stability
of Eulerian and Lagrangian equilibria in these models, and 3) more general problems will be
considered in next papers.
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