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Abstract—Mode-stirred reverberation chambers (MSRCs) are a
useful tool for measuring several wireless-related MIMO antenna
parameters. In a conventional single-cavity MSRC, the emulated
fading environment is isotropic and the amplitude of the signal
is Rayleigh distributed. Previous contributions have enhanced the
emulation capabilities of MSRCs so as to include the ability to em-
ulate Rician- and non-isotropic fading environments. In this con-
tribution, arbitrary amplitude probability density functions (PDF)
emulation using a MSRC is presented by selecting parts of the
sample set that forms different statistical ensembles. Several al-
gorithms are presented and compared in terms of computation
time and power accuracy using simulated as well as measured data
from different MSRCs to obtain Rician, on-body and amplitude
PDFs of standardized models. The technique is patent-protected
by EMITE.

Index Terms—Algorithms, antenna measurements, fading chan-
nels, genetic algorithms.

I. INTRODUCTION

A methodology to measure the MIMO performance of an-
tenna sets using a mode-stirred reverberation chamber

(MSRC) was selected by standardization bodies in 2008 [1]. An
MRSC contains a set of mode stirrers that changes the boundary
conditions of the main cavity of the chamber. The metal cavity,
along with the stirrers, provides a multi-reflective environment
which is repeatable and can be statistically studied. The repeata-
bility and statistical nature of MSRCs make them a versatile
tool for measuring a wide variety of MIMO antenna parameters
[2]–[6].
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In its conventional design, an MSRC uses a single cavity.
With perfect stirring, the real and imaginary parts of the rectan-
gular components of the electric and magnetic field throughout
the single-cavity become Gaussian distributed, independent
with identical variances. Thus, the electric or magnetic field
inside the single-cavity follows a Rayleigh probability density
function (PDF) in amplitude and uniform distribution of phase,
which resembles the multipath fading in urban scenarios of
wireless communications systems. This initial design has been
densely studied in the literature [7]–[12]. But in MSRCs, a
term that was coined in 1995 [13], the fields do not necessarily
have to be constrained to a single-cavity or even be provided
in a reverberating mode to the researcher. In consequence,
MSRCs may contain more than one metal cavity which could
be coupled through a variety of means, including waveguides,
slots or metal plates, among others. Likewise, the shape of
these cavities does not have to be restricted to the canonical
ones and additional software control and algorithms, along with
stochastic handling of measured samples, allow extraordinary
advantages to the engineer over conventional single-cavity
reverberation chambers.
With the advent of 4G systems employing MIMO and

the urgent need to employ fast, accurate and cost-effective
MIMO Over-The-Air (OTA) test tools, the last few years have
witnessed a large number of improvements in the emulating ca-
pabilities of MSRCs using non-conventional designs. Among
the improvements that require hardware alterations we can
mention the use of phantoms, absorbers, non-canonical shapes,
multiple cavities or source stirring techniques to reproduce
realistic distributions with diverse Power Delay Profiles (PDP),
Root-Mean-Square Delay Spreads (RMS DS) or fading pro-
files such as keyholes, hyper-Rayleigh, Rician-fading, indoor
environments, wideband in-vehicle environments, metallic
windows, tree canopies, walls and other artefacts in buildings
[14]–[22]. Among the improvements that use software alter-
ations we can mention the recent ability to measure the radiation
patterns of antennas using time-reversal techniques [23] or the
extraordinarily innovative ability to measure angle-of-arrival
using Fourier beamsteering [24].
These enhancements now make possible to evaluate, under

different environments, novel antenna-associated parameters
related to MIMO performance, such as correlation, diver-
sity gain or capacity, among others, which were previously
channel-only related issues. This has certainly made small, fast
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and relatively-cheap MSRC’s capabilities approach those of
large, slow and expensive anechoic chambers, and has called
the attention of the Antenna and Propagation community [2],
[3], [14], [15], [17]–[20], [22], [23], [25], [26], [28]. This
is because a large number of technical add-ons (quiet zone,
RF probes, antennas, cables, phase shifters, etc.) with a large
associated cost is needed to make anechoic chambers-based
MIMO OTA tests effectively. A summary of recent advances
in MSRCs can be found in [26].
Among these recent enhancements, the authors have recently

presented a novel technique to emulate different amplitude PDF
of fading distributions by sample selection [27]. By keeping or
discarding samples from a large measured sample set it is pos-
sible to achieve a new arbitrary amplitude PDF which only con-
sists of unmodified measured samples. The short contribution in
[27] was limited to oneMSRC, the use of Rayeigh-fading initial
data and only Rician-fading target PDFs. In this paper several
algorithms for the sample selection technique presented in [27]
are analysed and compared with the use of both simulated and
measured data, for two different MSRCs and targeting Rician-,
on-body and standardized fading models amplitude PDFs. The
analyses are performed in respect of distribution accuracy and
computational time in an attempt to approach quasi-real-time
operation of the new technique. Although the sample selection
technique presented here cannot yet fully emulate all the phys-
ical parameters that characterise a fading environment through
standardized models, such as angle of arrival (AoA), Power An-
gular Spectrum (PAS) or PDP, the new capabilities are certainly
a step forward towards a potential emulation of arbitrary fading
profiles using advanced MSRCs. This is extremely important
as amplitude-only SCME models using diverse delay taps have
been suggested at standardization bodies for initial tier 1 com-
pliance testing stages, while advanced channel models are only
to be employed in tier 2 testing [28]. In fact, the Rayleigh-fading
channel emulated by anechoic-based MIMO OTA systems is an
amplitude-only PDF [29].

II. SAMPLE SELECTION ALGORITHMS

The presented algorithms are based on the PDFs of the data.
In a rich multipath environment, the real and imaginary parts
of the complex amplitude of the received signal are Gaussian
distributed around zero. In this environment the PDF of the am-
plitude can be described by the Rayleigh model

(1)

where is the mean power of the signal. In a multipath envi-
ronment with dominant line-of-sight (LoS) component the am-
plitude of the received signal becomes Rician distributed, with
the PDF

(2)
where is the zero-order modified Bessel function of the
first kind, is the power of the constant offset of the distribu-

tion (LoS component), and is the power of the scattered part
of the signal (non-LoS (NLoS) component). The Rician distri-
bution is characterized by the -factor, defined as the ratio be-
tween the direct and scattered powers by [20]

(3)

The factor theoretically ranges from zero to infinite. Several
references, however, describe practical K-factors from zero to a
maximum of about 180 [30], [31]. All selected algorithms will
select a subset of samples (final) from a large sample set (initial)
that conform to a pre-defined statistical ensemble (target).

A. The Single Step Algorithm

In the first algorithm we define a relationship between the
initial distribution and its target distribution counterpart by

(4)

where is the initial PDF, is a weighting
function and is the target PDF [32]. The weighting
function is

(5)

in which the amplitude is normalized to have a value between
zero and unity. In this algorithm, the measured sample with
an amplitude of , will be kept in the final subset only if

is true, and it is discarded otherwise. The
notation U(0,1) defines a random variable with uniform distri-
bution between 0 and 1. Therefore, the function in the
algorithm is used as a decision threshold for each sample such
that it provides the probability of keeping the sample. The fact
that a decision is taken once, without any iteration, is the reason
why this algorithm was named the single step algorithm.

B. The Iterative Genetic Algorithm

In an attempt to get a better decision tool, an evolutionary
method of a genetic algorithm (GA) [33] is also employed to
optimize the fitness between the PDF of an ensemble of sam-
ples and the target PDF. The application of GA to the sample
selection problem consists of assigning one binary variable (0
or 1) to each sample, denoting whether the sample will be in
the final subset or not. The algorithm can be further constrained
with a pre-defined minimum number of samples that we want
in the final solution ensemble so as to conform to a set of good-
ness-of-fit tests. The employed error (fitness) function is a sum
squared error (SSE) based function. Since for the sample selec-
tion problem we are looking for best fits to target PDFs, which
range from 0 to 1, the conventional SSE formula was modified
as

(6)
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where is the number of elements wherein the PDF is evalu-
ated. The fitness value is set by the user as a calculation limit
for the GA and Hybrid algorithms.

C. The Hybrid Algorithm

The third algorithm employed in this study is a hybrid of the
single step and the GA algorithms. First, the single step algo-
rithm is used to quickly determine thewanted subset of data. The
resulting subset of data with moderate accuracy is then used to
feed the iterative GA algorithm in the second step. The second
step is used to accurately determine the final data subset. The
GA hence has a smaller initial data set and a more accurate ini-
tial distribution of data, which leads to shorter computational
times.

D. Accuracy of Sample-Selected Distributions

To quantify the error between the target- and final sample-
selected PDFs, a mean sum-square error is defined as

(7)

where n is the number of elements in the data vector and
is the difference between two amplitude bins in the PDF.

and are the initial and final sample-selected
PDFs, respectively. In addition to , the relative amount of
remaining samples is noted, since it will affect the accuracy.
Other error parameters were also considered. A dominating
type of error is the statistical inaccuracy of the measurement,
which is dependent of the number of independent samples,

, in the initial distribution. When discarding some of the
measured samples in a sequence, the measurement accuracy is
affected, but not necessarily decreased. If the discarded samples
do not contribute to the desired target distribution, the accuracy
can actually be improved.
In order to see how the accuracy is affected by the sample

selection technique, we choose to study the accuracy of the av-
erage power as a figure of merit for final target distribution ac-
curacy. This is because MRSCs are often used to measure the
antenna radiation efficiency, which is proportional to the av-
erage power of the measured sequence. In this contribution, the
accuracy of average power is defined as the ratio between the
standard deviation of the average power and the mean power.
How the sample selection technique affects the accuracy can be
studied by deriving and comparing this ratio before and after
sample selection. For an exponentially distributed random vari-
able, the standard deviation and the mean value are equal.
The central limit theorem states that the standard deviation is
proportional to the inverse of the square root of the number of
independent samples [34], whereas the mean remains the
same. We thus find that the relative accuracy for the initial data
(assumed to be Rayleigh-distributed) is

(8)

where is the number of independent samples in the
initial distribution. After having applied the sample-selection

technique, the amplitude becomes Rician-distributed, with pa-
rameters and . The mean and standard deviation of
the power of a single sample within a Rician-distributed set are
given by

(9)

(10)

This results in a relative accuracy of the final data of

(11)

where is the number of independent samples in the
final distribution. From (11), we can see that after applying the
sample-selection technique, an increased accuracy

is possible in MSRCs. Determining the number of in-
dependent samples in the final subset represents a
key issue. The number of independent samples of the original
data set is calculated by the techniques in [35],
[36], wherein the oversampling ratio is defined as

(12)

where is the number of measured samples in the initial
set of data. When the algorithms are performing the sample se-
lection process, independent samples are discarded every time a
consecutive sequence of measured samples longer than or equal
to the over sampling ratio is discarded. For example, in the case
of , will not be reduced if 1–2 samples in a
row are discarded. If 3–5 samples in a row are discarded, this re-
duces by one. If 6–8 samples in a row are discarded,
this reduces by two, and so on. This means that in
some cases can be equal to , but also that
the accuracy of final subsets depends on the oversampling ratio
of initial sample sets. This is why it was important to test the
sample-selection technique over both simulated and measured
initial data sets. In the worst case scenario, however,
may be reduced by the same ratio as (number of sam-
ples) when

(13)

where is the number of samples after the sample-selec-
tion algorithm (final subset). It is also important to notice that
when going from a Rayleigh distribution to a Rician distribu-
tion, the first factor on the right-hand side of (11) will
be lower in the final distribution than in the initial distribution,
and this helps reducing the error of the technique. Therefore, the
sample-selection technique is recommended to be used on rich
multipath Rayleigh-fading initial data sets. This does not mean,
however, that the technique does not work with other initial sets
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Fig. 1. Simulated Rayleigh and target (Rician) fading distributions. [15].

Fig. 2. Percentage of remaining samples for all algorithms versus K-factor.

TABLE I
THE FIVE DIFFERENT TARGET RICIAN DISTRIBUTIONS [15]

as the second factor in (11) typically increases the error, because
.

III. SAMPLE SELECTION PERFORMANCE

A. Results Using Simulated Initial Data Sets

In this section the performance of the three different algo-
rithms is analysed when a set of 10 000 simulated Rayleigh-dis-
tributed samples is used. The simulated data set is obtained
by applying the command in a
Matlab™-script. Five different ideal Rician target distributions
are defined in Fig. 1. The specific parameters for each distribu-
tion are also defined in Table I. Three of the distributions have
the same mean power as the original distribution. Distributions
4 and 5 have higher and lower output power, respectively. The
performance and errors of all algorithms with the previously-de-
scribed simulated initial data are illustrated in Figs. 2–4.

Fig. 3. Distribution error of all algorithms versus K-factor.

Fig. 4. The ratio Pout/Pin versus percentage of remaining samples for all algo-
rithms. All distributions have the same factor.

Fig. 2 depicts the evaluation of remaining samples due to
changes in the target K factor for the same final output power
than that in the initial data set (Rician targets 1, 2 and 3). In the
results depicted in Fig. 2, the fitness limit of the iterative GA is
set to 0.01 and the hybrid is set to 0.001. Fig. 3 illustrates the
distribution error due to changes in the target factor for
the same final output power than that in the initial data set (Ri-
cian targets 1, 2 and 3). Fig. 4 depicts the amount of remaining
samples due to changes in the ratio for the same final

factor (Rician targets 2, 4 and 5). It is worth mentioning
here that the single-step algorithm is extremely fast and obtains
all final subsets within a second, while the iterative GA and the
hybrid algorithms took between 2 to 50 minutes and an average
of 4.7 seconds, respectively.

B. Results Using Measured Initial Data Sets

This section shows how the sample selection technique per-
forms with input data samples measured in MSRCs. In order
to verify the performance of the technique with measured ini-
tial data sets, seven different MSRC-measured initial sample
sets were employed, corresponding to emulated scenarios ’A’ to
’G’. The measurements of the initial data sets were performed in
the E200MIMO Analyzer mode-stirred reverberation chamber.
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TABLE II
THE DIFFERENT PAIRED TEST CASES

The E200 was connected to a Rohde & Schwarz ZVRE Vector
Network Analyzer. The E200 is an MSRC with dimensions of
0.82 m 1.275 m 1.95 m, eight exciting antennas, and po-
larization-stirring due to aperture-coupling and to the different
orientation of the antenna exciting elements. An RMS DS of 90
ns was measured for the typical Rayleigh-fading test scenario.
It also has three mechanical and mode-coupling stirrers, one
holder-stirrer and a variable iris-coupling. E200 contains two
cavities, the upper cavity with the transmitting antennas and the
lower cavity wherein the receive MIMO antennas are placed.
Coupling between upper and lower cavity is made through a
slotted metal plate, and some control over the slotted apertures
is achieved through the movements of stirrers. This provides
a very rich Rayleigh-fading scenario within the lower cavity,
when all measured samples and slots couplings are accounted
for.
Scenario ’A’ represents an empty MSRC, providing the typ-

ical Rayleigh-fading distribution. In scenarios ’B’ to ’G’ dif-
ferent pieces of absorbers are introduced inside the chamber
in order to change the isotropic condition and the door is left
open 60 . Since the dipoles do not receive the expected multi-
path component on the absorbed side, a non-isotropic scattering
scenario is obtained with reduced multipath component (MPC)
compared to the isotropic scenario ’A’. Details are provided in
[18], [19].
Two different target PDFs were selected. The first target data

was a measured one configured as an on-body channel with a
real person in a large MSRC at Uppsala University. The MSRC
at Uppsala University has a size of 4 m 8 m 2.3 m. In an
effort to evaluate the validity of the sample selection technique
to emulate amplitude PDFs of standardized channel models for
compliance testing, the second selected target environment is
a Matlab™-created standardized IEEE 802.11n channel model
(MIMO-WLAN) [37], [38], which represents an accurate re-
production of a real IEEE 802.11n channel. The IEEE 802.11n
target data sample set uses a 2 2 MIMO system at a frequency
of 2.4 GHz with 9 propagation paths in an office environment.
The seven different initial sample sets were paired together with
the different target PDFs and named from 1 to 8, as illustrated
in Table II.
After running all three sample-selection algorithms on all

paired situations, analyses were performed considering the dis-
tribution error, remaining samples, power accuracy and number
of independent samples, as described in Section II-D. All algo-
rithms were run on a computer with Intel Pentium 4, Dual Core,
2.4 GHz and 740 Mbytes of RAM. The single step algorithm
took a miniscule time, which averaged 0.6 s. The iterative GA
took considerably longer computational times, ranging from 5
to 30 minutes, whereas the hybrid algorithm only took between
5 to 15 seconds. As running times depend on the selected fit-
ness value (error limit as per (6)), Fig. 5 depicts a comparison

Fig. 5. Comparison of computational performance versus error limit for the
iterative GA and hybrid algorithms for test case 8.

Fig. 6. Final percentage of remaining samples for all test cases.

of computational times versus fitness value for the GA and hy-
brid algorithms for test case 8. From this figure it seems clear
that the hybrid algorithm outperforms the GA one for fitness
values above 0.00005 (cross-over point). The percentage of re-
maining samples is illustrated in Fig. 6 for 0.001 fitness value.
The GA always keep a larger percentage of remaining samples,
as expected, but it is interesting to observe from this figure that
the difference to those kept by the hybrid algorithm is not so
large for case 8, when the target data set is the theoretical stan-
dardized IEEE 802.11n channel model. The results of analysed

and the power accuracy are shown in Figs. 7 and
8, respectively. From Figs. 7 and 8 it is clearly observed that, de-
spite a relatively large reduction in the total number of samples
illustrated in Fig. 6, the number of independent samples is not
proportionally reduced at all and the power accuracy is hardly
affected by the sample-selection algorithms, with the only ex-
ception of case 4 for the step and hybrid algorithms. The best
final power accuracy was that obtained when the initial data set
was the measured scenario A (rich isotropic multipath). This
will be discussed further on.

IV. MIMO ANTENNA PARAMETERS

To validate the results obtained with the sample selection
technique, some final MIMO antenna parameters were esti-
mated from the final sample-selected measured subsets. Three
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Fig. 7. Number of independent samples remaining in the final sample subsets
compared with their initial set counterparts.

Fig. 8. Power accuracy for the final sample subsets compared with their initial
set counterparts.

parallel dipoles MHz in a vertical position and
with a separating distance of were employed
as receive MIMO antennas in a 3 3 MIMO test system.
Following the findings in the previous sections for getting
accurate results, the initial data set was the measured sample set
using scenario A at the E200 MIMO Analyzer (isotropic) with
the three parallel dipoles as receive antennas. Three different
Rician channels with different -factors ( , 4.26 and
49) were selected as target PDFs. The emulated results using
the final sample-selected subsets were compared, in terms of
MIMO capacity, with the theoretical upperbound model for
Rician environments described in [36]. Results are illustrated
in Fig. 9.
Since correlation between the antennas at the reception is

high, the results were not expected to reach the maximum er-
godic capabilities of the channel, as they are described in [38].
Yet, as the K-factor is increased, it was expected that correla-
tion would play a less important role on MIMO capacity, i.e.,
the correlation has a strong influence in MIMO capacity as long
as the -factor is relatively low [39]. When the LoS path be-
comes the most important part of the signal, correlation has a
much lower influence on the results ofMIMO capacity [39]. The

Fig. 9. 3 3 MIMO capacity emulated using the sample selection technique
with different Rician K-factors.

results depicted in Fig. 9 clearly illustrate what was expected.
MIMO Capacity differences between the sample-selected emu-
lated channel and the theoretical upperbound i.i.d Rician results
are high for low K-factor, decrease for moderate K factors and
are nearly non-existent for high K-factors (49).

V. DISCUSSION

Figs. 1–3 identify a clear constraint of the employed algo-
rithms, and that is the fact that the target distribution should
have the same mean power as the initial distribution for main-
taining good accuracy in the final sample-selected results. The
reason for this can be intuitively understood. If the output power
is higher than the input power there will be a problem of finding
data samples for the new distribution. This can also be observed
from Fig. 5. Similarly, if lower power relative to the power
of the initial distribution is targeted, the same problem occurs.
Thus, the algorithm should only be used to achieve the cor-
rect K-factor and shape of distribution, and not as an ampli-
fier or attenuator. Likewise, when the initial data set was that of
measured scenario D in [18], [19], final sample-selected results
suffered from a lack of accuracy and percentage of remaining
samples in comparison to the results obtained when using other
initial data sets. Since scenario D in [18], [19] represents the
narrowest angular spread (AS), it is also easily understood that
any sample-selected algorithm encounters difficulties extracting
different PDFs from such extreme initial data. This, however,
serves for suggesting that rich isotropic Rayleigh-fading initial
data sets should be used for sample-selection techniques. This
hypothesis is further confirmed with Figs. 4–6, wherein test case
1 (using rich multipath Rayleigh-fading isotropic scenario A as
initial measured data set) outperforms any other initial data set.
It is worth mentioning that the technique is repeatable as long

as themeasured scenario does not change. Should the host PC (if
used) change for a dongle RF-antenna front end prototype under
test, o should the cylinder loading of the chamber change, results
would be different and sample-selection procedures have to be
run again. In this sense, once sample subsets have been selected
for a specific measured scenario and antenna under test (AUT),
these do not have to be changed for estimating different MIMO
parameters.
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VI. CONCLUSIONS

It has been demonstrated that the sample selection technique
allows for the emulation of arbitrary amplitude PDFs usingmea-
sured data in a mode-stirred reverberation chambers. This is
demonstrated here for the first time. The technique neither re-
quires any hardware alteration nor does it modify any measured
sample at all. While the final emulated PDFs do not yet allow
for changes in the fading physical parameters (PAS, AoA, etc.),
it certainly represents a step forward towards arbitrary fading
emulation using MSRCs.
The technique has also been validated for MIMO antenna pa-

rameters such as MIMO capacity. Among the identified limi-
tations of the technique, it seems clear that the power of the
final and initial data sets has to be the same, and that the use of
initial rich multipath Rayleigh fading measured data sets pro-
vide better final subset accuracies. Three different algorithms
have been successfully employed. The accuracy is adequate for
most cases, but large differences in computational times have
also been found. A trade-off between very accurate results with
large percentage of remaining independent samples and speed
is clearly observed. With the use of combined linear-GA, rel-
atively accurate results can be obtained at low computational
times, but there is certainly some room for improvement in this
sense. The sample-selection technique can further enhance the
capabilities of mode-stirred reverberation chambers for evalu-
ating MIMO antenna parameters once amplitude-only channel
models have been proposed for tier 1 standardized MIMO OTA
testing. Future research includes the extension of the technique
for active MIMO OTA tests as well as the development of en-
hancements in the technique for the emulation of a wide range of
standardised channel models which include time-related prop-
erties such as delay spread and angular-related properties such
as angular spread. The technique is patent protected by EMITE.

REFERENCES

[1] “Measurements of Radio Performances for UMTS Terminals in Speech
Mode,” 2008, 3GPP TR 25.914 V7.0.0.

[2] T. Maeda and T. Morooka, “Radiation efficiency measurement method
for electrically small antennas using radio wave scatterers,” in Proc.
IEEE Antennas and Propagation Society Int. Symp., 1988, vol. 1, pp.
324–327.

[3] H. Arai and T. Urakawa, “Radiation power measurement using com-
pact shield box,” in Proc. ISAP, 1996, pp. 1005–1008.

[4] K. Madsén and P. Hallbjörner, “Reverberation chamber for mobile
phone antenna tests,” in Reverberation Chamber, Anechoic Chamber
and OATS Users Meeting, Seattle, WA, Jun. 4–6, 2001.

[5] P. Corona, G. Latmiral, E. Paolini, and L. Piccioli, “Use of reverber-
ating enclosure for measurements of radiated power in the microwave
range,” IEEE Trans. Electromagn. Compat., vol. 18, no. 2, pp. 54–59,
1976.

[6] M. Lienard and P. Degauque, “Simulation of dual arraymultipath chan-
nels using mode-stirred reverberation chamber,” Electron. Lett., vol.
40, no. 10, pp. 578–579, May 2004.

[7] P. Corona, G. Ferrera, and M. Migliaccio, “Reverberating chambers
as sources of stochastic electromagnetic fields,” IEEE Trans. Electro-
magn. Compat., vol. 38, no. 3, pp. 348–356, Mar. 1996.

[8] J. G. Kostas and B. Boverie, “Statistical model for a mode-stirred
chamber,” IEEE Trans. Electromagn. Compat., vol. 33, no. 4, pp.
366–370, 1991.

[9] K. Rosengren, P. S. Kildal, C. Carlsson, and J. Carlsson, “Charac-
terization of antennas for mobile and wireless terminals in reverbera-
tion chambers: Improved accuracy by platform stirring,”Microw. Opt.
Technol. Lett., vol. 30, no. 20, pp. 391–397, Sep. 2001.

[10] K. Rosengren and P. S. Kildal, “Radiation efficiency, correlation,
diversity gain, and capacity of a six monopole antenna array for a
MIMO system: Theory, simulation and measurement in reverberation
chamber,” Proc. IEE: Microw., Antennas, Propag., vol. 152, no. 1, pp.
7–16, Feb. 2005.

[11] M. Otterskog and K. Madsen, “On creating a nonisotropic propagation
environment inside a scattered field chamber,” Microw. Opt. Technol.
Lett., vol. 43, no. 3, pp. 192–195, Nov. 2004.

[12] K. A. Remley, S. J. Floris, H. A. Shah, and C. L. Holloway, “Static
and dynamic propagation-channel impairments in reverberation cham-
bers,” IEEE Trans. Electromagn. Compat., vol. 53, no. 3, pp. 589–599,
2011.

[13] T. A. Loughry and S. H. Gurbaxani, “The effects of intrinsic test fix-
ture isolation on material shielding effectiveness measurements using
nested mode-stirred chambers,” IEEE Trans. Electromagn. Compat.,
vol. 37, no. 3, pp. 449–452, Mar. 1995.

[14] Z. Yun andM. F. Iskander, “MIMO capacity for realistic wireless com-
munications environments,” in Proc. IEEE Antennas Propag. Soc. Int.
Symp., Jun. 2004, pp. 1231–1234.

[15] H. Arai, “Field simulator for Rayleigh/Rician fading reproduction,”
in Proc. IEEE Antennas Propag. Soc. Int. Symp., 1996, vol. 2, pp.
1218–1221.

[16] P. Hallbjörner, “Reverberation chamber with variable field amplitude
distribution,”Microw. Opt. Technol. Lett., vol. 35, no. 5, pp. 376–377,
2002.

[17] H. Fielitz, K. A. Remley, C. L. Holloway, Q. Zhang, Q. Wu, and D. W.
Matolak, “Reverberation chamber test environment for outdoor urban
wireless propagation studies,” IEEE Antennas Wireless Propag. Lett.,
vol. 9, pp. 52–56, 2010.

[18] J. F. Valenzuela-Valdes, A. M. Martinez-Gonzalez, and D. A. Sanchez-
Hernandez, “Emulation of MIMO nonisotropic fading environments
with reverberation chambers,” IEEE Antennas Wireless Propag. Lett.,
vol. 7, pp. 325–328, 2008.

[19] J. F. Valenzuela-Valdes, A. M. Martinez-Gonzalez, and D. A. Sanchez-
Hernandez, “Diversity gain and MIMO capacity for nonisotropic en-
vironments using a reverberation chamber,” IEEE Antennas Wireless
Propag. Lett., vol. 8, pp. 112–115, 2009.

[20] C. L. Holloway, D. A. Hill, J. M. Ladbury, P. F.Wilson, G. Koepke, and
J. Coder, “On the use of reverberation chambers to simulate a Rician
radio environment for the testing of wireless devices,” IEEE Trans.
Antennas Propag., vol. 54, no. 11, pp. 3167–3177, Nov. 2006.

[21] D. M. Zhang, E. P. Li, T. K. D. Yeo, W. S. Chow, and J. Quek, “In-
fluences of loading absorber on the performances of a reverberation
chamber,” in Proc. Int. Symp. Electromagn. Compat., 2003, vol. 1, pp.
279–281.

[22] J. D. Sánchez-Heredia, J. F. Valenzuela-Valdés, A. M. Mar-
tinez-González, and D. A. Sánchez-Hernández, “Emulation of
MIMO Rician-fading environments with mode-stirred reverbera-
tion chambers,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp.
654–660, Feb. 2011.

[23] A. Cozza and A. E. A. el-Aileh, “Accurate radiation-pattern measure-
ments in a time-reversal electromagnetic chamber,” IEEE Antennas
Propag. Mag., vol. 52, no. 2, pp. 186–193, 2010.

[24] R. J. Pirkl (NIST) and K. A. Remley (NIST), “Multipath angle-of-Ar-
rival in reverberation chambers,,” in Program Working Group Contri-
bution Document MOSG110304, 2011.

[25] A. Sorrentino, G. Ferrara, and M. Migliaccio, “The reverberating
chamber as a line-of-sight wireless channel emulator,” IEEE Trans.
Antennas Propag., vol. 56, no. 6, pp. 1825–1830, Jun. 2008.

[26] M. A. García-Fernández, J. D. Sánchez-Heredia, A. M. Martínez-
González, D. A. Sánchez-Hernández, and J. F. Valenzuela-Valdés,
“Advances in mode-stirred reverberation chambers for wireless
communication performance evaluation,” IEEE Commun. Mag., pp.
140–147, Jul. 2011.

[27] J. D. Sánchez-Heredia, M. Grudén, J. Valenzuela-Valdés, and D. A.
Sánchez-Hernández, “Sample selectionmethod for Rician-fading emu-
lation using mode-stirred chambers,” IEEE Antennas Wireless Propag.
Lett., vol. 9, pp. 409–412, 2010.

[28] S. P. Prather (AT&T) and A. Youtz (Verizon Wireless), “OTA per-
formance criteria for MIMO devices,” in CTIA Certification Program
Working Group Contribution Document MOSG110707, Jul. 2011.

[29] Elektrobit, “Verified performance: Anechoic chamber and fading emu-
lator based MIMOOTA,” in TSG-RANWG4Meeting AH#4 Document
R4-103856, Xi’an, China, Oct. 2010.

[30] A. D. Panagopoulos, K. P. Liolis, and P. G. Cottis, “Rician -factor
distribution in broadband fixed wireless access channels under rain
fades,” IEEE Commun. Lett., vol. 11, no. 4, pp. 301–303, 2007.



MARÍN-SOLER et al.: SAMPLE SELECTION ALGORITHMS FOR ENHANCED MIMO ANTENNA MEASUREMENTS 3899

[31] X. Hu, Y. Zhang, Y. Jia, S. Zhou, and L. Xiao, “Power coverage and
fading characteristics of distributed antenna systems,” in Proc. 4th Int.
Conf. Commun. Netw. China (ChinaCOM), 2009, pp. 1–4.

[32] S. Guatelli, B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon, and P.
Viarengo, “Application of statistical methods for the comparison of
data distributions,” in Proc. IEEE Nucl. Sci. Symp. Conf. Rec., 2004,
vol. 4, pp. 2086–2090.

[33] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
ed. New York: Wiley, 2001.

[34] L. Råde and B. Westergren, Mathematics Handbook for Science and
Engineering. Germany: Studentlitteratur AB, 2003.

[35] P. Hallbjörner, “A model for the number of independent samples in
reverberation chambers,” Microw. Opt. Technol. Lett., vol. 33, no. 1,
pp. 25–28, 2002.

[36] P. Hallbjörner, “Estimating the number of independent samples in re-
verberation chamber measurements from sample differences,” IEEE
Trans. Electromagn. Compat., vol. 48, no. 2, pp. 354–358, 2006.

[37] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Morgensen, and
F. Frederiksen, “A stochastic MIMO radio channel model with exper-
imental validation,” IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp.
1211–1226, 2002.

[38] V. Erceg, TGn Channel Models 2004, IEEE 802.11 document
03/940r4.

[39] M. Kang and M. S. Alouini, “Capacity of MIMO Rician channels,”
IEEE Trans. Wireless Communications, vol. 5, pp. 112–122, 2006.

Adoración Marín-Soler was born in Ceutí, Spain.
She received the Technical Telecommunication
Engineering degree the Telecommunication Engi-
neering degree from the Universidad Politécnica de
Cartagena, Spain, in 2008 and 2010, respectively,
where she is currently pursuing the Ph.D. degree in
the Department of Information Technologies and
Communications.
In 2009, she had a short stay at LoughboroughUni-

versity working on microwave focusing planar an-
tennas for medical applications. In 2011 she joined

EMITE. Her current research areas cover antennas,MIMO communications and
mode-stirred reverberation chambers.

Mathias Grudén was born in 1985, in Mora,
Sweden. He received the M.Sc. degree in engi-
neering physics from Uppsala University, Sweden,
in 2009, where he is currently pursuing the Ph.D.
degree in the group of Applied Microwave and
Millimeterwave Technology.
The main areas of the current research are antenna

measurement techniques and communication for
wireless sensor networks in electromagnetic harsh
environment such as onboard train wagons and
inside aircraft jet engines.

Juan D. Sánchez-Herediawas born in Lorca, Spain.
He received the Telecommunication Engineering
Degree from the Universidad Politécnica de Carta-
gena, Spain, in 2009 which culminated with the Final
Degree Award. In 2010 he received the M.Sc. degree
in information technology (IT) from Universidad de
Murcia, Spain. In 2009, he joined the Department
of Information Technologies and Communications,
Universidad Politécnica de Cartagena, where he is
currently pursuing the Ph.D. degree.
In 2007 he worked at General Electric, Cartagena,

and was involved in several projects in relation with the network infrastructure.
His current research areas cover MIMO communications, multimode-stirred
chambers and electromagnetic dosimetry.

Paul Hallbjörner was born in Uppsala, Sweden, in
1966. He received the B.Sc. degree in 1988, theM.Sc.
degree in 1995, and the Ph.D. degree in 2005, all in
electrical engineering, from Chalmers University of
Technology, Göteborg, Sweden.
He has worked in the telecom industry since 1989,

mainly with antennas and microwave technology.
Since 2000, he has been working as an antenna
researcher, with main focus on antenna design and
measurement methods for mobile phone systems and
short range communication. Apart from this, he has

worked with reconfigurable and steerable antennas, wave propagation, passive
microwave circuits, material characterization, and millimeter-wave building
practice. He has been employed by Ericsson, Saab, Allgon, and is currently
with SP Technical Research Institute of Sweden. He has more than 60 scientific
publications and is the inventor to nine patents.

Antonio M. Martínez-González received the
Dipl.-Ing. in telecommunications engineering from
Universidad Politécnica de Valencia, Spain, in 1998
and the Ph.D. degree from Universidad Politécnica
de Cartagena,Spain, in early 2004.
From 1998 till September 1999, he was employed

as Technical Engineer at the Electromagnetic Com-
patibility Laboratory of Universidad Politécnica de
Valencia, where he developed assessment activities
and compliance certifications with European direc-
tives related with immunity and emissions to electro-

magnetic radiation from diverse electrical, electronic and telecommunication
equipment. Since September 1999 he has been an Associate Professor at Uni-
versidad Politécnica de Cartagena. At present, his research interest is focused
on electromagnetic dosimetry, radioelectric emissions and mode stirred cham-
bers applied to MIMO systems. In December 2006 Dr. Martínez-González is
one of the founders of EMITE, a technological spin-out company founded by
Telecommunication Engineers and Doctors of the Microwave, Radiocommuni-
cations and Electromagnetism Research Group (GIMRE) of the Technical Uni-
versity of Cartagena , Spain.
Dr. Martínez-González’s founding of EMITE took place right after the

second i-patentes prize to innovation and technology transfer in the Region
of Murcia Spain was awarded to the company founders. In 2008 GIMRE
group was awarded this prize again.H is research works were awarded with
the Spanish National Prize from Foundation Airtel and Colegio Oficial de
Ingenieros de Telecomunicación de España to the best final project on Mobile
Communications in 1999.

Anders Rydberg (M’89) received the M.Sc. degree
from Lund Institute of Technology, Lund, Sweden,
in 1976. In 1988 he received the Ph.D. degree from
Chalmers University of Technology, Sweden.
In 1991, he was appointed Docent (Associated

Professor) at Chalmers University. He worked be-
tween 1977–1983 at the National Defence Research
Establishment, ELLEMTEL Development Co., and
the Onsala Space Observatory. Between 1990 and
1991, he worked as a Senior Research Engineer
at Farran Technology Ltd., Ireland. In 1992 he

was employed as Associated Professor and in 2001 as Professor in Applied
Microwave and Millimeterwave Technology at Uppsala University, Sweden.
He is heading the Microwave Group at the Department of Engineering Science,
Uppsala University. Since 2007, he has also been also joint-owner of Integrated
Antennas AB, Uppsala, Sweden. He has authored or co-authored more than
190 publications in the area of micro- and millimeterwave antennas, sensors,
solid state components and circuits and has three patents in the areas.
Prof. Rydberg is a member of the editorial board for the IEEE-MTT, ad-

junct member of Sections B and D of the Swedish Member Committee of URSI
(SNRV) and Chairman for the Swedish IEEE MTT/AP Chapter



3900 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, A UGUST 2012

David A. Sánchez-Hernández (M’00–SM’06)
received the Dipl.-Ing. in telecommunications engi-
neering from Universidad Politécnica de Valencia,
Spain, in 1992 and the Ph.D. degree from King’s
College, University of London, in 1996.

From 1992 to 1994, he was employed as a
Research Associate for The British Council-CAM at
King’s College London where he worked on active
and dual-band microstrip patch antennas. In 1994
he was appointed EU Research Fellow at King’s
College London, working on several joint projects

at 18, 38 and 60 GHz related to printed and integrated antennas on GaAs,
microstrip antenna arrays, sectorization and diversity. In 1997 he returned
to Universidad Politécnica de Valencia, Spain, where was co-leader of the
Antennas, Microwaves and Radar Research Group and the Microwave Heating
Group. In early 1999 he received the Readership from Universidad Politécnica
de Cartagena, and was appointed Vice Dean of the School for Telecommuni-
cations Engineering and leader of the Microwave, Radiocommunications and

Electromagnetism Engineering Research Group. In late 1999 he was appointed
ViceChancellor for Innovation and Technology Transfer at Universidad
Politécnica de Cartagena and member of several Foundations and Societies for
promotion of R&D in the Autonomous Region of Murcia, in Spain. In May
2001, he was appointed official advisor in technology transfer and member of
The Industrial Advisory Council of the Autonomous Government of the Region
of Murcia, in Spain, and in May 2003 he was appointed Head of Department.
He obtained the Signal Theory and Communications Chair in 2009. He has
published over 50 scientific papers and over 100 conference contributions,
and is a reviewer of several international journals. He holds five patents. His
current research interests encompass all aspects of the design and application
of printed multi-band antennas for mobile communications, electromagnetic
dosimetry issues and MIMO techniques for wireless communications.
Prof. Sánchez-Hernández is a Chartered Engineer (CEng), IET Fellow, CEN-

ELEC TC106Xmember, and is the recipient of the R&D J. Langham Thompson
Premium, awarded by the Institution of Electrical Engineers (now formerly the
Institution of Engineering and Technology), as well as other national and inter-
national awards. He is the co-founder of EMITE Ing.


