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Resumen 

En esta Tesis presentamos el estudio  teórico y numérico de  sistemas de ecuaciones 
diferenciales  basado  en  el  análisis  de  un  funcional  asociado  de  forma  natural  al 
problema  original.  Probamos  que  cuando  se  utiliza  métodos  del  descenso  para 
minimizar dicho funcional, el algoritmo decrece el error hasta obtener la convergencia 
dada  la no  existencia de mínimos  locales diferentes  a  la  solución original.  En  cierto 
sentido  el  algoritmo  puede  considerarse  un  método  tipo  Newton  globalmente 
convergente al estar basado en una  linearización del problema. Se han estudiado  la 
aproximación de ecuaciones diferenciales  rígidas, de ecuaciones  rígidas  con  retardo, 
de ecuaciones algebraico‐diferenciales y de  problemas hamiltonianos. Esperamos que 
esta nueva técnica variacional pueda usarse en otro tipo de problemas diferenciales. 

 

 

Abstract 

This  thesis  is  devoted  to  the  study  and  approximation  of  systems  of  differential 
equations based on an analysis of a  certain error  functional associated,  in a natural 
way, with  the  original  problem. We  prove  that  in  seeking  to minimize  the  error  by 
using standard descent schemes,  the procedure can never get stuck  in  local minima, 
but will always and  steadily decrease  the error until getting  to  the original  solution. 
One main step in the procedure relies on a very particular linearization of the problem, 
in some sense it is like a globally convergent Newton type method. We concentrate on 
the approximation of stiff systems of ODEs, DDEs, DAEs and Hamiltonian systems. In all 
these problems we need to use implicit schemes. We believe that this approach can be 
used in a systematic way to examine other situations and other types of equations. 
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Chapter 1

Introduction

To achieve higher order of accuracy in the approximation of Cauchy problems,
multistep methods, such as Adams-Bashforth methods, were developed. These meth-
ods use other methods to generate enough data to start time marching. Runge-Kutta
(RK) methods offer an alternative to multistep methods for higher order of accuracy
in time. In RK methods, the value of the dependent variable at the end of any time
step is calculated from its value at the beginning of the time step. For a desired order
of accuracy, RK methods are more stable when compared with multi-point methods
of same accuracy [51]. The classical explicit RK methods can be used to achieve high
order accuracy, but they are restricted by stability constraints on time-step size. Es-
pecially for the approximation of stiff ODEs, explicit RK methods are not suitable
[66].

The stiffness property of a system of ODE’s cannot be defined in precise mathe-
matical terms. Following Lambert [78], stiffness occurs when stability requirements,
rather than those of accuracy, constrain the step-length, or when some components
of the solution decay much more rapidly than others. For these and others related
statements, a classical recommendation is to use, in general, implicit schemes when
we are interested in stiff problems.

A desired property of any numerical scheme is A-stability. As pointed out by
Dahlquist [38], the order of convergence of an A-stable linear multistep method
cannot exceed two (the second Dahlquist barrier). It is much easier to find implicit
RK methods with desired stability properties as A-stability. Some classical examples
are Gauss’ family, Randau’s family and Lobatto’s family that are based on some
quadrature formulas [66]. These examples are collocation methods.

A number of convergence results have been derived for the discretization of non-
linear stiff initial problems. For RK methods the concept of B-stability was essential.
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6 CHAPTER 1. INTRODUCTION

Further concepts were introduced and led to the so-called B-convergence theory.
Most of these results are valid for stiff problems satisfying some one-sided Lipschitz
condition. In [22]-[23] the authors extend the B-convergence theory to be valid for a
class of nonautonomous weakly nonlinear stiff systems; reference to the (potentially
large) one-sided Lipschitz constant is avoided, in particular, including the linear
case. Unique solvability of the system of algebraic equations is shown, and global
error bounds are derived. As point out by the same authors, it is not clear if it is
possible to cover in a satisfactorily way highly nonlinear stiff problems, i.e., problems
where also the nonlinear terms are affected by large parameters. Moreover, any
result should assume that, in each step, the associated nonlinear system is well
approximated. In particular, that we are able to start with a good initial guess for
the iterative scheme. This might be very restrictive for many stiff problems.

The aim of this thesis is to present and study a new alternative approach for
the analysis and numerical simulation of differential equations. We believe that this
approach can be used in a systematic way to examine many situations and many
types of equations due to its flexibility and its simplicity.

The approach has a variational nature. For a given problem, we associate to it,
in a natural way, an error functional. We prove that in seeking to minimize the
error by using standard descent schemes, the procedure can never get stuck in local
minima, but will always and steadily decrease the error until getting to solution of
the original problem. This particular variational linearization can be seen as a global
convergent Newton type method.

Due to the importance of solving, in the same way demanding problems, we
should be up to date with all the high-order methods currently available. A chapter
about a new family of high order resolution methods can be found (Chapter 6)
in order to make comparisons between our variational technique and the classical
implementations of implicit methods.

A very remarkable feature of the thesis is that all the chapters are self-independent
and autonomous, so that they can be self-studied.

The thesis has 7 chapters and 2 annexes that are more or less self-contained.

1. Chapter 1. This chapter is the starting point in the thesis and we include it with
all the details in order to have a self-contained manuscript. It studies regular
ODEs both theoretically and numerically. Starting with an initial approxi-
mation to the solution, we improve it, adding the solution of some associated
linear problems, in such a way that the error is significantly decreased.

2. Chapter 2. This chapter generalizes the previous one in order to approximate
stiff delay differential equations.



7

3. Chapter 3. In this chapter we present a general existence theorem for DAEs.
We analyze some applications and numerical experiments using a step descent
strategy.

4. Chapter 4. This chapter deals with the approximation of systems of differential-
algebraic equations based on an analysis of a certain error functional.

5. Chapter 5. We present some ideas of our current work related with two to-
pics. A step-variable implementation of our approach and the approximation
of Hamiltonian Systems.

6. Chapter 6. In this chapter we study a family of high order iterative methods
under Kantorovich conditions.

7. Chapter 7. This chapter deals with the final conclusions.

8. Annexe I. This annexe presents a collection of problems where we can test the
real behavior of a new differential solver like our new approach.

9. Annexe II. This annex deals with Reciprocal Polynomial Extrapolation vs
Richardson Extrapolation.
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Chapter 2

The starting point: On an
alternative approach for the
analysis and numerical simulation
of ODEs

Abstract 2.0.1 This chapter is devoted to the study and approximation of systems
of ordinary differential equations based on an analysis of a certain error functional
associated, in a natural way, with the original problem. It is the starting point of the
thesis but it is not a original part. It is based on the previous paper [15], but some of
the numerical experiments have been obtained during the preparation of this thesis.
We prove that in seeking to minimize the error by using standard descent schemes, the
procedure can never get stuck in local minima, but will always and steadily decrease
the error until getting to the solution of the original problem. One main step in the
procedure relies on a very particular linearization of the problem: in some sense,
it is like a globally convergent Newton type method. Although our objective here is
not to perform a rigorous numerical study of the method, we illustrate its potential
for approximation by considering some stiff systems of equations. The performance
is astonishingly very good due to the fact that we can use very robust methods to
approximate linear stiff problems like implicit schemes. We also include a couple of
typical test models for the Lorentz system and the Kepler problem, again confirming
a very good performance (see the Chapter 6). We believe that this approach can be
used in a systematic way to examine other situations and other types of equations
due to its flexibility and its simplicity.

9



10 Variational approximation of EDOs

2.1 Motivation

The ideas we would like to introduce for the treatment of ODEs are based on an
analysis of a certain error functional of the form

E(x) =
1

2

∫ T

0

|x′(t)− f(x(t))|2 dt,

to be minimized among the absolutely continuous paths x : (0, T ) → RN with
x(0) = x0. Note that if E(x) is finite for one such path x, then automatically x′

is square integrable. This error functional is associated, in a natural way, with the
Cauchy problem

x′(t) = f(x(t)) in (0, T ), x(0) = x0. (2.1.1)

We will focus on this paradigmatic problem for explicitness, though our ideas can be
used and extended for more general situations, as will be pointed out later.

One main assumption on f : RN → RN is its smoothness, so that ∇f : RN →
RN×N is continuous, and its global Lipschitzianity with Lipschitz constant M > 0
(|∇f | ≤M).

The main reason why we believe this is an interesting point of view to study and
approximate ODEs is the following statement. We put, for 0 ≤ t ≤ s ≤ T ,

Et,s(z) =
1

2

∫ s

t

|z′(τ)− f(z(τ))|2 dτ, Et(z) = E0,t(z), E(z) = ET (z).

Claim 2.1.1 Let x be the unique solution of (2.1.1), and let z be absolutely conti-
nuous in [0, T ], but otherwise arbitrary. Then for every t ∈ [0, T ], we have

|x(t)− z(t)|2 ≤ 2e2M
(
|x0 − z(0)|2 + 2tEt(z)

)
,

where M is the Lipschitz constant for f . As a consequence, one also has

‖x′ − z′‖2L2(0,T ) ≤ 2
(
3 +M2T 2e2M

)
E(z) + 2Me2MT |x0 − z(0)|2.

The proof is completely elementary. We will prove a more general statement later.
We clearly see that if z is feasible so that z(0) = x0, then the global error of

z over the full interval (0, T ), as an approximation of the solution x, is measured,
through the error functional E, by the departure of z from being a solution of the
Cauchy problem, namely

|x(t)−z(t)|2 ≤ 4te2MEt(z) for t ∈ (0, T ), ‖x′−z′‖2L2(0,T ) ≤ 2
(
3 +M2T 2e2M

)
E(z).
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It, therefore, looks like a promising strategy to search for approximations of the
solution x by minimizing the error E. We believe this perspective can be helpful
both for the analysis and the numerical simulation of typical Cauchy problems like
(2.1.1). As a matter of fact, we will place ourselves in a situation where we pretend
not to know anything about problem (2.1.1), and build and recover existence results
and numerical procedures from scratch by following this minimization strategy.

We do not obtain, from this perspective, any finer existence results than the
classical ones. Indeed, the analytical part of this contribution requires a further
property on the map f : for every positive C > 0 and small ε > 0, there is DC,ε > 0
so that

|f(x+ y)− f(x)−∇f(x)y| ≤ DC,ε|y|2, |x| ≤ C, |y| ≤ ε.

This extra regularity is somehow not surprising as our approach here is based on
regularity and optimality. On the other hand, that regularity holds for most of the
important problems in applications. It certainly does in all numerical tests performed
in this work. See however [13] for a similar analysis under more general assumptions.
Our emphasis here is placed on the fact that this optimization strategy may be
utilized to set up approximation schemes based on the minimization of the error
functional. Indeed, the analytical part is oriented towards providing a solid basis
for this approximation procedure. In this regard, the following proposition is also
crucial as it states that typical minimization schemes like (steepest) descent methods
will work fine as they can never get stuck in local minima, and converge steadily to
the solution of the problem, no matter what the initialization is. This is also a
fundamental fact for our approach.

Claim 2.1.2 Let x be a critical point for the error E. Then x is the solution of the
Cauchy problem (2.1.1).

Proof 2.1.3 The proof is elementary. Based on the smoothness and bounds assumed
on the mapping f , we conclude that if x ≡ x is a critical point for the error E, then
x ought to be a solution of the problem

− d

dt
(x′(t)− f(x(t)))− (x′(t)− f(x(t)))∇f(x(t)) = 0 in (0, T ),

x(0) = x0, x
′(T )− f(x(T )) = 0.

The vector-valued map y(t) = x′(t)− f(x(t)) is then a solution of the problem

−y′(t)− y(t)∇f(x(t)) = 0 in (0, T ), y(T ) = 0.

The only solution of this problem is y ≡ 0, and so x is the solution of our Cauchy
problem.
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We will focus on two main descent strategies that are introduced in Section 2.
One is a kind of a globally convergent Newton method since it relies on our ability
to solve or approximate linear problems; the other one is a steepest descent method
with respect to a suitable norm. We will show in theory (Sections 3 and 4), and in
practice (the rest of the paper), that both methods are valid strategies to approximate
the solution of the initial Cauchy problem. We have selected several academic and
typical test problems to show the good performance of the procedure, though our
numerical comments do not pretend to go any further than here. A good feature of
this point of view is that, due to Claim 2.1.1, the error is always a sure indication of
whether we are getting close to the solution: if the error is small, the simulation is
going right; if it is not, there is no way we can be close to the solution. This is even
so regardless of whether there are theoretical results to support our computations.
Section 6 is devoted to some numerical tests where we perform a comparison with the
standard implementation of implicit schemes. We concentrate on the approximation
of stiff systems of equations since we can use very robust methods to approximate
linear stiff problems like implicit methods. We believe that this approach can be used
in a systematic way to examine other situations or problems in which very efficient
methods in the linear case are available.

We should mention that we have already explored in some previous papers this
point of view. Since the initial contribution [13], we have also treated the reverse
mechanism of using first discretization and then optimality ([12]). The perspective
of going through optimality and then discretization has already been indicated and
studied in [94], though only for the steepest descent method, and without going
through any further analytical foundation for the numerical procedure. We also plan
to address, from this viewpoint, other problems, some of them in the next chapters.

Variational methods have been used before in the context of ODEs. See ([85, 91]),
where numerical integration algorithms for finite-dimensional mechanical systems
that are based on discrete variational principles are proposed and studied. This is
one approach to deriving and studying symplectic integrators, and indeed one that
yields much insight into the geometry of the continuous and the discrete problem.
The starting point is Hamilton’s principle and its direct discretization. In those
references, some fundamental numerical methods are presented from that variational
viewpoint where the model plays a prominent role.

2.2 Two main descent procedures

Suppose we start with an initial crude approximation x(0)(≡ x) to the solution
of our basic problem (2.1.1). We could take x(0) = x0 for all t, or x(0)(t) = x0 +
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tf(x0). We would like to improve this approximation in such a way that the error
is significantly decreased. We have already pointed out in the above section that
descent methods can never get stuck on anything but the solution of the problem,
under global lipschitzianity hypotheses.

It is straightforward to find the Gâteaux derivative of E at a given feasible x in
the direction y with y(0) = 0. Namely

E ′(x)y =

∫ T

0

(x′(t)− f(x(t))) · (y′(t)−∇f(x(t))y(t)) dt.

This expression suggests two main possibilities to select y from:

1. Choose y such that

y′(t)−∇f(x(t))y(t) = f(x(t))− x′(t) in (0, T ), y(0) = 0.

In this way, it is clear that E ′(x)y = −2E(x), and so the (local) decrease of the
error is of the size E(x). Finding y requires solving the above linear problem.
In some sense, this is like a Newton method.

2. We can select the steepest descent direction y, with respect to various norms,
in the form

min
‖y‖=1

E ′(x)y,

or equivalently

min
y

(
1

2
‖y‖2 + E ′(x)y

)
.

Typical choices are

‖y‖2 =

∫ T

0

|y′(t)|2 dt, ‖y‖2 =

∫ T

0

(
|y′(t)|2 + |y(t)|2

)
dt,

but they can also be dependent on the current iteration x, like

‖y‖2 =

∫ T

0

(
|y′(t)|2 + |∇f(x(t))y(t)|2

)
dt.

One very attractive feature of one of these choices over the others is if steepest
descent directions can be given explicitly. For instance, the solution of the
regular variational problem of minimizing over y the functional∫ T

0

(
1

2
|y′(t)|2 +

1

2
|y(t)|2 + (x′(t)− f(x(t))) · (y′(t)−∇f(x(t))y(t))

)
dt
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yields the steepest descent direction for the norm

‖y‖2 =

∫ T

0

(
|y′(t)|2 + |y(t)|2

)
dt.

However, the minimizer y has to be calculated as the solution of the problem

− d

dt
((x′(t)− f(x(t))) + y′(t))+(y(t)−∇f(x(t)))T ((x′(t)−f(x(t)))) = 0 in (0, T ),

together with y(0) = 0, and the transversality condition

x′(T )− f(x(T )) + y′(T ) = 0.

This is a linear, second-order, boundary value problem whose solution would
have to be approximated. If, instead, we focus on finding the steepest descent
direction with respect to the norm (recall that y(0) = 0)

‖y‖2 =

∫ T

0

|y′(t)|2 dt,

then such direction is given as the minimizer for the functional (subject to
y(0) = 0)∫ T

0

(
1

2
|y′(t)|2 + (x′(t)− f(x(t))) · (y′(t)−∇f(x(t))y(t))

)
dt.

This time the minimizer is given as the solution of the problem

− d

dt
((x′(t)− f(x(t))) + y′(t))−

(
∇f(x(t))T ((x′(t)− f(x(t))

)
= 0 in (0, T ),

together with y(0) = 0, and the transversality condition

x′(T )− f(x(T )) + y′(T ) = 0.

It can be written in a fully explicit form

y(t) =−
∫ t

0

(
1− s∇f(x(s))T

)
(x′(s)− f(x(s))) ds (2.2.1)

+ t

∫ T

t

∇f(x(s))T (x′(s)− f(x(s))) ds.

Here 1 is the identity matrix of size N . It is straightforward to check that the
local decrease of the error, when we select this direction y, is given by

−
∫ T

0

|y′(s)|2 ds.
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We therefore explore these two (apparently different) variants of our iterative a-
pproach to the numerical approximation of ODEs. For a given approximation x,
compute y by

1. solving (approximating)

y′(t)−∇f(x(t))y(t) = f(x(t))− x′(t) in (0, T ), y(0) = 0,

and update x to x+ y until convergence;

2. putting

y(t) =−
∫ t

0

(
1− s∇f(x(s))T

)
(x′(s)− f(x(s))) ds

+ t

∫ T

t

∇f(x(s))T (x′(s)− f(x(s))) ds,

and update x to x+ εy for small ε. We will come back to this.

However the procedure we use to update the current approximation x to some new
approximation, the global error over the full interval (0, T ) is always bound from
above by some fixed constant (depending on f and T ) times the error E according
to Claim 2.1.1.

We would like to explicitly explore the advantages and disadvantages of both
schemes.

2.3 Some analysis

Let us focus on the first possibility, pretending not to know anything about the
solution of the Cauchy problem (2.1.1). Suppose x is a feasible path in the interval
(0, T ) so that x(0) = x0, x

′ is square integrable, and the quantity

E(x) =
1

2

∫ T

0

|x′(t)− f(x(t))|2 dt

measures how far such x is from being a solution of our problem. We also assume
that |x(t)| ≤ C for a fixed constant C, and all t ∈ (0, T ). Choose ε > 0 and 0 < α < 1
so that

ε

1−
√
α
≤ C,
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and
|f(z + y)− f(z)−∇f(z)y| ≤ D|y|2, |y| ≤ ε, |z| ≤ 2C,

for some constant D > 0. We then solve for y as the solution of the non-autonomous
linear Cauchy problem

y′(t)−∇f(x(t))y(t) = f(x(t))− x′(t) in (0, T ), y(0) = 0,

and pretend to update x to x+ y in such a way that the error for x+ y be less than
the error for the current iteration x. Note that

E(x+ y) =
1

2

∫ T

0

|x′(t) + y′(t)− f(x(t) + y(t))|2 dt (2.3.1)

=
1

2

∫ T

0

|f(x(t) + y(t))− f(x(t))−∇f(x(t))y(t)|2 dt,

where we have used the differential equation satisfied by y. By our assumption on f
above,

|f(x(t) + y(t))− f(x(t))−∇f(x(t))y(t)| ≤ D|y(t)|2, t ∈ (0, T ), (2.3.2)

provided that |y(t)| ≤ ε. Since we know that y is the solution of a certain linear
problem, we have the upper bound

|y(t)|2 ≤ Te2ME(x) for all t ∈ [0, T ]. (2.3.3)

Assume we select T > 0 so small that

E0,T (x) ≡ E(x) ≤ ε2

e2MT
, (2.3.4)

and then |y(t)| ≤ ε for all t ∈ [0, T ]. By (2.3.1), (2.3.2), and (2.3.3), we can write

E(x+ y) ≤ D2

2

∫ T

0

|y(t)|4 dt ≤ D2

2
e4MT 3E(x)2. (2.3.5)

If, in addition, we demand, by making T smaller if necessary,

E(x) ≤ 2α

D2T 3e4M
, (2.3.6)

then E(x+ y) ≤ αE(x). Moreover, for all t ∈ (0, T ),

|x(t) + y(t)| ≤ C + ε ≤ 2C.
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All these calculations form the basis of a typical induction argument. Write y0 ≡ x,
and suppose, by induction, that we have∣∣∣∣∣

j−1∑
i=0

yi(t)

∣∣∣∣∣ ≤ C + ε

(
j−2∑
i=0

√
α
i

)
(≤ 2C), |yj−1(t)| ≤ ε

√
α
j−2

for all t ∈ [0, T ],

E

(
j−1∑
i=0

yi

)
≤ αj−1E(x)(≤ E(x)).

Determine yj as the unique solution of the linear problem

y′j(t)−∇f

(
j−1∑
i=0

yi(t)

)
yj(t) = f

(
j−1∑
i=0

yi(t)

)
−

j−1∑
i=0

y′i(t) in (0, T ), yj(0) = 0.

Then, by the estimates above and the induction hypothesis, we can write, bearing
in mind (2.3.4),

|yj(t)|2 ≤ Te2ME

(
j−1∑
i=0

yi

)
≤ Te2ME(x)αj−1 ≤ ε2αj−1.

From here, we certainly have∣∣∣∣∣
j∑
i=0

yi(t)

∣∣∣∣∣ ≤ C + ε

(
j−1∑
i=0

√
α
i

)
(≤ 2C).

Similarly, by (2.3.5),

E

(
j∑
i=0

yi

)
≤ D2

2
e4MT 3E

(
j−1∑
i=0

yi

)2

≤ D2

2
e4MT 3E

(
j−1∑
i=0

yi

)
αj−1E(x) ≤ αjE(x).

It is therefore clear that the sum
∞∑
i=0

yi(t)

converges strongly in L∞(0, T ) to a solution of our initial Cauchy problem in a small
interval (0, T ). Since the various ingredients of the problem do not depend on T , we
can proceed to have a global solution in a big interval by successively performing this
analysis in intervals of appropriate small size. For instance, we can always divide
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a global interval (0, T ) into a certain number n of subintervals of small length h
(T = nh) with

E0,T (x)D2e4M

2α
≤ 1

h3
,

according to (2.3.6).
The uniqueness of the solution is a direct consequence of a straightforward gene-

ralization of Claim 2.1.1.

Proposition 2.3.1 Let y and z be two admissible paths for our error functional.
Then for every t ∈ (0, T )

|y(t)− z(t)|2 ≤ 4e2M t (Et(y) + Et(z)) ,

where M is the Lipschitz constant for f . As a consequence, one also has

‖y′ − z′‖2L2(0,T ) ≤ 2
(
3 +M2T 2e2M

)
(E(y) + E(z)).

Proof
Let y and z be feasible for the error functional, and set x = y−z so that x(0) = 0.

Then it is elementary to have for each t ∈ (0, T )

|x(t)| ≤
∫ t

0

|x′(s)| ds ≤
∫ t

0

(|y′(s)− f(y(s))|+ |z′(s)− f(z(s))|+ |f(y(s))− f(z(s))|) ds,

and so, by using Holder’s inequality in the first two contributions,

|x(t)| ≤ 2
√
t (Et(y) + Et(z)) +M

∫ t

0

|x(s)| ds.

By Gronwall’s lemma, we conclude

|x(t)| ≤ 2eM
√
t (Et(y) + Et(z)) .

For the inequality for the L2-norm of the derivative of the difference, go back to the
first inequality above, and write∫ T

0

|x′(s)|2 ds ≤ 3

∫ T

0

(
|y′(s)− f(y(s))|2 + |z′(s)− f(z(s))|2 + |f(y(s))− f(z(s))|2

)
ds.

Then use the inequality we have just obtained for |x(t)|, to have∫ T

0

|x′(s)|2 ds ≤ 6 (E(y) + E(z)) +M2

∫ T

0

4e2Ms (E(y) + E(z)) ds.
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By direct integration in the second term, we get the second inequality in the state-
ment.

�
We can sum up our work in this section in the following statement.

Theorem 2.3.2 For T sufficiently small, the iterative procedure x(j) = x(j−1) + y(j),
starting from arbitrary feasible x(0), where

(y(j))′(t)−∇f(x(j−1)(t))y(j)(t) = f(x(j−1)(t))− (x(j−1))′(t) in (0, T ), y(j)(0) = 0,

converges strongly in L∞(0, T ) and in H1(0, T ) to the unique solution of the Cauchy
problem (2.1.1).

This is a local existence result. If our hypotheses on f are global, then, as before,
nothing can prevent us from applying this theorem to successive small intervals so
that global existence of a unique solution is thus obtained.

2.4 The steepest descent strategy

We have proved in the preceding section that the initial Cauchy problem (2.1.1)
has a unique solution provided that the mapping f is C2, and has a uniformly bounded
derivative. There is nothing new about this result, except for the variational perspec-
tive of the proof that also allows for a very clear approximation strategy. One main
step in the procedure relies on our ability to solve or approximate linear problems of
the form

y′(t)−∇f(x(t))y(t) = f(x(t))− x′(t) in (0, T ), y(0) = 0, (2.4.1)

for x given. Suppose we were to find an approximation of this linear problem by
using the steepest descent strategy, the second possibility of Section 2.

Proposition 2.4.1 Formula (2.2.1) is exactly the steepest descent direction of prob-
lem (2.4.1) at y ≡ 0.

This fact is hardly in need of proof. It is just a matter of going through the algebra.
It represents a very clear way of bringing together the two possibilities described in
Section 2 as one main underlying optimization strategy.

What happens then if we use the direction y given in (2.2.1), instead of the
solution of (2.4.1), to update a given approximation x to x+ y, taking ε = 1 ?
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Theorem 2.4.2 Under our assumptions on the map f , if T is sufficiently small, the
iterative procedure x(j)(t) = x(j−1)(t) + y(j)(t) where

y(j)(t) =−
∫ t

0

(
1− s∇f(x(j−1)(s))T

)
((x(j−1))′(s)− f(x(j−1)(s))) ds

+ t

∫ T

t

∇f(x(j−1)(s))T ((x(j−1))′(s)− f(x(j−1)(s))) ds,

converges strongly in H1(0, T ;RN) and in L∞(0, T ;RN) to the unique solution of
problem (2.1.1).

Proof
The proof consists in the realization that we can redo all of Section 3 with y given

by (2.2.1) instead of being the solution of (2.4.1) because it is easy to check that,
directly from (2.2.1), we also have for every t ∈ (0, T )

|y(t)|2 ≤ T

(
1 +

M2T 2

3
+
T 4M2

3

)
E(x).

As a matter of fact, the computation in Section 3 are always valid for every choice
of the update direction y as long as

|y(t)|2 ≤ C(M,T )E(x),

for every t ∈ (0, T ).
�
Note that the steepest descent method does not rely on the solution of the aux-

iliary linear problem, or of any other ODE.

2.5 Numerical procedure

Since our optimization approach is really constructive, iterative numerical proce-
dures are easily implementable.

For the Newton-like method:

1. Start with an initial approximation x0(t) compatible with the initial conditions
(ex. x0(t) = x0 + tf(x0)).

2. Assume we know the approximation x(j)(t) in [0, T ].
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3. Compute its derivative (x(j))
′
(t).

4. Compute the auxiliar function y(j+1)(t) as the numerical solution of the problem

y′(t)−∇f(x(j)(t))y(t) = f(x(j)(t))− (x(j))
′
(t) in (0, T ), y(0) = 0,

by making use of a numerical scheme for ODEs with dense output (like collo-
cation methods, see next section).

5. Change x(j) to x(j+1) by using the update formula

x(j+1)(t) = x(j)(t) + y(j+1)(t).

6. Iterate (3), (4) and (5), until numerical convergence.

In particular, one can implement, in a very easy way, this numerical procedure
using a problem-solving environment like MATLAB [119].

The steepest descent strategy has already been indicated and tested in [94],
though using a small parameter ε, determined experimentally, to update each ite-
ration. We now know that we can always take ε = 1 at the expense of taking T small
enough. The iterative procedure has the same structure as the one just indicated.

1. Initialization. Take any simple initial guess x(0)(t) complying with the initial
condition x(0)(0) = x0. For instance,

x(0)(t) ≡ x0, or x(0)(t) = x0 + tf(x0).

2. Update. If iterate x(j)(t) is at our disposal, generate x(j+1)(t) until convergence
through the formula

x(j+1)(t) = x(j)(t)−
∫ t

0

(
1− s∇f(x(j)(s))T

)
((x(j))′(s)− f(x(j)(s))) ds

+ t

∫ T

t

∇f(x(j)(s))T ((x(j))′(s)− f(x(j)(s))) ds.

In practice, we should perform a discretization of this procedure, and describe in
precise terms how to go from one iteration to the next. In our numerical tests below,
we have implemented a typical multistep, mid-point quadrature rule.
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2.6 Some experiments and comparisons

We pretend to provide some first experimental evidence that our iterative schemes
are competitive with respect to other methods, without pretending at this stage to
provide any further numerical analysis for our approach. In this section, we focus
on the iterative procedure that uses the auxiliary linear problems at each iteration,
solving these with typical implicit methods.

High order accuracy and stability are major areas of interest in simulation. We
perform here a comparison with the standard implementation of implicit methods
that solve the associated nonlinear equations by using Newton type schemes. We
consider some stiff problems well known in the literature.

2.6.1 A nonlinear test problem

Certain types of problems can be characterized as stiff. A clear example is the
linear test problem x′(t) = λx(t), where λ is a complex number with Re λ << 0. The
approximation of this problem imposes severe restrictions on the step size of explicit
methods, and it is used to test A-stability. We would like to start this section by
exploring specifically our strategy with a simple nonlinear generalization of this linear
test problem.

We are interested in approximating the value x(1) of the solution x(t) of the
problem

x′(t) = λx(t) + x2(t),

x(0) = 1,

whose explicit solution is

x(t) =
λeλt

1 + λ− eλt
.

We consider the trapezoid method

xn+1 = xn +
h

2
(f(xn) + f(xn+1)). (2.6.1)

This method averages the Euler and backward Euler methods, advancing the appro-
ximate solution at each step along a line whose slope is the arithmetic mean of the
derivatives at its endpoints.

In Figures 2.1 and 2.2, we plot the approximation using a classical implementation
of the (implicit) trapezoid method, that is, solving the associated nonlinear equation
using Newton’s method. The method gives a bad approximation when the stiffness
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Figure 2.1: Classical implementation of the trapezoid method, nonlinear test pro-
blem, ‘o’-original, ‘*’-approximation, left λ = −100 and right λ = −1000.
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Figure 2.2: Classical implementation of the trapezoid method, nonlinear test prob-
lem, ‘o’-original, ‘*’-approximation, λ = −10000.

of the problem increases (Figure 2.2). This fact indicates that we are outside of the
basin of attraction of Newton’s method [22]. However, looking at Figures 2.3 and
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Figure 2.3: New implementation of the trapezoid method, nonlinear test problem,
‘o’-original, ‘*’-approximation, left λ = −100 and right λ = −1000.
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Figure 2.4: New implementation of the trapezoid method, nonlinear test problem,
‘o’-original, ‘*’-approximation, λ = −10000.

2.4, we see that the linearization method

x′j+1(t)− (λ+ 2xj(t))xj+1(t) = λxj(t) + xj(t)
2 − x′j(t), xj+1(0) = 0,
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with x0(t) = 1 + t(1 + λ), converges in all cases.

2.6.2 Linear vs nonlinear stiff problems

In this section, we analyze the numerical behavior, for linear and nonlinear prob-
lems, of the stiff solver ode15s (variable order solver based on the numerical differ-
entiation formulas), that we can find in the odeset of MATLAB [119].

We consider the linear problem [116]

y′1(t) =
λ1 + λ2

2
y1(t) +

λ1 − λ2
2

y2(t),

y′2(t) =
λ1 − λ2

2
y1(t) +

λ1 + λ2
2

y2(t),

with λi < 0, and the following (associated) nonlinear problem

y′1(t) =
λ1 + λ2

2
y1(t) +

λ1 − λ2
2

y2(t) +λ3y1(t)y2(t),

y′2(t) =
λ1 − λ2

2
y1(t) +

λ1 + λ2
2

y2(t) +λ3y1(t)y2(t).

As we can see, in Figure 2.5, for the linear case, the method gives good results even
for very large parameters. However, some serious problems occur in the nonlinear
case Figure 2.6.

2.6.3 Collocation Polynomials

Let h > 0. Given different coefficients ci, 1 ≤ i ≤ s there is a (unique for h
sufficiently small) polynomial of collocation q(t) of degree less than or equal to s
such that

q(t0) = y0, q′(t0 + ci h) = f(t0 + ci h, q(t0 + ci h)) if 1 ≤ i ≤ s. (2.6.2)

The collocation methods are defined by an approximation y(t) ' q(t), and are equi-
valent to implicit RK methods of s stages

ki = f(t0 + ci h, y0 + h

s∑
j=1

ai,j kj),

y1 = y0 + h
s∑
i=1

bi ki,

(2.6.3)
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Figure 2.5: Second component of the linear problem. Left λ1 = −105, λ2 = −10−5.
Right λ1 = −1025, λ2 = −10−25.

for the coefficients

ai,j =

∫ ci

0

∏
l 6=j

u− cl
cj − cl

du,

bi =

∫ 1

0

∏
l 6=i

u− cl
ci − cl

du.

(2.6.4)

The coefficients ci play the role of the nodes of the quadrature formula, and the
associated coefficients bi are analogous to the weights. From (2.6.4) we can find
implicit RK methods called Gauss of order 2s, Radau IA and Radau IIA of order
2s− 1 and Lobatto IIIA of order 2s− 2. See [66] for more details.

A number of convergence results have been derived for the discretization of nonlin-
ear stiff initial problems. For RK methods the concept of B-stability was essential.
Further concepts were introduced and led to the so-called B-convergence theory.
Most of these results are valid for stiff problems satisfying some one-sided Lipschitz
condition. In [22]-[23] the authors extend the B-convergence theory to be valid for a
class of nonautonomous weakly nonlinear stiff systems; reference to the (potentially
large) one-sided Lipschitz constant is avoided, in particular, including the linear
case. Unique solvability of the system of algebraic equations is shown, and global
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Figure 2.6: Second component of the nonlinear problem. Left λ1 = −105, λ2 =
−10−5, λ3 = 104. Right λ1 = −105, λ2 = −10−5, λ3 = 106.

error bounds are derived. As point out by the same authors, it is not clear if it is
possible to cover in a satisfactorily way highly nonlinear stiff problems, i.e., prob-
lems where also the nonlinear terms are affected by large parameters (see the above
numerical example). Moreover, any result should assume that, in each step, the
associated nonlinear system is well approximated. In particular, that we are able to
start with a good initial guess for the iterative scheme. This might be very restrictive
for many stiff problems (see Section 3.6.2).

A stiff problem: Chapman atmosphere

This model represents the Chapman mechanism for the generation of the ozone
and the oxygen singlet. In this example, the concentration of the oxygen y3 = [O2]
will be held constant. It is a severe test for a stiff ODE package [34] governed by the
following equations:

y′1(t) = 2k3(t)y3 + k4(t)y2(t)− (k1y3 + k2y2(t))y1(t),

y′2(t) = k1y1(t)y3 − (k2y1(t) + k4(t))y2(t),
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with y3 = 3.7× 1016, k1 = 1.63× 10−16, k2 = 4.66× 10−16,

ki(t) =

{
exp( −ai

sin(ωt)
), if sin(ωt) > 0

0, otherwise

for i = 3, 4, with a3 = 22.62, a4 = 7.601 and ω = π
43200

. The constant 43200 is 12 h
measured in seconds. The initial conditions are y1(0) = 106 and y2(0) = 1012.

This problem has important features like:

• The Jacobian matrix is not a constant.

• The diurnal effect is present.

• The oscillations are fast.

• The time interval used is fairly long, 0 ≤ t ≤ 8.64 105, or 10 days.

We consider our approach with the implicit fourth order Gauss method (s = 2
as collocation method). We obtain a good approximation, see Figure 2.7. Note that
y2 = [03] looks like a staircase with a rise at midday every day and y1 = [O] looks
like a spike with its amplitude increases each day.
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Figure 2.7: Chapman atmosphere approximated via our variational approximation.
Left: first component. Right: second component.
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Chapter 3

Linearizing Stiff Delay Differential
Equations

Abstract 3.0.1 This paper deals with the study and approximation of stiff delay
differential equations based on an analysis of a certain error functional. In seeking
to minimize the error by using standard descent schemes, the procedure can never
get stuck in local minima, but will always and steadily decrease the error until getting
to the solution sought. Starting with an initial approximation to the solution, we
improve it, adding the solution of some associated linear problems, in such a way
that the error is decreased. The performance is expected very good due to the fact
that we can use very robust methods to approximate linear stiff delay differential
equations.

3.1 Introduction

Ordinary differential equations (ODEs) and delay differential equations (DDEs)
are used to describe many physical models. While ODEs contain derivatives which
depend on the solution at the present value of the independent variable, DDEs con-
tain in addition derivatives which depend on the solution at previous times. For
DDEs we must provide not just the value of the solution at the initial point, but
also the solution at times prior to the initial point. Despite the obvious similarities
between ODEs and DDEs, solutions of DDE problems can differ from solutions for
ODE problems in several ways. One important thing is the presence of discontinuities
in low-order derivatives. Generally there is a discontinuity in the first derivative of
the solution at the initial point. Moreover, if the solution has a discontinuity in a
derivative somewhere, there are discontinuities in the rest of the interval at a spacing

31



32 Variational linearization of DAEs

given by the delays.

A popular approach to solving DDEs is to extend one of the methods used to
solve ODEs (see [24, 25, 46] and their references). Most of the codes are based on
Runge-Kutta methods. The code dde23 [113] takes this approach by extending the
method of the Matlab explicit ODE solver ode23. The code RADAR5 is developed
in FORTRAN-90 and is based on an adaptation of the 3-stage Radau IIA method
to stiff delay differential equations [57]. Stiff systems are prevalent in the study of
damped oscillators, chemical reactions and electrical circuits. Although there have
been numerous attempts to define stiffness, none seem quite satisfactory. One of
them is the following “Stiff equations are problems for which explicit methods don’t
work” [66]. On the other hand, implicit schemes need to solve an auxiliary nonlinear
system of equations in each step. These systems are approximated via Newton-type
iterative methods. In particular, we have to be able to find a good initial guess inside
the ball of convergence of the iterative scheme [18, 19, 20].

Recently ([13, 14, 12]), a variational approach for the analysis and approximation
of Cauchy problems has been introduced. One main step in the procedure relies on
a very particular linearization of the problem: in some sense, it is like a globally
convergent Newton type method. The performance is astonishingly very good due
to the fact that we can use very robust methods to approximate linear stiff prob-
lems like implicit collocation schemes. As point out in [22, 23], it is not clear if
it is possible to cover in a satisfactorily way highly nonlinear stiff problems, i.e.,
problems where also the nonlinear terms are affected by large parameters. Moreover,
any result should assume that, in each step, the associated nonlinear system is well
approximated. In particular, that we are able to start with a good initial guess for
the iterative scheme. This might be very restrictive for many stiff problems, however
our variational approach gives good results in these cases, see the numerical section
in [14]. In this paper, we extend this procedure to the case of DDEs.

The rest of the paper is divided in three sections. In Section 2 we introduce
our variational approach for the linearization of DDEs. Section 3 introduces the
numerical procedure and present a convergence analysis. Finally, we conclude with
a small conclusion section including some further research directions.

3.1.1 A particular linearization of stiff DDEs via an error
minimization problem

Let C := C1([−τ, 0],Rn) be the vector space of continuous differentiable functions
mapping the interval [−τ, 0] into Rn. The stiff problem we like to analyze can be
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written as

x
′
(t) = f(x(t), x(t− τ)), t ∈ (0, T ), (3.1.1)

x(θ) = φ(θ), θ ∈ [−τ, 0], (3.1.2)

where φ ∈ C specifies the initial condition and f is sufficiently smooth in both
variables.

We consider the error functional

E(x) =
1

2

∫ T

0

|x′(t)− f(x(t), x(t− τ))|2 dt,

to be minimized among the absolutely continuous paths x : (0, T ) → RN with
square-integrable derivative and such that x(θ) = φ(θ), θ ∈ [−τ, 0].

It is straightforward to find the Gâteaux derivative of E at a given feasible x in
the direction y with y(θ) = 0, θ ∈ [−τ, 0]. Namely

E ′(x)y =

∫ T

0

(x′(t)−f(x(t), x(t−τ)))·(y′(t)−∇1f(x(t), x(t−τ))y(t)−∇2f(x(t), x(t−τ))y(t−τ)) dt,

where ∇1 and ∇2 denote the partial derivative with respect x(t) and x(t− τ) respec-
tively.

This expression suggests a nice possibility to select y from: Choose y such that

y′(t)−∇1f(x(t), x(t−τ))y(t)−∇2f(x(t), x(t−τ))y(t−τ) = f(x(t), x(t−τ))−x′(t) in (0, T ),

with y(θ) = 0, θ ∈ [−τ, 0].

We have already pointed out that descent methods can never get stuck on any-
thing but the solution of the problem, under global lipschitzianity hypotheses. The
following proposition states that a minimization scheme will work fine as they can
never get stuck in local minima, and converge steadily to the solution of the problem,
no matter what the initialization is. This is also a fundamental fact for our approach.

Theorem 3.1.1 Let x̄ be a critical point for the error E. Then x̄ is the solution of
the problem (3.1.1).
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3.1.2 Numerical procedure

Our approach is really constructive and an iterative numerical procedure is easily
implementable based. Mainly:

1. Start with an initial approximation x0(t) compatible with the initial conditions.

2. Assume we know the approximation x(j)(t) in [0, T ].

3. Compute its derivative (x(j))
′
(t).

4. Compute the auxiliary function y(j+1)(t) as the numerical solution of the prob-
lem (by making use of a numerical scheme for DDEs with dense output as
RADAR5 [57])

y′(t)−∇1f(x(j)(t), x(j)(t−τ))y(t)−∇2f(x(j)(t), x(j)(t−τ))y(t−τ) = f(x(j)(t), x(j)(t−τ))−x′(t),
(3.1.3)

in (0, T ), with y(θ) = 0, θ ∈ [−τ, 0].

5. Change x(j) to x(j+1) by using the update formula

x(j+1)(t) = x(j)(t) + y(j+1)(t).

6. Iterate (3), (4) and (5), until numerical convergence (||y(j)|| ≤ TOL).

Assuming that the problem (3.1.1) has a unique solution and following [14], we
can derive the convergence of this procedure:

Theorem 3.1.2 The iterative procedure x(j+1) = x(j)+y(j+1), starting from arbitrary
feasible x(0) compatible with the initial conditions, converges strongly in L∞(0, T ) and
in H1(0, T ) to the solution of (3.1.1) assuming that f is smooth enough.

A main difference in the solution of delay equations compared to ordinary dif-
ferential equations is the appearance of breaking points (jump discontinuities in the
solution or in its derivatives) even in the presence of smooth functions. If the break-
ing points are not included in the mesh and a variable step size integration is used,
the step sizes may be severely restricted near the low order jump discontinuities.
Some algorithms are proposed for the detection and computation of breaking points
in [58]. This paper includes theoretical results with regard to errors in the approxi-
mation of these important points. By construction, both the original problem (3.1.1)



3.1. INTRODUCTION 35

and the auxiliary linear equation (3.1.3) have the same number of breaking points
and in the same position.

If we use the algorithm proposed in [58] for the approximation of the linear
equation (3.1.3) (without including the application of the Newton method since in our
case the associated system of equations is linear) and combine the theoretical results
of this paper with Theorem 7.3.2 we obtain the convergence of our full discretized
algorithm:

Theorem 3.1.3 With the notation and hypotheses of Theorem 7.3.2, if ỹ(j) is the
approximation of the sequence y(j) via RADAR5 with breaking point detection then
for all TOL > O(h5) exists j ∈ N such that

||y(j)|| ≤ TOL.

On the other hand, for the approximation of stiff problems implicit schemes are
used [66]. A number of convergence results have been derived for the discretization
of nonlinear stiff initial problems. In [22]-[23] the authors extend the B-convergence
theory to be valid for a class of nonautonomous weakly nonlinear stiff systems; refe-
rence to the (potentially large) one-sided Lipschitz constant is avoided, in particular,
including the linear case. Unique solvability of the system of algebraic equations
is shown, and global error bounds are derived. As point out by the same authors,
it is not clear if it is possible to cover in a satisfactorily way highly nonlinear stiff
problems, i.e., problems where also the nonlinear terms are affected by large parame-
ters. Moreover, any result should assume that, in each step, the associated nonlinear
system is well approximated. In particular, that we are able to start with a good
initial guess for the iterative scheme. This might be very restrictive for many stiff
problems (see Section 6.2 of our recent work in [15]).

The results, as in the case of stiff ODEs [15], would be very satisfactory. For
problems verifying the hypotheses of our theorems we obtain always the convergence
to the true solution. Moreover, taking small tolerances (TOL) as stopping criterium,
the exact and computed solutions should be indistinguishable in a first look [15]. The
computational cost of the direct approximation of the stiff nonlinear DDE with an
implicit scheme and with variational approach is similar. In each step of the implicit
scheme we use a Newton iterative method to approximate the nonlinear system of
equations. In our approach we use an iterative scheme to solve the minimization
problem but in each iteration we only approximate linear system of equations.



36 Variational linearization of DAEs

3.1.3 Conclusions

In this paper we have presented a new variational approach of DDEs. The main
step in the procedure relies on a very particular linearization of the problem. There-
fore, the performance is expected to be very good due to the fact that we can use
very robust methods to approximate linear stiff problems like implicit collocation
schemes [58].

The main advantage of our approach is that we only need to approximate linear
problems. We believe that this procedure can be used in a systematic way to examine
other types of DDEs due to its flexibility and its simplicity. In particular, we are
interesting in DDEs with multiple lags, in DDEs with non-constant lags and in
neutral DDEs with lags in the derivatives. This is one of our current work (see
Chapter 6 for others topics we are interesting in).



Chapter 4

A steepest descent strategy for the
approximation of DAEs

Abstract 4.0.4 This chapter deals with the study and approximation of systems of
differential-algebraic equations based on an analysis of a certain error functional. In
seeking to minimize the error by using standard descent schemes, the procedure can
never get stuck in local minima, but will always and steadily decrease the error until
getting to the solution sought. Starting with an initial approximation to the solution,
we improve it, in such a way, that the error is significantly decreased. Some numerical
examples are presented to illustrate the main theoretical conclusions.

4.1 Motivation

Recently ([13]), a variational approach for a typical Cauchy problem for the dif-
ferential system

F (t, x(t), x′(t)) = 0 in (0, T ), x(0) = x0,

has been proposed, based on the minimization of an error functional that vanishes
precisely over solutions of such a problem. Namely, the error functional

E(x) =

∫ T

0

|F (t, x(t), x′(t))| dt,

measures the departure of feasible paths x : (0, T ) → W 1,1(0, T ;Rn), x(0) = x0,
from being a solution of the problem. At the outset, no further requirements seem
necessary so that implicit equations, differential inclusions, and differential-algebraic
equations (DAEs) can be treated under this same framework. After all, solutions of

37
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the initial-value problem above need to have zero error regardless of any other con-
sideration. However, the main existence theorem in [13] asks for two main structural
requirements that essentially rule out the application to singular problems when the
matrix

∂F

∂ξ
, F = F (t, λ, ξ) : (0, T )× Rn × Rn → Rn,

may become singular. Those two essential requirements are:

1. coercivity in the form

|F (t, λ, ξ)| ≥ C|ξ| −M1|λ| −M0,

for positive constants C, M1, and M0;

2. regularity in the form

1

h
min

{z:F (s,y,z)=0}

∫ s+h

s

|F (t, y + (t− s)z, z)| dt→ 0, as h→ 0,

for every s, and y.

In a typical DAE problem, both requirements may fail to hold. Yet, we would
like to stress that our approach based on minimizing an error functional is so flexible
that allows for a general approach.

To emphasize our point, consider the smooth, quadratic error functional

E(x) =
1

2

∫ T

0

|F (t, x(t), x′(t))|2 dt

defined for feasible paths x : (0, T ) → H1(0, T ;Rn) with x(0) = x0. The reason
to use power 2 instead of 1 is that we would like a smooth error functional, as our
procedure is based on regularity and smoothness.

What is remarkable is that, from a practical point of view, if we are interested in
numerical approximations of the potential solution, we can easily devise an iterative
procedure based on a steepest descent (or conjugate gradient) strategy for the error
functional. The successive iterations of such a procedure and the evolution of the
error will tell us if we are getting close to a solution of the problem when the error
decreases steadily to zero, as the iterations proceed. In this way, one can launch the
approximation, and from the resulting iterations judge a posteriori if we are getting
close to a solution, even if there are no analytical results available, or if, presumably,
such a problem may lack solutions.
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Remark 4.1.1 A main ingredient in the proof makes use of a generalization of the
typical compactness property for non-linear operators introduced recently in [95]. It
has been called the non-finer oscillation (NFO) property, as it makes an attempt to
convey the idea that the images of a sequence of iterates {Tuj} cannot produce finer
oscillations than the ones already contanined in {uj}, when such an operator enjoys
this property. Indeed, one main application in such a contribution was the analysis
of a regular Cauchy problem for a dynamical system (Section 6 in [95]). We have
tried to expand that analysis to cover the singular case of DAEs. See [14] for all the
details.

One final important point to be emphasized is the fact that the theoretical and
numerical analysis of DAEs are typically linked in a very fundamental way to its
index. See, among others, [28], [35], [70], [72], [73], [98], [99], [102], [112].

4.2 Some applications

DAEs play nowadays an important role in mathematical modeling. Several types
of DAEs are found in many applications. In this section, we select and review some
of those typical examples.

4.2.1 Mechanical systems

The general form of a constrained mechanical system is given by ([98])

q
′

= u,

M(q)u
′

= f(q, u)−GT (q)λ,

0 = g(q),

where M is a positive definite matrix, G(q) = ∂g/∂q is a m × n-matrix so that g
takes values on Rm, q = (q1, . . . , qn)T , u = (q

′
1, . . . , q

′
n)T , λ = (λ1, . . . , λm)T . This is

a DAE on the variables (q, u, λ) ∈ R2n+m, m < n. Note that if the matrix GM−1GT

is invertible, the system is a Hessenberg index 3 problem.

4.2.2 Optimal control problems

Consider a linear optimal problem with quadratic cost ([66])

y
′

= Ay +Bu in (0, 1), y(0) = y0,

J(u) =
1

2

∫ 1

0

(yTCy + uTDu)dt,
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where C and D are symmetric and positive semi-definite. The optimal control u can
be found by solving the following system

y
′

= Ay +Bu,

v
′

= −ATv − Cy,
0 = BTv +Du,

in the interval (0, 1), together with the initial condition y(0) = y0, and the transver-
sality condition v(1) = 0. The variable v is the associated costate.

Notice that the whole system is linear. If D vanishes and BTCB is positive
definite, then it has index 3.

4.2.3 Chemical reactions

Chemical processes is another field where DAEs are prominent [115]. In this
context, DAEs turn out to be quite often of a very high index with nasty nonlineari-
ties. Chemical processes are modeled by describing the reaction rate, mass flow, and
thermal dynamics, as well as the energy balance.

A general model can be formulated by

A(x(t), t)(D(t)x(t))
′
= b(x(t), t).

4.2.4 Electrical circuits

The simulation of electrical circuits is of great interest today. Circuits consist of
a large number of elements, and the equations have to be generated automatically.
There are two modern modeling techniques making an automatic generation: the
classical approach, and the charge-oriented approach of the modified nodal analysis
[49].

The classical modified nodal analysis furnishes systems of the form

D(x)x
′
+ f(x) = r(t),

where the vector of unknowns x consists of

• the nodal potentials u, and

• the currents I of the voltage-controlled elements.
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The system contains the equations derived by Kirchhoff’s nodal law for each node.
Additionally, the characteristic equations of the voltage-controlled elements belong
to the system. The equations of the current-controlled elements are set into the
system directly.

The charge-oriented modified nodal analysis leads to systems of the form

Aq
′
+ f(x) = r(t),

q − g(x) = 0,

Here the vector of unknowns (x, q) contains

• the nodal potentials u,

• the currents I of the voltage-controlled elements,

• the charge Q of the capacitors and

• the flux Φ of the inductors.

The last relation represents the characteristic equations for charge and flux.

In both situations, we have a linear-in-the-derivative, possibly-degenerate pro-
blem.

4.2.5 Fluid dynamics

Let us consider the Navier-Stokes system in the form

ut + uux + vuy + px − ν(uxx + uyy) = 0,

vt + uvx + vvy + py − ν(vxx + vyy) = 0,

ux + vy = 0.

After a usual semi-discretization in space ([110]), we arrive at the following system

Mu
′
+ (K +N(u))u+ Cp = f,

CTu = 0.

If CTM−1C is a nonsingular matrix with a bounded inverse, then the above system
has index 2. It is again a system of Hessenberg type.
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4.3 Some examples of DAEs with different index

An iterative numerical procedure is easily implementable based on the strategy
of the steepest descent direction y above. Mainly:

1. Start with an initial approximation x0(t) compatible with the DAE.

2. Assume we know the nodal values of x(j)(t) in a given mesh ti, i = 1, 2, . . . , N
distributed in [0, T ].

3. Compute the nodal values of the steepest descent direction y(j) given by the
formula

y(t) = −
∫ t

0

[
sF (s)F λ(s) + F (s)F ξ(s)

]
ds− t

∫ T

t

F (s)F λ(s) ds,

y′(t) = −F (t)F ξ(t)−
∫ T

t

F (s)F λ(s) ds.

by making use only of the known values x
(j)
i = x(j)(ti). This can be done

through the use of quadrature formulae for integrals and finite differences for
derivatives. Let y

(j)
i be such optimal nodal values. Notice that in this formula

we have not taken the projected steepest direction. As pointed out earlier, if
the successive iterations (regardless of how they are obtained) drive the error
to zero, then we are getting close to a solution.

4. Change x(j) to x(j+1) by using the update formula

x
(j+1)
i = x

(j)
i + αjy

(j)
i

for some small αj so that the error decreases.

5. Iterate (3) and (4), until numerical convergence.

In the following three experiments, we have used adaptive Gauss quadrature with
N = 30 (with 3 subintervals), see [97] for more details.

We have taken αj = 0.1, and used stop criteria ||x(j+1) − x(j)|| ≤ 10−10. For a
survey of nonlinear conjugate gradient methods, see [63].

• Index 1 [101]

y
′
(t) = z(t),

y(t)2 + z(t)2 = 1,

y(0) = z(0) =

√
2

2
.
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Figure 4.1: Index 1, T = π left the y-coordinate, right the z-coordinate, ‘o’-original,
‘+’-approximation
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Figure 4.2: Index 2, T = 2, left the y1-coordinate, right the y2-coordinate, ‘o’-original,
‘+’-approximation

• Index 2 [72]

y
′

1(t) =
5∑
i=1

fi(y1(t), y2(t), z(t)),

y
′

2(t) =
5∑
i=1

gi(y1(t), y2(t), z(t)),

y1(t)
2y2(t) = 1,

y1(0) = y2(0) = 1,

z(0) = 1,
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where

f1(y1(t), y2(t), z(t)) = y2(t)− 2y1(t)
2y2(t) + y1(t)y2(t)

2z(t)2 + 2y1(t)y2(t)
2 − 2e−2ty1(t)y2(t),

f2(y2(t), z(t)) = −y2(t)2z(t) + 2y2(t)
2z(t)2,

g1(y1(t), y2(t)) = −y1(t)2 + y1(t)
2y2(t)

2,

g2(y1(t), y2(t), z(t)) = −y1(t) + e−tz(t)− 3y2(t)
2z(t) + z(t).
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Figure 4.3: Index 2, T = 2, the z-coordinate, ‘o’-original, ‘+’-approximation

• Index 3 [73]

y
′

1(t) = 2y1(t)y2(t)z1(t)z2(t),

y
′

2(t) = −y1(t)y2(t)z2(t)2,
z
′

1(t) = (y1(t)y2(t) + z1(t)z2(t))u(t),

z
′

2(t) = −y1(t)y2(t)2z2(t)2u(t),

y1(t)y2(t)
2 = 1,

y1(0) = y2(0) = 1,

z1(0) = z2(0) = 1,

u(0) = 1.
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Figure 4.4: Index 3, T = 2, left the y1-coordinate, right the y2-coordinate, ‘o’-original,
‘+’-approximation
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Figure 4.5: Index 3, T = 2, left the z1-coordinate, right the z2-coordinate, ‘o’-original,
‘+’-approximation

In Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6, we compare the solution of the corres-
ponding three problems with the approximations given by our approach. The results
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Figure 4.6: Index 3, T = 2, the u-coordinate, ‘o’-original, +’-approximation

are very satisfactory in all cases, obtaining always the convergence to the true solu-
tion. In a first look, the exact and computed solutions are indistinguishable. A more
systematic and careful analysis of the numerical possibilities of the method will be
pursued in the future.



Chapter 5

A particular variational
linearization of DAEs

Abstract 5.0.1 This paper deals with the approximation of systems of differential-
algebraic equations based on a certain error functional naturally associated with the
system. In seeking to minimize the error, by using standard descent schemes, the
procedure can never get stuck in local minima, but will always and steadily decrease
the error until getting to the solution sought. Starting with an initial approximation to
the solution, we improve it by adding the solution of some associated linear problems,
in such a way that the error is significantly decreased. Some numerical examples are
presented to illustrate the main theoretical conclusions. We should mention that
we have already explored, in some previous papers [12, 13, 94], this point of view
for regular problems. However, the main hypotheses in these papers ask for some
requirements that essentially rule out the application to singular problems.

5.1 Introduction

Differential-algebraic equations are becoming increasingly important in a lot of
technical areas. They are currently the standard modeling concept in many appli-
cations such as circuit simulation, multibody dynamics, and chemical process engi-
neering, see for instance [27, 28, 35, 66, 101] with no attempt to be exhaustive.

A basic concept in the analysis of differential-algebraic equations is the index.
The notion of index is used in the theory of DAEs for measuring the distance from
a DAE to its related ODE. The higher the index of a DAE, the more difficulties
one may find in its numerical solution. There are different index definitions, but for
simple problems they are identical. On more complicated nonlinear and fully implicit

47
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systems they can be different (see [101] and his references).
For simplicity, we focus our attention on problems of the form

Mx′(t) = f(x(t)) in (0, T ), x(0) = x0, (5.1.1)

where M is a given, eventually singular, matrix depending on t. More general situa-
tions can be allowed. This type of equations arises, for instance, in the functional
analytic formulation of the initial value problem for the Stokes as well as for the
linearized Navier-Stokes or Oseen equations [42].

For the approximation of these equations collocation-type methods are usually
used. These methods are implicit, and we need to solve a nonlinear system of equa-
tions in each iteration using a Newton’s type method. Given different coefficients ci,
1 ≤ i ≤ s, there is a (unique for h sufficiently small) polynomial of collocation q(t)
of degree less than or equal to s such that

q(t0) = y0, q′(t0 + ci h) = f(t0 + ci h, q(t0 + ci h)) if 1 ≤ i ≤ s. (5.1.2)

The collocation methods are defined by an approximation y(t) ' q(t), and are equiva-
lent to implicit RK methods of s stages

ki = f(t0 + ci h, y0 + h
s∑
j=1

ai,j kj),

y1 = y0 + h
s∑
i=1

bi ki,

(5.1.3)

for the coefficients

ai,j =

∫ ci

0

∏
l 6=j

u− cl
cj − cl

du,

bi =

∫ 1

0

∏
l 6=i

u− cl
ci − cl

du.

(5.1.4)

The coefficients ci play the role of the nodes of the quadrature formula, and the
associated coefficients bi are analogous to the weights. From (5.1.4), we can find
implicit RK methods called Gauss of order 2s, Radau IA and Radau IIA of order
2s− 1 and Lobatto IIIA of order 2s− 2. Also we can consider perturbed collocation
methods like Lobato IIIC. See [66] for more details.

A number of convergence results have been derived for these methods introducing
the so-called B-convergence theory. In [22, 23] the authors extend the B-convergence
theory to be valid for a class of non-autonomous weakly nonlinear stiff systems, in
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particular, including the linear case. As pointed out by the same authors, it is not
clear if it is possible to cover, in a satisfactory way, highly nonlinear stiff problems,
i.e., problems where also the nonlinear terms are affected by large parameters. More-
over, any result should assume that, in each step, the associated nonlinear system
is well approximated [101]. In particular, we should be able to start with a good
initial guess for the iterative scheme. This might be very restrictive for many stiff
problems.

On the other hand, iterative methods are the typical tool to solve nonlinear
systems of equations. In these schemes we compute a sequence of approximations
solving associated linear problems. In this paper, we would like to introduce a new
variational approach for the treatment of DAEs where we linearize the original
equations obtaining an iterative scheme. Our ideas are based on the analysis of a
certain error functional of the form

E(x) =
1

2

∫ T

0

|Mx′(t)− f(x(t))|2 dt,

to be minimized among the absolutely continuous paths x : (0, T ) → RN with
x(0) = x0. Note that if E(x) is finite for one such path x, then automatically Mx′

is square integrable. This error functional is associated, in a natural way, with the
Cauchy problem (5.1.1). Indeed, the existence of solutions for (5.1.1) is equivalent to
the existence of minimizers for E with vanishing minimum value. This is elementary.

We want to concentrate on the approximation issue through this perspective.
We will place ourselves under the appropriate hypotheses so that there are indeed
solutions for (5.1.1), i.e. there are minimizers for the error with vanishing minimum
value. In addition, we would like to guarantee that the main ingredients for the
iterative approximating scheme to work are valid. More explicitly, our approach
for the numerical approximation of such problems relies on three main analytical
hypotheses that we take for granted here:

1. The Cauchy problem (5.1.1) admits a unique solution for every feasible initial
condition x0 (the definition of feasible path should depend on the index of the
equation).

2. The linearization around any feasible, absolutely continuous, path x(t) with
x(0) = x0,

My′(t)−∇f(x(t))y(t) = f(x(t))−Mx′(t) in (0, T ), y(0) = 0

always has a unique solution, and moreover, for some constant L > 0 depending
on M , f , x and its derivatives,

‖y‖2L∞(0,T ) ≤ TL‖f(x(t))−Mx′(t)‖L2(0,T ).
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3. The only solution of the problem

d

dt
(MT z(t)) +∇f(x(t))T z(t) = 0 in (0, T ), MT z(T ) = 0,

is z ≡ 0, for every feasible, absolutely continuous, path x(t) with x(0) = x0.

Here the superscript T indicates transpose.
These requirements depend on the index of the equation and on some regularity

on the pair (M,∇f(x(t))). They should be more restrictive for equations with high
index. More details can be found for example in [26] Theorem 3.9, where the authors
consider DAEs transferable into standard canonical form. More precise information
are outside of the scope of this paper. In any case, the equations verifying our
hypotheses are, in general, a subclass of all analytically solvable systems.

In addition to the basic facts just stated on existence and uniqueness of solutions
for our problems, the analysis of the approximation scheme, based on a minimization
of the error functional E, requires one main basic assumption on the non-linearity
f : RN → RN . It must be smooth, so that ∇f : RN → RN×N is continuous, and
globally Lipschitz with constant K > 0 (|∇f | ≤ K). Moreover, the main result
of this paper demands a further special property on the map f : for every positive
C > 0 and small ε > 0, there is DC,ε > 0 so that

|f(x+ y)− f(x)−∇f(x)y| ≤ DC,ε|y|2, |x| ≤ C, |y| ≤ ε.

This regularity is somehow not surprising as our approach here is based on regularity
and optimality. On the other hand, that regularity holds for most of the important
problems in applications. It certainly does in all numerical tests performed in this
work. Our goal here is placed on the fact that this optimization strategy may be
utilized to set up approximation schemes based on the minimization of the error func-
tional. Indeed, we provide a solid basis for this approximation procedure. One very
important and appealing property of our approach states that typical minimization
schemes like (steepest) descent methods will work fine as they can never get stuck in
local minima, and converge steadily to the solution of the problem, no matter what
the initialization is.

We should mention that we have already explored, in some previous papers, this
point of view. Since the initial contribution [13], we have also treated the reverse
mechanism of using first discretization, and then optimality ([12]). The perspective
of going through optimality and then discretization has already been indicated and
studied in [94], though only for the steepest descent method, and without going
through any further analytical foundation for the numerical procedure. However,
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the main hypotheses in these papers ask for some requirements that essentially rule
out the application to singular problems. We will however address shortly ([14]) a
complete treatment of DAEs with no a priori assumptions on existence and unique-
ness. Rather, we will be interested in showing existence and uniqueness from scratch
by examining the fundamental properties of the error functional E.

On the other hand, variational methods have been used also before in the context
of ODEs. See ([85, 91]), where numerical integration algorithms for finite-dimensional
mechanical systems that are based on discrete variational principles are proposed and
studied. This is one approach to deriving and studying symplectic integrators. The
starting point is Hamilton’s principle and its direct discretization. In those references,
some fundamental numerical methods are presented from that variational viewpoint
where the model plays a prominent role.

The rest of the paper is divided in three sections. In Section 2 we introduce our
variational approach, and present a convergence analysis. Section 3 introduces the
numerical procedure. Finally, we present some numerical results in Section 4.

5.2 A main descent procedure

We start with a fundamental fact for our approach.

Proposition 5.2.1 Let x be a critical point for the error E. Then x is the solution
of the Cauchy problem (5.1.1).

Proof
The proof is elementary. Based on the smoothness and bounds assumed on the

mapping f , we conclude that if x ≡ x is a critical point for the error E, then x ought
to be a solution of the problem

− d

dt

(
MT (Mx

′
(t)− f(x(t))

)
−∇f(x(t))T

(
(Mx

′
(t)− f(x(t))

)
= 0 in (0, T ),

x(0) = x0,M
T (Mx

′
(T )− f(x(T ))) = 0.

The vector-valued map y(t) = Mx′(t) − f(x(t)) is then a solution of the linear,
non-degenerate problem

MTy′(t) +∇f(x(t))Ty(t) = 0 in (0, T ), MTy(T ) = 0.

The only solution of this problem, by our initial conditions on uniqueness of linea-
rizations, is y ≡ 0, and so x is the solution of our Cauchy problem.
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�
On the other hand, suppose we start with an initial crude approximation x(0)

to the solution of our basic problem (5.1.1). We could take x(0) = x0 for all t, or
x(0)(t) = x0 + tf(x0). We would like to improve this approximation in such a way
that the error is significantly decreased. We have already pointed out that descent
methods can never get stuck on anything but the solution of the problem, under
global lipschitzianity hypotheses.

It is straightforward to find the Gâteaux derivative of E at a given feasible x in
the direction y with y(0) = 0. Namely

E ′(x)y =

∫ T

0

((Mx′(t)− f(x(t))) · (My′(t)−∇f(x(t))y(t))) dt.

This expression suggests a main possibility to select y from. Choose y such that

My′(t)−∇f(x(t))y(t) = f(x(t))−Mx′(t) in (0, T ), y(0) = 0.

In this way, it is clear that E ′(x)y = −2E(x), and so the (local) decrease of the error
is of the size E(x). Finding y requires solving the above linear problem which is
assumed to have a unique solution by our main hypotheses in the introduction. In
some sense, this is like a Newton method with global convergence.

Suppose x(0) is a feasible path in the interval (0, T ) so that x(0)(0) = x0, M(x(0))
′

is square integrable, |x0(t)| ≤ C for a fixed constant C, and all t ∈ (0, T ) and the
quantity

E(x(0)) =
1

2

∫ T

0

|M(x(0))
′
(t)− f(x(0)(t))|2 dt

measures how far such x(0) is from being a solution of our problem.

Theorem 5.2.2 For T sufficiently small, the iterative procedure x(j) = x(j−1) + y(j),
starting from the above feasible x(0), and defining y(j) as the solution of the linear
problem

M(y(j))′(t)−∇f(x(j−1)(t))y(j)(t) = f(x(j−1)(t))−M(x(j−1))′(t) in (0, T ), y(j)(0) = 0,

converges strongly in L∞(0, T ) to the solution of (5.1.1).

Proof
Choose ε > 0 and 0 < α < 1 so that

ε

1−
√
α
≤ C,
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and
|f(z + y)− f(z)−∇f(z)y| ≤ D|y|2, |y| ≤ ε, |z| ≤ 2C,

for some constant D > 0 (see the main hypotheses in the introduction). We then
solve for y(0) as the solution of the non-autonomous linear problem

My′(t)−∇f(x(t))y(t) = f(x(t))−Mx′(t) in (0, T ), y(0) = 0,

and pretend to update x(0) to x(0) + y(0) in such a way that the error for x(0) + y(0)

be less than the error for the current iteration x(0). Note that

E(x(0)+y(0)) =
1

2

∫ T

0

|f(x(0)(t)+y(0)(t))−f(x(0)(t))−∇f(x(0)(t))y(0)(t)|2 dt, (5.2.1)

where we have used the differential equation satisfied by y(0) and the definition of
E(x). By our assumption on f above,

|f(x(0)(t) + y(0)(t))− f(x(0)(t))−∇f(x(0)(t))y(0)(t)| ≤ D|y(0)(t)|2, t ∈ (0, T ),
(5.2.2)

provided that |y(0)(t)| ≤ ε. Since we know that y(0) is the solution of a certain
linear problem, by the upper bound assumed in the introduction on the size of these
solutions,

|y(0)(t)|2 ≤ TLE(x(0)) for all t ∈ [0, T ], L ∈ R+. (5.2.3)

Assume we select T > 0 so small that

E0,T (x(0)) ≡ E(x(0)) ≤ ε2

TL
, (5.2.4)

and then |y(0)(t)| ≤ ε for all t ∈ [0, T ]. By (5.2.1), (5.2.2), and (5.2.3), we can write

E(x(0) + y(0)) ≤ D2

2

∫ T

0

|y(0)(t)|4 dt ≤ D2

2
L2T 3E(x0)2. (5.2.5)

If, in addition, we demand, by making T smaller if necessary,

E(x(0)) ≤ 2α

D2T 3L2
, (5.2.6)

then E(x(0) + y(0)) ≤ αE(x(0)). Moreover, for all t ∈ (0, T ),

|x(0)(t) + y(0)(t)| ≤ C + ε ≤ 2C.
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All these calculations form the basis of a typical induction argument, verifying∣∣∣∣∣
j−1∑
i=0

x(i)(t)

∣∣∣∣∣ ≤ C + ε

(
j−2∑
i=0

√
α
i

)
(≤ 2C),

|x(j−1)(t)| ≤ ε
√
α
j−2

for all t ∈ [0, T ],

E

(
j−1∑
i=0

x(i)

)
≤ αj−1E(x(0))(≤ E(x(0))).

It is therefore clear that the sum

∞∑
i=0

x(i)(t)

converges strongly in L∞(0, T ) to the solution of our initial Cauchy problem in a
small interval (0, T ).

�
Since the various ingredients of the problem do not depend on T , we can proceed

to have a global approximation in a big interval by successively performing this
analysis in intervals of appropriate small size. For instance, we can always divide
a global interval (0, T ) into a certain number n of subintervals of small length h
(T = nh) with

E0,T (x(0))D2L2

2α
≤ 1

h3
,

according to (5.2.6).

5.3 Numerical procedure

Since our optimization approach is really constructive, iterative numerical proce-
dures are easily implementable.

1. Start with an initial approximation x(0)(t) compatible with the initial condi-
tions (ex. x(0)(t) = x0 + tf(x0)).

2. Assume we know the approximation x(j)(t) in [0, T ].

3. Compute its derivative M(x(j))
′
(t).
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4. Compute the auxiliar function y(j)(t) as the numerical solution of the problem

My′(t)−∇f(x(j)(t))y(t) = f(x(j)(t))−M(x(j))
′
(t) in (0, T ), y(0) = 0,

by making use of a numerical scheme for DAEs with dense output (like collo-
cation methods, see above subsection).

5. Change x(j) to x(j+1) by using the update formula

x(j+1)(t) = x(j)(t) + y(j)(t).

6. Iterate (3), (4) and (5), until numerical convergence.

In practice, we use the stopping criterium

max{||y(j)||∞,
√

2E(x(j))} ≤ TOL.

In particular, one can implement, in a very easy way, this numerical procedure
using a problem-solving environment like MATLAB [119].

5.4 Some experiments

In this section, we approximate some problems well known in the literature for
different index [72, 73, 101]. High-order accuracy and stability are major areas of
interest in this type of simulations. We don’t perform an analysis of the convergence
conditions imposed in the above section. We only are interested to test numerically
our approach.

In our approach we only need to approximate, with at least order one, the asso-
ciated linear system for y(j), in order to obtain the convergence of our scheme (see
Theorem 7.3.2). The stability can be ensured by the fact that we approximate a li-
near problem using specific implicit methods [66]. This is not the case with a general
non-linear problem [78], where we need to approximate well (with a Newton-type it-
erative method) the non-linear system related to the implicitness of the scheme. This
approximation should be a difficult task due to the local (non-global) convergence of
any iterative scheme for non-linear problems.

In this section, we consider the convergent Lobatto IIIC method [73] valid for
index 1-3, in order to approximate the associated linear problem for y(j) in each
iteration. This method can be considered as a perturbation collocation method.



56 Variational linearization of DAEs

The final error depends only on the stopping criterium. In the following examples,
we stop the algorithm when

max{||y(j)||∞,
√

2E(x(j))} ≤ 10−6,

and plot the solution and the approximation given by our approach.

• Index 1 [101]

y
′
(t) = z(t),

y(t)2 + z(t)2 = 1,

y(0) = z(0) =

√
2

2
.

The solution of this problem is (sin(x+ π/4), cos(x+ π/4)).
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Figure 5.1: Index 1, T = 2π, the y-coordinate, ‘o’-original, ‘+’-approximation

• Index 2 [72]

y
′

1(t) =
5∑
i=1

fi(y1(t), y2(t), z(t)),

y
′

2(t) =
5∑
i=1

gi(y1(t), y2(t), z(t)),

y1(t)
2y2(t) = 1,

y1(0) = y2(0) = 1,

z(0) = 1,
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Figure 5.2: Index 1, T = 2π, the z-coordinate, ‘o’-original, ‘+’-approximation
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Figure 5.3: Index 2, T = 2, the y1-coordinate, ‘o’-original, ‘+’-approximation

where

f1(y1(t), y2(t), z(t)) = y2(t)− 2y1(t)
2y2(t) + y1(t)y2(t)

2z(t)2 + 2y1(t)y2(t)
2 − 2e−2ty1(t)y2(t),

f2(y2(t), z(t)) = −y2(t)2z(t) + 2y2(t)
2z(t)2,

g1(y1(t), y2(t)) = −y1(t)2 + y1(t)
2y2(t)

2,

g2(y1(t), y2(t), z(t)) = −y1(t) + e−tz(t)− 3y2(t)
2z(t) + z(t).

The solution of this problem is (et, e−2t, e2t).
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Figure 5.4: Index 2, T = 2, the y2-coordinate, ‘o’-original, ‘+’-approximation
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Figure 5.5: Index 2, T = 2, the z-coordinate, ‘o’-original, ‘+’-approximation

• Index 3 [73]

y
′

1(t) = 2y1(t)y2(t)z1(t)z2(t),

y
′

2(t) = −y1(t)y2(t)z2(t)2,
z
′

1(t) = (y1(t)y2(t) + z1(t)z2(t))u(t),

z
′

2(t) = −y1(t)y2(t)2z2(t)2u(t),

y1(t)y2(t)
2 = 1,

y1(0) = y2(0) = 1,

z1(0) = z2(0) = 1,

u(0) = 1.
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Figure 5.6: Index 3, T = 2, the y1-coordinate, ‘o’-original, ‘+’-approximation
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Figure 5.7: Index 3, T = 2, the y2-coordinate, ‘o’-original, ‘+’-approximation

The solution of this problem is (e2t, e−t, e2t, e−t, et).
In Figures 5.1-5.10, we compare the solution of the corresponding three problems

with the approximations given by our approach. The results are very satisfactory
in all cases, obtaining always the convergence to the true solution. In a first look,
the exact and computed solutions are indistinguishable, since after convergence the
error is smaller than the tolerance (= 10−6) used in the stopping criterium. A more
systematic and careful analysis of the numerical possibilities of the method will be
pursued in the future.
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Figure 5.8: Index 3, T = 2, the z1-coordinate, ‘o’-original, ‘+’-approximation
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Figure 5.9: Index 3, T = 2, the z2-coordinate, ‘o’-original, ‘+’-approximation
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Figure 5.10: Index 3, T = 2, the u-coordinate, ‘o’-original, +’-approximation
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Chapter 6

Current work

Abstract 6.0.1 This chapter deals with some ideas of our current work.

6.1 A step variable implementation

An implicit fixed-step solver computes the state at the next time step as an
implicit function of the state at the current time step and the state derivative at the
next time step. The variable-step solvers dynamically vary the step size during the
simulation. These solvers increase or reduce the step size using its local error control
to achieve the tolerances that you specify. Computing the step size at each time step
adds to the computational overhead but can reduce the total number of steps, and
the simulation time required to maintain a specified level of accuracy.

For a stiff problem, solutions can change on a time scale that is very small as
compared to the interval of integration, while the solution of interest changes on
a much longer time scale. Methods that are not designed for stiff problems are
ineffective on intervals where the solution changes slowly because these methods use
time steps small enough to resolve the fastest possible change.

If we denote by y(tn, tn−1, yn−1) the solution of a given differential equation
F (t, y, y

′
) = 0, then a method of order p will verify that locally its error has the

form
||en|| = ||y(tn, tn−1, yn−1)− yn|| = C hp+1 +O(hp+2).

In order to estimate C we can use extrapolations techniques like the presented
in the following section. Other possibility is to consider other scheme ỹn with bigger
order q starting from yn−1. In this case we have

||ẽn|| = ||y(tn, tn−1, yn−1)− ỹn|| = C̃ hq+1 +O(hq+2),
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then
||en|| = ||yn − ỹn||+O(hp+2).

With an estimation of the error the variable step codes select the new step such
that the error is smaller than a prescribed tolerance TOL.

The desired error associated to a h∗ will be

||en(h
′
)|| = Chp+1

∗ = TOL

and the real error
||en(h)|| = Chp+1 = ||yn − ỹn||,

dividing both equations we obtain

h∗ = h p+1

√
TOL

||yn − ỹn||
.

6.1.1 Extrapolation techniques

When we are approximating the exact solution a0 of a given differential problem
by means of a Runge-Kutta method, the error can be expressed as a Taylor series:

S(h) = a0 + a1h
p1 + a2h

p2 + · · · . (6.1.1)

In order to improve the accuracy we can use extrapolation procedures. Richard-
son’s (or polynomial) extrapolation consists on successive elimination of the terms
aih

pi by linear combinations of approximations S(h) for different h. It can be viewed
as the value at h = 0 of the only polynomial P (x) interpolating the data S(h) for
the considered h’s.

In practice, we can use the following algorithm for the implementation of Richard-
son extrapolation:

Algorithm 6.1.1 Richardson Extrapolation
For l = 1, 2, 3, . . . , n

b(0,l) = S(2l−1h)

For j = 1 up to r = n− 1 and for l = 1 up to k = r − j + 1

b(j,l) =
2pb(j−1,l) − b(j−1,l+1)

2p − 1

where p is the first power of the error in each step.
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It is well known that Richardson’s extrapolation is equivalent to extrapolate
by couples with functions of type axp + b (p =order of the method in each step).
The reciprocal polynomial extrapolation was introduced in [2] as an alternative of
Richardson’s extrapolation. It is based on the extrapolator function R(x) = 1

P (x)

which is equivalent, as before, to considering extrapolations by couples with functions
of the type 1

dxp+e
.

The order of accuracy is the same in both cases [2].

A new implementation of the Reciprocal Polynomial Extrapolation

In this section, we introduce a new step in the implementation of the reciprocal
polynomial extrapolation. We are interested in obtaining at least the same perfor-
mance as that achieved by the Richardson extrapolation when this extrapolation
works well and improving its robustness in other cases.

In the original reciprocal polynomial extrapolation technique [2], first we compute
the inverse of the data, then we compute the Richardson extrapolation and finally
we compute the inverse of the result.

One improvement proposed in the present paper consists on a specific translation
of the original data. As in the case of the Richardson extrapolation scheme, we
build the reciprocal polynomial extrapolation scheme by pairs; thus we start with
two known values of S at different resolutions:

S(h) = a0 + a1h
γ1 + a2h

γ2 + · · ·
S(2h) = a0 + a12

γ1hγ1 + a22
γ2hγ2 + · · ·

Let us consider the translation

Th = sign(M)(1 + |m|),

where {
M = S(h), m = S(2h), if |S(2h)| ≤ |S(h)|,
M = S(2h), m = S(h), otherwise.

The proposed translation Th has the same sign as the maximum (in absolute
value) of the data. The size of Th is equal to one plus the absolute value of the
minimum (in absolute value) of the data.

Taking the above translation Th into account, we compute

S1 = S(h) + Th,

S2 = S(2h) + Th.
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We now consider the rational function r(x;h) =
1

dxγ1 + c
that is able to interpo-

late S1 and S2,

1

dhγ1 + c
= S1,

1

d2γ1hγ1 + c
= S2.

This system is equivalent to

1

S1

= dhγ1 + c,

1

S2

= d2γ1hγ1 + c;

that is, the linear system of the Richardson extrapolation scheme for the new data
1
S1

and 1
S2

.
Therefore, using the formula of the Richardson extrapolation,

1

r(0;h)
=

2γ1 1
S1
− 1

S2

2γ1 − 1
;

and the approximation obtained by the new reciprocal polynomial extrapolation
scheme is then given by

r(0;h)− Th =
(2γ1 − 1)S1S2

2γ1S2 − S1

− Th.

With this new step (translation procedure) any zero division in the inversion of
each pair is avoided (Si 6= 0, i = 1, 2). Moreover, since |Si| > 1 and therefore
1
|Si| ∈ (0, 1), i = 1, 2, the data interval will be changed from R = (−∞,+∞) in the

direct implementation of the Richardson extrapolation to (0, 1) (or (−1, 0)) when
we use the Richardson extrapolation within the reciprocal polynomial extrapolation
mechanism.

The Richardson extrapolation has problems for improving a given approximation
when the step discretizations are not small enough, this depends of the characteristics
of the problem (stiffness or perturbation parameters). In these cases the points
Si 6= 0, i = 1, 2 should be not close enough. Changing the data interval through the
proposed translation ensures that the extrapolated points when using the Richardson
extrapolation procedure within the reciprocal polynomial extrapolation scheme are
close. In the numerical experiments of the annexe II we analyze the improvements
obtained by this fact.
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6.1.2 Our particular situation

In our case, we can use the size of the direction y(j). These numbers are related
with the local error. At this moment we are testing this approach to several interest-
ing problems that we include in the annexe I. We would like also to perform a free
MATLAB code for the scientific community.

6.1.3 Practical Implementation

The estimation of the error and the new h∗ has been introduced from a mathe-
matical point of view. However, in order to be effective in practice we need some
control strategies.

Let hn+1 = tn+1−tn be the discretization parameters. We introduce the following
equation

hn+1 = σhn
p+1

√
TOL

||yn − ỹn||
,

where σ is a security factor smaller than 1.
If in a step ||yn − ỹn|| > TOL we reject yn and compute a new iteration with

hn = σhn
p+1

√
TOL

||yn − ỹn||
.

Finally, it is important to add some computational restrictions. Namely

hmin ≤ hn ≤ hmax

and

ω ≤ hn+1

hn
≤ Ω

for some given positive constants hmin, hmax, ω and Ω.
Some classical examples are:

hmin = 10−6,

hmax = 1,

ω =
1

5
,

Ω = 5.
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6.2 Approximation of Hamiltonian systems

We introduce a new variational approach for models which are formulated natu-
rally as conservatives systems of ODEs, most importantly Hamiltonian systems. As
a general rule, Hamiltonian systems are related to numerous areas of mathematics
and have a lot of application branches, such as classical and quantum mechanics,
statistics, optical, astronomy, molecular dynamic, plasma physics, etc.

6.2.1 A short view of the state of the art

Regarding approximating approaches for Hamiltonian systems, it is well known
that numerical methods such as the ordinary Runge-Kutta methods are not valid
for integrating Hamiltonian systems, because Hamiltonian systems are not generic
in the set of all dynamic systems. They are not structurally stable against non-
Hamiltonian perturbations. Numerical solution of Hamiltonian systems is frequently
carried out by symplectic integrator due to their good performance in moderate and
long-time integration, see [65, 71, 84, 92, 106]. Symplectic numerical methods belong
to the family of Geometric Numerical Integrators methods, which preserve important
qualitative and geometric properties of the underlying differential system, and are
arguably the most popular methods in this class. Certain qualitative properties of
the evolution, like symplecticity, are preserved and, in general they exhibit smaller
error growth along the numerical trajectory.

Some pioneering works on symplectic integrations is due to Vogelaere [122], Ruth
[104], and Feng Kang [50]. The derivation of higher-order methods is covered by
several approaches such as composition methods, classical Runge-Kutta methods
(RK) as well as partitioned Runge-Kutta (PRK) methods, and methods based on
generating functions.

The systematic study of symplectic Runge-Kutta (RK) methods started around
1988, and a complete characterization has been found independently by Lasagni
[80](using the approach of generating functions), and by Sanz-Serna [105] and Suris[117]
(using the ideas of the classical papers of Burrage and Butcher [33] and Crouzeix [36]
on algebraic stability). Nowadays, it is well-known that certain implicit RK methods
of Radau type (generalizing the implicit Euler method) are useful in the context of
systems with strong dissipation, like electronic circuits or chemical reaction dynam-
ics.

Partitioned Runge- Kutta (PRK) methods are another approach to approximat-
ing the solution trajectory which it is based on using different approximation formulas
for different components of the solution. PRK methods use different sets of quadra-
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ture rules for each subset of the variables. High-order symplectic PRK methods
are implicit when applied to general Hamiltonian systems and can be solved by a
fixed-point iteration similar to implicit RK methods, or by Newton iteration. The
situation changes for systems with a separable Hamiltonian, while symplectic RK
methods are still necessarily implicit, explicit PRK methods can be found. However
this class of explicit PRK methods is equivalent to the class of composition methods
[93, 106].

The starting point of generating function (GF) theory was the discovery of Hamil-
ton that the motion of the system is completely described by a characteristic func-
tion S, and that S is the solution of a partial differential equation, now called the
Hamilton-Jacobi differential equation. It was notice later, especially by Siegel (Siegel
and Moser 1971), that such a function S is directly connected to any symplectic map.
It was called generating function. See [65, 84].

Another important point should be taken into account regarding Hamiltonian
systems, even with symplectic maps, and that is the lack of energy conservation in the
map. It would seem to be an obvious goal for Hamiltonian integration methods both
to preserve the symplectic structure and to conserve the energy, but it was shown
that this was in general impossible. Thus a symplectic map which only approximates
a Hamiltonian cannot conserve energy [125].

Recently, some research has been carried out about energy-preserving symplectic
methods based on the key tool line integral associated with conservative vector fields,
as well as its discrete version, the so called discrete line integral. Interestingly, the
line integral provides a means to check the energy conservation property. See,[30, 31].

6.2.2 A new variational approach

The new variational method for Hamiltonian systems, which is proposed here, is
both symplectic and energy preserving.

We consider Hamiltonian system of the form

x′ = Ω∇H(x),

x(0) = x0,

where

Ω =

(
0 −1

1 0

)
. (6.2.1)

This system can be studied under a variational approach based on analysis of
certain error functional. We seek to minimize the error by using standard descent
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schemes. From this approach a process, in which the error always and steadily
decrease until getting to the original solution, is obtained. The error functional
which is associated, in a natural way, with a Hamiltonian system

E(x) =

∫ T

0

1

2
|x′(t)− Ω∇H(x(t))|2 +

1

2
|H(x(t))−H(x(0))|2 dt,

The proposed functional has the characteristic of energy persevering. The stee-
pest descent direction can be found as the solution of a variational problem of the
form

Minimize y:

1

2

∫ T

0

|y′(t)|2+(x′(t)−Ω∇H(x(t))(y′(t)+ΩT∇2H(x(t))y(t))+(H(x(t))−H(x(0)))∇H(x(t))y(t) dt,

under y(0) = 0.
The optimal solution is given by

− d

dt

[
y′(t) + x′(t) + ΩT∇H(x(t))

]
+∇2H(x(t))Ω

(
x′(t) + ΩT∇H(x(t))

)
+ (H(x(t))−H(x0))∇H(x(t)) = 0 in (0, T ),

y(0) = 0, y′(T ) + x′(T ) + ΩT∇H(x(T )) = 0.

The solution of the variational problem can be given in an explicit form as

y(t) = −
∫ t

0

[sG(s) + F (s)] ds− t
∫ T

t

G(s) ds, (6.2.2)

where

F (t) = x′(t) + ΩT∇H(x(t))

G(t) = ∇2H(x(t))Ω(x′(t) + ΩT∇H(x(t))) + (H(x(t))−H(x(0)))∇H(x(t))

Everything can be written as an iterative numerical process.

6.2.3 Numerical procedure

The iterative numerical procedure is easily implementable.
1. Start with an initial approximation x0(t) compatible with the initial conditions,

for instance x(0)(t) = x0 + tΩ∇H(x0).
2. Assume we know the approximation (x(j))(t) in [0, T ].
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3. Compute its derivative (x(j))′(t).
4. Compute F and G functions:

F (j)(t) = (x(j))′(t) + ΩT∇H(x(j)(t)),

G(j)(t) = ∇2H(x(j)(t))Ω((x(j))′(t)+ΩT∇H(x(j)(t)))+(H(x(j)(t))−H(x(0)))∇H(x(j)(t)).

5. Compute the function

y(j)(t) = −
∫ t

0

[
sG(j)(s) + F (j)(s)

]
ds− t

∫ T

t

G(j)(s) ds, (6.2.3)

using quadrature formulas.
6. Change x(j) to x(j+1) by using the update formula

x(j+1)(t) = x(j)(t) + y(j)(t).

7. Iterate (3), (4), (5) and (6) until numerical convergence.

6.2.4 Approximation using the non symplectic trapezoidal
rule

We start with three classical problems in order to put out the necessity of use
symplectic rules for the approximation of y(j). The first example is a typical system;
the other two are a Lotka-Volterra problem and the Kepler problem. It is well known
that the Lotka-Volterra problem is defined as two species problem: one, a predator,
the other one, its prey. It is frequently use to describe the dynamics of biological
systems, in which two species interact. The Kepler problem, in classical mechanic is
about a special case of the two-body problem, in which the two bodies interact by
a central force that varies in strength as the inverse square of the distance between
them.

We are interested in approximating the value of the solution of the problem 1

p′ = q, (6.2.4)

q′ = p+ p2.

We have considered the initial conditions p = 0 and q = 1.
The solution of this problem is

q = ±
√

2(
1

2
+
p2

2
+
p3

3
).
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Figure 6.1: The x-coordinate versus y-coordinate,’o’-original,’+’-approximation.
Problem 6.2.4

The Lotka-Volterra problem can be written as

p′ = eq − 2, (6.2.5)

q′ = 1− ep.

The initial conditions considered are p = 2.3 and q = 0.7.
The Kepler problem can be found as

p′i = − q1

(q21 + q22)
2
3

, (6.2.6)

q′i = pi.

for i = 1, 2.
The initial conditions have been p1 = 0.4, p2 = 0, q1 = 0 and q2 = 2.
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Figure 6.2: The x-coordinate versus y-coordinate,’o’-original,’+’-approximation.
Problem 6.2.5
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Figure 6.3: The x-coordinate versus y-coordinate,’o’-original,’+’-approximation.
Problem 6.2.6
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6.2.5 Approximation using symplectic rules

In this final section, we are going to explore specifically the steepest descent
strategy with the Lorentz system x′ = Ax+ F (x) with x ∈ R3 and

A =

−10 10 0
28 −1 0
0 0 −8/3

 , F (x) = (0,−x1x3, x1x2), f(x) = Ax+ F (x),

and for the Kepler model for elliptical orbits under Newton gravitational law x′ =
F (x) where this time x ∈ R4, and

F (x) =
(
x2,−µx1/(x21 + x23)

3/2, x4,−µx3/(x21 + x23)
3/2
)
.

These two particular models were also tested in [94], though the practical imple-
mentation was a bit different, and no particular attention was paid to the propaga-
tion of error with time. Initial conditions have been taken to be (−10, 10, 25), and
(0.4, 0., 0., 2.), respectively.

The results have been obtained by using mid-point quadrature rule. The param-
eter h is the small time interval where the updated scheme xj +yj for yj the steepest
descent direction at xj converges. The simulations are then carried out by successive
steps of length h. It especially strikes the result for the Kepler system where one can
hardly distinguish the various turns around the elliptic orbit ([65]).

It is somewhat remarkable that our numerical tests for both problems are virtually
exact to the degree of accuracy used, so numerical error do not propagate, or do so
in such a small rate that errors do not spoil the approximation as time proceeds.
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Figure 6.4: The Lorentz system for h = 0.01 and 30000 steps.
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Figure 6.5: The Kepler system with h = 0.01 and 20000 steps.



Chapter 7

On a family of high order iterative
methods under Kantorovich
conditions

Abstract 7.0.1 This chapter is devoted to the study of a class of high order iterative
methods for nonlinear equations on Banach spaces. The motivation is to study these
methods since they are used in the classical implementation of implicit methods. An
analysis of the convergence under Kantorovich type conditions is proposed. Some
numerical experiments, where the analyzed methods present better behavior than some
classical schemes, are presented. These applications include the approximation of
some quadratic and integral equations.

7.1 Introduction

This paper deals with the approximation of nonlinear equations

F (x) = 0,

where F : Ω ⊆ X → Y is a nonlinear operator between Banach spaces, using the
following family of high order iterative methods:{

yn = xn − F
′
(xn)−1F (xn),

xn+1 = yn − (I + LF (xn) + LF (xn)2GF (xn))F ′(xn)−1F (yn),
(7.1.1)

where I is the identity operator on X and for each x ∈ X, LF (x) is the linear operator
on Ω ⊆ X defined by

LF (x) = F ′(x)−1F ′′(x)F ′(x)−1F (x),

77
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assuming that F ′(x)−1 exists and GF : Ω ⊆ X → L(X,X) is a given nonlinear
operator (usually depending on the operator F and its derivatives). Here L(X,X)
denotes the space of bounded linear operators from X to X.

The second step can be interpreted as an acceleration of the initial one (in our
case Newton’s method). Indeed, this family was introduced for scalar equations
f (t) = 0 in [120], for any initial scheme, Traub’s theorem reads:

Theorem 7.1.1 For all sufficiently smooth function gf (x), the iterative method{
yn = Φ(xn),

xn+1 = yn − (1 + Lf (xn) + Lf (xn)2gf (xn)) f(yn)

f
′
(xn)

,
(7.1.2)

has order of convergence min{p+ 2, 2p}, where p is the order of Φ(x).

In this paper, we consider as the function Φ(x) the classical Newton method. We
have mainly three reasons. First, because we can recover many well known high-order
iterative methods. Second, because the domain of convergence of Newton’s method
is bigger than high order schemes [46]. Finally, since in practice is a good strategy
to start with a simple method when we are not sufficiently close to the solution [8].

On the other hand, conditions are imposed on x0 and on F in order to ensure the
convergence of {xn}n to a solution x∗ of F (x) = 0. This analysis, usually known as
Kantorovich type, is based on a relationship between the problem in a Banach space
and a single nonlinear scalar equation which leads the behavior of the problem. A
priori error estimates, depending only on the initial conditions, and, hence, the order
of convergence can be obtained by using Kantorovich type theorems.

A review to the amount of literature on high order iterative methods in the two
last decades (see for instance [1] and its references, or this incomplete list of recent
papers [39, 41, 44, 47, 54, 55, 76, 86, 96, 111, 124, 126]) may reveal the importance of
high order schemes. The main practical difficulty related to the classical third order
iterative methods is the evaluation of the second order derivative. For a nonlinear
system of m equations and m unknowns, the first Fréchet derivative is a matrix
with m2 entries, while the second Fréchet derivative has m3 entries. This implies a
huge amount of operations in order to evaluate every iteration. However, in some
cases, the second derivative is easy to evaluate. Some clear examples of this case are
the approximation of Hammerstein equations where the second Fréchet derivative is
diagonal by blocks or quadratic equations where it is constant.

The structure of this paper is as follows: in Section 2 we present some particular
examples of methods included in the family, in Section 3, we assert convergence and
uniqueness theorems (Kantorovich type). Finally, some numerical experiments are
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presented in Section 4. These applications include: quadratic (Riccati) equations
and integral (Hammerstein) equations. In all these problems the proposed methods
seem more efficient than second order methods.

7.2 A family of high order iterative methods

As was indicated in the introduction, we are interested in the study of the family
of iterative methods{

yn = xn − f(xn)

f ′ (xn)
,

xn+1 = yn − (1 + Lf (xn) + Lf (xn)2gf (xn)) f(yn)

f ′ (xn)
.

(7.2.1)

Note that the method (7.2.1) is equivalent to iterating the function Mf given by

Mf (x) = x− f(x)

f ′(x)
− (1 + Lf (x) + Lf (x)2gf (x))

f(x− f(x)/f ′(x))

f ′(x)
,

that is,

xn+1 = Mf (xn).

Particular examples of schemes included in the family with non-smooth functions
gf (x) are:

• Halley

xn+1 = xn −
(

1

1 + 1
2
Lf (xn)

)
f(xn)

f ′(xn)
,

• Super-Halley

xn+1 = xn −
(

1 +
Lf (xn)

2(1− Lf (xn))

)
f(xn)

f ′(xn)
,

• Chebyshev

xn+1 = xn −
(

1 +
1

2
Lf (xn)

)
f(xn)

f ′(xn)
,

• Chebyshev like methods. For 0 ≤ α ≤ 2, we consider the α-methods

xn+1 = xn −
(

1 +
1

2
Lf (xn) + αLf (xn)2

)
f(xn)

f ′(xn)
,
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• Two-step {
yn = xn − f(xn)

f ′ (xn)
,

xn+1 = yn − f(yn)

f ′ (xn)
.

These methods have order of convergence three that is smaller than the estimate
4 = min{2 + 2, 2 · 2} in Traub’s theorem (since gf (x) is non-smooth). For instance
the above two-step method admits gf (x) = − 1

Lf (x)
. Indeed, all these methods have

the function f in the denominator.

On the other hand, considering different smooth functions gf (x), the following
schemes are also particular examples in the family.

• The two step method (gf (x) = 0)

M4 :

{
yn = xn − f(xn)

f ′(xn)
,

xn+1 = yn − (1 + Lf (xn)) f(yn)
f ′ (xn)

,

has order four.

• The two step method (gf (x) = 1
2
(5
2
− Lf ′(x)))

M5 :


yn = xn − f(xn)

f ′(xn)
,

xn+1 = yn −
(

1 + Lf (xn) +
1

2
(
5

2
− Lf ′(xn))Lf (xn)2

)
f(yn)

f ′(xn)
.

has order five.

• We should start with other iterative functions Φ(x) and develop a similar ana-
lysis. For instance, starting with Chebyshev’s method we can consider the
method (gf (x) = 1

2
(3− Lf ′(xn)))

M6 :


yn = xn −

(
1 +

1

2
Lf (xn)

)
f(xn)

f ′(xn)
,

xn+1 = yn −
(

1 + Lf (xn) +
1

2
(3− Lf ′(xn))Lf (xn)2

)
f(yn)

f ′(xn)
.

that has order six [8]. We use this scheme only in the numerical section.
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7.3 Semilocal convergence

Several techniques are usually considered to study the convergence of iterative
methods, as we can see in the following papers [1, 16, 17, 45, 69]. Among these, the
two most common are the based on majorant principle and on recurrence relations.

In this section, we analyze the semilocal convergence of the introduced family
(7.1.1) under a generalization of Kantorovich conditions.

Namely, we assume that:

(C1) Let x0 ∈ Ω such that Γ0 = F
′
(x0)

−1 exists and ||Γ0|| ≤ β.
(C2) ||Γ0F (x0)|| ≤ η.
(C3) ||F ′′(x)|| ≤M for all x ∈ Ω.
(C4) ||F ′′(x)− F ′′(y)|| ≤ K||x− y||, K > 0, x, y ∈ Ω.

Under these hypotheses it is possible to find a cubic polynomial in an interval
[a, b] such that p(a) > 0 > p(b), p

′
(t) < 0, p

′′
(t) > 0 and p

′′′
(t) > 0 in [a, t∗], with t∗

the unique simple solution of p(t) = 0, and verifying the following hypotheses:

For t0 ∈ [a, b] and p(t0) > 0.
(H1) ||Γ0|| ≤ − 1

p′ (t0)
,

(H2) ||Γ0F (x0)|| ≤ − p(t0)

p′ (t0)
,

(H3) ||F ′′(x)|| ≤ p
′′
(t) for all x ∈ Ω, ||x− x0|| ≤ t− t0 ≤ t∗ − t0,

(H4) ||F ′′(x) − F ′′(y)|| ≤ |p′′(u) − p′′(v)|, with ||x − y|| ≤ |u − v|, x, y ∈ Ω and
u, v ∈ [a, t∗].

Some immediate properties of the polynomial may be obtained from the condi-
tions above imposed:

1. p(t) is decreasing in the interval [a, t∗], since p′(t) < 0 in that interval.

2. p(t) > 0 in [a, t∗[.

3. p′(t) is increasing and p(t) is convex in [a, t∗], since we have p′′(t) > 0 in [a, t∗].

4. p′′(t) is increasing in [a, t∗], since p′′′(t) > 0 in that interval.

From these properties it follows the next:

(a) The Newton map associate to p(t), Np(t) = t − p(t)
p′(t)

, is increasing in [a, t∗[ ,

Np(t
∗) = t∗ and N ′p(t

∗) = 0.
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(b) The function Lp(t) = p(t)p′′(t)
p′(t)2

> 0 in [a, t∗[ , since p(t) and p′′(t) are strictly

positive in that interval. Furthermore, Lp(t
∗) = 0, since p(t∗) = 0 and p′(t∗) 6=

0.

In this paper, as in [103] (p. 43), we consider as the function p(t) the following
polynomial:

p (t) :=
K

6
t3 +

M

2
t2 − 1

β
t+

η

β
,

assuming

η ≤ 4K +M2β −Mβ
√
M2 + 2Kβ

3βK(M +
√
M2 + 2Kβ)

.

If this last condition holds, then the cubic polynomial p(t) has two roots t∗ and
t∗∗ (t∗ ≤ t∗∗). We can choose a and b such that 0 < a < t∗ and b > 2

M β+
√
M2 β2+2K β

.

Moreover, we need some extra conditions associated with the operator GF and
the function gp. We assume:

(Hg1) ||LF (x)2GF (x)|| ≤ Lp(t)
2Gp(t), for ||x− x0|| ≤ t− t0 ≤ t∗ − t0,

(Hg2) 1 + Lp(t) + Lp(t)
2gp(t) ≥ 0,

(Hg3) m
′
(t) > 0 in [a, t∗[, where

m(t) = t− p(t)

p′(t)
− (1 + Lp(t) + Lp(t)

2gp(t))
p(t− p(t)

p′ (t)
)

p′(t)
.

All the methods considered in the above section have associated functions gp that
verify the three last conditions. With the two last hypotheses on gp and the definition
of p, following [103] (Corollary 2.2.2 in p. 31), the next result holds:

Proposition 7.3.1 The sequence{
sn = tn − p(tn)

p′(tn)
,

tn+1 = sn − (1 + Lp(tn) + Lp(tn)2gp(tn)) p(sn)
p′ (tn)

,

starting from the above t0 converges monotonically to t∗ the real simple solution of
p(t) = 0 in [a, b].

We are now ready to prove the desired semilocal convergence.
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Theorem 7.3.2 Let us assume x0 ∈ Ω and t0 ∈ [a, t∗] verifying the hypotheses
(H1)-(H4) and (Hg1)-(Hg3) with

η ≤ 4K +M2β −Mβ
√
M2 + 2Kβ

3βK(M +
√
M2 + 2Kβ)

. (7.3.1)

If B(x0, t
∗− t0) ⊂ Ω then the sequence (7.1.1) is well defined and converges to x∗

the unique solution of F (x) = 0 in B(x0, t∗ − t0).

Moreover,

||x∗ − xn|| ≤ t∗ − tn, n ≥ 0,

where

sn = tn −
p(tn)

p′(tn)
,

tn+1 = sn − (1 + Lp(tn) + Lp(tn)2gp(tn))
p(sn)

p′(tn)
.

Proof

By an induction process, it is possible to verify that

(i)
∥∥F ′ (xn)−1

∥∥ ≤ − 1
p′(tn)

(ii) ‖F (xn)‖ ≤ p (tn)

and then,

(iv) ‖LF (xn)‖ ≤ Lp (tn)

and

(v) ‖xn+1 − xn‖ ≤ tn+1 − tn.

The case n = 0 follows from the initial conditions on x0 and t0.

We now assume that the conditions are valid for n and we check them for n+ 1.

(i)

F ′ (xn+1) = F ′ (xn)
{
I − F ′ (xn)−1 (F ′ (xn)− F ′ (xn+1))

}
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Applying Taylor’s theorem:∥∥F ′ (xn)−1 (F ′ (xn)− F ′ (xn+1))
∥∥ ≤ ||F ′(xn)−1||

(
‖F ′′ (xn)‖+

1

2
K ‖xn − xn+1‖

)
· ‖xn − xn+1‖

≤ − 1

p′(tn)

(
p′′ (tn) +

1

2
K (tn+1 − tn)

)
· (tn+1 − tn)

= − 1

p′(tn)
(p′ (tn+1)− p′ (tn))

= 1− p′ (tn+1)

p′(tn)
< 1,

because p′(t) is increasing.

By applying the general invertibility criterion, F ′ (xn+1) is invertible, and∥∥F ′ (xn+1)
−1∥∥ ≤ ∥∥∥∥(I − F ′ (xn)−1 (F ′ (xn)− F ′ (xn+1))

)−1∥∥∥∥∥∥F ′ (xn)−1
∥∥

≤
∥∥F ′ (xn)−1

∥∥
1−

∥∥F ′ (xn)−1 (F ′ (xn)− F ′ (xn+1))
∥∥

≤ − 1

p′(tn)
[
1−

[
1− p′(tn+1)

p′(tn)

]]
= − 1

p′(tn+1)
.

(ii) Using the following Taylor expansion

F (yn) = F (xn) + F
′
(xn)(yn − xn) +

1

2!
F
′′
(xn)(yn − xn)2

+

∫ yn

xn

(
F
′′
(x)− F ′′(xn)

)
(yn − x)dx,

and by the definition of the method

F
′
(xn)(yn − xn) = −F ′(xn)(F

′
(xn)−1F (xn)),

we obtain that

F (yn) =
1

2!
F
′′
(xn)(F

′
(xn)−1F (xn))2

+

∫ yn

xn

(
F
′′
(x)− F ′′(xn)

)
(yn − x)dx,
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and since

p(sn) =
1

2!
p
′′
(tn)(p

′
(tn)−1p(tn))2

+

∫ sn

tn

(
p
′′
(x)− p′′(tn)

)
(sn − t)dt,

we conclude that

||F (yn)|| ≤ p(sn).

Similarly from the following expansion

F (xn+1) = F (xn) + F
′
(xn)(xn+1 − xn) +

1

2!
F
′′
(xn)(xn+1 − xn)2

+

∫ xn+1

xn

(
F
′′
(x)− F ′′(xn)

)
(xn+1 − x)dx,

the definition of the method, the main hypotheses on GF and the induction
process, we obtain, using that ||F (yn)|| ≤ p(sn) and that

F
′′
(xn)(xn+1 − xn)2 = F

′′
(xn)F

′
(xn)−1F (xn)F

′
(xn)−1F (xn)

+ F
′′
(xn)F

′
(xn)−1F (xn)(I + LF (xn) + LF (xn)2GF (xn))F

′
(xn)−1F (yn)

+ F
′′
(xn)F

′
(xn)−1F (xn)(I + LF (xn) + LF (xn)2GF (xn))F

′
(xn)−1F (yn)

+ F
′′
(xn)((I + LF (xn) + LF (xn)2GF (xn))F

′
(xn)−1F (yn))2,

the desired inequality:

||F (xn+1)|| ≤ p(tn+1).

In this situation, the theorem holds by applying the previous estimates directly
to the formulas that describe the methods, we refer [103] (p. 41-42) for more details.

�
The estimates given in the present paper are optimal in the sense that the se-

quence associated with p verifies the inequalities with equalities.

7.4 Numerical experiments

We consider several problems where the presented high order methods can be
considered as a good alternative to second order methods.
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7.4.1 Approximation of Riccati’s equations

In this first example, we consider quadratic equations, therefore the second Fréchet
derivative is constant. Particular cases of this type of equations, that appear in many
applications, are Riccati’s equations [3, 61, 62]. For instance, if we consider the
problem of calculating feedback controls for systems modeled by partial differential
or delay differential equations, a classical controller design objective will be to find
a control u(t) for the state x(t) such that the objective function∫ ∞

0

< Cx(t), Cx(t) > +u∗Ru(t) dt

is minimized, where R is a positive defined matrix and the observation C ∈ L(X,Rd).
In practice, the control is calculated through approximation. This leads to solving
an algebraic Riccati equation

A∗P + PA− PBR−1B∗P = −C∗C

for a feedback operator
K = −R−1B∗P,

see [81, 82] for more details.
In the general case, an algebraic Riccati’s equation is given by [79]

R(X) = XDX −XA− ATX − C = 0, (7.4.1)

where D,A,C ∈ Rn×n are given matrices, D symmetric and X ∈ Rn×n is the un-
known.

In this case,

R
′
(X)Y = (XD − AT )Y + Y (DX − A),

R
′′
(X)Y Z = Y DZ + ZDY.

In particular, the second derivative is constant. In this case, the Kantorovich
conditions for Newton’s methods have the compact form

‖R−1(X0)R
′′
(X0)‖‖R−1(X0)R(X0)‖ ≤

1

2
. (7.4.2)

Moreover, this hypothesis also gives the convergence for the high order methods [3].
Then, using a matricial norm

‖R′′(X)Y Z‖ ≤ 2‖D‖‖Y ‖‖Z‖
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and
‖R′′(X)‖ ≤ 2‖D‖.

Given a symmetric initial guess X0 ∈ Rn×n, to obtain R
′
(X0)

−1 we solve the
equation

R
′
(X0)Y = (X0D − AT )Y + Y (DX0 − A) = Z.

This equation has solution if DX0 −A is stable [79], that is, all its eigenvalues have
negative real part. In this case

Y = R
′
(X0)

−1Z = −
∫ ∞
0

exp((DX0 − A)T t)Z exp((DX0 − A)t)dt.

Next, to illustrate the previous results, we consider the algebraic Riccati equation
(7.4.1) with matrix

D =

 1 0 0
0 1 0
0 0 1

 = C, A =

 0 0 1
0 1 0
1 0 0

 ,

and the starting point

X0 =

 −3/2 0 1
0 0 0
1 0 −5/4

 .

In this case, the algebraic Riccati equation has exact solution

X∗ =

 −√2 0 1

0 1−
√

2 0

1 0 −
√

2

 . (7.4.3)

Besides, from the aforesaid starting point it follows that DX0−A is a stable matrix.
Now, considering the stopping criterion ‖Xn − X∗‖ < 10−50 in Table 7.1, we

obtain the errors ‖Xn −X∗‖. If we now analyze the following computational order
of convergence [56]:

ρ ≈ ln
‖Xn+1 −X∗‖
‖Xn −X∗‖

/ ln
‖Xn −X∗‖
‖Xn−1 −X∗‖

, n ∈ N, (7.4.4)

we observe that method M6 has computationally the order of convergence at least
six. See Table 7.2, where ρN, ρCH and ρM6 denote respectively the computational
order of convergence of the three last methods.
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n Newton Chebyshev M6
1 8.57864 . . . · 10−2 3.92135 . . . · 10−2 8.63800 . . . · 10−3

2 2.45310 . . . · 10−3 1.60604 . . . · 10−5 7.95704 . . . · 10−14

3 2.12390 . . . · 10−6 1.03568 . . . · 10−15

4 1.59486 . . . · 10−12 2.77730 . . . · 10−46

5 8.99292 . . . · 10−25

6 2.85928 . . . · 10−49

Table 7.1: Errors for the Newton, Chebyshev methods and M6

n ρN ρCH ρM6

1 2.25751 . . . 3.30896 . . . 6.56567 . . .
2 1.98391 . . . 3.00811 . . .
3 1.99975 . . . 3.00000 . . .
4 1.99999 . . .
5 1.99999 . . .

Table 7.2: The computational order of convergence for the Newton, Chebyshev meth-
ods and M6

In comparison with the classical Newton’s method, the extra computational cost
per iteration of method M6, is only two new evaluations of the operator F , and two
extra matrix-vector multiplications. Moreover, the same as Newton’s method only a
LU decomposition is necessary. Thus, M6 is more efficient.

See [9] for more details.

7.4.2 Approximation of Hammerstein equations

We shall consider an important special case of integral equation, the Hammerstein
equation

u(s) = ψ(s) +

∫ 1

0

H(s, t)f(t, u(t))dt. (7.4.5)

These equations are related with boundary value problems for differential equations.
For some of them, high order methods using second derivatives are useful for their
effective (discretized) solution.
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The discrete version of (7.4.5) is

xi = ψ(ti) +
m∑
j=0

γjH(ti, tj)f(tj, x
j), i = 0, 1, . . . ,m, (7.4.6)

where 0 ≤ t0 < t1 < . . . < tm ≤ 1 are the grid points of some quadrature formula∫ 1

0
f(t)dt ≈

∑m
j=0 γjf(tj), and xi = x(ti).

The second Fréchet derivative of the associated discrete system is diagonal by
blocks.

Let the Hammerstein equation

x(s) = 1− 1

4

∫ 1

0

s

t+ s

1

x(t)
dt, s ∈ [0, 1]. (7.4.7)

The discretization of this equation verifies the Lipschitz condition of our Kan-
torovich theorem [1].

We consider m = 20 in the quadrature trapezoidal formula and as exact solution
the one obtained numerically by Newton method. In table 7.3, we summarize the
numerical results for different methods in the family: Newton, Halley and M4. We
consider as initial guess x0(s) = 1.5.

Since the second derivative is diagonal by blocks, its application has a compu-
tational cost of order O(m2). Thus, the computational cost in each iteration of the
three schemes is, for m sufficiently big, of the same order (O(m3) due to the LU
decomposition). Note that we only have to do a factorization in each iteration of the
three schemes. As conclusion, the scheme M4 (order four) is the most efficient for m
sufficiently big.

n Newton Halley M4
1 2.35786 . . . · 10−2 4.23125 . . . · 10−3 5.00638 . . . · 10−4

2 1.60604 . . . · 10−4 1.06034 . . . · 10−6 6.55602 . . . · 10−15

3 3.30548 . . . · 10−8 1.00158 . . . · 10−17 8.23560 . . . · 10−60

4 3.11276 . . . · 10−16 2.13492 . . . · 10−49

5 1.12645 . . . · 10−32

6 2.89613 . . . · 10−65

Table 7.3: Errors for the Newton, Halley and M4 methods

See [4] for other related problems.
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Conclusions

Summing up, in this paper we have studied a family of high order iterative me-
thods. Mainly, the theoretical analysis we did allows to ensure convergence conditions
for all these schemes. We established priori error bounds for them and consequently
their order. We have presented different applications where we may add that in these
cases the analyzed high order methods are more efficient than simpler second order
methods.



Chapter 8

A concluding remark

A new variational approach to the analysis and numerical implementation of
regular ODEs has been recently introduced in ([13, 15]). Because of its flexibility
and simplicity, it can easily be extended to treat other types of ODEs like differential-
algebraic equations (DAEs), and delay-differential equations (DDEs). This has been
precisely the main motivation for this thesis: to explore how well those ideas can
be adapted to other frameworks. In particular, a lot of attention has been paid
to DAEs, extending to this context some of the analytical results, and performing
various numerical tests that confirm that indeed the variational perspective is worth
pursuing. One remarkable feature is that this point of view only requires to count
on good numerical schemes for linear problems, and this is the reason why it fits
so well in other scenarios. After an initial, promising incursion for DDEs, we have
also investigated resolution with variable step, and the extension to Hamiltonian
systems. Because of the many good qualities of this viewpoint, it can be considered
and implemented in essentially all fields where differential equations are relevant.
There is, then, a long way to go.
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Chapter 9

ANNEXE I: Model problems

Abstract 9.0.1 This chapter presents a collection of problems where we can test
the real behavior of a new differential solver.

9.1 Example 1: Chemical Akzo Nobel problem

9.1.1 Origin of the problem

The problem originates from Akzo Nobel Central Research in Arnhem, The
Netherlands. It describes a chemical process, in which two species, MBT and CHA,
are mixed, while oxygen is continuously added. The resulting species of importance
is CBS. The reaction equations, as given by Akzo Novel, are

2MBT +
1

2
O2

k1−→MBTS +H2O,

CBS +MBT
k2/K


k2

MBTS + CHA,

MBT + 2CHA+O2
k3−→ BT + sulfate,

MBT · CHA+
1

2
O2

k4−→ CBS +H2O,

MBT + CHA�MBT · CHA.

The last equation describes an equilibrium

K1
s =

[MBT · CHA]

[MBT ] · [CHA]
,

93
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while the others describe reactions, whose velocities are given by

r1 = k1 · [MBT ]4 · [O2]
1
2 ,

r2 = k2 · [MBTS] · [CHA],

r3 =
k2
K
· [MBT ] · [CBS],

r4 = k3 · [MBT ] · [CHA]2,

r5 = k4 · [MBT · CHA]2 · [O2]
1
2 ,

respectively. Here the square brackets ‘[ ]’ denote concentrations.

The inflow of oxygen per volume unit is denoted by Fin, and satisfies Fin =
klA·(p(O2)

H
−[O2]), where klA is the mass transfer coefficient, H is the Henry constant

and p(O2) is the partial oxygen pressure. p(O2) is assumed to be independent of
[O2]. The parameters k1, k2, k3, k4, K, klA,H and p(O2) are constants. The process
is started by mixing 0.437 mol/liter [MBT ] with 0.367 mol/liter [MBT · CHA].
The concentration of oxygen at the beginning is 0.00123 mol/liter. Initially, no other
species are present. The simulation is performed on the time interval [0, 180] minutes.
Identifying the concentrations [MBT ], [O2], [MTBS], [CHA], [CBS], [MBT ·CHA]
with y1, . . . , y6, respectively, one easily arrives at the mathematical formulation of
the problem.

9.1.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(y), y(0) = y0,

with y ∈ R6, 0 ≤ t ≤ 180.

The function f defined by

f(y) =


−2r1 +r2 −r3 −r4
−1
2
r1 −r4 −1

2
r5 +Fin

r1 −r2 +r3
−r2 +r3 −2r4
+r2 −r3 +r5

−r5

 ,
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where the ri and Fin are auxiliary variables, given by

r1 = k1 · y41 · y
1
2
2 ,

r2 = k2 · y3 · y4,

r3 =
k2
K
· y1 · y5,

r4 = k3 · y1 · y24,

r5 = k4 · y26 · y
1
2
2 ,

Fin = klA · (p(O2)

H
− y2).

The values of the parameters k1, k2, k3, k4, K, klA, p(O2) and H are

k1 = 18.7,

k2 = 0.58,

k3 = 0.09,

k4 = 0.42,

k5 = 34.4,

klA = 3.3,

p(O2) = 0.9,

H = 737.

Finally, the initial vector y0 is given by

y0 =


0.437

0.00123
0
0
0

0.367

 .

9.1.3 General information

This is a stiff system of 6 non-linear differential equations. It has taken from
[66, 87].
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9.2 Example 2: Problem HIRES

9.2.1 Origin of the problem

The HIRES problem originates from plant physiology and describes how light is
involved in morphogenesis. To be precise, it explains the High Irradiance Responses
(HIRES) of photomorphogenesis on the basis of phytochrome, by means of a chem-
ical reaction involving eight reactants. It has been promoted as a test problem by
Gottwald in [53, 87]. The reaction scheme is given in Figures 9.1 and 9.2 . Pr and
Pfr refer to the red and far-red absorbing form of phytochrome, respectively. They
can be bound by two receptors X and X ′, partially influenced by the enzyme E.
The values of the parameters were taken from [66].

k1 = 1.71 k+ = 280
k2 = 0.43 k− = 0.69
k3 = 8.32 k∗ = 0.69
k4 = 0.69 Oks = 0.0007
k5 = 0.0354
k6 = 8.32

For more details, we refer to [107].
Identifying the concentrations of Pr, Pfr, PrX,PfrX,PrX

′, PfrX
′, PfrX

′E and E
with yi, i ∈ {1, · · · , 8}, respectively, the differential equations can be obtained easily.
See [118]for a more detailed description of this modeling process. The end point of
the integration interval, 321.8122, was chosen arbitrarily [87].
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Figure 9.1: Reaction scheme for HIRES

Figure 9.2: Reaction scheme for HIRES

9.2.2 Mathematical description of the problem

The problem is of the form

dy

dt
= f(y), y(0) = y0

with y ∈ R8, 0 ≤ t ≤ 321.8122.
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The function f is defined by

f(y) =



−1.71y1 +0.43y2 +8.32y3 +0.0007
+1.71y1 −8.75y2
−10.03y3 +0.43y4 +0.035y5
+8.32y2 +1.71y3 −1.12y4
−1.745y5 +0.43y6 +0.43y7
−280y6y8 +0.69y4 +1.71y5 −0.43y6 +0.69y7
280y6y8 −1.81y7
−280y6y8 +1.81y7


.

The initial vector y0 is given by (1, 0, 0, 0, 0, 0, 0, 0.0057)T .

9.2.3 General information

This IVP is a stiff system of eight non-linear ordinary differential equations. It
was proposed by Schäfer in 1975 [107]. The name HIRES was given by Hairer &
Wanner [66]. It refers to “High Irradiance Response”, which is described by this
IVP.

9.3 Example 3: Andrew’s squeezing mechanism

9.3.1 Origin of the problem

The problem describes the motion of seven rigid bodies connected by joints wi-
thout friction. It was promoted by [52] and [90] as a test problem for numerical
codes. In [66] we can find a description of the problem and of the modeling process
in full detail.
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Figure 9.3: Andrews mechanism

9.3.2 Mathematical description of the problem

The problem is of the form

M(q)q̈ = f(q, q̇)−GT (q)λ,

0 = g(q),

with initial conditions

q(0) = q0, q̇(0) = q̇0, q̈(0) = q̈0, λ(0) = λ0.

Here,
0 ≤ t ≤ 0.03,

q ∈ R7,

λ ∈ R6,

M : R7 → R7×7,

f : R14 → R7,

g : R7 → R6,

G =
dg

dq
.



100 Model problems

The function M = (Mij(q)) is given by:

M11(q) = m1 · ra2 +m2(rr
2 − 2da · rr · cos q2 + da2) + I1 + I2,

M21(q) = M12(q) = m2(da
2 − 2da · rr · cos q2) + I2,

M22(q) = m2 · da2 + I2,

M33(q) = m3(sa
2 + sb2) + I3,

M44(q) = m4(e− ea)2 + I4,

M54(q) = M45(q) = m4((e− ea)2 + zt(e− ea) sin q4) + I4,

M55(q) = m4(zt
2 + 2zt(e− ea) sin q4 + (e− ea)2) +m5(ta

2 + tb2) + I4 + I5,

M66(q) = m6(zf − fa)2 + I6,

M76(q) = M67(q) = m6((zf − fa)2 − u(zf − fa) sin q6) + I6,

M77(q) = m6((zf − fa)2 − 2u(zf − fa) sin q6 + u2) +m7(ua
2 + ub2) + I6 + I7,

Mij(q) = 0 for all other cases.

The function f = fi(q, q̇) reads:

f1(q, q̇) = mom−m2 · da · rr · q̇2(q̇2 + 2q̇1) sin(q2),

f2(q, q̇) = m2 · da · rr · q̇21 · sin q2,
f3(q, q̇) = Fx(sc · cos q3 − sd · sin q3) + Fy(sd · cos q3 + sc · sin q3),
f4(q, q̇) = m4 · zt · (e− ea)q̇25 · cos q4,

f5(q, q̇) = −m4 · zt(e− ea)q̇4(q̇4 + 2q̇5) cos q4,

f6(q, q̇) = −m6 · u(zf − fa)q̇27 cos q6,

f7(q, q̇) = m6 · u(zf − fa)q̇6(q̇6 + 2q̇7) cos q6.

Fx and Fy are defined by:

Fx = F (xd− xc),
Fy = F (yd− yc),

F = −c0
(L− l0)

L
,

L =
√

(xd− xc)2 + (yd− yc)2,
xd = sd · cos q3 + sc · sin q3 + xb,

yd = sd · sin q3 − sc · cos q3 + yb.
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The function g = (gi(q)) is given by:

g1(q) = rr · cos q1 − d · cos(q1 + q2)− ss · sin q3 − xb,
g2(q) = rr · sin q1 − d · sin(q1 + q2) + ss · cos q3 − yb,
g3(q) = rr · cos q1 − d · cos(q1 + q2)− e · sin(q4 + q5)− zt · cos q5 − xa,
g4(q) = rr · sin q1 − d · sin(q1 + q2) + e · cos(q4 + q5)− zt · sin q5 − ya,
g5(q) = rr · cos q1 − d · cos(q1 + q2)− zf · cos(q6 + q7)− u · sin q7 − xa,
g6(q) = rr · sin q1 − d · sin(q1 + q2)− zf · sin(q6 + q7)− u · cos q7 − ya.

The constants arising in these formulas are given by:

m1 = 0.04325 I1 = 2.194.10−6 ss = 0.035
m2 = 0.00365 I2 = 4.410.10−7 sa = 0.01874
m3 = 0.02373 I3 = 5.255.10−6 sb = 0.01043
m4 = 0.00706 I4 = 5.667.10−7 sc = 0.018
m5 = 0.07050 I5 = 1.169.10−5 sd = 0.02
m6 = 0.00706 I6 = 5.667.10−7 ta = 0.02308
m7 = 0.05498 I7 = 1.912.10−5 tb = 0.00916
xa = −0.06934 d = 0.028 u = 0.04
ya = −0.00227 da = 0.0115 ua = 0.01228
xb = −0.03635 e = 0.02 ub = 0.00449
yb = 0.03273 ea = 0.01421 zf = 0.02
xc = 0.014 rr = 0.007 zt = 0.04
yc = 0.072 ra = 0.00092 fa = 0.01421
c0 = 4530 l0 = 0.07785 mom = 0.033

The initial values are y0 = (q0, q̇0, q̈0, λ0)
T where

q0 =



−0.0617138900142764496358948458001
0

0.455279819163070380255912382449
0.222668390165885884674473185609
0.487364979543842550225598953530
−0.222668390165885884674473185609

1.23054744454982119249735015568


,

q̇0 = (0, 0, 0, 0, 0, 0, 0)T ,
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q̈0 =



14222.4439199541138705911625887
−10666.8329399655854029433719415

0
0
0
0
0


,

λ0 =


98.5668703962410896057654982170
−6.12268834425566265503114393122

0
0
0
0

 .

9.3.3 General information

The problem is a non-stiff second order DAE of index 3, consisting of 7 differential
and 6 algebraic equations. The problem is transformed into the form

M̃
dy

dt
= f̃(y), y(0) = y0,

with

y =


q
q̇
q̈
λ

 ,

M̃ =


I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 ,

f̃ =


q̇
q̈

M(q)q̈ − f(q, q̇) +GT (q)λ
g(q)

 .
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9.4 Example 4: Charge pump

9.4.1 Origin of the problem

The Charge-pump circuit shown in Figure 9.4 consists of two capacitors and
an n-channel MOS-transistor.The nodes gate, source, gate, and drain of the MOS-
transistor are connected with the nodes 1, 2, 3, and Ground, respectively. In for-
mulating the circuit equations, the transistor is replaced by four non-linear current
sources in each of the connecting branches. They model the transistor.

Figure 9.4: Circuit diagram of Charge-pump circuit

After inserting the transistor model in the circuit, we get the final circuit, which
can be obtained from the circuit in Figure 9.4 by applying the following changes:

• Remove the transistor and replace it by a solid line between the nodes 2 and 3.
The point where the lines 2-3 and 1-Ground cross each other becomes a node,
which will be denoted by T .

• There are current sources between nodes 1 and T , between 2 and T and between
3 and T . There is also current source between the ground and node T , but as
the node Ground does not enter the circuit equations, it will not be discussed.
The currents produced by these sources are written as the derivatives of charges:
current from 1 to T : Q

′
G, from T to 2: Q

′
S and from T to 3: Q

′
D. Here, the

functions QG, QS and QD depend on the voltage drops U1, U1−U2 and U1−U3,
where Ui denotes the potential in node i.

The unknowns in the circuit are given by:
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• The charges produced by the current sources: YT1, YT2, YT3. They are aliases
for respectively QG, QS and QD. Consequently, Y

′
T i is the current between

node T and node i.

• The charges YS and YD in the capacitors CS and CD.

• Potentials in nodes 1 to 3: U1, U2, U3.

• The current through the voltage source Vin(t) : I.

In terms of these physical variables, the vector y introduced earlier reads

y = (YT1, Ys, YT2, YD, YT3, U1, U2, U3, I)T .

Now, the following equations hold:

Y
′

T1 = −I,
Y
′

S + Y
′

T2 = 0,

Y
′

D + Y
′

T3 = 0,

U1 = Vin(t).

The charges depend on the potentials and are given by

YT1 = QG(U1, U1 − U2, U1 − U3),

YS = CS U2,

YT2 = QS(U1, U1 − U2, U1 − U3),

YD = CD U3,

YT3 = QD(U1, U1 − U2, U1 − U3).

The functions QG, QS, and QD are given in the next section.

9.4.2 Mathematical description of the problem

The problem is of the form

M
dy

dt
− f(t, y(t)) = 0, y(0) = 0,

with
y ∈ R9, 0 ≤ t ≤ 1.2 · 10−6.
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The matrix M is the zero matrix except for the minor M1···3,1···5 that is given by

M1···3,1···5 =

 1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

 .

The function f is defined by

f(t, y) =



−y9
0
0

−y6 + V in(t)
y1 −QG(υ)
y2 − CS · y7
y3 −QS(υ)
y4 − CD · y8
y5 −QD(υ)


,

with υ := (υ1, υ2, υ3) = (y6, y6 − y7, y6 − y8), CD = 0.4 · 10−12. The functions QG,
QS and QD are given by:

1. if V1 ≤ VFB := UT0 − γ
√

Φ− Φ then

QG(υ) = Cox(υ1 − VFB),

QS(υ) = QD(υ) = 0,

with Cox = 4 · 10−12 and UT0 = 0.2, γ = 0.035 and Φ = 1.01,

2. if υ1 > VFB and υ2 ≤ UTE := UT0 + γ(
√

Φ + υ1 − υ2 −
√

Φ) then

QG(υ) = Coxγ(
√

(γ/2)2 + υ1 − VFD − γ/2),

QS(υ) = QD(υ) = 0,

3. if υ1 > VFB and υ2 > UTE then

QG(υ) = Cox[
2

3
(UGDT + UGST −

UGDT UGST
UGDT + UGST

) + γ
√

Φ− UBS],

QS(υ) = −1

2
(QG − Coxγ

√
Φ− UBS).
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Here, UBS, UGST and UGDT are given by

UBS = υ2 − υ1,
UGST = υ2 − UTE,

UGDT =

{
υ3 − UTE for υ3 > UTE,

0 for υ3 ≤ UTE.
(9.4.1)

The function Vin(t) is defined using τ = (108 · t)mod120 by

Vin(t) =


0 if τ < 50,

20(τ − 50) if 50 ≤ τ < 60,
20 if 60 ≤ τ < 110,

20(120− τ) if r ≥ 110.

Finally, the initial value y0 reads

y0 = (0, 0, 0, 0, 0, 0, 0, 0, 0)T .

9.4.3 General information

The problem is a stiff DAE of index 2, consisting of 3 differential and 6 alge-
braic equations. It has been contributed by Michael Günther, Georg Denk and Uwe
Feldmann [59].

9.5 Example 5: Transistor amplifier

9.5.1 Origin of the problem

The problem originates from electrical circuit analysis. It is a model for the
transistor amplifier. The diagram of the circuit is given in the figure 9.5.

Here Ue is the input signal and U8 is the amplified exit voltage. To formulate the
governing equations, Kirchoffs Current Law is used in each numbered node. This law
states that the total sum of all currents entering a node must be zero. All currents
passing through the circuit components can the expressed in terms of the unknown
voltages U1, · · · , U8. Consider for instance node 1. The current IC1, passing through
capacitor C1 is given by

IC1 =
d

dt
(C1(U2 − U1)),
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Figure 9.5: Circuit diagram of transistor amplifier

and the current IR0 passing trough the resistor R0 by

IR0 =
Ue − U1

R0

.

Here, the currents are directed towards node 1 if the current is positive. A similar
derivation for the other nodes gives the system:

node 1 :
d

dt
(C1(U2 − U1)) +

Ue(t)

R0

− U1

R0

= 0,

node 2 :
d

dt
(C1(U1 − U2)) +

Ub
R2

− U2(
1

R1

+
1

R2

) + (α− 1)g(U2 − U3) = 0,

node 3 : − d

dt
(C2U3) + g(U2 − U3)−

U3

R3

= 0,

node 4 : − d

dt
(C3(U4 − U5)) +

Ub
R4

− U4

R4

− αg(U2 − U3) = 0,

node 5 :
d

dt
(C3(U4 − U5)) +

Ub
R6

− U5(
1

R5

+
1

R6

) + (α− 1)g(U5 − U6) = 0,

node 6 : − d

dt
(C4U6) + g(U5 − U6)−

U6

R7

= 0,

node 7 : − d

dt
(C5(U7 − U8)) +

Ub
R8

− U7

R8

− αg(U5 − U6) = 0,

node 8 : − d

dt
(C5(U7 − U8)) +

U8

R9

= 0,

where

g(Ui − Uj) = β(e
Ui−Uj
UF − 1)
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is a simple model of the transistors. The initial signal Ue(t) is

Ue(t) = 0.1 sin(200πt).

To arrive at the mathematical formulation, one just has to identify Ui with yi.

9.5.2 Mathematical description of the problem

The problem is of the form

G(t, y, y
′
) = 0, y(0) = y0, y

′
(0) = y

′

0,

with

y ∈ R8, 0 ≤ t ≤ 0.2.

The function G is defined by

G(t, y, y
′
) = My

′ − f(y),

where the matrix M is given by

M =



−C1 C1 0 0 0 0 0 0
C1 −C1 0 0 0 0 0 0
0 0 −C2 0 0 0 0 0
0 0 0 −C3 C3 0 0 0
0 0 0 C3 −C3 0 0 0
0 0 0 0 0 −C4 0 0
0 0 0 0 0 0 −C5 C5

0 0 0 0 0 0 C5 −C5


,
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and the function f by

f(y) =



−Ue(t)
R0

+ y1
R0

−Ub
R2

+ y2(
1
R1

+ 1
R2

)− (α− 1)g(y2 − y3)

−g(y2 − y3) + y3
R3

−Ub
R4

+ y4
R4

+ αg(y2 − y3)

−Ub
R6

+ y5(
1
R5

+ 1
R6

)− (α− 1)g(y5 − y6)

−g(y5 − y6) + y6
R7

−Ub
R8

+ y7
R8

+ αg(y5 − y6)

y8
R9



,

where g and Ue are auxiliary functions given by g(x) = β(e
x
UF − 1) and Ue(t) =

0.1 sin(200πt). The values of the technical parameters are:

Ub = 6,

UF = 0.026,

α = 0.99,

β = 10−6,

R0 = 1000,

Rk = 9000 for k = 1, . . . , 9,

Ck = k · 10−6 for k = 1, . . . , 5.

Consistent initial values at t = 0 are

y1(0) = 0, y
′
1(0) = 51.338775,

y2(0) = Ub/(
R2

R1
+ 1), y

′
2(0) = y

′
1(0),

y3(0) = y2(0), y′3(0) = −y2(0)/(C2 ·R3),
y4(0) = Ub, y

′
4(0) = −24.9757667,

y5(0) = Ub/(
R6

R5
+ 1), y

′
5(0) = y

′
4(0),

y6(0) = y5(0), y
′
6(0) = y5(0)/(C4 ·R7),

y7(0) = Ub, y
′
7(0) = −10.00564453,

y8(0) = 0, y
′
8(0) = y

′
7(0) .

(9.5.1)
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The initial values y
′
1(0), y

′
4(0) and y

′
7(0) were determined numerically.

9.5.3 General information

The problem is a stiff DAE of index 1 consisting of 8 equations and is of the form
My

′
= f(y) with M a matrix of rank 5. P. Rentrop has received it from K. Glashoff

and H.J. Oberle and has documented it in [100]. The formulation presented here has
been taken from [64].

9.6 Example 6: Car axis problem

9.6.1 Origin of the problem

The problem models the axis of a car as depicted in Figure 9.6. In this model,
the left wheel (at the origin (0, 0)) rolls on a flat surface and the right wheel moves
up and down in a sinusoidal way. Denoting the coordinates of the right wheel by
(p(t), q(t)), we suppose that

q(t) = r sin(ωt),

p(t) =
√
l2 − q2(t).

Note that in Figure 9.6 the coordinates (p(t), q(t)) are denoted by (p1(t), q1(t)). This
parameterization describes the situation where the right wheel rolls over equidistant
hills of height r. The movement of the lower axis between (0, 0) and (p(t), q(t))
is carried over to the upper axis between (x2, y2) and (x1, y1) by two massless stiff
springs with Hooke’s constant 1

ε2
and length l0. The movement of the mechanism

has two constraints. First, the distance between (x1, y1) and (x2, y2) are obtained by
using Lagrangian mechanics. Scaling the Lagrange multipliers by ε2 yields the 10
equations given in the next section.

9.6.2 Mathematical description of the problem

The problem is of the form

u
′

= υ,

Kυ
′

= f(u, λ),

0 = g(u).
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The equations are given by

dx1
dt

= υ1,

dy1
dt

= υ2,

dx2
dt

= υ3,

dy2
dt

= υ4,

ε2
M

2

dυ1
dt

= (l0 −
√

(x1 − p(t))2 + (y1 − q(t))2)
(x1 − p(t))√

(x1 − p(t))2 + (y1 − q(t))2
− 2λ2(x1 − x2),

ε2
M

2

dυ2
dt

= (l0 −
√

(x1 − p(t))2 + (y1 − q(t))2)
(y1 − q(t))√

(x1 − p(t))2 + (y1 − q(t))2
− ε2M

2
λ2(y1 − y2),

ε2
M

2

dυ3
dt

= (l0 −
√
x22 + y22)

x2√
x22 + y22

− p(t)λ1 + 2λ2(x1 − x2),

ε2
M

2

dυ4
dt

= (l0 −
√

(x22 + y22)2)
y2√
x22 + y22

− ε2M
2
− q(t)λ1 + 2λ2(y1 − y2),

0 = p(t)x2 + q(t)y2,

0 = (x1 − x2)2 + (y1 − y2)2 − l2.

The constants read

M = 10, ε = 10−2, l = 1, l0 = 0.5.

The functions p(t) and q(t) are defined by

q(t) = r sin(ωt),

p(t) =
√
l2 − q2(t),

where the constants are given by r = 0.1 and ω = 10. The initial conditions were
chosen to be

x1 = 1 x′1 = −0.5
x2 = 0 x′2 = −0.5
y1 = 0.5 y′1 = 0
y2 = 0.5 y′2 = 0
λ1 = 0 λ2 = 0
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Figure 9.6: Model of the car axis

9.6.3 General information

The problem is a stiff DAE of index 3, consisting of 8 differential and 2 algebraic
equations. It has been taken from [109]. Since not all initial conditions were given,
a consistent set of initial conditions have been chosen.

9.7 Example 7: NAND gate

9.7.1 Origin of the problem

The NAND gate in Figure 9.7 consists of two n-channel enhancement MOSFETs
(ME), one n-channel depletion MOSFET (MD) and two load capacitances C5 and
C10. MOSFETs are special transistors. They have four terminals: the drain, the
bulk, the source and the gate. The gate voltages of both enhancement transistors
are controlled by two voltage sources V1 and V2.
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Figure 9.7: Circuit diagram of the NAND gate

Figure 9.8: Response of the NAND gate

Depending on the input voltages, the NAND gate generates a response at node 5
as shown in Figure 9.8. If we represent the logical values 1 and 0 by high respectively
low voltage levels, we see that the NAND gate executes the Not AND operation.
This behavior is easily explained: if V1 respectively V2 is low, then the corresponding
enhancement transistor locks; the voltage at node 5 is high at VDD = 5V due to MD.
If both V1 and V2 exceed a given threshold voltage UT , then a drain current through
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both enhancement transistor occurs. The MOSFETs open and the voltage at node
5 breaks down. The response is low.

Figure 9.9: Companion model of a MOSFET

In the circuit analysis the three MOSFETs are replaced by the circuit shown
in Figure 9.9. Here, the well-known companion model of Shichmann and Hodges
[108] is used. The characteristics of the circuit elements can differ depending on the
MD or ME case. This circuit has four internal nodes corresponding to the drain,
the bulk, the source and the gate. The static behaviour of the transistor is des-
cribed by the drain current iDS. To include secondary effects, load capacitances like
RGS, RGD, RBS, and RBD are introduced. The so-called pn-junction between
source and bulk is modeled by the diode iBS and the non-linear capacitance CBS.
Analogously, iBD and CBD model the pn-junction between bulk and diode. Linear
gate capacitances CGS and CGD are used to describe the intrinsic charge flow effects
roughly. To formulate the circuit equations, we note that the circuit consists of 14
nodes. These 14 nodes are the nodes 5 and 10 and the 12 internal nodes of the three
transistors. For every node a variable is introduced that represents the voltage in
that node. In terms of these voltages the circuit equations are formulated by using
the Kirchoff Current Law (KCL) along with the transistor model shown in Figure
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9.9. The differential equations given in the next section result from applying KCL
to the following nodes:

equations nodes
1-4 internal nodes MD-transistor
5 node 5
6-9 internal nodes ME1-transistor
10 node 10
11 14 internal nodes ME2-transistor

9.7.2 Mathematical description of the problem

The problem is of the form:

C(y(t))
dy

dt
= f(t, y(t)), y(0) = y0,

with
y ∈ R14, 0 ≤ t ≤ 80.

The equations are given by:

CGS · (ẏ5 − ẏ1) = iDDS(y2 − y1, y5 − y1, y3 − y5, y5 − y2, y4 − VDD) +
y1 − y5
RGS

,

CGD · (ẏ5 − ẏ2) = −iDDS(y2 − y1, y5 − y1, y3 − y5, y5 − y2, y4 − VDD) +
y2 − VDD
RGD

,

CBS(y3 − y5) · (ẏ5 − ẏ3) = −y3 − VBB
RBS

− iDBS(y3 − y5),

CBD(y4 − VDD) · (−̇y4) = −y4 − VBB
RBD

+ iDBD(y4 − VDD),

CGS · ẏ1 + CGD · ẏ2 + CBS(y3 − y5) · ẏ3
−(CGS + CGD + CBS(y3 − y5) + C5) · ẏ5 − CBD(y9 − y5) · (ẏ5 − ẏ9) =

y5 − y1
RGS

+ iDDS(y3 − y5) +
y5 − y7
RGD

+ iEBD(y9 − y5),

CGS · ẏ6 = −iEDS(y7 − y6, V1(t)− y6, y8 − y10, V1(t)− y7, y9 − y5) + CGS · V̇1(t)−
y6 − y10
RGS

,

CGDẏ7 = iEDS(y7 − y6, V1(t)− y6, y8 − y10, V1(t)− y7, y9 − y5) + CGD · V̇1(t)−
y7 − y5
RGD

,
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CBS(y8 − y10) · (ẏ8 − ẏ10) = −y8 − VBB
RBS

+ iEBS(y8 − y10),

CBD(y9 − y5) · (ẏ9 − ẏ5) = −y9 − VBB
RBD

+ iEBD(y9 − y5),

CBS(y8 − y10) · (ẏ8 − ẏ10)− CBD(y14 − y10) · (ẏ10 − ẏ14) + C10 · ẏ10 =

y10 − y6
RGS

+ iEBS(y8 − y10) +
y10 − y12
RGD

+ iEBD(y14 − y10),

CGS · ẏ11 = −iEDS(y12 − y11, V2(t)− y11, y13, V2(t)− y12, y14 − y10)

+ CGS · V̇2(t)−
y11
RGS

,

CGD · ẏ12 = −iEDS(y12 − y11, V2(t)− y11, y13, V2(t)− y12, y14 − y10)

+ CGD · V̇2(t)−
y12 − y10
RGD

,

CGS(y13) · ẏ13 = −y13 − VBB
RBS

+ iEBS(y13),

CBD(y14 − y10)(ẏ14 − ẏ10) = −y14 − VBB
RBS

+ iEBD(y14 − y10).

The functions CBD and CBS read

CBD(U) = CBS(U) =

{
C0 · (1− U

φB
)−

1
2 for U ≤ 0,

C0 · (1 + U
2·φB

) for U > 0,

with C0 = 0.24 · 10−4 and φB = 0.87.
The functions iDBS and iEBS have the same form denoted by iBS. The only difference

between them is that the constants used in iBS depend on the superscript D and E.
The same holds for the functions i

D/E
BD , i

D/E
BS . The functions iBS, iBD and iDS are

defined by

iBS(UBS) =

{
−iS · (exp(UBS

UT
)− 1) for UBS ≤ 0,

0 for UBS > 0,
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iBD(UBD) =

{
−iS · (exp(UBD

UT
)− 1) for UBD ≤ 0,

0 for UBD > 0,

iDS(UDS, UGS, UBS, UGD, UBD) =


GSD+(UDS, UGS, UBS) for UDS > 0,
0 for UDS = 0,
GSD−(UDS, UGD, UBD) for UDS < 0,

where GDS+(UDS, UGS, UBS) =


0 for UGS − UTE ≤ 0,
−β · (1 + δ · UDS) for 0 < UGS − UTE ≤ UDS,
·(UGS − UTE)2

−β · UDS · (1 + δ · UDS) for 0 < UDS < UGS − UTE,
·[2 · (UGS − UTE)− UDS])

with UTE = UT0 + γ · (
√

Φ− UBS −
√

Φ)

GDS−(UDS, UGd, UBD) =
0 for UGD − UTE ≤ 0,
β · (1− δ · UDS)· for 0 < UGD − UTE ≤ UDS,
·(UGD − UTE)2

−β · UDS · (1− δ · UDS)· for 0 < −UDS < UGD − UTE,
·[2 · (UGD − UTE) + UDS]

with UTE = UT0 + γ · (
√

Φ− UBD −
√

Φ
The constants used in the definition of iBS, iBD and iDS carry a superscript D

or E. Using for example the constants with superscript E in the functions iBS yields
the function iEBS. These constants are shown in the following table.

E D

is 10−14 10−14

UT 25.85 25.85
UT0 0.2 -2.43
β 1.748 · 10−3 5.35 · 10−4

γ 0.035 0.2
δ 0.02 0.02
Φ 1.01 1.28
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The other are given by

VBB = −2.5,

VDD = 5,

C5 = C10 = 0.5 · 10−4,

RGS = RGD = 4,

RBS = RBD = 10,

CGS = CGD = 0.6 · 10−4.

The functions V1(t) and V2(t) are

V1(t) =


20− tm if 15 < tm ≤ 20,
5 if 10 < tm ≤ 15,
tm− 5 if 5 < tm ≤ 10,
0 if tm ≤ 5,

with tm = t ·mod 20 and

V2(t) =


40− tm if 35 < tm ≤ 40,
5 if 20 < tm ≤ 35,
tm− 15 if 15 < tm ≤ 20,
0 if tm ≤ 15,

with tm = t ·mod 40.
The initial values are given by

y1 = y2 = y5 = Y7 = 5.0,

y3 = y4 = y8 = y9 = y13 = y14 = VBB = −2.5,

y6 = y10 = y12 = y7 = 3.62385,

y11 = 0.

9.7.3 General information

The problem is a system of 14 stiff implicit ordinary differential equations. It has
been contributed by Michael Günther and Peter Rentrop [60] .



Chapter 10

ANNEXE II: Reciprocal
Polynomial Extrapolation vs
Richardson Extrapolation

Abstract 10.0.1 The reciprocal polynomial extrapolation was introduced in [2], where
its accuracy and stability were studied and a linear scalar test problem was analyzed
numerically. In the present work, a new step in the implementation of the recipro-
cal polynomial extrapolation, ensuring at least the same behavior as the Richardson
extrapolation, is proposed. Looking at the reciprocal extrapolation as a Richardson ex-
trapolation where the original data is nonlinearly modified, the improvements that we
will obtain should be justified. Several theoretical analysis of the new extrapolation,
including local error estimates and stability properties, are presented. A compari-
son between the two extrapolation techniques is performed for solving some boundary
problems with perturbation controlled by a small parameter ε. Using two specific
boundary problems, the error and the robustness of the new technique using centered
divided differences in a uniform mesh are investigated numerically. They turn out to
be better than those presented by the Richardson extrapolation. Finally, investigations
on the accuracy when using a special non-uniform discretization mesh are presented.
A numerical comparison with the Richardson extrapolation for this particular case,
where we present some improvements, is also performed.
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10.1 Introduction

In this paper we are interested in the approximation of singularly perturbed
boundary value problems of the type:

εy′′ = f(t, y, y′),

y(a) = α,

y(b) = β.

When we are approximating the exact solution a0 of this boundary problem by
means of a numerical solution S(h) obtained by some finite difference method, the
error can be expressed as a Taylor series:

a0 − S(h) = a1h
γ1 + a2h

γ2 + · · · , (10.1.1)

where γi ∈ N and h denotes the discretization step.
For second order central finite differences (see Sections 10.3.1 and 10.3.2) the

exponents are well known; in fact γi = 2 · i.
In order to improve the accuracy, we can use extrapolation procedures. The

Richardson (or polynomial) extrapolation scheme consists of successive eliminations
of the terms of order hγi , i = 1, . . . , n by linear combinations of approximations S(h)
for different values of h. It can be viewed as the value at h = 0 of the only polynomial

P (x;h) = p0 + p1x
γ1 + p2x

γ2 + · · ·+ pnx
γn ,

interpolating the data S(h) for the parameters considered. A typical choice is

{h, 2h, 22h, . . . , 2nh}.

It is well known that the Richardson extrapolation procedure is equivalent to
extrapolating by pairs with functions of the type p(x;h) = axγi + b (where γi is the
order of the method at each step). For instance, associated to S(h) and S(2h), we
consider the system

ahγ1 + b = S(h),

a(2h)γ1 + b = S(2h).

This system determines the values of a and b, and the approximation obtained by
the extrapolation is given by p(0;h) = b. It is easy to see that p(0;h) is given by the
following linear combination of S(h) and S(2h):

p(0;h) =
2γ1S(h)− S(2h)

2γ1 − 1
.
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By this process, we have achieved a better approximation of a0 by subtracting
the largest term in the error. The process can be repeated to remove more error
terms to get even better approximations.

Considering known S(h), S(2h) and S(4h), we can extrapolate by pairs; that is,
from S(h) and S(2h) we obtain

p(0;h) =
2γ1S(h)− S(2h)

2γ1 − 1
,

and from S(2h) and S(4h) we obtain

p(0; 2h) =
2γ1S(2h)− S(4h)

2γ1 − 1
.

These two approximations have γ2 as the exponent in the first term of the error; thus
their extrapolation is given by

2γ2p(0;h)− p(0; 2h)

2γ2 − 1
.

In this way, denoting the initial data by p0,l = S(2l−1h) for l = 1, 2, 3, . . . , n, the
algorithm for the implementation of the Richardson extrapolation algorithm is given
by:

Algorithm 10.1.1 (The Richardson Extrapolation Algorithm [32])
For l = 1, 2, . . . , n

p0,l = S(2l−1h)

For j = 1 up to r = n− 1 and for l = 1 up to k = r − j + 1

pj,l =
2γjpj−1,l − pj−1,l+1

2γj − 1

where γj is the first power of the error in each step.

The Richardson extrapolation algorithm has been used in many contexts; see for
instance [29, 75, 77, 88, 89, 121], to mention just some of the contributions.

On the other hand, the reciprocal polynomial extrapolation procedure was intro-
duced in [2] as an alternative to the Richardson extrapolation. The concept is similar
to the Richardson extrapolation strategy but considers extrapolations by pairs with
functions of the type 1

dxγi+e
. The order of accuracy is the same in both cases but the

reciprocal polynomial extrapolation gives better stability behavior in stiff problems.
See [2] and [5] for more details.
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In this paper, we propose a new step in the implementation of the reciprocal poly-
nomial extrapolation, in order to obtain at least the same behavior as the Richardson
extrapolation. Our aim is to present a numerical comparison with this modified re-
ciprocal polynomial extrapolation. It is important to point out the difficulties with
the Richardson extrapolation for improving the original approximation when the
discretizations are not small enough. The improvements in robustness, that we will
obtain in theses cases, should be understand looking at the reciprocal extrapola-
tion as a Richardson extrapolation in which the original data has been nonlinearly
modified. We analyze some local error and stability properties of this extrapolation
scheme. We compare the numerical behavior of both techniques, when they are used
to increase the order of a given method in the approximation of singularly perturbed
boundary value problems. For simplicity we use the central finite difference scheme.
Other more sophisticated approximations can be found in the literature; see for ins-
tance [67] and the references therein. We first apply the numerical analysis to two
particular problems; Viscous Shock [21] and Turning Point [83], extrapolating the
second order divided difference scheme associated with a uniform mesh. Finally,
uniformity in ε is ensured on a specific non-uniform mesh introduced in [123]. We
analyze several problems and perform a comparison with the Richardson extrapola-
tion, pointing out some advantages of the new extrapolation procedure. We analyze
the error produced by our approach in both cases.

10.2 A new implementation of the RPE

In this section, we introduce a new step in the implementation of the reciprocal
polynomial extrapolation. We are interested to obtain at least the same performance
as that achieved by the Richardson extrapolation when this extrapolation works well
and improve its robustness in other cases.

In the original reciprocal polynomial extrapolation technique [2], first we compute
the inverse of the data, then we compute the Richardson extrapolation and finally
we compute the inverse of the result.

One improvement proposed in the present section consists on a specific translation
of the original data. As in the case of the Richardson extrapolation scheme, we build
the reciprocal polynomial extrapolation scheme by pairs; thus we start with two
known values of S at different resolutions:

S(h) = a0 + a1h
γ1 + a2h

γ2 + · · ·
S(2h) = a0 + a12

γ1hγ1 + a22
γ2hγ2 + · · ·
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Let us consider the translation

Th = sign(M)(1 + |m|),

where {
M = S(h), m = S(2h), if |S(2h)| ≤ |S(h)|,
M = S(2h), m = S(h), otherwise.

The proposed translation Th has the same sign as the maximum (in absolute
value) of the data. The size of Th is equal to one plus the absolute value of the
minimum (in absolute value) of the data.

Taking the above translation Th into account, we compute

S1 = S(h) + Th,

S2 = S(2h) + Th.

We now consider the rational function r(x;h) =
1

dxγ1 + c
that is able to interpo-

late S1 and S2,

1

dhγ1 + c
= S1,

1

d2γ1hγ1 + c
= S2.

This system is equivalent to

1

S1

= dhγ1 + c,

1

S2

= d2γ1hγ1 + c;

that is, the linear system of the Richardson extrapolation scheme for the new data
1
S1

and 1
S2

.
Therefore, using the formula of the Richardson extrapolation,

1

r(0;h)
=

2γ1 1
S1
− 1

S2

2γ1 − 1
;

and the approximation obtained by the new reciprocal polynomial extrapolation
scheme is then given by

r(0;h)− Th =
(2γ1 − 1)S1S2

2γ1S2 − S1

− Th.
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With this new step (translation procedure) any zero division in the inversion of
each pair is avoided (Si 6= 0, i = 1, 2). Moreover, since |Si| > 1 and therefore
1
|Si| ∈ (0, 1), i = 1, 2, the data interval will be changed from R = (−∞,+∞) in the

direct implementation of the Richardson extrapolation to (0, 1) (or (−1, 0)) when
we use the Richardson extrapolation within the reciprocal polynomial extrapolation
mechanism.

The Richardson extrapolation has problems for improving a given approximation
when the step discretizations are not small enough, this depends of the characteristics
of the problem (stiffness or perturbation parameters). In these cases the points
Si 6= 0, i = 1, 2 should be not close enough. Changing the data interval through the
proposed translation ensures that the extrapolated points when using the Richardson
extrapolation procedure within the reciprocal polynomial extrapolation scheme are
close. In the numerical experiments we analyze the improvements obtained by this
fact. Now, we include an artificial situation as a motivation of the new extrapolation
scheme.

Rich. Ext. Rec. Poly. Ext.
5.1× 10−3 5.0× 10−3

Table 10.1: γ1 = 2, S(h) = 10−2, S(2h) = 2.5 10−2 and h = 1
8

Rich. Ext. Rec. Poly. Ext.
−2.0× 10−2 1.0× 10−4

Table 10.2: γ1 = 2, S(h) = 10−2, S(2h) = 10−1 and h = 1
8

In tables 10.1 and 10.2, we analyze two possible situations (they are not asso-
ciated to any particular problem). In both cases, we consider two approximations
S(h) and S(2h) and we compute both the Richardson and the reciprocal polyno-
mial extrapolations. In table 10.1 the points to be extrapolated are close together
and in table 10.2 the points are farther apart. In both cases the values of S(h)
and S(2h) are positive and we expect to obtain, via the extrapolation techniques,
an approximation to the exact solution, which is also positive. In the first case,
the two extrapolations obtain similar (reasonable) results but in the second case the
Richardson extrapolation predicts negative values which are nonsense.

In the next subsection we analyze the error produced by this process. We will
achieve a better approximation of a0 by eliminating the largest term of the error in



10.2. A NEW IMPLEMENTATION OF THE RPE 125

the original method. As in the case of the Richardson extrapolation, this process can
be repeated to remove more error terms to get even better approximations. Other
theoretical properties, including stability remarks, are also presented.

10.2.1 Theoretical properties for the new reciprocal polyno-
mial extrapolation

In this section we analyze theoretically the new extrapolation technique.

Local error

In this first result we analyze the error produced by the new reciprocal polynomial
extrapolation.

Proposition 10.2.1 The first term of the error

(r(0;h)− Th)− a0,

produced by the new reciprocal polynomial extrapolation has the following expression:

a1
2(1− 22γ1)h2γ1 + (2γ2 − 2γ1)ã0a2h

γ2

ã0(1− 2γ1)
, (10.2.1)

where ã0 = a0 + Th.

Proof 10.2.2 Since

(r(0;h)− Th)− a0 = r(0;h)− (a0 + Th) = r(0;h)− ã0, (10.2.2)

r(0;h) will be the approximation of ã0.
From

1

dhγ1 + c
= ã0 + a1h

γ1 + a2h
γ2 + · · ·

1

c
d

c
hγ1 + 1

= ã0 + a1h
γ1 + a2h

γ2 + · · · ,

we have that

r(0;h)− ã0 =
d

c
hγ1 ã0 + a1h

γ1 +
d

c
a1h

2γ1 + a2h
γ2 + · · ·

Taking into account that h→ 0 we should compute:
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d

c
hγ1 ã0 + a1h

γ1 +
d

c
a1h

2γ1 + a2h
γ2.

Indeed,

d

c
hγ1 ã0 + a1h

γ1 +
d

c
a1h

2γ1 + a2h
γ2 = hγ1

(
d

c
(ã0 + a1h

γ1)

)
+ a1h

γ1 + a2h
γ2

= hγ1


S2 − S1

hγ1S1S2(1− 2γ1)
S1 − 2γ1S2

S1S2(1− 2γ1)

(ã0 + a1h
γ1)

+ a1h
γ1 + a2h

γ2

=
S2 − S1

S1 − 2γ1S2

(ã0 + a1h
γ1) + a1h

γ1 + a2h
γ2

=
S2 (ã0 + (1− 2γ1) a1h

γ1)− S1ã0
S1 − 2γ1S2

+ a2h
γ2 .

Since

S1 ' ã0 + a1h
γ1 + a2h

γ2 ,

S2 ' ã0 + a12
γ1hγ1 + a22

γ2hγ2 ,

expanding the numerator,

S2 (ã0 + (1− 2γ1) a1h
γ1)− S1ã0 =

= [ã0 + a12
γ1hγ1 + a22

γ2hγ2 ] (ã0 + (1− 2γ1) a1h
γ1)− [ã0 + a1h

γ1 + a2h
γ2 ]ã0

= a21(2
γ1 − 22γ1)h2γ1 + ã0a22

γ2hγ2 + a1a22
γ2 (1− 2γ1)hγ1+γ2 − ã0a2hγ2

' a21(2
γ1 − 22γ1)h2γ1 + ã0a2(2

γ2 − 1)hγ2 .

Now expanding the denominator,

S1 − 2γ1S2 = ã0 + a1h
γ1 − 2γ1(ã0 + a12

γ1hγ1)

= ã0(1− 2γ1) + a1(1− 22γ1)hγ1

' ã0(1− 2γ1).

Simplifying, we obtain the error term in (10.2.1):

S2 (ã0 + (1− 2γ1) a1h
γ1)− S1ã0

S1 − 2γ1S2

+ a2h
γ2 '

a1
2(1− 22γ1)h2γ1 + ã0a2(2

γ2 − 1)hγ2

ã0(1− 2γ1) + a1(1− 22γ1)hγ1
+ a2h

γ2 '

a1
2(1− 22γ1)h2γ1 + (2γ2 − 2γ1)ã0a2h

γ2

ã0(1− 2γ1)
.
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Notice that in the state of the art methods, 2γ1 ≥ γ2. For the second order
divided difference scheme, as we see in next section, γi+1 = 2γi.

Reciprocal polynomial extrapolation as a modification of Richardson ex-
trapolation

Let us consider S(h) and S(2h) approximations of a0. With the notations used in
the definition of the reciprocal polynomial extrapolation procedure the polynomial

1
r(0;h)

is the approximation obtained by the Richardson extrapolation in order to

approximate 1
a0+Th

.

In particular, we can use the theoretical properties derived first for the Richardson
extrapolation. Indeed, from

|r(0;h)− Th − a0| = |r(0;h)(a0 + Th)| |
1

a0 + Th
− 1

r(0;h)
|,

and since the last factor is the error of the Richardson extrapolation for the data 1
S1

and 1
S2

, then we can bound the error of the reciprocal polynomial extrapolation.

On the other hand, for the extrapolation of more than two points, we propose
the use of the introduced procedure in a recursive way as the original Richardson
extrapolation works. Using the result for two points we can prove the error bounds for
this general case. In particular, each step of the reciprocal polynomial extrapolation
achieves a better approximation of the solution a0 by eliminating the largest term in
the error of the extrapolated scheme S.

Stability properties

Let us consider two approximations S(h) and S(2h), of order γ, to the solution
a0 of a given problem. Without loss of generality, we suppose that |S(2h)| > |S(h)|.
Let us denote some perturbation of them by S̃(h) and S̃(2h). Assume that the
approximations have been perturbed maintaining their relative size and the sign of
the biggest one, that is, |S̃(2h)| > |S̃(h)| and S(2h)S̃(2h) ≥ 0.

In this subsection, we are interesting to bound the different of the values ob-
tained by the reciprocal polynomial extrapolation for both pairs (S(h), S(2h)) and
(S̃(h), S̃(2h)).

First,

|(1 + Th)− (1 + T̃h)| := |(1 + |S(h)|)− (1− S̃(h))| ≤ |S(h)− S̃(h)|.
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Secondly, let us consider the function

F (x, y) =
(2γ − 1)xy

2γy − x
,

where |y| > |x| and xy ≥ 0.
After some calculus we obtain

∂F

∂x
=

(2γ − 1)2γy2

(2γy − x)2
,

∂F

∂y
= −(2γ − 1)2x2

(2γy − x)2
,

and then

||∇F (x, y)||∞ ≤ 2
2γ + 1

2γ − 1
.

Finally, using the above estimates and the definition of the reciprocal polynomial
extrapolation scheme we obtain

|((2γ − 1)S1S2

2γS2 − S1

− Th)− (
(2γ − 1)S̃1S̃2

2γS̃2 − S̃1

− T̃h)| ≤ 2
2γ + 1

2γ − 1
max{|S1 − S̃1|, |S2 − S̃2|}

+|S(h)− S̃(h)|
≤ C max{|S(h)− S̃(h)|, |S(2h)− S̃(2h)|},

for C > 0 and the stability is derived.

Analytical interpretation of the reciprocal polynomial extrapolation scheme

In connection with the theoretical studies of the extrapolation schemes, we have
found it is very useful to relate the given approximations to some suitable function.
This kind of an approach is obviously of greater generality than that dealing with
sequences alone.

In the definition of the reciprocal polynomial extrapolation procedure, we have
considered rational functions of the type

1

dxγ + c
− e,

where e is given by the translation value and (c, d) are such that dxγ + c interpolates
the points (h, 1/S1) and (2h, 1/S2).

In particular, we can use the error bounds of rational interpolations [32].
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10.3 Singular perturbed boundary problems

In this section, we perform a comparison between both extrapolations when they
are used in the approximation of singular perturbed boundary problems using finite
difference schemes. We consider several problems that appear in the literature. We
discretize the problems using uniform and nonuniform meshes.

10.3.1 Uniform mesh: local error and numerical experiments

We start with the problem

εy′′ = f(t, y, y′),

y(a) = α,

y(b) = β.

To solve numerically this problem by some finite difference method, one has to over-
come difficulties caused by the small parameter ε. If one is interested in the numerical
solution around all the interval, then the uniform mesh will become the most efficient
discretization.

We can approximate y′′(xi) using the Taylor expansion

y(xi+1)− 2y(xi) + y(xi−1) = y′′(xi)h
2 +

+∞∑
k=2

Ckh
2k,

so that we obtain the well known second order approximation of y′′(xi)∣∣∣∣y(xi+1)− 2y(xi) + y(xi−1)

h2
− y′′(xi)

∣∣∣∣ ≤ +∞∑
k=2

|Ck|h2k−2.

Similarly we can approximate y′(xi) again using Taylor’s expansion, obtaining as
an approximation of y′(xi) the following expression:∣∣∣∣y(xi+1)− y(xi−1)

2h
− y′(xi)

∣∣∣∣ ≤ +∞∑
k=2

|Dk|h2k−2.

Using the proposed approximations, and denoting yi ≈ y(xi), we obtain the
following nonlinear system of equations:

y0 = y(a) = α,

ε
yi+1 − 2yi + yi−1

h2
= f(xi, yi,

yi+1 − yi−1
2h

),

ym+1 = y(b) = β,
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for i = 1, 2, . . . ,m, with an error of the type

+∞∑
k=2

|Ek|h2k−2.

Thus, from Proposition 10.2.1, each step of the reciprocal polynomial extrapola-
tion eliminates the largest term in the error. In particular, we obtain the following
corollary

Corollary 10.3.1 The error obtained combining the above numerical difference scheme
and n steps of both Richardson and reciprocal polynomial extrapolation schemes admit
developments of the form

+∞∑
k=n+2

|Ẽk|h2k−2,

assuming that the discretization step is small enough.

Of course, the coefficients Ẽk are different for both extrapolations.
As we see in next section, there are singular problems with small parameters

ε where we should consider theoretically also very small values of h. This should
be a problem in finite precision arithmetic since the difference schemes should be
dominated by roundoff. In this type of situations our approach improves the classical
one.

Numerical experiments

In this section we consider two particular problems called Viscous Shock [21]
and Turning Point [83]. For a given h, we consider the extrapolation of the two
approximations obtained using the second order divided differences scheme for h
and 2h. We present the error (we know the exact solution of both problems) for
different discretization and perturbation parameters (h and ε).

Viscous Shock Problem: We start with the problem

εy′′ + 2xy′ = 0,

y(−1) = −1,

y(1) = 1,

which has the exact solution

y(x) =
1

errf(
1√
ε
)
errf(

x√
ε
),
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where errf(z) =
2√
π

∫ z
0
et

2
dt.

Parameters Finite Differences Rich. Ext. Rec. Poly. Ext.
h = 0.02, ε = 10−2 5.029× 10−3 1.937× 10−4 1.320× 10−4

h = 0.01, ε = 10−2 1.249× 10−3 1.216× 10−5 8.918× 10−6

h = 0.01, ε = 10−4 1.572× 10−1 2.145× 10−1 1.477× 10−1

h = 0.001, ε = 10−4 3.229× 10−2 9.367× 10−3 5.966× 10−3

Table 10.3: Errors for the Viscous Shock Problem.

In this first example, both extrapolation schemes improve the initial appro-
ximation of the finite difference method. The final error is smaller in our nonlinear
case.

Turning Point Problem We consider the problem

εy′′ − xy = 0,

y(−1) = 1,

y(1) = 1.

The real solution of this problem is the linear combination of the Airy functions1

y(x) = c1Ai(
x
3
√
ε
) + c2Bi(

x
3
√
ε
). (10.3.1)

Parameters Finite Differences Rich. Ext. Rec. Poly. Ext.
h = 0.02, ε = 10−2 7.355× 10−3 1.049× 10−4 1.114× 10−4

h = 0.01, ε = 10−2 1.843× 10−3 6.644× 10−6 6.751× 10−6

h = 0.01, ε = 10−3 9.380× 100 2.300× 101 6.591× 10−1

h = 0.005, ε = 10−3 1.513× 100 1.109× 100 3.804× 10−2

Table 10.4: Errors for the Turning Point Problem.

In this second example, the reciprocal polynomial extrapolation gives the best
results (see Table 10.4). Moreover, for this stiff problem (taking ε sufficiently small)

1The Airy functions are the two solutions of the Stoker differential equation y′′ − xy = 0 which
are related to the Bessel functions.
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Figure 10.1: Approximations using the Richardson extrapolation ‘o’ and the recip-
rocal polynomial extrapolation ‘*’ for the Turning Point Problem. The solid line
represents the exact solution. Parameters: h = 0.01 and ε = 10−3.
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the Richardson extrapolation presents some problems when the discretization is not
small enough (in comparison with the stiffness). This fact is clearer in Figure 10.1
(h = 0.01 and ε = 10−3) where only the reciprocal polynomial extrapolation gives
a good approximation. In particular, we improve the robustness of the Richardson
extrapolation.

10.3.2 Non-uniform mesh and accuracy uniform in ε

In [123], the Richardson extrapolation was applied to the central finite difference
scheme. The authors point out problems where the need for numerical solution
within the boundary layers is important. This implies the use of a non-uniform mesh
which is dense in the boundary layer regions. High accuracy uniform in ε was proved
for the central finite difference scheme on a particular non-uniform mesh.

In this approach, the mesh points for the generic interval I = [0, 1] were given by

xi = λ(ti), ti = ih, i = 0, . . .m, h = 1/m, m ∈ N,

where

λ(t) =

{
θε t

(1/2+
τ√
θε−t)τ , t ∈ [0, 1/2]

1− λ(1− t), t ∈ [1/2, 1].

Here, θ > 0 and τ > 0 are some constants independent of ε. The mesh points are
taken to be symmetric to the middle point of I. The mesh is dense in the boundary
layers. The density is increased when θ is decreased. The same is true for τ as long
as θ2τε < 1. The location of the m mesh points xi = λ(ti) depends on ε through the
nonlinear function λ(t).

Associated to this type of mesh, the error of the central finite difference scheme
at each point xi admits the following development

ri(uε) =
K∑
j=1

ajh
2j +O(hk), i = 1, 2, . . . ,m− 1,

where K = [k−1
2

] and some smoothness in the solution is assumed, namely uε ∈
Ck+4(I).

Note that h is independent of ε; the dependence is in the non-uniform mesh
computed from λ(t). See [123] for more details.

Combining this result and the in Proposition 10.2.1, proves that each step of the
reciprocal polynomial extrapolation subtracts the largest term in the error.
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Numerical experiments

In this section, we consider two examples. The first one is the example analyzed
in [123] and the second one a modification increasing the oscillation of the exact
solution. As in Section 10.3.1, for a given h we consider the extrapolation of the two
approximations obtained by using the second order divided difference scheme for h
and 2h. We present the error (we know the exact solution of both problems) for
different discretization and perturbation parameters (h and ε). In this section, we
use the non-uniform mesh defined by the function λ(t), considering different values
of the new parameters θ and τ .

We start with the following problem introduced in [40] and analyzed in [123]

−ε2y′′(x) + y(x) = − cos2(πx)− 2(επ)2 cos(2πx),

y(0) = y(1) = 0,

with exact solution

y(x) = (exp(−x/ε) + exp(−(1− x)/ε))/(1 + exp(−1/ε))− cos2(πx).

In Tables 10.5 and 10.6 we observe that both extrapolations provide good results
and improve the original divided difference scheme. This example was studied for Vu-
lanović et al. in [123] to point out the good behavior of the Richardson extrapolation
for this type of problems.

Parameters Finite Differences Rich. Ext. Rec. Poly. Ext.
ε = 10−3 3.75× 10−3 1.38× 10−4 1.40× 10−4

ε = 10−6 5.09× 10−3 2.46× 10−4 2.48× 10−4

ε = 10−9 5.34× 10−3 2.25× 10−4 2.26× 10−4

ε = 10−12 5.36 × 10−3 2.23× 10−4 2.23× 10−4

Table 10.5: Error for Vulanović et al. problem, m = 40, θ = 1 and τ = 3.

Finally, we analyze a modification of the last example with more oscillations in
the exact solution. Indeed, we consider

−ε2y′′(x) + y(x) = −1

2
+ (−1

2
− 50(επ)2) cos(10πx),

y(0) = y(1) = 0,

with exact solution

y(x) = (exp(−x/ε) + exp(−(1− x)/ε))/(1 + exp(−1/ε))− cos2(5πx).
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Parameters Finite Differences Rich. Ext. Rec. Poly. Ext.
ε = 10−3 6.92× 10−3 2.96× 10−4 2.97× 10−4

ε = 10−6 7.71× 10−3 7.63× 10−4 7.70× 10−4

ε = 10−9 7.76× 10−3 7.11× 10−4 7.15× 10−4

ε = 10−12 7.77× 10−3 7.04× 10−4 7.08× 10−4

Table 10.6: Error for the Vulanović et al. problem, m = 40, θ = 0.1 and τ = 3.

In Figure 10.2 we observe the improvements obtained by the reciprocal polyno-
mial extrapolation. In this problem, the discretization should increase its density
throughout the interval (θ big) in order to approximate well the boundary layers
when ε decreases. However, as in the second example for the uniform case, taking ε
sufficiently small, we can improve the results given by the Richardson extrapolation
when the discretization is not small enough (in comparison with the stiffness).

10.4 Conclusion

In this paper we have studied a nonlinear extrapolation technique for singularly
perturbed boundary value problems. We have introduced a new step in the imple-
mentation of the reciprocal polynomial extrapolation obtaining the same behavior
as the Richardson extrapolation when this extrapolation works well. Moreover, this
nonlinear treatment of the data introduces advantages when the discretization step
is not small enough in comparison with the stiffness of the problem. In particular,
we improve the robustness of the Richardson extrapolation.



136 RPE vs RE

Figure 10.2: Approximations via the Richardson extrapolation ‘o’ and the reciprocal
polynomial extrapolation ‘*’ for the modification of the Vulanović et al. Problem.
The solid line represents the exact solution. Parameters: θ = 100, τ = 1, m = 500
and ε = 10−3.
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[54] Grau-Sánchez M., Grau À. and Noguera M., Frozen divided difference scheme
for solving systems of nonlinear equations. J. Comput. Appl. Math. 235(6)
(2011), 1739-1743.
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