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TELECOMUNICACIÓN
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Chapter 1
Introduction

A filter is a frequency selective two-port network with low levels of attenuation or

insertion loss in its passband and specified high levels of attenuation in its stopband.

It is used to control the frequency response at a certain point in a microwave system.

Typical frequency responses include low-pass, high-pass, bandpass, and band-reject

characteristics. Applications can be found in virtually any type of microwave com-

munication, radar, or test and measurement system.

This work is focused on the design of microwave lowpass filters in waveguide tech-

nology, which are of great importance in space applications since they are required to

suppress the harmonics generated by the high-power amplifiers. These filters require

bandwidths in the GHz range, and for this reason, the lumped-element prototypes

that are commonly used for realizing narrow band bandpass and band stop filters

are not applicable, and different synthesis techniques, based on distributed elements,

have to be used.

Generally speaking, filter design can be summarized in three steps

1. Synthesis of the transfer and reflection polynomials for a given specification.

Chebyshev functions (first or second kind) and Achieser-Zolotarev functions

represent the prime candidates for derivation of the characteristic polynomials

13



14 CHAPTER 1. INTRODUCTION

for a lowpass filter design.

2. Synthesis of a network able to implement this filtering function.

3. Realization of the previous network, using whatever technology is most suitable

for the application.

Among the vast amount of published literature on the design of microwave filters,

the theory most directly related to the filters designed in this work is explained in

chapters 2 and 3, corresponding to the first two steps mentioned. Chapter 4 details

the utilization of alternative topologies topologies to realize the distributed low pass

filter in waveguide technology, explaining the design technique used and software

developed and analyzing the results.

In waveguide low-pass filters, capacitive rectangular windows are typically em-

ployed. The presence of corners and edges causes strong singularities in the prox-

imities (fringing fields), which can induce negative high-power effects such as mul-

tipactor and corona. This is critical for high power applications in communication

satellites, since they limit the power level that a microwave filter can handle without

triggering destructive phenomena. In this work we focus on exploring topologies that

would improve the power handling capabilities of waveguide filters. Multipaction

occurs when electrons accelerated by electromagnetic fields are self-sustained in a

vacuum (or near vacuum) via electron avalanche caused by secondary electron emis-

sion. The impact of an electron to a surface can, depending on its energy and

angle, release one or more secondary electrons into the vacuum. These electros can

be accelerated again by the EM fields and impact with the same or another sur-

face. Should the impact energies, number of electrons released and timing of the

impacts be such that a sustained multiplication of the number of electrons occurs,

the phenomenon can grow exponentially and may lead to operational problems of

the system such as distortion, high losses, or even permanent damage to the device.

Traditional waveguide low pass filters are realized using capacitive irises, requiring
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small distances between parallel plates, which favors the critical electron avalanche.

One of the techniques that can be employed to increase the multipactor break-

down power thresholds is to introduce modifications in the traditional rectangular

waveguide filter geometry, avoiding the presence of parallel plates where the electron

avalanche can take place due to the continuous ”bouncing” of electrons caused by

the electromagnetic fields. For instance, in [1], a bandpass filter composed of wedge

waveguide sections was designed and showed better power handling thresholds than

a classical rectangular waveguide implementation. This is true due to the effect

produced by the slanting waveguide walls on the electron trajectories. The electrons

are moved away from the critical gap regions when they impact on the wedge waveg-

uide walls, and therefore the multipactor breakdown threshold is increased. There

is some recent work on the multipactor breakdown between cylinders, works have

proved that multipactor is less likely to happen between two

The same concept is applied here, where we explore the design of low pass filters

based on circularly-shaped conducting posts, avoiding the presence of parallel plates.

Recent works prove that multipactor breakdown is less likely to happen between

cylinders than it is between parallel plates [2], [3], due to the geometrical spreading

of the emitted electrons, caused by the curvature of the emitting surfaces. For the

realization of filters based in these topologies, a method based on the scattering pa-

rameters of each impedance inverter will be used, adjusting the absolute value and

phase of S11 or S21 in a two step design technique, using the commercial packages

HFSS and MATLAB. The software developed allows the complete automation of

the process for multiple topologies, most of them based on conducting posts, start-

ing from the filtering polynomials for normalized frequency. The input parameters

include the waveguide dimensions, cutoff frequency, type of filtering function, degree

of the filter, maximum return loss allowed in the passband, and electric length of

the transmission lines used in the distributed prototype circuit. The required HFSS
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projects are automatically generated and analyzed, completing the process in a few

minutes. Due to modular nature of the software, it can be easily modified to adapt

the design technique to any topology. Multiple designs have been realized, starting

from the mathematical synthesis of the transfer and reflection polynomials. This

will allow the comparison of different type of functions and structures, in terms of

passband performance, rejection, spurious response and sensitivity to manufacturing

errors.



Chapter 2
Synthesis of the filter function

In this chapter we explain the synthesis techniques for various types of frequently

utilized polynomials, which will later serve as the starting point for the synthesis of

the filter. The chapter starts with some theoretical background and then explains the

synthesis of multiple types of filtering functions: Chebyshev of the first and second

kind, Zolotarev and Chained function. For the synthesis procedure, the design

parameters are the degree of the filter, the desired return loss and the transmission

zeros. The software developed takes these parameters as input in order to calculate

the corresponding polynomials and frequency response for each type of function, as

the first step in the filter design.

2.1 Polynomial forms of the transfer and reflec-

tion parameters.

For the majority of filter circuits, we shall initially consider two-port networks,

consisting of a source port and a load port. For a two-port network, the scattering

matrix is represented by a 2x2 matrix

b1
b2

 =

S11 S12

S21 S22

 (2.1)

17



18 CHAPTER 2. SYNTHESIS OF THE FILTER FUNCTION

where b1 and b2 are the power waves propagating away from ports 1 and 2, re-

spectively, and a1 and a2 are the power waves incident at ports 1 and 2, respectively.

If the network is passive, lossless, and reciprocal, the previous S-parameter matrix

yields two conservation of energy equations

S11(s)S11(s)
? + S21(s)S21(s)

? = 1 (2.2)

S22(s)S22(s)
? + S12(s)S12(s)

? = 1 (2.3)

and one orthogonality equation

S11(s)S12(s)
? + S21(s)S22(s)

? = 0 (2.4)

The S parameters are assumed to be functions of the frequency variable s = jω.

The reflection parameter S11 at port 1 is expressed as the ratio of two finite-degree

polynomials E(s) and F (s) and the constant εR.

S11(s) =
F (s)/εR
E(s)

(2.5)

where E(s) is an Nth-degree polynomial with complex coefficients e0, e1, e2, ..., eN ,

where N is the degree of the filter network. F(s) is an Nth degree polynomial with

complex coefficients f0, f1, f2, ..., fN . The constant εR allows the normalization of

the highest degree coefficients of E(s) and F (s) to unity. Since we will consider the

filter a lossless passive network, E(s) is strictly Hurwitz [4], that is, all the roots of

E(s) are in the left half of the complex plane. The polynomial F (s), for lowpass and

bandpass filters is also of degree N. For band-stop filters the degree of F (s) can be

lower than N. The roots of F (s) are the points of zero reflected power, or points of

perfect transmission. By reorganizing the equation (2.2) and substituting the S11(s)

formula, we obtain

S21(s)S21(s)
? = 1− F (s)F (s)?/ε2R

E(s)E(s)?
=
E(s)E(s)? − F (s)F (s)?/ε2R

E(s)E(s)?
(2.6)
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if we call P (s)P (s)?/ε2 = E(s)E(s)? − F (s)F (s)?/ε2R

S21(s)S21(s)
? =

P (s)P (s)?/ε2

E(s)E(s)?
(2.7)

and finally the parameter S21(s) can be expressed as the ratio of two polynomials

S21(s) =
P (s)/ε

E(s)
(2.8)

It is clear from equations (2.5) and (2.8) that S11(s) and S21(s) share a common

denominator polynomial E(s). The numerator of S21(s) is a polynomial P (s)/ε

whose zeros are the transmission zeros of the filtering function, established as one

of the design parameters of the filter. The degree nfz of the polynomial P (s) cor-

responds to the number of finite-position Tx zeros that the transfer function incor-

porates. This also implies that nfz ≤ N , since otherwise, it would be of a higher

degree than E(s), which would imply that as s −→∞ S21(s) would be greater than

unity, which is obviously impossible for a passive network.

We distinguish between finite-position transmission zeros and transmission zeros

at infinity. Finite position zeros occur when the frequency variable s coincides with

a root of P (s). For each each root si that is complex there must be a second root

−s?i to make up a pair having symmetry about the imaginary axis. This ensures

that polynomial P (s) has coefficients that alternate between purely real and purely

imaginary as the power of s increases. This is a condition that must hold if the filter

is to be realized with purely reactive components. In addition, when the quantity

(N − nfz) is even, the P (s) polynomial must be multiplied by j. This rule, associ-

ated with the orthogonality condition, won’t be demonstrated here but a detailed

explanation can be found in [4].

When nfz ≤ N , at s = ∞, S21(s) = 0, and this is what we call transmission

zeros at infinity. When there are no finite-position transmission zeros, the filtering
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function is known as an all-pole response.

The real constant ε is determined by evaluating P (s)/E(s) at a convenient value

of s, where |S11(s)| or |S21(s)| are known, for instance, at s = ±j, where the equirip-

ple return loss level for Chebyshev filters is known (the maximum passband value

of return loss prescribed in the synthesis)

ε =
1√

10RL/10 − 1

∣∣∣∣ P (ω)

F (ω)/εR

∣∣∣∣
w=±1

(2.9)

If nfz < N , |S21(s)| = 0 at infinite frequency. When |S21(s)|, the conservation of

energy condition (2.2) dictates:

S11(j∞)S11(j∞)? = 1 (2.10)

which means that

S11(j∞) =
1

εR

∣∣∣∣F (j∞)

E(j∞)

∣∣∣∣ = 1 (2.11)

and because the highest degree coefficients of E(s) and F (s) are unity, it is easily

seen that εR = 1.

In the case of a fully canonical filter, nfz = N , the attenuation at s = ±j∞ is

different from 0 and we must obtain the expression for εR again. Using the same

conservation of energy condition (2.2):

S11(j∞)S11(j∞)? + S21(j∞)S21(j∞)? = 1 (2.12)

F (j∞)F (j∞)?

ε2RE(j∞)E(j∞)?
+

P (j∞)P (j∞)?

ε2E(j∞)E(j∞)?
= 1 (2.13)

and since we’re in the fully canonical case, all three polynomials are of degree

N , with the highest-power coefficients being unity. Therefore, at s = ±j∞
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1

ε2R
+

1

ε2
= 1 −→ εR =

ε√
ε2 − 1

(2.14)

It also follows that for the fully canonical case

S21(±j∞) =
1

ε
(2.15)

S11(±j∞) =
1

εR
(2.16)

2.2 Alternating pole method for determination of

the denominator polynomial E(s)

In this section we explain how the polynomial E(s) is generally obtained. The

way it is determined is common for all the function types, since it is based on

the conservation of energy condition. In the synthesis methods to be explained

later, transmission zeros are prescribed in the complex plane, which immediately

defines the S21(s) numerator polynomial P (s). Then, the coefficients of the S11(s)

numerator polynomial F (s) are found using an analytic or recursive method. Finally

only the common denominator E(s) remains to be found. Writing the conservation

of energy equation (2.2) in terms of the three polynomials, as done earlier:

F (s)F (s)?

ε2RE(s)E(s)?
+

P (s)P (s)?

ε2E(s)E(s)?
= 1 (2.17)

F (s)F (s)?

ε2R
+
P (s)P (s)?

ε2
= E(s)E(s)? (2.18)

it is clear that the roots of the polynomial E(s)E(s)? can be found by using

the P (s) and F (s) polynomials. The 2N roots of the polynomial E(s)E(s)? form a

symmetric pattern about the imaginary axis in the complex plane, so that at any

frequency s the product E(s)E(s)? is scalar. Since E(s) is strictly Hurwitz, those

roots that are in the left-half plane belong to E(s), with the ones in the right-hand
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plane belonging to E(s)?, and thus, the E(s) polynomial can be formed.

This method, however, implies that we have to work with polynomials of degree

2N , which can cause imprecisions for higher degree filter functions, and thus, the

alternating pole method is usually utilized, since it allows the root-finding directly

using the P (s) and F (s), that is, Nth-degree polynomials. A detailed demonstration

can be found in [4], starting by expanding equation (2.18). This method is only

usable when all the zeros of F (s) lie on the imaginary axis and are coincident with

those of F22(s), which is usually the case for most filtering functions. If this condition

is fulfilled, we can find E(s) by means of the following equation

ε2ε2RE(ω)E(ω)? = [εRP (ω)− jεF (ω)] [εRP (ω)− jεF (ω)]? (2.19)

Rooting one of the two terms on the right-hand side of (2.19) results in a pattern

of singularities alternating between the left-half and right-half planes. Rooting the

other term will give the complementary set of singularities, completing the symme-

try of the pattern about the imaginary axis and ensuring that the RHS of (2.19) is

properly scalar as the LHS demands. Knowing that the polynomial E(s) must be

Hurwitz, we can find its roots by calculating only one of the terms, and reflecting

to the left half-plane any singularity lying in the right-half plane. Finally, the poly-

nomial E(s) can be formed.

Figure 2.1 shows an example of usage of this method, to determine the roots of

the E(s) polynomial for an arbitrary 8th− degree Chebyshev function.
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Figure 2.1: Determination of roots of E(s) using the alternating pole method

2.3 Chebyshev filter functions of the first kind

For convenience, we will work in the ω variable, where s = jω

S11(ω) =
F (ω)/εR
E(ω)

(2.20)

S21(ω) =
PN(ω)

εEN(ω)
(2.21)

ε =
1√

10RL/10 − 1

∣∣∣∣ P (ω)

F (ω)/εR

∣∣∣∣
w=±1

(2.22)

As seen earlier, it is assumed that the polynomials P (ω), F (ω), and E(ω) are

normalized such that their highest degree coefficients are unity. S11(ω) and S21(ω)

share a common denominator E(ω), and the polynomial P (ω) =

nfz∏
n=1

(ω − ωn) car-

ries nfz transfer function finite-position transmission zeros. For a Chebyshev filter
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function ε is a constant normalizing S21 to the equiripple level at ω = ±1.

Let us define the function CN(ω) = F (ω)
P (ω)

. This function is known as the filtering

function of degree N , and its poles and zeros are the roots of P (ω) and F (ω),

respectively. For the general Chebyshev characteristic, it has the form

CN(ω) = cosh

[
N∑
n=1

cosh−1(xn(ω))

]
(2.23)

or, by using the identity cosh θ = cos jθ, the alternative expression for CN(ω) is

given by

CN(ω) = cos

[
N∑
n=1

cos−1(xn(ω))

]
(2.24)

To properly represent a Chebyshev function, xn(ω) requires the following prop-

erties:

� At ω = ωn where ωn is a finite-position prescribed transmission zero, or where

ωn is at infinite frequency (ωn = ±∞), xn(ω = ±∞)

� At ω = ±1, xn(ω) = ±1

� Between ω = −1 and ω = 1 (in-band), 1 ≥ xn(ω) ≥ −1

The first condition is satisfied if xn(ω) is a rational function with its denominator

equal to (ω − ωn)

xn(ω) =
f(ω)

ω − ωn
(2.25)

if we use this equation for the second condition

xn(ω)|ω=±1 =
f(ω)

ω − ωn

∣∣∣∣
ω=±1

= ±1 (2.26)

This condition is satisfied if f(1) = 1 − ωn and f(−1) = 1 + ωn, giving f(ω) =

1− ωωn. Therefore

xn(ω) =
1− ωωn
ω − ωn

(2.27)

For the previous expression of xn(ω) there are no turning or inflection points

between ω = −1 and ω = 1, which implies that the third condition is also satisfied,
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considering that xn(ω) = −1 at ω = −1 and xn(ω) = −1 at ω = −1. Finally, we

divide by ωn to deal with any transmission zeros at ωn = ±∞, obtaining the final

expression for xn(ω)

xn(ω) =
ω − 1/ωn
1− ω/ωn

(2.28)

In equation (2.28), the transmission zero ωn in the ω plane, as expected, relates

to each of the prescribed transmission zeros in the s plane by ωn = sn/j.

Figure 2.2 shows an example of the xn(ω) function, with a prescribed transmis-

sion zero at ω = 1.2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

ω

x n

Figure 2.2: Example of xn(ω) with a prescribed transmission zero at ωn = 1.2

As mentioned in an earlier section, the rule in prescribing the positions of the

transmission zeros are that symmetry must be preserved about the imaginary axis

(jω) of the complex s plane, to ensure that the unitary conditions are preserved.

If all N transmission zeros wn approach infinity (all-pole response), CN(ω) takes

the following form
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CN(ω)|ωn→∞ = cosh
[
N cosh−1(ω)

]
(2.29)

Knowing the expression of the filtering function CN(ω) from equation (2.23),

the normalizing constant ε from equation (2.22) and the prescribed polynomial

P (ω) =
∏nfz

n=1(ω − ωn), the next step is to find the numerator of CN(ω), to ob-

tain F (ω), in order to be able to use the alternating pole method to obtain E(ω),

completing the transfer and reflection Chebyshev functions.

Writing equation (2.23) in a different form, applying the cosh−1 identity

acosh(x) = ln
(
x+
√
x2 − 1

)
(2.30)

we obtain

CN(ω) = cosh

[
N∑
n=1

ln
(
xn(ω) +

√
xn(ω)2 − 1

)]
(2.31)

let us define

an = xn(ω) and bn =
(
xn(ω)2 − 1

)1/2
. (2.32)

Then

CN(ω) = cosh

[
N∑
n=1

ln(an + bn)

]
(2.33)

Applying the cosh exponential formula

CN(ω) =
1

2

[
e
∑N

n=1 ln(an+bn) + e−
∑N

n=1 ln(an+bn)
]

=
1

2

[
N∏
n=1

(an + bn) +
1∏N

n=1(an + bn)

]
(2.34)
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By multiplying the second term in equation (2.34) top and bottom by
∏N

n=1(an−

bn) we obtain

CN(ω) =
1

2

[
N∏
n=1

(an + bn) +
N∏
n=1

(an − bn)

]
(2.35)

since the product
∏N

n=1(an+bn) ·
∏N

n=1(an−bn) =
∏N

n=1(a
2
n−b2n) = 1 (see form of

an and bn in (2.32)). Finally, substituting an, bn and xn expressions from equations

(2.32) and (2.28)in equation (2.35), the final expression of CN(ω) is found

CNω =
1

2

[∏N
n=1(cn + dn) +

∏N
n=1(cn − dn)∏N

n=1(1− ω/ωn)

]
(2.36)

where

cn =

(
ω − 1

ωn

)
and dn = ω′

√
1− 1

ω2
n

(2.37)

and ω′ is a transformed frequency variable

ω′ =
√

(ω2 − 1) (2.38)

comparing (2.36) with the general expression of CN(ω) = F (ω)
P (ω)

, it is clear that

the denominator of (2.36) corresponds to P (ω), the polynomial containing the trans-

mission zeros. The numerator corresponds to F (ω), the numerator of S11(ω). The

numerator of (2.36) appears to be a mixture of two polynomials in two different

variables, ω and ω′, but it can be proven that the terms in the ω′ variable cancel

each other when equation (2.36) is expanded. This can be seen with an example

ForN = 1, Num[C1(ω)] =
1

2

[
1∏

n=1

(cn + dn) +
1∏

n=1

(cn − dn)

]
= c1.

ForN = 2, Num[C2(ω)] = c1c2 + d1d2.

ForN = 2, Num[C3(ω)] = (c1c2 + d1d2)c3 + (c2d1 + c1d2)d3.

(2.39)
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A product of an even number of dn elements will always eliminate the ω′ form of

the polynomial, since ω′ =
√

(ω2 − 1). In the cases where we have a product of an

odd number of dn elements, they will cancel out because of the different sign in the

two product terms in equation (2.36). As a result of this, the numerator of CN(ω)

will be a polynomial purely in the variable ω, and its roots will be exactly those of

the polynomial F (ω). Next we will explain the recursive technique used to obtain

this polynomial.

2.3.1 Recursive Technique

The numerator of equation (2.36) can be written as

Num[CN(ω)] =
1

2
[GN(ω) +G′N(ω)] (2.40)

where

GN(ω) =
N∏
n=1

[cn + dn] =
N∏
n=1

[
(ω − 1

ωn
) + ω′

√
(1− 1

ω2
n

)

]
(2.41)

and

G′N(ω) =
N∏
n=1

[cn − dn] =
N∏
n=1

[
(ω − 1

ωn
)− ω′

√
(1− 1

ω2
n

)

]
(2.42)

In the method used to compute the coefficients of the numerator of CN(ω), the

solution for the nth degree is constructed from the results of the (n-1)th degree

polynomials. Let us define the polynomial GN(ω) as a sum of two polynomials

UN(ω) and VN(ω), where the UN(ω) polynomial contains purely coefficients of the

terms in the variable ω, whereas each coefficient of the auxiliary polynomial VN(ω)

is multiplied by the variable ω′.

GN(ω) = UN(ω) + VN(ω) (2.43)

UN(ω) = u0 + u1w + u2ω
2 + ... + uNω

N (2.44)
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VN(ω) = ω′(v0 + v1w + v2ω
2 + ... + vNω

N) (2.45)

Starting with the first prescribed transmission zero, ω1:

G1(ω) = c1 + d1 = (ω − 1

ω1

) + ω′

√(
1− 1

ω2
1

)
= U1(ω) + V1(ω)

(2.46)

In the next iteration, G1(ω) has to be multiplied by the term corresponding to

the second prescribed zero ω2.

G2(ω) = G1(ω) · (c2 + d2) = [U1(ω) + V1(ω)]

[
(ω − 1

ω2

) + ω′

√(
1− 1

ω2
2

)]
= U2(ω) + V2(ω)

(2.47)

If we multiply out this equation, we obtain

U2(ω) = ωU1(ω)− U1(ω)

ω2

+ ω′

√(
1− 1

ω2
2

)
V1(ω) (2.48)

V2(ω) = ωV1(ω)− V1(ω)

ω2

+ ω′

√(
1− 1

ω2
2

)
U1(ω) (2.49)

This process is repeated with the rest of prescribed zeros. If the same process is

repeated for G′N(ω) = U ′N(ω) + V ′N(ω), it can be shown that U ′N(ω) = UN(ω) and

V ′N(ω) = −VN(ω). Therefore, we conclude that

Num[CN(ω)] =
1

2
[GN(ω) +G′N(ω)] =

1

2
· (2 · UN(ω)) = UN(ω) (2.50)

This equation demonstrates that the numerator of CN(ω) is equal to F (ω) when

the recursive method has been completed. Rooting this polynomial, the roots of



30 CHAPTER 2. SYNTHESIS OF THE FILTER FUNCTION

Roots of F (s) Roots of E(s) Roots of P (s)

−0.9522j −0.2482− 1.2160j +j1.45

−0.6041j −0.6239− 0.7445j +j2.3

−0.0643j −0.7175− 0.0388j j∞

+0.8135j −0.2961 + 0.9525j j∞

+0.4557j −0.0856 + 1.0893j j∞

+0.9802j −0.5523 + 0.5862j j∞

ε = 4.3871 εR = 1

Table 2.1: Poles and zeros of a sixth-degree Chebyshev function with two trans-

mission zeros

F (ω) are found, and since P (ω) is formed directly from the prescribed transmis-

sion zeros,the only polynomial left to obtain is E(ω), which can be immediately

calculated using the alternating pole method explained in the previous section. The

software implemented, as the first part of the filter design, takes as input the degree

of the filter, the prescribed return loss, and the prescribed transmission zeros. Then,

using the recursive technique, and then applying the alternating pole method, all

three polynomials that define the transfer and reflection functions are obtained.

As an example, Table 2.1 shows the roots of all three polynomials for an arbitrary

6th degree filter with an equiripple return loss of 26 dB and prescribed zeros at

+j1.45 and +j2.3. Figure 2.3 shows the frequency response of this filter.

2.4 Chebyshev filter functions of the second kind

The tapered-corrugated lowpass filter functions require Chebyshev polynomials

of the second kind, with one symmetric half-zero pair of transmission zeros, due to

the structure of the circuit used to implement the filtering function. A more detailed

explanation is given in the next chapter. The transfer and reflection functions of the
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Figure 2.3: Transfer and reflection of a sixth-degree Chebyshev function of the

first kind with two transmission zeros

Chebyshev filter function of the second kind have the form

S11(ω) =
F (ω)

E(ω)
(2.51)

S21(ω) =
P (ω)

εE(ω)
=

√
ω2 − a2
εE(ω)

(2.52)

The P (ω) polynomial can be formed immediately from the prescribed trans-

mission zeros. The Nth-degree filtering function for the Chebyshev function of the

second kind for up to N half-zero pairs is generated by a zero-mapping formula and

recursive method, similar to that used for the generation of the Chebyshev function

of the first kind

CN(ω) =
F (ω)

P (ω)
= cosh

[
N∑
n=1

cosh−1(xn)

]
(2.53)
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where

xn = ω

√
(1− 1/ω2

n)

(1− ω2/ω2
n)

(2.54)

an = xn (2.55)

bn =
√
x2n − 1 =

ω′√
(1− ω2/ω2

n)
(2.56)

where ω′ is the transformed frequency variable, as before

ω′ =
√
ω2 − 1 (2.57)

Using the previous notation, the CN polynomial is formed

CN(ω) =

N∏
n=1

[
ω
√

(1− 1/ω2
n) + ω′

]
+

N∏
n=1

[
ω
√

(1− 1/ω2
n)− ω′

]
2
N∏
n=1

√
(1− ω2/ω2

n)

=

N∏
n=1

[cn + dn] +
N∏
n=1

[cn − dn]

2
N∏
n=1

√
(1− ω2/ω2

n)

(2.58)

where

cn = ω
√

(1− 1/ω2
n) (2.59)

dn = ω′ (2.60)

2.4.1 Recursive Technique

The recursive method is very similar as that shown for the Chebyshev functions

of the first kind. Using the same terminology, where Un are the polynomials in the

ω variable and Vn are in the ω′ variable
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GN(ω) =
N∏
n=1

[cn + dn] = UN(ω) + VN(ω) (2.61)

For the first iteration

U1(ω) = ω
√

(1− 1/ω2
n) (2.62)

V1 = ω′ (2.63)

In the second iteration

G2(ω) = (U1(ω) + V1(ω)) · (ω
√

1− 1/ω2
2 + ω′) (2.64)

To find U2(ω) and V2(ω) we have to expand the product and separate the poly-

nomials in the two variables ω and ω′

U2(ω) = U1(ω) · ω
√

1− 1/ω2
2 + ω′ · V1(ω) (2.65)

V2(ω) = V1(ω) · ω
√

1− 1/ω2
2 + ω′ · U1(ω) (2.66)

notice how the product of the V1(ω) polynomial and ω′ yields a ω polynomial,

belonging to U2(ω), since ω′ =
√
ω2 − 1. Similarly, the term ω′ · U1(ω) belongs to

the ω′ polynomial V (ω) because it has all its elements multiplied by ω′. The same

is repeated until all zeros (including those at infinity) are used. Finally, the roots of

the polynomial UN(ω) are the same as those of F (ω) and only the E(ω) polynomial

remains to be found. For odd numbers of half-zero pairs the alternating-pole method

cannot be used directly to create the coefficients of E(ω), due to the square root in

the numerator of S21(ω). However, it is shown in the next chapter, in the section

on tapered-corrugated LPFs, that in this case, after transformation to the t-plane
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S21(t) will always have an even number of half-zeros, meaning that in the t plane

the square root disappears and the polynomial P (t) can be formed, enabling the use

of the alternating pole method to find E(t).

As an example, we apply the synthesis procedure for a seventh degree filter with

RL = 26dB and a symmetric half-zero pair at ±j2.4.

Roots of F (s)

±0.9762j

±0.7901j

±0.4433j

0

Table 2.2: Zeros of a sixth-degree Chebyshev function with a half-zero pair

Figure 2.4 shows the frequency response corresponding to this filter and compares

it with a first kind Chebyshev filter with a zero pair at the same frequency ±j2.4
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Figure 2.4: Transfer and reflection of Chebyshev functions of first and second kind

We see that the Chebyshev function of the second kind presents thinner zeros
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than the first kind, resulting in less close to band selectivity for zeros in the same

position, although the far out of band rejection is slightly better.

2.5 Achieser-Zolotarev Functions

Achieser-Zolotarev functions are similiar to the Chebyshev functions in that they

have an equiripple characteristic. The difference is that they possess an extra design

parameter that allows the peak nearest to the origin to exceed the preset equiripple

level. The reason that the Zolotarev function is valuable in the design of LPFs is

that it tends to yield better element values with less abrupt transitions and greater

internal gap dimensions that help with high power design. The out-of-band rejection

is slightly better than that of the Chebyshev functions.

The all-pole even-degree Achieser-Zolotarev function is easily generated from the

zeros of the Chebyshev function of the first kind, of the same degree and prescribed

return loss level through the following mapping formula

s′k = ±
√
s2k(1− x21)− x21 (2.67)

where sk is the original position of the singularity in the complex s plane, s′k is

the transformed position, and x1 (|x1| < 1) is the frequency point in the band at

which the equiripple behavior starts.

The mapping formula is applied to the roots of F (s) of the original Chebyshev

polynomial (first or second kind), obtained through the use of the recursive tech-

nique. Then, the polynomial E(s) is formed using the alternating pole method.

When x1 = 0, the even-degree Zolotarev function degenerates to the pure all-pole

Chebyshev function.

Figure 2.5 shows two Zolotarev responses, for an arbitrary 8 th degree filter for

two values of the parameter x1, 0.3 and 0.4
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Figure 2.5: Zolotarev response with x1 = 0.3 (left) and with x1 = 0.4 (right)

For higher values of x1 we will get slightly better rejection at the cost of usable

bandwidth, since the high reflection central lobe becomes wider.

2.6 Chained Functions

This family of filters exhibits a reduced sensitivity to manufacturing errors while

maintaining a maximum inband return loss. Chained functions are formed by com-

bining filtering polynomials of lower degree (seed function) [5]

Gm(ω) =
k∏
i=1

Cni
(ω) (2.68)

where Gm(ω) is an mth-degree Chained function and Cni
= F (ω)

P (ω)
is the nth-degree

seed function i. By chaining a seed function with itself k times we obtain zeroes

of multiplicity k. Knowing Gm(ω), which contains two of the three characteristic

polynomials, the remaining polynomial E(ω) can be easily obtained using the Alter-

nating Pole Method. These filters present a reduced sensitivity since they are based

on lower degree polynomials, and are realizable as long as the seed functions are

realizable. However, chained filters present a worse rejection performance compared

to regular functions of the same total degree.
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Figure 2.6: 6th-degree all-pole Chebyshev response

As an example, we will compare a regular 6th-degree all-pole Chebyshev filter

(Figure 2.6) with the equivalent 6th-degree Chained functions, built with Chebyshev

polynomials of lower degree: 3rd and 2nd degree, multiplicity 2 and 3 respectively

(Figures 2.7 and 2.8). It is clearly appreciated that despite all filters being of degree

6, the number of reflection zeros corresponds to that of the seed function , with

different multiplicity. Figure 2.9 shows the different rejection performances. As ex-

pected, seed functions of lower degree present worse out of band rejection.

When designing lowpass filters, it is not usually required that the entire pass

band presents the same level of Return Loss, since the range of frequencies that will

actually be used is only a fraction of the passband. Knowing this, and depending

on the bandwidth required, we can design a Chained filter with a higher return loss

than the specifications allows (which translates into better rejection), as long as

one of the zeros falls on the desired range of frequencies. Doing this we can design

a filter that presents better rejection performance than a Chebyshev or Zolotarev
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Figure 2.7: Chained function: 3rd-degree seed function, multiplicity 2
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Figure 2.8: Chained function: 2nd-degree seed function, multiplicity 3
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Figure 2.9: Chained functions rejection performance

filter. Examples of this concept can be found in chapter 4.
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Chapter 3
Synthesis of the Distributed Low Pass

Filter Prototype Network

The polynomials obtained in the previous chapter will be used here to synthe-

size a distributed LPF prototype circuit, which can then be realized in rectangular

waveguide, coaxial transmission-line, or planar (TEM) technology. The different

steps in the realization of the final lowpass filter, automated by the software de-

veloped, are explained in detail. We will review the synthesis of the the Stepped

Impedance and the Tapered-Corrugated LPF prototype networks. These structures

can support only certain types of filter functions [4]:

Stepped Impedance

� All-pole functions (no transmission zeros)

� Even or odd degree functions

Tapered Corrugated

� Only odd-degree polynomials can be realized

� One pair of half-zeros necessary in the transfer polynomials

� Chebyshev functions of the second kind with a half zero pair

41
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� Zolotarev functions, also with a half-zero pair

For the stepped impedance filters, all-pole Chebyshev functions of the first kind

or Zolotarev functions are most suitable (including Chained versions), whereas for

the tapered-corrugated filters, Chebyshev polynomials of the second kind with one

pair of half-zeros will be used, due to the prototype circuit presenting a half-zero pair.

First, the transmission line elements that go will go into the lowpass prototype

network are examined and explained. Then, we study the transforms that are used in

the synthesis of the Stepped Impedance lowpass filter, deduce the transfer polynomi-

als that model this structure, and match them with the polynomials corresponding

to the filtering function, obtaining the values of the network elements that give the

desired frequency response. Finally, a similar procedure is applied to the tapered

corrugated lowpass prototype. Most of the theory explained here can be found in

[4].

3.1 Commensurate-Line Building Elements

The commensurate-line element is an essential component in the realization of

microwave filters. These are short-lengths transmission lines, all of the same electri-

cal length θc. With these elements, the distributed equivalents of lumped capacitors

and inductors may be created. Commensurate elements have the same sign and

value as those of their lumped equivalents, but their frequency dependance varies as

t = j tan θ instead of s = jω, where θ = ωl
vp

= 2πl
λ

= βl is the electrical length of the

element at frequency ω, l is the physical length of the commensurate line, and vp is

the velocity of propagation in the transmission-line.

Assuming that vp is constant at all frequencies, θ0 = ω0l/vp, where θ0 is the

electrical length at a reference frequency ω0. This yields θ = (ω/ω0) · θ0, the fre-

quency variable θ, in terms of ω. The transform t = j · tan θ is known as Richard’s
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transform, and is used extensively as the frequency variable in commensurate-line

networks.

A given lumped element and its commensurate-line equivalent have the same

value of impedance or admittance at the frequency fc at which the length of line is

θc radians, but as the frequency moves away from fc the values start to differ. The

difference is a very important one, as the lumped element’s reactance changes mono-

tonically with frequency, whereas the distributed component’s reactance is cyclic,

repeating every π radians. The equivalence between these Commensurate-Line el-

ements and the lumped counterparts can be easily proved if we take the known

expression of the input impedance of a transmission line of characteristic impedance

Z0 ended in an impedance ZL:

Zin = Z0 ·
ZL + jZ0 tan θ

Z0 + jZL tan θ
(3.1)

If we assume a short-circuited stub, ZL = 0

Zin = Z0 ·
jZ0 tan θ

Z0

= jZ0 tan θ = tZ0 (3.2)

which has the same form as the impedance of a series inductor Z = jωL, with a

different frequency variation (repeating every π radians), as mentioned before.

Now, if we assume an open-circuited stub, ZL =∞

Zin = Z0 ·
ZL

jZL tan θ
= −jZ0 ·

1

tan θ

Yin = jY0 tan θ = tY0 (3.3)

which has the same form as the admittance of a shunt capacitor.
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Z0

Y0

C

L Z = sL

Y = sC Y = tY0

t = jtanθ

Z = tZ0

t = jtanθ

θ

Figure 3.1: Commensurate-line equivalent for lumped inductor and lumped capac-

itor

In principle, then, the inductors and capacitors of a lumped-element filter design

can be replaced with short-circuited and open-circuited stubs.

From now on, we will refer to the generic transmission line element of length

θ and characteristic impedance Z with the term unit element (UE). Its associated

[ABCD] matrix is shown in (3.4)

UE

θ, Zu

Figure 3.2: Unit element

A B

C D

 =

 cos θ jZu sin θ

j sin θ/Zu cos θ

 (3.4)

A B

C D

 =
1√

(1− t2)
·

 1 Zut

t/Zu 1

 (3.5)
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Equation (3.5) is immediately obtained by using the identities cos θ = 1/
√

1 + tan2 θ

and sin θ = tan θ/
√

1 + tan2 θ and then applying t = j tan θ.

3.2 Synthesis of the Distributed Stepped Impedance

lowpass filter

The stepped-impedance filter is an approximation to the low-pass filter using the

commensurate line elements seen in the previous section (open and short circuited

stubs). This filter is realized by cascading transmission lines of the same electrical

length θc (a prescribed value) and alternately very high and very low characteris-

tic impedance. When the synthesis is complete, this cascade of transmission lines

is transformed into a series of impedance inverters connected by lines of arbitrary

impedance. In chapter 4 we will realize this network using multiple topologies.

Therefore, the objective of this section is to demonstrate that the polynomi-

als that represent the transfer and reflection characteristics of such a cascade of

commensurate elements of different impedances, are in the same form as the poly-

nomials that represent certain filtering functions, transformed by the ω-plane to

θ-plane mapping function

ω =
sin θ

sin θc
= a sin θ (3.6)

where θc is the commensurate-line length and a = 1
sin θc

.

The effect of applying this mapping function is shown in Figure 3.4, where the

6th-degree Chebyshev function of Figure 3.3 has been transformed to the θ plane

using θc = 22◦ and θc = 30◦.
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Figure 3.3: Transfer and reflection response of a 6th-degree Chebyshev filter (nor-

malized frequency)
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Figure 3.4: Mapping of an all-pole transfer and reflection function to the θ plane.

θc = 22◦ (left) and θc = 30◦ (right)

It is seen that as θ increases from zero, the corresponding frequency variable

in the ω plane increases, reaching band edge at ω = ±1 when θ = θc. The range

θc ≤ θ ≤ 90◦ maps into the range 1 ≤ ω ≤ a, with a = 1
sin θc

. As θ increases beyond

90◦ towards 180◦, ω retraces its path back to zero and then on to −a as θ reaches

270◦. Therefore, it is seen that the repeating pattern in the θ plane corresponds to
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the portion of the ω-plane characteristic between ω = ±a. In the next section we

will detail the process necessary to obtain the polynomials in the t plane.

3.2.1 Mapping the Transfer Function S21 from the ω Plane

to the θ Plane

We will use the transformation (3.6) as the first step towards finding the expresion

of S21 in the θ plane. Using the identity sin θ = tan θ√
1+tan2 θ

:

ω =
a tan θ√

1 + tan2 θ
(3.7)

When we examined the commensurate-line elements in a previous section, we

saw that the frequency dependence of these components varied as t = j tan θ. Using

this in the previous equation, it follows that

s = jω =
at√

1− t2
(3.8)

t =
±s√
a2 + s2

=
±s sin θc√

1 + (s sin θc)2
(3.9)

Now we can finally determine the expression of S21 in the t variable. As seen

in the previous chapter, the s-plane all-pole transfer function has the form S21(s) =

1
εE(s)

. By changing the frequency variable from s to t we obtain:

S21(t) =
1

εE( at√
1−t2 )

=

[√
1− t2

]N
εtE(t)

(3.10)

Where E(t) is another Nth-degree polynomial in the variable t = j tan θ. The

numerator
[√

1− t2
]N

appears as a result of extracting this term from the denomi-

nator polynomial E( at√
1−t2 ) after the variable change, and the constant a is absorbed
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into εt. To calculate E(t) we will transform the N s-plane singularities of E(s) to the

t plane using (3.9), allowing to build the E(t) immediately after. The normalizing

constant is found by evaluating it at θ = θc, since, as explained in a previous section,

this point corresponds to ω = 1, where the return loss level is known (defined by

the filter specifications). The polynomial F (t) is found the same way.

Having obtained the general expression for S21(t), we will analyze the Stepped

Impedance prototype circuit, to prove that it can be used to realize this transfer

function. As seen in (3.5), the [ABCD] matrix for a single UE is:

A B

C D

 =
1√

(1− t2)
·

 1 Zt

t/Z 1

 (3.11)

The Stepped Impedance circuit will consist of N UE. If we cascade two UE of

Impedances Z1 and Z2 (multiply their [ABCD] matrices), we obtain:

A B

C D

 =

[
1√

(1− t2)

]2
·

 1 + t2 · Z1/Z2 t · (Z1 + Z2)

t · (1/Z2 + 1/Z2) 1 + t2 · Z2/Z1


=

[
1√

(1− t2)

]2
·

A2(t) B1(t)

C1(t) D2(t)

 (3.12)

Where the subscripts 1 and 2 indicate the order of the polynomial. For N lines:

A B

C D

 =

[
1√

(1− t2)

]2
·

 AN(t) BN−1(t)

CN−1(t) DN(t)

 (for N even)

=

[
1√

(1− t2)

]2
·

AN−1(t) BN(t)

CN(t) DN−1(t)

 (for N odd)

(3.13)

Note that A(t) and D(t) are even polynomials, and B(t) and C(t) are odd poly-

nomials for any value of N . We can immediately obtain the S21(t) expression from
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this matrix, using a known relation between [ABCD] and S parameters

S21 =
2

A+B/Z0 + CZ0 +D
(3.14)

In our case we take Z0, the reference impedance for the scattering parameters,

as unity, for the convenience of the synthesis method. Such unity impedance corre-

sponds to the source impedance. Thus, we obtain

S21(t) =
2[1− t2]N/2

A(t) +B(t) + C(t) +D(t)
=

[1− t2]N/2

εtE(t)

=

√
P (t)/εt
E(t)

(3.15)

where εt includes all the constants. As we intended to prove, this equation has

the same form as equation (3.10). It is clear that P (t), the numerator polynomial of

S21 in the t plane, is of degree N , with N transmission half-zeros at t = ±1, which

means that the function is fully canonical in this plane, even though P (ω) = 1, due

to the fact that there were no transmission zeros in the real frequency plane. P (t)

being fully canonical means that εRt is non-unity, like it would happen in the ω

plane. It is also interesting to point out that due to the form that P (t) takes, it is

impossible to calculate for odd-degree functions, which is actually not a problem for

the synthesis procedure.

Due to εRt being non-unity, S11(t) = F (t)/εRt

E(t)
. Using the same approach as with

S21, the expression of S11(t) in terms of [ABCD] polynomials is

S11 =
A+B/Z0 − CZ0 −D
A+B/Z0 + CZ0 +D

(3.16)

Again, by taking Z0 as unity, we can establish:
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S11(t) =
A(t) +B(t)− C(t)−D(t)

A(t) +B(t) + C(t) +D(t)
=
F (t)/εRt
E(t)

(3.17)

This equation would suffice to build the [ABCD] polynomials in terms of F (t)

and E(t), knowing that A(t) and D(t) are even polynomials, and B(t) and C(t) are

odd polynomials (see equation (3.13)).

The constants εt and εRt are obtained using the same principle as in the ω plane,

evaluating them at a frequency point where S21(t) and S11(t) are known, such as

the cutoff frequency. The cutoff frequency, as seen in previous sections, corresponds

to θ = θc, and using t = j tan θ, we obtain tc, the point in the t plane at which the

transfer and reflection functions are known:

εt =
[1− t2]N/2

(
√

1− 10−RL/10) · |E(t)|

∣∣∣∣∣
t=tc

(3.18)

and

εRt =
εt√
ε2t − 1

(3.19)

3.2.2 Network Synthesis

We are now ready to extract, one by one, the unit elements that will form the

Stepped Impedance filter, given the E(t) and F (t) polynomials obtained for a certain

filter specification, using a Chebyshev or Zolotarev function, or a Chained function

based on either of the two. It can be easily proved that the impedance Zin looking

at the input of a circuit described by an [ABCD] matrix, loaded with an impedance

ZL, such as our filter, is

Zin =
A(t)ZL +B(t)

C(t)ZL +D(t)
=

1 + S11(t)

1− S11(t)
=
E(t) + F (t)/εRt
E(t)− F (t)/εRt

(3.20)
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where ZL is the load impedance terminating the output of the network, and, as

mentioned earlier, it is assumed that the source impedance ZS = 1. In the synthesis

procedure we will be evaluating A(t)/C(t) or B(t)/D(t) ratios, so it becomes unim-

portant whether ZL is included in the previous equation, since the ratios will not

change.

Knowing that A(t) and D(t) are even polynomials, and B(t) and C(t) are odd

polynomials (see equation (3.13)), and looking at equation (3.20), it follows that the

[ABCD] polynomials are constructed as follows:

A(t) = (e0 + f0) + (e2 + f2)t
2 + (e4 + f4)t

4 + ...

B(t) = (e1 + f1)t+ (e3 + f3)t
3 + (e5 + f5)t

5 + ...

C(t) = (e1 − f1)t+ (e3 − f3)t3 + (e5 − f5)t5 + ...

D(t) = (e0 − f0) + (e2 − f2)t2 + (e4 − f4)t4 + ... (3.21)

where ei and fi are the coefficients of the E(t) and F (t)/εRt polynomials, respec-

tively.

We are finally in a position to start extracting the impedances of the UEs that

will form the LPF. First, the overall [ABCD] matrix is decomposed into the first

UE and a remainder matrix [ABCD]′:

εt
[1− t2]N/2

·

A(t) B(t)

C(t) D(t)

 =
1

(1− t2)N/2
·

 1 Z1t

t/Z1 1

 εt
[1− t2](N−1)/2

A′(t) B′(t)

C ′(t) D′(t)


(3.22)

In the first step, calculating the open-circuit impedance z11 or the short-circuit

admittance y11 will yield the impedance of the first line element. Using the known

[ABCD] matrix expression
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z11 =
A

C
=
B

D
(3.23)

We can obtain the impedance of the first transmission line Z1 by evaluating in

t = 1 (we can use A/C or B/D).

Z1 =
A(t)

C(t)

∣∣∣∣
t=1

=
B(t)

D(t)

∣∣∣∣
t=1

(3.24)

To complete the first iteration we need to calculate the remaining [ABCD]′

matrix for the next iteration:

εt
[1− t2](N−1)/2

·

A′(t) B′(t)

C ′(t) D′(t)

 =
1

(1− t2)1/2
·

 1 −Z1t

−t/Z1 1

 εt
[1− t2]N/2

A(t) B(t)

C(t) D(t)


=

εt
[1− t2](N+1)/2

·

A(t)− tZ1C(t) B(t)− tZ1D(t)

C(t)− tA(t)/Z1 D(t)− tB(t)/Z1


(3.25)

For the right-hand expression to have the same form as the left-hand side it is

necessary to divide top and bottom by (1 − t2), in order for the denominator to

change from [1 − t2](N+1)/2 to [1 − t2](N−1)/2, also leaving the polynomials A′(t),

B′(t), C ′(t) and D′(t) to be one degree less than the original [ABCD] polynomials.

With this, the first step is complete, and the process is repeated until all N of the

UEs are extracted. The Load termination is calculated by recognizing that at zero

frequency, the cascade of UEs is effectively transparent, and Zin = ZL. Thus, we

evaluate (3.20) at t = 0

Zin|t=0 =
e0 + f0
e0 − f0

= ZL (3.26)

It can be shown that the UE values for odd-degree networks are equal about the

center of the network, whereas those of even-degree networks are antimetric.
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Having extracted the N unit elements of length θc and impedance Zi, it would

be possible to realize the LPF in waveguide, coaxial or planar structure as a series

of transmission lines, each with impedance Zi. In the case of rectangular waveguide

realization, this means that the waveguide height (b) varies in proportion to the

value of Zi, as seen in the following expression:

Z =
√
µ/ε ·

2 · b
a√

1− ( λ
2a

)2
(3.27)

Therefore, with b normalized to the incoming waveguide dimension, the heights

of the different waveguide sections could be immediately calculated. However, this

means abrupt impedance changes, and performance can be severely degraded from

the ideal. Better results are obtained if redundant impedance inverters are intro-

duced at the junctions by using the dual-network theorem on alternate UEs, as seen

in Figure 3.5. In waveguide technology, these inverters are usually realized with

capacitive irises.

Z1

θc

Z2

θc

Z3

θc

Z4

θc

...Z0=1

θ = 90º

K'01=1
Z0=1

θ = 90º θ = 90º θ = 90º
...Z4'

θc

Z2'

θc

Z1'= 1/Z1

θc

K'12=1 K'23=1 K'34=1Z3'= 1/Z3

Figure 3.5: Introduction of Impedance Inverters in the Stepped Impedance LPF

Impedances can be given a prescribed value, if the inverters are scaled accordingly

to keep the coupling coefficient ki,i+1 constant:

ki,i+1 =
K ′i,i+1√
Z ′iZ

′
i,i+1

=
K ′′i,i+1√
Z ′′i Z

′′
i,i+1

(3.28)
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A common practice is to set all Z ′′i to one (same impedance as the source trans-

mission line). In this case, the impedance values of the inverters are given by

K ′′i,i+1 =
1√

Z ′i · Z ′i+1

, i=0,1,2, ..., N (3.29)

where Z0 = ZS and ZN+1 = ZL. The inverters now have nonunity values,

and the network becomes symmetric in all cases (it was antimetric for even degree

filters). These inverters will be realized as capacitive conducting posts in rectangular

waveguide structure in the next chapter.

θ = 90º

K''01
Z0=1

K''12

θ = 90º

K''23

θ = 90º

K''34

θ = 90º
...Z''=1

Z''=1

θc

Z''=1

θc

Z''=1

θc

Figure 3.6: Stepped Impedance filter using non-unity Impedance Inverters and

transmission lines of constant characteristic impedance

To illustrate the design procedure, we show the computed values of a sixth order

Chebyshev filter, with a return loss of 26 dB and cutoff angle of θc = 30◦. The first

step is the synthesis of the Chebyshev polynomials in the s plane, to then transform

them to the t plane using the techniques explained in this chapter. The singularities

values in the s and t plane are listed in Table 3.1.

s plane t plane

Roots of F (s) Roots of E(s) Roots of F (t) Roots of E(t)

±0.9659j −0.1633± 1.1421j ±0.5516j −0.1451± 0.6807j

±0.7071j −0.4461± 0.8361j ±0.3780j −0.2808± 0.4148j

±0.2588j −0.6094± 0.3060j ±0.1305j −0.3002± 0.1348j

ε = 1.8023 εR = 1 εt = 76.0993 εRt = 1.0001

Table 3.1: Poles and zeros of a sixth-degree Chebyshev function in the s and t

planes
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With these values, we form the [ABCD] polynomials and apply the element

extraction to obtain Zi. Then, we introduce the impedance inverters and scale the

circuit accordingly. Results are shown in Table 3.2

UE cascade (no inverters) After introducing Inverters (Zi = 1)

Z1 1.7616 K ′′S1 0.7534

Z2 0.4247 K ′′12 0.4910

Z3 3.0592 K ′′23 0.3726

Z4 0.3658 K ′′34 0.3458

Z5 2.6351 K ′′45 0.3726

Z6 0.6353 K ′′56 0.4910

ZL 1.1192 K ′′6L 0.7534

Table 3.2: Element values of sixth-degree Stepped Impedance Lowpass Filter

In order to realize this filter we would need a structure that presents the element

values of Table 3.2 at the desired cut-off frequency, using the Hi-Low impedance

cascade or the inverter based implementation. The latter will be covered in chap-

ter 4, using various topologies to implement the impedance inverters in waveguide

technology.

3.3 Synthesis of Tapered-Corrugated lowpass fil-

ter.

This type of filter, like the stepped impedance circuit seen in the previous section,

is composed of a series of UEs, but is different in that they appear in pairs, each

pair having the same characteristic impedance Zi, and at the junction of each pair,

a distributed capacitor is located. This structure is shown in Figure 3.7. At the

frequency where the length θc of the distributed capacitors becomes 90◦ the open

circuits at the ends of the UEs transform to short circuits seen from the main line,
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which translates to a transmission zero at this frequency.

Z1 θc Z1 θc

Ys1 Ys2

Z1 θc Z1 θc Y2 = jYs2tanθY1 = jYs1tanθ

θc

Figure 3.7: Basic element of the lumped/distributed filter

Similarly to what was done with the stepped impedance circuit, it can be shown

that the circuit show in Figure 3.7 has the same form of the transfer function as

a Chebyshev or Zolotarev function of the second type, with a pair of transmission

half-zeros at a frequency of ω = 1
sin θc

. Again, θc is the chosen cutoff frequency for

the distributed prototype, and is transformed with the same mapping formula as

the one for the stepped impedance LPF.

The transfer function for the Chebyshev function of the second kind or Zolotarev

function with a single half-zero pair, necessary due to the structure itself, has the

following form:

S21(ω) =

√
ω2 − a2
εE(ω)

(3.30)

applying the transformations seen in the previous section, we obtain

S21(θ) =

√
a2 − a2 sin2 θ

εtE(a sin θ)
(3.31)
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where the constants are consolidated into εt. The meaning of the transformation

is exactly the same as in the stepped impedance filter. In this case, a represents the

position of the half-zero pair in the ω plane, which maps to 90◦ in the θ plane.

Figure 3.8 shows an example of the transformation for an eleventh degree Cheby-

shev function of the second kind with θc = 28, meaning the filter will present a

transmission half zero pair at ω = 1
sin θc

= ±2.1301. It is clearly appreciated that

this transmission zero maps to θ = 90◦.
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Figure 3.8: Eleventh-degree Chebyshev function of the second kind in the ω and

θ plane.

Applying the identities sin θ = tan θ/
√

1 + tan2 θ and cos θ = 1/
√
/
√

1 + tan2 θ,

and the transformation t = j tan θ, we obtain

S21(t) =
1√

1− t2
· 1

εtE(−jta/
√

1− t2)
=

[√
1− t2

]N−1
ε′tE(t)

(3.32)

Again, similarly to what was done in the Stepped Impedance case, we must

find the expression for S21(t) for the structure shown in Figure 3.7, extended to

an arbitrary degree N , in order to proceed with the synthesis. First, we calcu-

late the [ABCD] matrix of the double UE, each of length θc, squaring the matrix
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corresponding to a single UE (equation (3.5))

A B

C D

 =

[
1√

(1− t2)

]2
·

 1 Zut

t/Zu 1

2

=
1

1− t2
·

1 + t2 2Z1t

2t
Z1

1 + t2

 (3.33)

Now we pre- and postmultiply by the shunt capacitors (see Figure 3.7)

1

1− t2
·

 1 0

YS1t 1

 ·
1 + t2 2Z1t

2t
Z1

1 + t2

 ·
 1 0

YS1t 1

 =

A2(t) B1(t)

C3(t) D2(t)

 (3.34)

where the subscripts represent the degree of the polynomials. This matrix cor-

responds to a third degree lowpass filter based on the circuit depicted in Figure

3.7

For a filter of degree N , the [ABCD] matrix of such structure becomes:

[ABCD] =
1

[1− t2](N−1)/2
·

AN−1(t) BN−2(t)

CN(t) DN−1(t)

 (3.35)

and, using the relation (3.14)

S21(t) =
2 [1− t2](N−1)/2

AN−1(t) +BN−2(t) + CN(t) +DN−1(t)
=

[1− t2](N−1)/2

εtEN(t)
(3.36)

which, as intended, has the same form as (3.32).

For the design of this type of filter, we have shown that an odd-degree function

with a half-zero pair is required. As a consequence of this, the numerator of S21(ω)

takes the form P (ω) =
√
ω2 − a2 and the polynomial P (ω) cannot be formed using

the alternating pole method. However, (3.32) shows that in the t plane, the numera-

tor of S21(t) is P (t) = [1− t2](N−1)/2, which, because N is an odd number, represents
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a polynomial in the variable t and thus, we can easily find the polynomials required,

as follows:

1. With the desired return loss equiripple level and lowpass cutoff angle θc, which

will determine the width of the reject band before the second harmonic ap-

pears, form the polynomial F (ω) using the method presented in Section 2.4 for

the Chebyshev function of the second kind with a half-zero pair at the position

a = 1/ sin θc.

2. Transform the roots of the F (ω) polynomial to the t plane to obtain F (t)

3. Form the polynomial P (t) = [1− t2](N−1)/2.

4. Calculate the constant εt, by evaluation the filtering function at a point where

the return loss is known, like the cutoff frequency, where t = tc = j tan θc

εt =
1

|F (tc)|
· [1− t2c ](N−1)/2√

10RL/10 − 1

5. Use the Alternating Pole Method in the t plane. To do this we form the

polynomial E(t) = P (t) ± εtF (t) (εRt = 1 since the function is not fully

canonical), root it, and reflect any singularities that are in the right half-plane

back to the left half-plane to preserve the Hurwitz condition. These will be

the roots of the polynomial E(t)

At this point we can build the [ABCD] polynomials related to the E(t) and F (t)

polynomials, and synthesize the values of the circuit elements using a very similar

method to the one used for the stepped impedance filter.

A(t) = (e0 − f0) + (e2 − f2)t2 + (e4 − f4)t4 + ...

B(t) = (e1 − f1)t+ (e3 − f3)t3 + (e5 − f5)t5 + ...

C(t) = (e1 + f1)t+ (e3 + f3)t
3 + (e5 + f5)t

5 + ...

D(t) = (e0 + f0) + (e2 + f2)t
2 + (e4 + f4)t

4 + ... (3.37)
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where ei and fi are the coefficients of the E(t) and F (t) polynomials.

3.3.1 Network Synthesis

The first element to be extracted is the capacitor YS1, to prepare the network

for the extraction of the 2θc unit element of characteristic impedance Z1. Therefore,

as the first step, we assume the overall network to be composed of a capacitor in

cascade with the remainder matrix [ABCD](1):

1

[1− t2](N−1)/2
·

A(t) B(t)

C(t) D(t)

 =

 1 0

tYS1 1

 1

[1− t2](N−1)/2

A(1) B(1)

C(1) D(1)


=

1

[1− t2](N−1)/2
·

 A(1) B(1)

tYS1A
(1) + C(1) tYS1B

(1) +D(1)


(3.38)

Using known [ABCD] matrix relations and taking the right hand side of (3.38),

the short-circuit admittance y11 looking into this network is

y11 =
D(t)

B(t)
= tYS1 +

D(1)

B(1)
(3.39)

To evaluate YS1 we have to make use of the fact that, for the network consisting

of a double UE as the leading component, the differential of its input admittance

with respect to t is zero at t = ±1. This can be proved by differentiating the input

admittance y11R of the network corresponding to [ABCD](1), composed of the first

double UE and the remainder network (which we will denote as [ABCD](2).
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[ABCD](1) =
1

[1− t2](N−1)/2

A(1) B(1)

C(1) D(1)

 =
1

(1− t2)
·

1 + t2 2tZ1

2t
Z1

1 + t2


· 1

[1− t2](N−3)/2
·

A(2) B(2)

C(2) D(2)


=

1

[1− t2](N−1)/2
·

(1 + t2)A(2) + 2tC(2)Z1 (1 + t2)B(2) + 2tD(2)Z1

(1 + t2)C(2) + 2tA(2)

Z1
(1 + t2)D(2) + 2tB(2)

Z1


(3.40)

Therefore, the input admittance of the network corresponding to [ABCD](1) can

be expressed as

y11R =
D(1)

B(1)
=

(1 + t2)D(2) + 2tB(2)/Z1

(1 + t2)B(2) + 2tD(2)Z1

(3.41)

It can be proved that the differential of (3.41) evaluated at t = 1 is always zero,

regardless of the form of the [ABCD](2) polynomials.

Going back to the input admittance of the overall network y11

y′11 =
dy11
dt

=

[
D(t)

B(t)

]′
= YS1 +

[
D(1)

B(1)

]′
(3.42)

y′11
t=±1

=

[
D(t)

B(t)

]′
t=±1

= YS1 (3.43)

having obtained the value of the first admittance YS1, and following equation

(3.38), we form the remaining [ABCD](1) matrix
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[ABCD](1) =
1

[1− t2](N−1)/2

A(1) B(1)

C(1) D(1)

 =

 1 0

−tYs 1

 · 1

[1− t2](N−1)/2
·

A B

C D


=

1

[1− t2](N−1)/2
·

 A B

C − tYSA D − tYSB


(3.44)

The next step is extracting the first double UE. This can be done directly after

knowing the value of YS1, by simply evaluating the admittance of the remaining

network y11R at t = 1

y11R|t=1 =

[
D(1)

B(1)

]′∣∣∣∣∣
t=1

=
1

Z1

(3.45)

The double UE of impedance Z1 must now be extracted from the matrix [ABCD](1),

to form the remaining matrix [ABCD](2), as follows

[ABCD](1) =
1

[1− t2](N−1)/2

A(1) B(1)

C(1) D(1)

 =
1

(1− t2)
·

1 + t2 2tZ1

2t
Z1

1 + t2


· 1

[1− t2](N−3)/2
·

A(2) B(2)

C(2) D(2)

 (3.46)

joining the matrix corresponding to the double UE with the [ABCD](1) matrix,

we obtain

[ABCD](2) =
1

(1− t2)
·

1 + t2 −2Z1t

−2t
Z1

1 + t2

 · 1

[1− t2](N−1)/2
·

A(1) B(1)

C(1) D(1)


=

1

[1− t2](N+1)/2
·

(1 + t2)A(1) − 2Z1tC
(1) (1 + t2)B(1) +− 2t

Z1
D(1)

− 2t
Z1
A(1) + (1 + t2)C(1) − 2t

Z1
B + (1 + t2)D(1)


(3.47)
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s plane t plane

Roots of F (s) Roots of F (t) Roots of E(t)

±0.9901j ±0.5250j −0.0289± 0.5532j

±0.9115j ±0.4734j −0.0790± 0.4950j

±0.7594j ±0.3816j −0.1124± 0.3945j

±0.5449j ±0.2646j −0.1301± 0.2709j

±0.2845j ±0.1348j −0.1378± 0.1371j

0 0 −0.1398

Table 3.3: Poles and zeros of a eleventh degree Chebyshev function of the second

kind in the s and t planes

Shunt Capacitors UE pairs

i YSi i Zi

1, 11 1.5120 2, 10 1.6340

3, 9 3.0119 4, 8 1.8382

5, 7 3.2919 6 1.8707

Table 3.4: Element values of eleventh degree Corrugated Lowpass Filter

finally, we have to divide and multiply the right-hand side term by (1 − t2)2 to

obtain the correct degree (N−3)/2 for the denominator polynomial, completing the

first iteration. The next iteration now begins by extracting the admittance YS2 from

[ABCD](2). The process is repeated until all elements are obtained. To illustrate the

design procedure, we synthesize the element values for a eleventh degree filter, with

a prescribed return loss of 22 dB and cutoff angle θc = 28◦. This means that the

filter will present a transmission half zero at ω = ±2.1301 (normalized frequency).

With these values, we form the [ABCD] polynomials and apply the element

extraction to obtain YSi (admittance of shunt capacitors) and Zi (characteristic

impedance of the transmission lines). Results are shown in Table 3.4

Although chapter 4 is focused on the realization of the Stepped Impedance pro-
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totype using alternative topologies, I also show some examples of the traditional

Corrugated filter implementing the prototype network seen in this section, includ-

ing small modifications to the structure.



Chapter 4
Realization of the Lowpass Filter Using

Alternative Topologies

In the preceding chapters, we have studied how to synthesize the prototype net-

work for the distributed Stepped Impedance LPF and the Tapered Corrugated LPF,

for any given specification and using different types of filtering functions. In this

chapter we explore the realization of the Stepped Impedance filter in waveguide tech-

nology using one or multiple conducting posts as impedance inverters. This type

of filter would normally be realized using rectangular capacitive irises in the waveg-

uide, which can lead to multipactor breakdown due to the small distances between

parallel plates and the strong EM fields in the area . One of the approaches that

can be taken to reduce the multipactor breakdown power thresholds is to introduce

modifications in such waveguide filter geometry. For these reasons, we have decided

to explore the utilization of curved surfaces such as circularly or elliptically shaped

posts to realize the microwave filter.

I have used the commercial package HFSS for the design and verification of

these filters, controlling its operation (3D design, analyses and storing of results) via

scripts generated by MATLAB functions. These functions are sequentially called

with the required parameters to create a macro file that can be run by HFSS. When

65
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the script is complete, MATLAB starts HFSS using this file. As a starting point,

we have made use of the MATLAB API available at [6], and have expanded it with

additional functions following the same structure.

Scripting allows the automation of the design process, making it much faster

and less prone to errors. In our particular case, we will be able to build Cheby-

shev, Zolotarev or Chained function filters of any specification, using any topology

to implement each inverter, just by clicking a button of the GUI provided, running

one of the scripts already programmed or writing a few lines of MATLAB code.

Furthermore, as we will show later in this chapter, we are able to automate the

interaction between MATLAB and HFSS, where we use the former to analyze the

results produced by the latter and modify the design parameters in an iterative

manner, until the prescribed convergence criteria are met. Since the generation of

the HFSS scripts is done by MATLAB functions, this can be achieved by a simple

cyclic routine.

I will show multiple topologies able to realize the stepped impedance LPF net-

work with impedance inverters presented in the previous chapter, focusing mainly

on the utilization of conducting posts along a waveguide of constant dimensions. At

the end of the chapter, additional topologies are briefly presented and described,

and we give an example of design. All filters have been designed in an automatic

fashion using the software developed, and synthesizing new filters would only require

a different set of the input parameters.

4.1 Design Technique

The design technique utilized for all filters is explained here, applied to the topol-

ogy based on circular posts placed parallel to the wide dimension of a waveguide.

To realize the network of 4.1, the whole circuit can be sliced in N + 1 segments
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consisting of an impedance inverter connected to transmission lines of length θc/2,

as shown in figure 4.2. If we characterize this small circuit, and manage to create

an equivalent physical structure for each of the N + 1 segments, the final filter can

be realized by simply cascading them.

θ = 90º

K''01
Z0=1

K''12

θ = 90º

K''23

θ = 90º

K''34

θ = 90º
...Z''=1

Z''=1

θc

Z''=1

θc

Z''=1

θc

Figure 4.1: Low pass filter network

Ki

θ = 90º

Z0

θc/2 θc/2

Z0

Figure 4.2: Circuit Segment: Impedance inverter with input and output transmis-

sion lines

Each of this segments will be realized using a waveguide section of the appropri-

ate length, containing one or more conducting posts (Figure 4.3).

In order to correctly model each of these segments using conducting posts (or

any other arbitrary shape), we will work with the scattering parameters, computed

using HFSS. We can work with S11 or S21 indistinctly (there is no need to use both).

The design is divided in two steps:

1. Finding the dimensions of the post that give the same |S11| and |S21| as the

circuit in Figure 4.2

2. Adjusting the position of the ports (L in 4.3) for the posts obtained in step 1

until the phase conditions are the same as those of Figure 4.2
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Ri

b

L

Figure 4.3: Circuit Segment realized using a conducting post

These two conditions have to be computed at the prescribed cutoff frequency (in

the prototype network of Figure 4.1 this frequency was 1). The fact that the ideal

network was obtained with unity impedance transmission lines does not alter the

value of the scattering parameters we have to adjust, as the assumption of unity

impedance is done only for clarity purposes and does not imply a loss of generality,

since the circuit can be scaled at any time to a different impedance, yielding the

same scattering parameters.

Note that the position of the ports does not affect the value of |S21| and |S11|,

so the length of the waveguide section in step 1 is arbitrary. In step 2, the analysis

has to be done using the posts given by step 1, since the dimensions of the post will

affect the phase of the travelling wave. Therefore, for each inverter, step 1 has to be

done before step 2.

The expression of |S11| and |S21| for each segment can be obtained knowing Ki

and the transmission matrix of an impedance inverter

[ABCD] =

 0 jK

j 1
K

0

 (4.1)
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If we analyze the circuit consisting of an impedance inverter connected to trans-

mission lines of characteristic impedance Z0 (Figure 4.2), using (4.1), it can be

proved that

|S11| =
∣∣∣∣(K/Z0)

2 − 1

(K/Z0)2 + 1

∣∣∣∣ (4.2)

|S21| =
2Z0

K + 1
K
Z2

0

(4.3)

Finding the phase conditions is immediate, knowing that for the capacitive

impedance inverter ∠S11 = 180◦ and ∠S21 = −90◦

∠S11 = −θc/2 + 180◦ − θc/2 = +180◦ − θc (4.4)

∠S21 = −θc/2− 90◦ − θc/2 = −90◦ − θc (4.5)

Assuming we utilize S21 (again, the results obtained would be identical using

the parameter S11), the approach taken to complete these steps and build the LPF

using HFSS is as follows:

1. Create a design consisting of a waveguide section of arbitrary length, contain-

ing one or more conducting posts as shown in Figure 4.3

2. For the desired cutoff frequency, run a parametric analysis varying the radius

of the post to obtain |S21| as a function of R.

3. For each inverter Ki, calculate |S21i |, and using the data from step 2, interpo-

late Ri.

4. For each Ri run a parametric analysis varying L (length of the WG section) in

order to obtain ∠S21 as a function of L, or obtain the phase for an arbitrary,

small enough value of L, and analytically calculate the remaining length using

well known waveguide equations.
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5. Using the data from step 4, interpolate L for each inverter, so that ∠S21 =

−90◦ − θc

6. Cascade all the sections, with their respective Ri and Li.

Having completed all steps, the design is finished and the structure can be ana-

lyzed to check the frequency response. The software developed automates this task,

generating the necessary scripts to build the HFSS designs, run the appropriate sim-

ulations and analyze the results. This is done using two MATLAB functions, one

for the inverters, to compute Ri and Li (we call this function twice, indicating what

parametric analysis to run) and one to build and simulate the filter with the values

obtained, in order to validate the design.

Some of the script-building functions, used to build the scripts used as input to

run HFSS, are:

� hfssCreateVariable(...)

� hfssBox(...)

� hfssEllipse(...)

� hfssSweepAlongVector(...)

� hfssAssignMaterial(...)

� hfssAssignWavePort(...)

� hfssAdd(...)

� hfssSubstract(...)

� hfssInsertSolution(...)

� hfssInsertParametric(...)

� hfssCreateReport(...)
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� hfssExecuteScript(...)

Before using these functions, the different Ki of the inverters must be synthesized

with the theory explained in chapters 2 and 3. In order to make the design of multiple

filters easy and immediate, even for someone unfamiliar with the software, we have

created a simple MATLAB GUI able to complete every step taking the following

input parameters:

� Type of filtering function: Chebyshev, Zolotarev, Chained.

� Prescribed Return Loss level in passband.

� Length of the transmission line elements θc

� Waveguide dimensions.

� Cutoff frequency.

� Number of posts used to implement each impedance inverter.

� Minor/Major axis ratio: Controls the shape of the posts (circular or elliptical

of varying eccentricity).

� Various HFSS parameters.

Due to the modular nature of the software involved in the design, this GUI could

be easily expanded to utilize arbitrary topologies, other filter functions, and different

prototype circuits such as the corrugated filter studied in the previous chapter.

4.2 Example of filter design

As a first introduction to how the software realizes the previously explained pro-

cedure, we will design step by step a lowpass filter with the following parameters
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Function type Chebyshev

Filter degree (N) 6

Prescribed Return Loss 25

θc 30◦

WG dimensions a = 47.55mm, b = 22.5mm (WR-187)

WG freq. range 3.95 to 5.85 GHz

Cutoff frequency 5.5 GHz

Table 4.1: Filter specification of the first filter designed
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Figure 4.4: Ideal transfer and reflection function of the filter designed

The Stepped Impedance synthesis (see chapter 3) yields the following values for

the inverters that implement this filter (7 inverters, connected by transmission lines

of length θc)
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K |S21| (dB)

K ′′S1 0.75344 −0.34354

K ′′12 0.49101 −2.0336

K ′′23 0.3726 −3.6837

K ′′34 0.34581 −4.1837

K ′′45 0.3726 −3.6837

K ′′56 0.49101 −2.0336

K ′′6L 0.75344 −0.34354

Table 4.2: Inverter values and associated |S21| for first filter designed

We will implement this filter using two circular posts per inverter. The steps

explained here are the same for every topology.

First, a HFSS design consisting of two circular post centered in a WG section

of arbitrary length is built, in order to calculate the relation between |S21| and the

radius of the posts (as mentioned earlier, the length of the WG section does not

affect |S21|). Figure 4.5 shows this design

Figure 4.5: Waveguide section containing two conducting posts
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Figure 4.6: Variation of |S21| with R (radius of posts)

After running a parametric sweep for R, we are able to interpolate the value of

R to realize each inverter, as shown in Figure 4.6. The points corresponding to the

desired levels of |S21| are shown in table 4.3.

Having computed the dimensions of the posts, we must accurately obtain, for

each inverter, the waveguide length that gives ∠S21 = −90◦ − θc = −120◦. This is

done by running a sweep on the length parameter for each of the previous values

of R (obviously only the first four need to be done, due to the symmetry of the

R1 2.5512

R2 3.8422

R3 4.3623

R4 4.477

R5 4.3623

R6 3.8422

R7 2.5512

Table 4.3: Radius values (mm) for each of the conducting posts pairs
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16 17 18 19 20 21 22 23
−145

−140

−135

−130

−125

−120

−115

−110

−105

−100

−95

Length of WG section (mm)

ph
as

e(
S

21
)

 

 
R = 2.5512 mm
R = 3.8422 mm
R = 4.3623 mm
R = 4.477 mm

Figure 4.7: Variation of ∠S21 with length of WG section for each value of R

network). As stated earlier, we could also calculate the phase for a single length value

and obtain the required length using theoretical waveguide propagation equations.

When taking this second approach, we need to be careful not to place the ports too

close to the posts, where propagation is not correctly modeled by the theoretical

equations. Since the parametric sweep only requires a few points (five to ten is more

than enough, and it is a very simple 3d structure), in all filter shown here I have

opted for the first option. Figure 4.7 and table 4.4 show the results of the parametric

sweep. Finally, the filter is constructed by cascading these elements, as shown in

Figure 4.8

Figure 4.9 shows the frequency response of this filter. There is no propagation

before the waveguide cutoff frequency (3.1546 GHz), which has the effect of moving

the entire passband (including the negative frequencies of the theoretical response)

to this frequency, as in a bandpass filter. In addition, for frequencies lower that

the recommended band (3.95 to 5.85 GHz), due to the strong waveguide dispersion
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L1 20.9641

L2 19.203

L3 18.2575

L4 18.0075

L5 18.2575

L6 19.203

L7 20.9641

Table 4.4: Length of waveguide sections for each inverter

Figure 4.8: Sixth degree LPF realized using conducting posts pairs.



4.2 Example of filter design 77

4 6 8 10 12 14
−70

−60

−50

−40

−30

−20

−10

0

Frequency (GHz)

T
ra

ns
fe

r 
an

d 
re

fle
ct

io
n 

(d
B

)

 

 

|S
11

|

|S
21

|

Figure 4.9: Frequency response of sixth degree Chebyshev LPF realized using

conducting posts pairs.

near the cutoff frequency of the first mode, it is impossible to obtain an equiripple

response. Therefore, the usable frequencies start around 3.95 GHz, as can be seen

in figures 4.9 and 4.10. Note that the in-band return loss and rejection are better

than that of the theoretical polynomials, due to the frequency dependance of the

impedance inverters, making the filter behave as if it were of higher degree (S11 does

cross 5.5 GHz at precisely 25 dB though, if the design is perfectly done)

In chapter 3 we saw that the position of the spurious band in the ideal prototype

network depended on the value of the Commensurate Lines length, θc, since it is

the parameter that controls the periodicity of the frequency response (shorter lines

make the spurious band appear further away). There is a limit, however, to how

small θc can be made in practice:

1. As we make θc smaller, the inverters will start presenting increasingly lower

values of K, which translates in greater values of R for this particular topology,
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Figure 4.10: Pass band of sixth degree Chebyshev LPF realized using conducting

posts pairs.

leaving very small gaps between the posts and the waveguide walls, which could

be detrimental to the high power performance of the filter. Note that the value

of K also depends on the other parameters, like the type of filtering function,

the cutoff frequency or the prescribed return loss.

2. The filter might become impossible to realize using a certain topology (depend-

ing on the factors mentioned and the shape of the posts), due to the phase

condition ∠S21 = −90◦−θc, which may result in a situation where posts would

have to overlap.

In the actual implementation using conducting posts, the spurious free range also

depends on the dimension of the posts along the propagation axis, which will vary

depending on the particular topology used, even for the same theoretical filtering

function. For example, using single post inverters instead of post pairs results in

the first spurious band appearing earlier, since the posts have to be bigger along the

direction of propagation. Using elliptical posts widens the spurious free range, with

the downside of requiring smaller gaps to obtain the same |S21|. We compare the
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filter designed with a possible equivalent using capacitive irises (Figure 4.11). This

filter has been synthesized using the design technique and software described here,

to show that it can be adapted to any structure. To design this filter, we just had

to modify the two MATLAB functions mentioned earlier (one for the inverters and

one to construct the filter) to draw this particular topology in the HFSS modeler.

The aperture of the irises and the length of the waveguide sections are adjusted to

implement the required values of |S21| and ∠S21 respectively, as was done for the

post topology. The performance of both filters is almost identical, since they’re im-

plementing the same function at the design frequency. The small difference in the

spurious free range is due to the actual dimension of the impedance inverters, which

could be adjusted to obtain exactly the same filter.

Figure 4.11: LPF using traditional capacitive irises

All the filter of the next section, where we study the effect of various design

parameters, are of sixth degree. For illustrative purposes, I have designed a 12th

degree filter designed with elliptical posts (Figure 4.13), for a prescribed value of

return loss of 20 dB and θc = 22◦. Figure 4.14 shows the frequency response of this

filter.



80
CHAPTER 4. REALIZATION USING ALTERNATIVE

TOPOLOGIES

4 5 6 7 8 9 10 11 12 13
−70

−60

−50

−40

−30

−20

−10

0

Frequency (GHz)

T
ra

ns
fe

r 
an

d 
re

fle
ct

io
n 

(d
B

)

 

 

|S
11

| 2 posts

|S
21

| 2 posts

|S
11

| rect iris

|S
21

| rect iris

Figure 4.12: Comparison of double post based filter and capacitive iris filter

Figure 4.13: Twelfth degree LPF using elliptical posts
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Figure 4.14: Frequency response of twelfth degree LPF using elliptical posts

4.3 Analysis of Results

In this section we study the effect that each of the input parameters has on the

final frequency response of the filter, and compare the different post shapes and func-

tion types. To fully describe each filter designed we give two sets of values, defining

the post dimensions and positions inside the waveguide. Differently to what was

done in the previous section, we give the position of the posts by listing the distance

between the centers of adjacent posts (d), instead of the computed waveguide length

associated to each post plus transmission lines. Obviously the conversion between

these two values is immediate. Each value of R and d is numbered sequentially, and

the vertical position of the posts is always such that the gaps dimensions are uniform

at each inverter (the placement of the posts could be different, as long as the design

technique is executed as explained). All dimensions are given in millimeters.
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4.3.1 Variation of the prescribed Return Loss level.

This parameter controls the ripple level in the passband. For higher values of

this parameter, the ripple will be lower, at the cost of slightly worse rejection in the

stopband. We will take the filter specification of the previous section, realized with

post pairs, and vary RL. The specifications of the original filter are shown table 4.5

Function type Chebyshev

Filter degree (N) 6

Prescribed Return Loss 25

θc 30◦

WG dimensions a = 47.55mm, b = 22.5mm (WR-187)

WG freq. range 3.95 to 5.85 GHz

Cutoff frequency 5.5 GHz

Table 4.5: Filter specification of the first filter designed

We will design two additional filters for Return Loss levels of 22 dB and 28 dB.

RL = 25 RL = 22 RL = 28

K ′′1,7 0.75344 0.72018 0.78392

K ′′2,6 0.49101 0.46182 0.5218

K ′′3,5 0.3726 0.35535 0.39209

K ′′4 0.34581 0.33251 0.36109

Table 4.6: Inverters values for filter designs with different prescribed Return Loss

As we see, the prescribed Return Loss level affects the value of the impedance

inverters obtained in the synthesis in a quite simple manner, giving higher values of

Ki (smaller posts) for higher values of RL and viceversa, as seen in table 4.7
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RL = 25 RL = 22 RL = 28

R1,7 2.5517 2.7426 2.3738

R2,6 3.8414 3.9634 3.6966

R3,5 4.3623 4.4366 4.2803

R4 4.4762 4.5331 4.4128

Table 4.7: Radius values (mm) for filter designs with different prescribed Return

Loss

With these values, as always, we compute the position of the ports for each

post pair that gives the phase condition ∠S21 = −90◦ − θc and finally cascade

the elements to obtain the final structure. The computed distance in millimeters

between the centers of consecutive post pairs is shown in table 4.8 and Figure 4.15

compares the three filter responses. The difference in return loss is clear, and it also

results in a variation of the rejection performance of the filter.

RL = 25 RL = 22 RL = 28

d1,6 20.1023 19.8764 20.3018

d2,5 18.7375 18.5547 18.9476

d3,4 18.1441 18.0207 18.2983

Table 4.8: Computed distance between posts (mm) for filter designs with different

prescribed Return Loss

4.3.2 Variation of the Commensurate Line length θc

This is the parameter that most directly affects the spurious free range of the

filter, since it controls how the ideal frequency response is transformed to the θ plane

(see chapter 3, section 2), with higher values of θc making the first spurious band ap-

pear closer and viceversa. As we make θc smaller, the posts required become larger,

and the length of the waveguide section associated to each post becomes smaller due
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Figure 4.15: Comparison of frequency response varying the prescribed Return Loss

to the phase condition ∠S21 = −90◦ − θc, thus making the posts be closer, making

the filter unrealizable if the value is too low. For these reasons, this parameter has

to be chosen carefully for each design, depending on the specific requirements. Since

the type of post also affects the spurious response, filters that may not be realizable

using for example a single circular post, may be achievable using elliptical posts,

post pairs, or any other topology.

Taking the filter specification of the first filter (see table 4.5), we compare the

element values and the frequency response for various values of θc. The filters are

designed using circular post pairs. Tables 4.9, 4.10 and 4.11 show the values of Ki,

Ri and di,i+1 obtained in the synthesis of three filters with θc = 30◦, 26◦ and 34◦.
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θc = 30 θc = 26 θc = 34

K ′′1,7 0.75344 0.71101 0.79029

K ′′2,6 0.49101 0.42634 0.55488

K ′′3,5 0.3726 0.31578 0.43293

K ′′4 0.34581 0.2934 0.4022

Table 4.9: Inverter values for filter designs with different prescribed transmission

line length θc

θc = 30 θc = 26 θc = 34

R1,7 2.5517 2.7856 2.3352

R2,6 3.8414 4.1247 3.5522

R3,5 4.3623 4.6051 4.0963

R4 4.4762 4.6907 4.2338

Table 4.10: Radius values (mm) for filter designs with different prescribed trans-

mission line length θc

θc = 30 θc = 26 θc = 34

d1,6 20.1023 18.9757 21.1698

d2,5 18.7375 17.5089 19.9607

d3,4 18.1441 16.9650 19.3811

Table 4.11: Computed distance between posts (mm) for filter designs with different

prescribed transmission line length θc

Figure 4.16 shows the frequency response of the three filters. As expected, the

spurious free range is the main difference between the three designs, with the pass-

band response being very similar.
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Figure 4.16: Comparison of frequency response varying the Commensurate Line

length θc

4.3.3 Comparison of different post topologies

We have mentioned multiple times that different topologies can be used as long

as the conditions to realize the network elements are fulfilled. The small GUI devel-

oped allows the automatic design of these filters using any number of posts (circular

or elliptical) aligned vertically to realize each inverter. I show some examples using

the filter specification of table 4.5, using the basic topologies depicted in Figure

4.17: a single circular post, an elliptical post of axial ratio 0.75, a post pair (done

earlier), and a group of three posts. The physical dimensions computed for each

topology are shown in tables 4.12 and 4.13. Figures 4.18, 4.19, 4.20 and 4.21 show

the filters designed, and Figure 4.22 compares their frequency responses. The pass-

band performance is almost identical, but the spurious free range varies for each

implementation, as we cannot force the structure to realize the theoretical circuit at

every frequency (the filters are identical at 5.5 Ghz, the design frequency). Topolo-
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Figure 4.17: Different post topologies to realize the LPF

gies that have a wider spurious free range, due to a smaller post dimensions along

the propagation axis, will generally require smaller gaps between the posts and the

waveguide walls.

Circ. Post Ellip. post 2 Circ. Posts 3 Circ. Posts

R1,7 3.821 4.1009 2.5517 1.999

R2,6 6.3575 6.6109 3.8414 2.8648

R3,5 7.6504 7.7824 4.3623 3.1628

R4 7.9621 8.0607 4.4762 3.2248

Table 4.12: Radius values (mm) for filter designs using different topologies
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Figure 4.18: Low pass filter using single circular posts as impedance inverters

Figure 4.19: Low pass filter using single elliptical posts (axis ratio 0.75) as

impedance inverters

Circ. Post Ellip. post 2 Circ. Posts 3 Circ. Posts

d1,6 20.5822 19.9152 20.1011 19.7261

d2,5 20.0737 18.6052 19.1153 17.8959

d3,4 20.1171 18.0816 18.8466 17.0437

Table 4.13: Computed distance between posts (mm) for filter designs using differ-

ent topologies
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Figure 4.20: Low pass filter using circular posts pairs as impedance inverters

Figure 4.21: Low pass filter using three circular posts as impedance inverters
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Figure 4.22: Comparison of frequency responses using different topologies

Note that the filters have simply been designed with the theoretical filtering

function, to see how the frequency response varies (mainly the spurious-free range).

This means that the in-band response is in theory identical and they all present

the same scattering parameters at the cutoff frequency of 5.5 GHz. In a practical

application, we would have tried to obtain the same frequency response for all the

topologies, varying the synthesis parameters (mainly θc, since the difference lies in

the spurious band). Having done this, the filters would be compared using other

criteria, such as power handling or sensitivity to manufacturing errors.

4.3.4 Comparison of the different types of filtering functions

We compare the Chebyshev, Zolotarev and Chained function responses of the

same degree, using the same theoretical transmission line length θc and the same

maximum allowed return loss and utilizing the double post topology. This is done
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Figure 4.23: Ideal frequency response of sixth-degree Zolotarev filter

Chebyshev Zolotarev Chained

K ′′1,7 0.75344 0.71795 0.86317

K ′′2,6 0.49101 0.47682 0.63021

K ′′3,5 0.3726 0.35612 0.45811

K ′′4 0.34581 0.34553 0.41648

Table 4.14: Inverter values for filter designs using different filtering functions types

simply for illustrative purposes, and a proper comparison, where we adjust the return

loss to obtain the desired response in all three cases is done later. For the Zolotarev

filter we have chosen x1 = 0.3, and the Chained filter is a cubed second-degree

Chebyshev function. Figures 4.23 and 4.24 show the ideal response of the Zolotarev

and Chained filters. The element values and dimensions corresponding to these

filters are shown in tables 4.14, 4.15 and 4.16.

As expected, the Chained filter yields notably smaller posts, since its based on

lower degree functions. The Zolotarev filter presents posts of dimensions similar to

those of the Chebyshev filter. Figures 4.25 and 4.26 show the frequency response of
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Figure 4.24: Ideal frequency response of sixth-degree (23) Chained Chebyshev

filter

Chebyshev Zolotarev Chained

R1,7 2.5517 2.758 1.8603

R2,6 3.8414 3.9122 3.2014

R3,5 4.3623 4.4352 3.9814

R4 4.4762 4.4744 4.1749

Table 4.15: Radius values (mm) for filter designs using different filtering functions

types

Chebyshev Zolotarev Chained

d1,6 20.1023 19.9152 20.8760

d2,5 18.7375 18.6052 19.5847

d3,4 18.1441 18.0816 18.7968

Table 4.16: Computed distance between posts (mm) for filter designs using differ-

ent filtering functions types
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the Zolotarev and Chained filters respectively, and Figure 4.27 compares the three

responses. Obviously all three filters present the prescribed return loss at the design

frequency (5.5 GHz), but the differences between the three functions are depicted

clearly. In the Zolotarev response we can clearly appreciate the higher reflection

lobe around the center of the passband, before the equiripple frequencies start. As

was seen in chapter 2, the width of this lobe is controlled by the parameter we have

denoted as x1 (if x1 = 0 we obtain a Chebyshev response). As for the Chained

filter, due to the highly dispersive nature of the waveguide near the cutoff frequency

of the first mode, the ideal response of two reflection zeros cannot be achieved,

but the effect of placing the reflection zeros together is evident in the second half

of the passband, around 5 GHz. If the utilized frequencies are in this area, the

return losses are very low. When comparing the three responses, it is clear that the

rejection of the Chained filter is notably worse, with the Chebyshev and Zolotarev

filter presenting very similar performance. It is interesting to note that as the value

of x1 increases, the rejection improves, with the obvious downside of less utilizable

bandwidth.
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Figure 4.25: Frequency response of sixth-degree Zolotarev filter
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Figure 4.26: Frequency response of sixth-degree (23) Chained Chebyshev filter
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Figure 4.27: Comparison of frequency response using different filtering function

types
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4.3.5 Using MATLAB-HFSS interaction to optimize the fil-

ter design

When designing a microwave filter, we will most likely have to comply to a set

of specifications that cannot be immediately translated into a set of values for the

design parameters we have seen, at least not with absolute precision, due to vari-

ous factors like waveguide dispersion and frequency dependance of the impedance

inverters. For example, we may require a certain attenuation at a given frequency,

a prescribed spurious-free range or a maximum gap dimension we cannot surpass.

One advantage of using scripting to control the HFSS designs and simulations

is that we can iteratively create a design, analyze the results, and modify one or

more of the input parameters depending on this data until we obtain a design that

satisfies the specification, all done by a MATLAB script. We will show a simple

example of this application, where we modify the prescribed return loss level in the

passband for the three filters based on the three different function types we have

seen: Chebyshev, Zolotarev and Chained 23 (using 2nd degree Chebyshev polyno-

mials as seed) until they all present a set attenuation at a certain frequency. This

will also serve as a better comparison between the different filtering functions.

I have arbitrarily chosen to design a filter that presents an attenuation of 20 dB

at frequency 6.4 GHz with a cutoff frequency of 5.5 GHz, implemented using a single

post topology. We have seen that the rejection of the Chained filters is substantially

worse than that of Chebyshev and Zolotarev filters, meaning it will require a lower

value of RL (higher maximum loss in the passband) to achieve the same level of

rejection. After convergence, the values of RL obtained for each filter are shown

in table 4.20. Results are as expected: Zolotarev requiring slightly lower maximum

return loss to achieve the desired rejection, and Chained requiring a much higher

value. Tables 4.18 and 4.19 list the radii and positions of the posts, and Figure 4.28

presents the frequency response of each filter.
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Return Loss (dB)

Chebyshev 30.5969

Zolotarev 32.5643

Chained Chebyshev 18.9508

Table 4.17: Computed values of Return Loss to achieve a prescribed value of

attenuation

Chebyshev Zolotarev Chained

R1,7 3.2967 3.3944 3.2122

R2,6 5.7682 5.7641 5.6071

R3,5 7.2171 7.237 7.3248

R4 7.6108 7.555 7.6331

Table 4.18: Radius values (mm) for filter designs using different filtering functions

types, after iterative optimization

Chebyshev Zolotarev Chained

d1,6 20.7827 20.7612 20.8286

d2,5 20.1221 20.1281 20.1562

d3,4 20.0422 20.0392 20.1466

Table 4.19: Computed distance between posts for filter designs using different

filtering functions types, after iterative optimization
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Figure 4.28: Frequency response of three filters with the same rejection perfor-

mance
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Figure 4.29: Designated frequency point of equal rejection for the three filters
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The post dimensions are very similar in all three designs, and they present almost

exactly the same out of band response due to the iterative process. The fact that

the Zolotarev function naturally presents slightly better rejection than the other two

functions here translates into less return loss in the reduced passband and a smaller

maximum post dimension, since we forced the rejection to be the same. Also, by

increasing the value of x1, which controls the start point of the equiripple zone for

Zolotarev polynomials(see chapter 3), we could increase the rejection of the filter.

This comes at an obvious cost: we would be making the usable passband narrower

by increasing the width of the high-reflection lobe. In a real application, this lobe

could be made to be as wide as the required bandwidth allows. In this regard, the

Chained filter stands in a similar position to the Zolotarev: if we look at the entire

passband, the performance is worse around the center, but if we are interested only

in the frequencies around the reflection zero, the return loss is also very low for

several hundreds of megahertz. If the center of the band does not matter, we could

design a filter with very high return loss as long as the necessary frequencies are

near the reflection zero, in order to build a filter with better rejection. Depending

on the maximum return loss allowed, the bandwidth at which the Chained filter will

be better may or may not be wide enough to meet the application needs.

To illustrate this we have designed Zolotarev and Chained filters where the re-

quired return loss is 20 dB, a typical value. For the Chained filter, we have chosen

only 2 dB of return loss in the synthesis of the polynomials (an arbitrarily low value),

and for the Zolotarev filter x1 has been set to 0.55, leaving in both cases a narrow

usable passband. Figure 4.30 shows the frequency response of these two filters. Fig-

ure 4.30 compares these responses with a Chebyshev filter with constant 20 dB of

RL, showing that the out of band performance is slightly improved. The Chained

filter can be designed to have a wider 20 dB bandwidth by increasing the value of

the prescribed RL in the synthesis of the polynomials, but the advantage obtained

in rejection would quickly disappear, as it already stands in a very small advantage

over the Zolotarev and Chebyshev filters.
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Figure 4.30: Zolotarev and Chained filters with reduced usable bandwidth to

achieve better rejection than a Chebyshev filter
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Figure 4.31: Regular Chebyshev filter compared to reduced-bandwidth Zolotarev

and Chained filters

It is clear that when designing a filter for a real application, a specific comparison
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20 dB bandwidth (MHz)

Zolotarev 490

Chained 295

Chebyshev 1700

Table 4.20: Usable bandwidth (return loss of 20 dB) for each type of filtering

function

would be needed, taking into account the required bandwidth, maximum return

loss allowed, spurious-free band and power handling capabilities, to determine the

optimal type of filtering function, although the margin of improvement over the

traditional equiripple Chebyshev has resulted to be quite low.



4.3 Analysis of Results 101

4.3.6 Effect of manufacturing errors

To get an idea of how these filters will perform when manufactured, I have run

a number of experiments where the geometry of the filter is corrupted by a random

error with an uniform distribution. This will also serve to compare the sensitivity

to manufacturing errors of the different function types and topologies. The results

presented have been obtained by independently introducing a random variation to

each of the posts radius and position coordinates, given a maximum manufacturing

error.

The experiment has been done with the filters designed in the previous section,

where we compared the different functions by adjusting the return loss until all three

filters presented the same rejection performance. Figure 4.32 shows the results, for a

maximum error of ±20 µm in the radius and position of each post. In this case, the

Chebyshev and Zolotarev filters present a very similar deviation from the nominal

design, with the Chained filter being slightly more robust. As seen in the previous

section, depending on the bandwidth required for a particular application, it could

be better to utilize the Chained or Zolotarev filters, since for a limited range of

frequencies inside the passband it presents less return loss. Figure 4.33 shows the

yield analysis corresponding to the dual post filter of 4.9. Note that this filter can-

not be compared to those of Figure 4.32, as it presents a different frequency response.

It is seen that, for the variability introduced, the filters designed in C band are

resistant to manufacturing errors. I have also run this experiment for a K band filter

in the standard WR-42 (same maximum error of ±20 µm), with a cutoff frequency

of 24 GHz. Fig. 4.34 shows the results of this analysis. Despite the reduction in

filter dimensions (much higher frequency), keeping the same magnitude of error, the

in band return loss remains at an acceptable level, barely surpassing 20 dB in the

worst case, for a filter with a specification of 25 dB. This gives us an idea of the

precision that would be required to fabricate these filters.
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Figure 4.32: Yield analysis of sixth degree Zolotarev, Chebyshev and Chained

filters with the same rejection performance (different prescribed Return Loss).
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Figure 4.33: Yield analysis of sixth degree Chebyshev filter using circular posts

pairs
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Figure 4.34: Yield analysis of sixth degree K-band filter

4.4 Additional topologies using conducting posts

In this section we briefly present additional topologies to realize the lowpass filter,

based on applying certain modifications to the previous designs. All designs pre-

sented here have been yet again done with help of the MATLAB software developed

in an automated fashion and they can be reproduced.

4.4.1 Post-based filter with reduced waveguide heights

In these filters, by progressively reducing the waveguide height, a wider spuri-

ous free range is obtained. To illustrate this, we have designed a filter with the

same specifications of Table 4.5. The final design is shown in Figure 4.35. The in-

put waveguide height is the same as in all designs, following the standard WR-187,

b = 22.15 mm. This height is reduced to 0.75b, 0.5b and 0.35b at the center of the

filter. In Figure 4.36 this filter is compared to its equivalents using single circular
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post inverters and double post inverters, designed in the previous section.

When designing these filters, due to the asymmetry of the network, we cannot

use the parameter S21 to adjust the position of the ports of each inverter. This

means that we have the use the reflection parameters S11 and S22 to independently

adjust the phase in each port. The reflected wave phase we have to adjust is the

same for both ports, 180◦−θc, but the lengths of the input and output sections that

realize this condition will be different. We proceed as follows:

� Set a static value for the output waveguide, and adjust the length of the input

waveguide until ∠S11 = 180◦ − θc.

� Set a static value for the input waveguide, and adjust the length of the output

waveguide until ∠S22 = 180◦ − θc.

Figure 4.35: Lowpass filter using reduced waveguide height
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Figure 4.36: Frequency response of reduced waveguide height filter, compared with

single post and double post filters in constant height waveguide.

The spurious free range of the new filter is better than the standard single post

filter, and almost identical to that of the double post filter. Obviously, a filter

designed combining post pairs and reduced waveguide heights would perform even

better in this regard. The downside is that the lower part of the passband has been

deteriorated, with a wider range of frequencies presenting higher return losses. This

type of filter would also allow the utilization of fixed size posts (for example all posts

having the same diameter), adjusting the height of the waveguide sections.

4.4.2 Multiple post implementation introducing a displace-

ment to some of the posts

The variation introduced here consists of introducing a certain displacement to

one (or more) of the posts implementing the impedance inverters. Doing this we have
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found that transmission zeros appear at higher frequencies. The filter of Figure 4.37

has been designed with a static offset of 4mm to the central post of each inverter.

which has caused the appearance of transmission zeros at frequencies near the first

spurious band, making it narrower while not affecting the inband performance and

barely degrading the rejection, as seen in Figure 4.38.

These transmission zeros could be very useful if we were able to control their

position in order to make the spurious bands narrower, or even eliminate them by

using the right offsets in each inverter. Since the entire design is automated, this

possibility could be explored very efficiently, using the MATLAB functions devel-

oped.

Figure 4.37: Lowpass filter using non-aligned posts
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Figure 4.38: Frequency response of filter with non-aligned posts, compared with

aligned double and triple post equivalent.

4.5 Realization of the Tapered-Corrugated LPF

using the proposed design technique

In the previous chapter, two well known distributed low pass filter prototype

circuits were described and their synthesis implemented. All the filters realized

until now are based on the Stepped Impedance prototype with impedance inverters,

due to it being more convenient for the topologies utilized. The only goal of this

section is to adapt the design technique to the Tapered-Corrugated filter, by finding

the adequate scattering parameters equations. Figure 4.39 shows an example of

the network to be realized. This circuit is sliced in sections consisting of a shunt

capacitance plus two transmission lines of electrical length θc, as shown in Figure

4.40. If this circuit is terminated in Yi+1, it is immediate to obtain:
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Ys2Z1 2θcYs1 Z2 2θc Ys3 Z3 2θc Ys4

Figure 4.39: Tapered Corrugated prototype network

YsiYi θc Yi+1θc

Figure 4.40: Basic network element of the tapered-corrugated filter

S11 =
Yi − (jYs + Yi+1)

Yi + (jYs + Yi+1)
(4.6)

Obviously the expression of S22 is analogous, and the absolute value and phase,

necessary in the two-step design technique used in this work, are found immediately

using this equation. The phase corresponding to the transmission lines is 2θc. We

work with the reflection parameters, and not S21, because due to the asymmetry

of the network the phase of the traveling wave behaves differently at each side of

the capacitance, the same way it occurred in the post based filter with reduced

waveguide heights. Note, however, that the aperture of the iris can be computed

using any of the scattering parameters. The traditional structure that implements

this small circuit is depicted in Figure 4.41. The heights of the waveguide sections

corresponding to the transmission lines are obtained immediately from the synthesis

(they are directly proportional to their characteristic impedance) and the aperture

of the gap is adjusted to obtain the right value of S11. Then, in the second step,

the length of the waveguide sections is adjusted independently according to ∠S11

and ∠S22. We have to keep in mind that in this case, the phase condition is not

constant, it depends on the value of the admittance Yi.

If we try to design this type of filter using a WR or WG standard, the filter

obtained will present a much worse frequency response than expected, both in terms

of in-band return loss and spurious-free range. For this reason, the height of the



4.5 Realization of the Tapered-Corrugated LPF 109

Figure 4.41: Basic network element of the tapered-corrugated filter (HFSS)

incoming waveguide has to be reduced using transformers. The amount by which

this height is reduced will affect the frequency response, mostly the spurious free

range, and is limited by factors such as the reflection produced by the transformer

or the power handling requirements(a smaller waveguide device will be more likely

to trigger multipaction). Note that this reduction of the dimensions cannot be

effectively applied to the filters of the previous section, as the improvement is almost

nonexistent and it results in very small gaps.

I have designed two C-band filters, with the specifications of table 4.21, using the

traditional structure consisting of capacitive irises and a slightly modified topology

to introduce curved surfaces (input and output transformers are not included in the

design). The filters designed are shown in Figures 4.42 and 4.43. The design of these

filters is automated, as it only required adapting the MATLAB scripts and functions

developed to a new 3d model and using equation 4.6 instead of the expressions used

previously. The second filter requires smaller minimum distances in the irises, but

due to the curved surfaces it will present a much higher multipaction threshold.

Figure 4.44 shows the frequency response of both filters. They are almost identi-

cal, and the transmission zero in the rejected band is clearly appreciated (see chapter

3). The green line indicates the maximum return loss specified in the theoretical

polynomials, 26 dB, showing that the filters designed barely surpass this level at any

point in the passband. An interesting thing to note about these filters is that the

entire passband presents roughly the same Return Loss, in contrast to all the filters
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Function type Chebyshev

Prescribed Return Loss 26

θc 26◦

Cutoff frequency 5.5 GHz

Table 4.21: Filter specification of Tapered Corrugated Filter

of the previous section, which had a higher reflection zone at low frequency.

Figure 4.42: Tapered Corrugated filter using standard capacitive irises

Figure 4.43: Tapered Corrugated filter using curved capacitive irises
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Figure 4.44: Frequency response of the Tapered Corrugated filters designed
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Chapter 5
Conclusions and Future Lines of Research

Throughout this project we have covered the entire design process of lowpass

microwave filters using distributed elements. These filters are necessary in space

applications to suppress the harmonics generated by the high-power amplifiers, and

require bandwidths in the GHz range. As a first step in the realization of the lowpass

filter, in chapter 2, we have reviewed some important scattering parameter relation-

ships (particularly the unitary conditions) and explained the synthesis method for

the most commonly used polynomials, programming the required MATLAB func-

tions to obtain them using recursive techniques. Note that even though this project

has been focused on lowpass filters, these polynomials are also the basis of other

types of filters.

In chapter 3 we detailed the transformations required to utilize the transfer and

reflection polynomials (originally in the s or ω plane) in the synthesis of the lowpass

filters based on distributed elements, working in the transformed frequency variable

t = j tan θ, where θ = βl, the electrical length of the transmission lines utilized. This

transform is done to account for the periodicity in the frequency response of these

distributed elements every π radians. Then, we reviewed the synthesis procedures of

two possible implementations of distributed lowpass filters: the Stepped Impedance

filter and the Lumped/Distributed filter.

113
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Finally, in chapter 4 we have explored new topologies able to implement the

aforementioned filters, focusing mainly on the Stepped Impedance filter using con-

ducting posts as impedance inverters. Obviously, the software developed for chapters

2 and 3 is used here to obtain the network element values. Then, HFSS is used to

match the real elements with the ideal network using a technique based on com-

paring the absolute value and phase of the scattering parameters. The process is

explained in detail and we give multiple examples of full designs comparing multiple

topologies and varying each of the parameters that control the response of the filter,

and perform various yield analyses to prove that the filters are resistant to random

manufacturing errors.

All the HFSS operations are controlled via scripts generated by various MATLAB

functions, which not only allows the automation of the process, but also permits the

interaction between MATLAB and HFSS to iteratively synthesize and analyze fil-

ters in order to obtain a design that perfectly matches the application needs. The

knowledge acquired and the software developed are combined in a MATLAB GUI

that implements all the design process (synthesis of filtering polynomials, synthesis

of ideal filter network, and realization of physical structure using full wave simula-

tions) for the post based filters, producing a final design in HFSS in a few minutes.

To do this, the user simply has to introduce the required parameters and click a

button. To design the multiple filters not included in the GUI’s possibilities we have

programmed separate MATLAB scripts that basically perform the same operations

for each particular structure, in a completely automated, fast and precise fashion.

All in all, we have proved that these topologies work and have provided useful tools

for their design, even for someone unfamiliar with the synthesis techniques or the

theory behind them. The realization technique presented, based on independently

computing the dimensions of each impedance inverter using the absolute value and

phase of the scattering parameters in two separate steps, allows a straightforward

and fast design without need of any optimization, and we have showed that it can
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be applied to basically any structure.

Some lines of research that open with this project include:

� Studying the power handling capabilities of the filters designed, to compare

them with the standard low pass filters built with rectangular windows, and

find the most optimal configurations among the topologies proposed. Some

prototypes will be fabricated, and we expect an improvement in the multi-

pactor threshold, due to the curved surfaces of the posts.

� Further studying the topologies presented at the end of chapter 4. We intro-

duced the possibility of reducing the height of the waveguide along the filter in

order to improve the spurious free range, and showed a design proving this con-

cept. We also found that if a displacement is introduced to some of the posts

that realize each inverter (for multi-post implementations) so that they are not

vertically aligned, transmission zeros appear at higher frequencies, which could

be used to reduce or even eliminate some of the spurious bands. This research

could be done very efficiently using the automating software developed.

� Exploring the use of dielectric or magnetic materials in these filters.

� Exploring additional, innovative topologies to realize the Tapered-Corrugated

filter. At the end of chapter 4, the design technique used throughout this work

was applied to the design of these filters, including small modifications that

could serve as the basis for further research.
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