
A Case Study in Performance Evaluation of Real-Time
Teleoperation Software Architecture using UML-MAST

Francisco Ortiz, Bárbara Álvarez, Juan Á. Pastor, Pedro Sánchez

francisco.ortiz@upct.es
Universidad Politécnica de Cartagena (Spain)

Abstract. Reference architectures for specific domains can provide significant
benefits in productivity and quality for real-time systems development. These
systems require an exact characterization based on quantitative evaluation of
architectural features refered to timing properties, such as performance, reliabil-
ity, etc. In this work, an UML-based tool has been used to obtain a measure of
performance between two alternative architectures. These architectures share
the same functional components with different interaction patterns. The used
technique is illustrated with an industrial and real case study in a well-known
real-time domain: teleoperation systems. The obtained results show clear dif-
ferences in performance between two architectures, giving a clear indication of
which one is better from this point of view1.

1. Introduction

Software engineering has demonstrated that much can be gained from developing
generic software architectures for application domains during the last decade [5].
Such generic architectures comprise common properties for a family of related appli-
cations and can be instantiated for each specific system. Our accumulated experience
in several research projects has allowed us to prove the interest of reusing a reference
software architecture for teleoperation systems [2]. The use of such architecture has
allowed reusing common software components in different applications, making
easier their development and decreasing significantly their costs and development
times.

In the mentioned architecture, the application domain was limited to applications
in which service robots work in structured environments, whose geometrical charac-
teristics are perfectly known before the operation is performed, and in which reactive
behaviour is usually limited to sensor-driven safety actions. The ROSA (Remotely
Operated System Arm) and TRON (Teleoperated and Robotized System for Mainte-
nance Operation in Nuclear Power Plants Vessels) systems are an example of this
type of applications for maintenance tasks in nuclear power plants [4]. In these sys-
tems, the operator is in charge of monitoring and operating the robot according to the

1 This work has been partially supported by FEDER (TAP-1FD97-0823) and GROWTH pro-

ject (GRD2-2001-50004)

information provided by the teleoperation system. This system receives commands
from the operator and performs the corresponding actions for executing them.

The development of a blasting robot for ship hulls [7][8], whose characteristics
differ from the mentioned above, led us to evaluate if the original architecture could
be re-used for the new system. The system should work in unstructured environments
and reactive behaviour is predominant during some operation phases. Given these
requirements it is necessary to include new services (i.e. a computer vision system) or
use the existing ones in different ways. As these services were not kept in mind when
the original requirements were defined, the ATAM method (Analysis Trade-Off Ar-
chitecture Method) [9] was applied to evaluate if the original architecture could be
used for developing applications capable of guaranteeing the new requirements.
ATAM was chosen as evaluation method because it is specifically defined to evaluate
software architectures and considers a characterization of the quality attribute re-
quirements at a level of abstraction very suitable for our evaluation purposes.

The original architecture considers the existence of a cinematic server capable of
both testing a given trajectory and generating collision free trajectories according to
the models of the robot and working environment and to the commanded destination
point. The cinematic server was not used for on-line collision detection, because the
systems were not allowed performing a motion not previously tested by mean of a
previous simulation. However, this approach is not feasible for unstructured envi-
ronments, simply because if the environment is not perfectly defined simulations are
not useful except for training purposes.

But the issue here is not if such cinematic server is useful on line, but if any system
(likely a vision system) can be used on line for collision detection and avoidance or,
in other words, if the architecture is capable of supporting information and control
flows not previously considered. For this reason, the preliminary evaluation simply
tested if the cinematic server could be used on line while keeping in mind that such
server should be sustituted by other. The result of evaluation was that performance
requirements could not be met and it was necessary to propose modifications on the
original architecture that combine the original components (trying to minimise the
impact of the changes) with different interactions patterns.

The model used for representing the temporal and logical elements and real-time
requirements of applications has been MAST (Modeling and Analysis Suite for Real-
Time Applications), developed by the University of Cantabria (Spain) [6]. MAST
allows a very rich description of the system, including the effects of event or mes-
sage-based communication multiprocessor and distributed architectures as well as
shared resource synchronization. The model is directly obtainable from a description
of the system design using an UML-based CASE tool [11]. Previous works have
proved the successfull of the tool over easier applications than the proposed case
study here. We present our experience in using UML-MAST in the development of
industrial and real applications.
 The paper is organized as follows. In section 2 two alternative interaction patterns
are presented in order to compare the performance of both schemes. In section 3 some
relevant aspects of MAST are reviewed. Section 4 contains different models that
represent different scenarios. In section 5 we describe the results of the analysis.
Finally, section 6 gives some conclusions and discusses further work.

2. Architectures for teleoperation systems

Figure 1 shows the components taking into account for performance evaluation and
their interaction patterns as they were described in the original architecture. Though
the scheme showed in the figure is somewhat oversimplified is enough to ilustrated
all the important issues. The components considered are:

• CinServer. This server provides the system with operations for checking if a

given movement implies a collision between the robot and the operating envi-
ronment, or with itself. This service was provided before the execution of a
movement command in the original architecture. However, as said before, if the
robot operates in unstructured environments, CinServer needs to receive the ac-
tual robot position in execution time from HighLevelController. An asynchro-
nous client-server pattern is used in the collaboration diagram of the figure 1. In
this scheme, HighLevelController sends the current robot position to CinServer
and retrieves asynchronously the answer telling it if the current motion can cause
a collision.

• UserInterface. This subsystem is in charge of interacting with the user. It allows
him to issue the desired command to the robot and to show the status of its exe-
cution.

 LowLevelController. This module physically actuates the robot to move it and to
sense information from the robot in order to evaluate its global state and position.
This state information is sent to HighLevelController by means of updateStatus.
In general this subsystem can be ported to any platform, nevertheless its execu-
tion has been considered in the same node of the others subsystems to simplify
the analysis.

 : UserInterface

 : LowLevelController

 : HighLevelController

 : CinServer

4: updateUI()

2: getCollisionFlag()

3: updateColFlag()

1: updateStatus()
5: StopDevices()

 : UserInterface

 : LowLevelController

 : HighLevelController

 : CinServer

5: updateUI()

2: updatePosition()

3: updateColFlag()

1: updateStatus()

4: StopDevices()

Fig. 1: Asynchronous client-server pattern
between CinServer and HighLevelControl-
ler

Fig. 2: Observer pattern between CinServer
and HighLevelController

The interactions between CinServer and HighLevelController are a system bottleneck
when CinServer is used on-line. For this reason the interaction pattern between them
was modified according to the scheme showed in figure 2. In this scheme CinServer
directly receives the robot position from LowLevelController and HighLevelControl-
ler is subscribed to the events produced by CinServer following an observer pattern.
The functional components of both schemes are the same, as well as their interfaces,
but not their interaction patterns. It is also possible than LowLevelController can be
subscribed to events or messages from CinServer, but this lead us to further modifica-
tions in the architecture and was not considered.

The model used for evaluating the timing requirements was based on the charac-
terization of architecture timing behaviour described in [3]. Such description, based
on Rate Monotonic Analysis method [10], is very exhaustive and allows the designers
to reason with confidence about timing correctness at the tasking abstraction level,
and it analyses whether the deadlines of the tasks can be guaranteed. In this way, the
designer of a new application can reuse the architecture, and can easily check to
whether the architecture can meet the timing requirements, but it assumes the interac-
tions originally defined and not the new ones and is hard to use when new interac-
tions have to be added. So, instead of using this model to compare the performance of
the schemes showed in figures 1 and 2, a simpler model, that also uses RMA, was
defined using UML-MAST. The proposed scenarios do not seek to carry out an ex-
haustive study of the performance, but allow us to compare behaviors with different
interaction patterns.

3. Analysis of the architectures using UML-MAST

The MAST suite defines a model capable of describing the timing behaviour of a
large set of real-time systems, including distributed systems and event-driven systems
with complex synchronization schemes. In UML-MAST three views are represented:

• Platform model. This view allows to model the processing capacity of hardware
and software resources which execute the activities of the system. There are two
basic components:

1. Scheduling servers to represent schedulable entities in a processing re-
source. If the resource is a processor, the scheduling server is a process,
a task or a thread of control.

2. Processing resources to represent hardware components and software
infrastructure.

The platform model is shown in the figure 3. To simplify the model one node has
been considered and all the Ada tasks were scheduled according to fixed priority
policy.

• Logical components model. This view allows to model processing requirements
of operations (methods, functions and procedures). In this model, shared re-

sources are defined. These resources are shared among different tasks and must
be used in a mutually exclusive way2. For example, the data between the differ-
ent subsystems and HighLevelController is exchanged through a shared buffer.

• Scenario model. This view allows to model the system as a set of transactions.
Each transaction is activated from one or more external events, and represents a
set of activities that will be executed in the system. Activities generate events that
are internal to the transaction, and that may activate other activities. Special
event-handling structures exist in the model to handle events in special ways. In-
ternal events can have timing requirements associated with them. The previous
models are common for both collaboration diagrams (figures 1 and 2). However,
one scenario model was defined for each collaboration diagram respectively.
These scenario models are described in the next section.

2 The operations and resources for this case are not presented in this work for space
reasons. The operations invoked by the tasks of platform model are presented in the
scenarios model.

HLC_SP
<<Fixed_Priority_Policy>>

UI_SP
<<Fixed_Priority_Policy>>

CinServer_Sp
<<Fixed_Priority_Policy>>

LLC_SP
<<Fixed_Priority_Policy>>

StationTimer
Worst_Overhead = 7.0E-6
Period = 1.0E-3

<<Ticker>>

HLC_Task
<<FP_Sched_Server>>

UI_Task
<<FP_Sched_Server>>

CinServer_Task
<<FP_Sched_Server>>

LLC_Task
<<FP_Sched_Server>>

TeleopPlatform
Speed_Factor = 4.0
Max_Priority = 31
Min_Priority = 1
Max_Interrupt_Priority = 32
Min_Interrupt_Priority = 32
Worst_Context_Switch = 5.0E-6
Avg_Context_Switch = 5.0E-6
Best_Context_Switch = 5.0E-6
Worst_ISR_Switch = 2.5E-6
Avg_ISR_Switch = 2.5E-6
Best_ISR_Switch = 2.5E-6

<<Fixed_Priority_Processor>>

The model only considers a
processor.
Values of attributes
corresponds with one of the
tests performed.

Scheduling Servers.
Implemented as Ada tasks.
There is a one to one correspondence with
the entities described in figures 1 and 2.
LLC: Low Level Controller
HLC: High Level Controller
UI: User Interface

Scheduling policies
assigned to tasks-

<<executes>>

<<has assigned>>

Fig. 3. Platform Model.

4. Scenario models

Two scenario models (figures 4 and 5) have been elaborated in order to characterize
the interactions described in the figures 1 and 2. Following the UML-MAST notation,
several transactions have been considered and the corresponding timing parameters
are attached as UML association relationships. For example, transaction ServosCon-
trol in figure 4 has attached a periodic arrival pattern, PidTick; stereotyped as Peri-
odic_Event_Source (T= 5ms) and a deadline, ServosDeadline, stereotyped as Ser-
vosDeadline (D = 5 ms). Because architecture used to be developed before an exact
definition of timing requirements is available, periods and deadlines have been as-
signed taking into account the usual values in the application domain. Moreover,
timing requirements will be different along the different applications that will be
developed using the architecture. For this reason, at the architectural level of abstrac-
tion and for the purposes of the analysis the important issue is not such values them-
selves, but (1) that they were the same in both schemes to allow the comparisons and
(2) that architecture can be adapted to different timing requirements.
 Figure 4 shows the scenario model related to the collaboration diagram of figure 1.
In this scheme, the services from CinServer are explicitely invoked by HighLevel-
Controller when a new position data is received from LowLevelController. Three
regular transactions are considered: ServosControl, CollisionControl and UpdateDis-
Status.

Fig. 4: Scenario Model 1.

ServosDeadline
Deadline : Time_Interval = 5.0E-3
Response_Time = 0.003751

<<Hard_Global_Deadline>>

PIDTick
Period : Time_Interval = 5.0E-3
<<Periodic_Event_Source>>

UpdateDisStatus
<<Regular_Transactio... ...

CollisionControl
<<Regular_Transactio... ...

ServosControl
<<Regular_Transactio... ...

UpdateTick
Period : Time_Interval = 100.0E-3
<<Periodic_Event_Source>>

UpdateDisplayDeadline
Deadline : Time_Interval = 100.0E-3

 Response_Time = 0.017128

<<Hard_Global_Deadline>>

CollisionTick
Period:Time_Interval= 5.0E - 3

<<Peri odic_Event_Source>>

CollisionDeadline
Deadline : Time_Interval = 25.0E - 3
Response_Time = 0.013520

<<Hard_Global_Deadline>>

In UML-MAST, each transaction is described by an activity diagram. Figures 6 and 7
describe the transactions ServosControl and UpdateDisStatus. The transaction Servo-
sControl represents the servo control of the teleoperated mechanisms. The transaction
UpdateDisStatus gives the updating of data in the graphical user interface of those
mechanisms. Figure 8 shows the UML activity diagram associated to the transaction
CollisionControl. This transaction represents how the collision detection is managed
in the collaboration diagram of the figure 1. Each element of the activity diagram has
a stereotype that define it in the UML-MAST model. It is beyond the scope of this
paper to describe such model and the reader can see [6] for a detailed information.
But very roughly:

 Each swingline is labeled with the name of the task that perform the activities of
such swingline. So, it is easy to identify the tasks involve in each transaction an
their interactions.

 Each transaction starts with the arrival of a timed clock driven event. So, initially
the first task involves in a transaction is in a Wait_State. A Wait_State in the
UML-MAST model represents that the task is waiting for an external event for
its activation, that in all the cases considered such external event is a clock event.
Note the correspondence between the names of the Periodic_Event_Sourse in
figures 4 and 5 and the names of the Wait_States of figures 6 to 10.

 All the activities are stereotyped as Timed_Activity. A Timed_Activity encloses an
operation or a set of operations whose timing behaviour is well described in the
model. Such operations can include the access to shared resources. In this case it
is possible to follow the original ceiling priority protocol or immediate ceiling
priority protocol. It is important to remark that all the transactions can be per-
formed simultaneously, despite they are describe in separate diagrams.

 Finally, transaction ends when reaching a Timed_Stated that describes then dead-
line of the transaction. Note the correspondence between the names of
Hard_Global_Deadline of figures 4 and the names of the Timed_Stated in fig-
ures 6 to 10.

The collaboration diagram from figure 2 has associated the scenario model given in
figure 5. This model considers the previous transactions ServosControl and Update-
DisStatus. However, the collisions detection is represented by the transaction Colli-
sionControl2. In this case, the robot position information is sent from LowLevelCon-
troller to CinServer without passing HighLevelController. Figure 9 gives the activity
diagram associated to the transaction CollisionControl2. Finally, the activity diagram
of figure 10 is exclusively associated to the scenario model 2 and represents the
transaction MonitorState. This transaction includes the activities which are periodi-
cally performed by HighLevelController to receive new state data from LowLevel-
Controller. In the previous scheme (figure 1), this task was not necessary because it
was included in the transaction CollisionControl since robot position and state are
managed by HighLevelController. The previous models have been intencionally
simplified. However, those simplifications make easier the interaction process given
by the original scheme (figure 1). Even so, the response times are worse than the
given by the another scheme (figure 2).

ServosControl
<<Regular_Transaction>>

ServosDeadline

Deadline : Time_Interval = 5.0E-3
Response_Time = 0.004888

<<Hard_Global_Deadline>>

PIDTick

Period : Time_Interval = 5.0E-3

<<Periodic_Event_Source>>
UpdateDisStatus

<<Regular_Transaction>>
UpdateTick

Period : Time_Interval = 100.0E-3

<<Periodic_Event_Source>>

UpdateDisplayDeadline
Deadline : Time_Interval = 10.0E-3
Response_Time = 0.006197

<<Hard_Global_Deadline>>

CollisionControl2
<<Regular_Transaction>>

CollisionDeadline

Deadline : Time_Interval = 25.0E-3
Response_Time = 0.010992

<<Hard_Global_Deadline>>

CollisionTick2

Period : Time_Interval = 25.0E-3

<<Periodic_Event_Source>>

MonitorState
<<Regular_Transaction>>

MonitorDeadline
Deadline : Time_Interval = 25.0E-3
Response_Time = 0.012554

<<Hard_Global_Deadline>>

MonitorTick
Period : Time_Interval = 25.0E-3

<<Periodic_Event_Source>>

Fig. 5: Scenarios model 2

5. Results of the analysis

Table 1 shows the results of the analysis of the previously described scenario models.
The MAST tool automatically sets task priorities following the Rate Monotonic
Scheduling algorithm. The well known Rate Monotonic Analysis method has been
considered. As the table shows, the response times for collision detection (Collision-
Control) and user interface update (UpdateDisStatus) are bigger in the scenario 1
than in the scenario 2. However, the response time of the transaction ServosControl is
a little bigger in the scenario 2 than scenario 1. This last transaction is independent
both of the interaction patterns used by HighLevelController. It must be high-
lighted that all the considered simplifications benefit the original scheme of interac-
tions. A more complex model that takes into account explicitly the internal tasks of
HighLevelController (not included in this paper for space reasons) produced the re-
sults showed in Table 2 (as more tasks were considered, CPU capacity was increased
respect to the used in Table 1 for avoiding deadlines expiration). It is remarkable that
the response times corresponding to scheme 1 worsen rather fast when new tasks are
added,while the corresponding to scheme 2 remain more stable. The unique adavan-
tage of scheme 1 according to the tables is that the response time of ServosControl
task is slightly shorter.

Transaction Events arrival

pattern
Deadline Scenario 1

Response time
Scenario 2
Response time

ServosControl Periodic, T = 5 ms 5 ms 3,8 ms 4,8 ms
UpdateDisStatus Periodic, T = 100 ms 100 ms 17 ms 6,1 ms
CollisionControl Periodic, T = 25 ms 25 ms 14 ms
CollisionControl2 Periodic, T = 25 ms 25 ms 11 ms
MonitorStatus Periodic, T = 25 ms 25 ms 13 ms

Table 1. Results of simulation.

Transaction Events arrival

pattern
Deadline Scenario 1

Response time
Scenario 2
Response time

ServosControl Periodic, T = 5 ms 5 ms 3,1 ms 3.4 ms
UpdateDisStatus Periodic, T = 100 ms 100 ms 23 ms 8,1 ms
CollisionControl Periodic, T = 25 ms 25 ms 23 ms
CollisionControl2 Periodic, T = 25 ms 25 ms 10 ms

MonitorStatus Periodic, T = 25 ms 25 ms 16 ms

Table 2 Results of simulation.

UpdateDisplayDeadline

<<Timed_State>>

UpdateTick
<<Wait_State

Activity_1
<<Timed_Activity>>

do/ LLCUpdateStatus

Activity_2

<<Timed_Activity>

do/ HLCProcessInputs

Activity_3

<<Timed_Activity>>

do/ UIUpdateDisplay

UI_TaskHLC_ColTaskLLC_Task (from ServosControl)

Timed_Activity: Clock Tick driven activity

PIDTick
<<Wait_State>>

Activity_1

<<Timed_Activity>>

do/ LLCServosControl

ServosDeadline

<<Timed_State>>

LLC_Task

Fig. 6: Scenarios Model
1 and 2. ServosControl
transaction

Fig. 7: Scenarios Model 1 and 2. UpdateDisStatus Transaction

CollisionTick
<<Wait_State>

Activity_1

<<Timed_Activity>

do/ LLCUpdateStatus

Activity_5
<<Timed_Activity>>

do/ LLCStopDevices

CollisionDeadline
<<Timed_State>

Activity_2
<<Timed_Activity>>

do/ HLCProcessInputs

Activity_4
<<Timed_Activity>>

do/ HLCProcessInputs

Activity_3
<<Timed_Activity>>

do/ CSProcessColDetection

CinServer_TaskHLC_Task (from
UpdateDisStatus)LLC_Task (from ServosControl)

Fig. 8: Scenarios Model 1. CollisionControl transaction

CollisionTick2

<<Wait_State>>

Activity_1

<<Timed_Activity>>

do/ LLCUpdateStatus

Activity_5

<<Timed_Activity>>

do/ LLCStopDevices

CollisionDeadline

<<Timed_State>>

Activity_3

<<Timed_Activity>>

do/ CSNotifyColDetection

Activity_6
<<Timed_Activity>>

do/ HLCStopDevices

CinServer_TaskHLC_ColTask (from
UpdateDisStatus)

LLC_Task (from ServosControl)

Fig. 9: Scenarios Model 2. CollisionControl2 transaction

MonitorTick
<<Wait_State>>

Activity_1
<<Timed_Activity>>

do/ LLCUpdateStatus

Activity_3
<<Timed_Activity>>

do/ LLCStopDevices

Activity_2
<<Timed_Activity>>

do/ HLCProcessInputs

MonitorDeadline

<<Timed_State>>

HLC TaskLLC Task (from ServosControl)

Fig. 10: Scenarios Model 3
MonitorState Transaction

6. Conclusions

Teleoperation systems can be very diverse, but this diversity affects more to the inter-
action patterns among the components than to the functional decomposition. The two
interaction schemes introduced in this work share the same functional decomposition,
however their timing behaviour is very different. Although from the functional point
of view both designs could be suitable, the first (asynchronous client-server) is not
acceptable with regard to the performance when CinServer has to be used on line.
However, the first scheme is very adequated for working in simulation mode as the
applications considered for the design of the architecture do. It is even not unrealistic
to consider applications that should change from one scheme to another in different
modes of operation. The result of the evaluation against performance requirements
was that the original architecture was not appropiate (without major modifications)
for the new system. However this is not the main conclusion of the evaluation, nor the
most useful one at long term, but:

• Most of the relevant trade-offs are referred to the interaction patterns among
components and not to their enclosed functionality.

• It would be possible to re-use a significant number of existing components if it
would be possible to modify their interaction patterns maintaining their func-
tionality and interfaces.

To summarise, it is much more interesting to define an architectural framework that
defines a set of rules that allow sharing the same components among systems with
different architectures than try to define a software architecture for large domains in
which it is nearly impossible to reach the requirements of all of the potential applica-
tions. And the first rule of such architectural framework should be to consider the
interaction patterns as design and parametrizable features at the same level that the
components. In this way, some original components can be reused to work in non-
structured environments when other interaction patterns are selected. In the same
way, other components can be replaced by other new ones (i.e. collisions detection
subsystem can be replaced by a computer vision subsystem).

The study of the performance during the first design phases is useful to compare
different design solutions. At an architectural level such analysis can be of coarse
grain and can be completed in later development phases. But even so, it is necessary
an automated support of evaluation process and a standard notation as UML, despite
all its drawbacks for describing architectures. So, the profile UML-MAST has been
an excellent help where two research areas converge: software engineering and real-
time systems.

References

1. Ada 95 Reference Manual: Language and Standard Libraries. International Standard
ANSI/ISO/IEC-8652, 1995.

2. A. Alonso, B.Alvarez, J.A. Pastor, J.A. de la Puente, A.Iborra. “Software architecture for a
robot teleoperation system”. Proceedings of the 4th IFAC Workshop on Algorithms and Ar-
chitectures for Real-Time Control. Portugal. April 1997.

3. B. Álvarez et al.. “Timing Analysis of a Generic Robot Teleoperation Software Architec-
ture”, Control Engineering Practice, vol 6(6), pp.409-416. June, 1998.

4. B. Álvarez et al.. “Developing multi-application remote systems” Nuclear Eng. Interna-
tional, vol. 45(548). March 2000.

5. L. Bass et al. “Software Architecture in Practice”. Addison-Wesley, 1998.
6. J.M. Drake et al.. “Mast Real-Time View: Graphic UML Tool for Modeling Object Oriented

Real Time Systems”. Group of Computers and Real-Time Systems. University de Cantabria
(Internal Report), 2000. http://ctrpc17.ctr.unican.es/mast.html.

7. Environmental Friendly and Cost-effective Technology for Coating Removal" (EFTCoR).
GROWTH project ref. GRD2-2001-50004, 2001.

8. A. Iborra et al. "Service robot for hull blasting” . The 27th Annual Conference of the IEEE
Industrial Electronics Society (IECON´01), pp. 2178-2183. November, 2001.

9. R. Kazman et al., “ATAM SM: Method for Architecture Evaluation”, Technical Report,
CMU/SEI-2000-TR-004, 2000.

10. M.H. Klein et al. “A Practitioner´s Handbook for Real-Time Analysis Guide to Rate Mono-
tonic Analysis for Real-Time Systems”. Kluwer Academic Publishers, 1993.

11. Reference manual. Rational Sw Corp, 2000. Available at www.rational.com.

