
FINITE-DIFFERENCE EQUATIONS IN
CIRCULAR-WAVEGUIDE COUPLING
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A numerical method is developed to verify perturbation results
in imperfect-circular-waveguide computations, and some
results are presented for the most critical cases. Conclusions
encourage both the perturbation solution and the proposed
numerical solution by finite-difference equations.

The degradation of the transmission characteristics, due to
random conversion and reconversion phenomena, in a
circular-waveguide link can be readily computed if a perturba-
tion solution is used.12 However, the degree of approximation
of the solution obtained cannot be satisfactorily controlled,
and we are facedwith the problem of the accuracy of the results
in determining the design parameters of the link. A different
approach is contained in Reference 3; very interesting results
are given for coupled covariance differential equations.
Unfortunately, these results are exact only if the imperfection
power spectrum is white. If the computations are to be
extended to nonwhite spectra, we need a control.4 In this
letter, the following basic idea is presented: it is possible to
follow a different path in deriving the equations of Reference 3.
In this way, an 'intermediate' solution, in terms of finite-
difference equations, is obtained for every power spectrum.
This solution is approximate, and the approximation can be
improved by reducing the step of the solution. Thus, as it
will be shown, control of the approximation is possible.

Let us start from coupled-line equations of the form:

where

dGp(z)
dz = jc(z)exp(ATz)G1(z)

dz
= jciz) exp (Arz) G0(z)
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Ar = r o -r ! = ao- - / M = A<X+JA$
where Fo and r \ are complex propagation coefficients of the
TEoi mode and the unwanted mode, respectively, and c(z) is
the coupling coefficient, assumed real. In eqn. 1, Go and Gx
are the normalised complex-wave amplitudes related to the
complex-wave amplitudes /0 and / by

and
G0(z) = /o(z)exp(roz)

G1(z) = /1(z)exp(r1z)
(2)

Go and Gx are functions of Aa, A/? and z. As A/? can be
considered proportional to the frequency, we choose it as
the explicit variable. Let us define

Ro = <Go*(AP)Go(A0+(j)> = <G0* GOa>
(3)

where the operator < > indicates the ensemble average, a is a
variation from A0 and, as a subscript, indicates that the
computation is performed for A0+a. From eqn. 1, tUis
possible to compute the first derivative of eqns. 3 at the
co-ordinate z, as a function of Go and G t inz. These expressions
are significantly simplified by assuming a lst-order pertur-
bation solution for computing Go and Gt in z; hence,
expressions are found for the first derivative of eqn. 3, as
functions of coupling, waveguide parameters, autocorrelation
function of the deformation process, assumed stationary,
and of Ro and Rt for z = 0. Assuming c(z) is proportional
to the deformation,

c(z)=Cod(z) (4)

C(u)= (d(z)d(z + u)> (5)

I(z, AT) = exp (Arz) J C(u) exp ( - AF«) du (6)

dR0

dz

and

dRY

~dz~

= - C0
2 exp (Aaz) Ko(0)[e

x/(z, -Ar f f) + exp{

+ Co2 exp (Aaz) /^(O) [exp {j(AP+o)z} I(z,

+ exp(-jA0z)I(z, AI^)]

= C0
2exp(-Aaz)i?o(0)[exp{-;(A)?+CT)z}

(7)

x I(z, - AT*) + exp (jAfiz) I(z, - AFJ]

- C0
2 exp ( - Aaz) R^OHexp {-j(A0+ o)z) I(z, ATO)

+ expt/A/?z)/(z, AF*)] (8)

It is important to note that the derivation of eqns. 7 and 8
involves an independent averaging of d(z) and Go and Gx
that is always correct starting from z = 0. However, to
obtain an iterative formulation, it is necessary to use eqns. 7
and 8 from a z co-ordinate and obtain dR0/dz and dRJdz at
z+Az. For white spectra, all values of d(z) for different
co-ordinates are independent, and so G0(z) and G^z) are
independent of d(z) in the z<z<z+Az interval, without
limitation of Az. For nonwhite spectra, a Azstep much
greater than the correlation distance of the imperfection must
be used in eqns. 7 and 8 if one wants to suppose that the
correlation is practically extinguished. A limit of eqns. 7 and 8
for z —y 0 is allowed for white spectra, but, for other spectra, a
finite-difference formulation derived from eqns. 7 and 8 is
allowed. If

C(u) = A0S(u) (9)

with Ao a real constant and 8(u) the delta function, and, if

M0(z) = R0(z) (10)
and

RL(Z)= R1(z)exp(2Aaz)exp(jaz) . . . . (11)

are defined, taking the limit for Az->0 of eqns. 7 and 8,
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written from z to z+ Az, the following equations are obtained,
corresponding to those already given by Rowe and Young in
Reference 3:

dR0

dz
= -Co2AoRo(z)+CQ

2AoRl(z)

dz
= Cc ) + (2A<X+JCJ-C0

2

(12)

If a = 0, a power formulation is obtained. For this, the
finite-difference equations were derived to allow calculation of
the ratio between the reconverted power PR and the signal
power Ps, and also to allow comparison of the results with
those obtained by other methods.

Let us define

(13)

p = r a • <->
and choose L as the step of solution. Then

P(n+\) = exp(-2a0L) TP(n) (15)

The elements of the T matrix follow from integration of
eqns. 7 and 8 for a = 0, and the initial conditions are Po(0) = 1
and Pi(0) = 0. The general solution of eqn. 15 is analitically
available, using z transform or eigenvalue techniques.

Some results are presented, assuming an exponential
autocorrelation function that produces a 0 1 dB/km average
increase of TEOi attenuation constant. For a minimum step
Lmln, the distance of 10 mis fixed. Computations are performed
for a waveguide link of 30 km, with Aa = 0 for no mode
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Fig. 2 Linear increase of PRIPS in waveguide link with ideal
mode filters

filters or for ideal mode filters equally spaced. Neglecting the
exp (-2<x0L) decay for Aa = 0, the solution has two com-
ponents: the first is a 'steady-state' solution, the second
vanishes as n approaches infinity. These results are valid for
discrete sections, but are like those obtained in a continuous
form for white spectra. Numerical solutions have been
computed for variable L, and, before reaching Lmln, no
significant difference has been found by reducing the solution
step. It is possible to conclude that the differential equations
we obtain as limits of eqns. 7 and 8 are satisfactory^ practice,
and can be applied to verify the perturbation solution. The
case considered is typical of circular-waveguide problems. The
results show that the perturbation solution, if correctly
interpreted, is well approximated to.

In Fig. 1, PR and PR/PS are shown and compared with the
perturbation results, which closely follow PR/PS. In Fig. 2,
the result of an ideal filter every kilometre is shown; the
results corroborate the linear growth of PR/PS for every mode-
filter section, and the numerical results confirm a reduction
whose ratio is the number of mode filters. Eqn. 15 is very
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general, and can be derived for the general case of the wave-
guide link with Aa ̂  0 and nonideal mode filters, as well for
the discrete or the continuous case. Numerical results of
real situations for the Italian circular-waveguide system will be
given later. All the computations, even in the more general
case, can be performed on a desk calculator, and the procedure
appears to be very handy. The method does not suffer any
essential limitations, and its degree of approximation is
readily determined in the process of solution by reducing the
solution step before reaching the allowed minimum.
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APPLICATION OF DIGITAL LINEARISER WITH
CYCLE COUNTER TO THERMOCOUPLES

Indexing terms: Digital instrumentation, Linearisation tech-
niques, Thermocouples, Thermometers

The lineariser corrects the reading of digital thermometer by
omitting, in cycles, some pulses entering the counter of the
thermometer, and hence decreasing the reading by one digit
each time a pulse is omitted. The lengths of cycles in which a
pulse is omitted are shorter, as the number accumulated
in the counter increases, and correct the non-linearity of the
thermocouple.

Because of the nonlinear characteristics of thermocouples, a
linearisation of the voltage obtained from a thermocouple is
necessary in digital thermometers. There are several types of
linearisation, and digital linearising techniques have some
advantages over analogue ones, owing to their driftfree
operation.

A digital thermometer consists of thermocouple, a con-
version amplifier, a digital voltmeter (d.v.m.) and a lineariser.
The voltage at the thermocouple is related nonli nearly to
the measured temperature. The voltage obtained from the
thermocouple is amplified in the conversion amplifier, with
properly chosen amplification, giving a converted voltage
whose numerical value is equal to the numerical value of the
measured temperature. By measuring this converted voltage
by a d.v.m., the temperature will be obtained. Owing to the
nonlinearity of a thermocouple, the converted voltage will be
numerically equal to the measured temperature only for
limited range of the temperature, depending on the thermo-
couple used, the amplification of the conversion amplifier and
the permitted error. As an example, for a J-type thermocouple,
and an amplification of 19, the converted voltage will be
numerically equal to the measured temperature + 1 deg C
within the temperature range 0-120°C. For higher tempera-
tures, the error will be higher, giving an indication on the
d.v.m. of 743 °C when the measured temperature is only
700 °C. To reduce this error, linearisation should be
performed.

A digital thermometer employing a digital lineariser with a
cycle counter works as shown in Fig. 1. The straight line P
represents the indication of temperature with no error, and
lines P+ and P~ are the permitted limits of error. Curve B
shows the indication of the thermometer without the lineariser,
which, after point Q, is outside the error limits. The lineariser
reduces the reading of the thermometer at the point Q to Q',
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