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Abstract—A new efficient technique for computing the Green’s
functions inside rectangular waveguides is presented. After a
summary of the classical approaches and their difficulties, a new
strategy is proposed, based on the decomposition of the main
spectral series into simpler terms. Although the resulting series
present better convergence rate, several acceleration techniques
are combined to further improve the efficiency. Several results are
presented to demonstrate the improvements in convergence rates
obtained using the new decomposition.

Index Terms—Acceleration techniques, dyadic Green’s func-
tions, Ewald methods, integral equations, rectangular waveguide.

I. INTRODUCTION

T HE calculation of the Green’s functions inside waveg-
uides and cavities has been an interesting subject largely

investigated in the last decades [1]–[4]. This is because the im-
portant role that these Green’s functions play during the analysis
and design of shielded microwave circuits (MMIC) and wave-
guide devices, using the integral equation technique [5]–[7].

In particular, the Green’s functions inside rectangular waveg-
uides have well-known expressions consisting on infinite se-
ries, either in the spectral or in the spatial domains [8]–[10].
However, despite their analytical simplicity, these series present
some inconveniences from the computational point of view, as
they exhibit very slow convergence rates. As a result, the number
of terms in the series (modes of the cavity or spatial images),
needed to obtain accurate results, is in general very high. This
leads to high computational times when computing several hun-
dreds of Green’s functions, needed during the analysis of prac-
tical devices using Integral Equation formulations. These are the
main reasons for the interest in finding methods that allow to ac-
celerate the convergence of the relevant series.

Recently, several approaches based on the Ewald method [1],
[11]–[13] for the series acceleration have been introduced. With
the Ewald technique it is possible to achieve excellent conver-
gence rates employing only a small number of terms in the se-
ries. The key of this method consist on the precise choice of a so
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Fig. 1. Geometry under study. It consists of a cross-sectional plane �� � � �
of an infinite rectangular waveguide on which different source and observation
points are placed. Point � has been set to (� � �����, � � �����), and will
be used for convergence studies later in the theory section. Lines 1 and 2 will
be employed for spatial sweeps during the validation in the results section, and
have been set to �� � ������ and �� � �����, respectively. The two sources
have been located at (� � ����, � � ����) and (� � ��	�, � � ����).

called splitting parameter , which is critical for the improve-
ment of the convergence, and for the numerical stability of the
algorithm [2], [13], [14]. Besides, the method employs comple-
mentary error functions (Erfc) of complex arguments in the cal-
culations which, as a counterpart, are known to be a bottleneck
for computational cost. On the other hand, alternative methods
were derived in the past for the acceleration of the spectral series
[5], [10]. While these methods are also efficient, they usually fail
close to the singularity presented by the source, where a large
number of terms must be included before the technique starts to
be effective. In this paper, after a brief review of the previously
mentioned approaches, we present a novel strategy for the cal-
culation of the Green’s functions inside rectangular waveguides
(basic geometry is shown in Fig. 1).

The technique splits the original spectral series into several
terms, obtained through a Taylor series expansion. The Kummer
technique [2] is then applied using these new computed terms, to
improve the convergence of the remaining series. The final step
is how to evaluate the individual Taylor terms. For the first order
term, the Ewald transformation is used. Because of the nature
of this first order term, the Ewald transformation has shown to
be extremely efficient in this case. First, since the term is static
there are no problems in the selection of the splitting parameter.
Also, the complementary error function now becomes of real
arguments, allowing faster calculations.

0018-926X/$25.00 © 2008 IEEE
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In addition, the higher order Taylor terms already converge
faster. Moreover, due to the static nature of these terms they
are computed only once in a given frequency range. This fact
can accelerate considerably the calculation of the Green’s func-
tions during the analysis of practical circuits inside a given band-
width. Applying the Kummer technique with these terms, a fast
convergent dynamic series is obtained. Only this dynamic series
needs to be evaluated for each frequency point. As a further ac-
celeration method, the summation by parts technique proposed
in [10] is used when the observation point is far from the source
point. There is an important difference in the application of the
summation by parts technique, with respect to the work pre-
sented in [9]. In [9], the summation by parts technique is applied
sequentially to the two dimensional series. This restricts the use
of the technique to observer points far from the source in the
two coordinates of the cross sectional plane (see Fig. 1).
On the contrary, in this work we apply the summation by parts
technique only to the inner series of the Green’s functions. In
this work it is shown that, once the inner series is accurately
computed with the summation by parts technique, the outer se-
ries exhibits a very fast convergence behavior. If the observation
point has the coordinate close to the source , the inner
and outer series are swapped, and the summation by parts tech-
nique is applied along the -axis. By introducing this algorithm,
the range of applicability of the summation by parts technique
is extended, since now all observation points can be accelerated,
except those situated very close the source point along the two
directions of the cross section.

In this paper we show the big improvement in efficiency that
is obtained when using the new strategy proposed for the cal-
culation of the rectangular waveguide Green’s functions. Com-
parisons of convergence rates using the different methods pro-
posed are included. We also present results that validate the new
techniques, and show the advantages of the proposed strategy in
terms of computational time.

II. THEORETICAL OUTLINE

A. Revision of the Different Approaches

The well-known expressions for the three components of the
magnetic potential dyadic Green’s function , in the spectral
domain, are [12]

(1a)

(1b)

(1c)

where we have used the following definitions:

(2a)

(2b)

(2c)

and are the dimensions of the rectangular waveguide (see
Fig. 1). Also, is the propagation constant of the homoge-
neous medium filling the waveguide.

The computation of this series can be performed easily, and a
rapid convergence is achieved for large values of . Un-
fortunately, when the difference of the -coordinates is close to
zero, the number of terms needed to achieve convergence rapidly
increases, until the series become non-convergent in the limiting

case (when source and observation points are on the
same cross-sectional plane; for instance point in Fig. 1).

On the other hand, the same components can be written in
the spatial domain, through the use of the Poisson summation
formula applied to the previous expressions. This yields to the
following alternative series [12]:

(3a)

(3b)

(3c)

(3d)

where the only difference for the three components are the signs
of the corresponding term , namely

(4a)

(4b)

.
(4c)

These spatial series have also a major drawback, as they con-
verge very slowly, being necessary many terms to achieve ac-
ceptable accuracy.

In order to reduce the number of terms needed to compute the
Green’s functions for this kind of problems, a solution was pro-
posed in [12]. In that work the Ewald method [15] was applied
to the spatial domain series, obtaining a final decomposition in
two terms. The first one is evaluated in the spectral domain as

(5a)
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(5b)

(5c)

(5d)

while the second term is formulated in the spatial domain as

(6)

(7)

The total Green’s function will be the sum of these two terms for
each component of the dyadic. It can be noticed that this method
is a combination of the spectral and spatial approaches, both
weighted by the use of complementary error functions, which
are controlled by means of the so called splitting parameter .
If the value of the parameter is wisely chosen, these series con-
verge with very few terms, including the case of . Thus,
the Ewald method becomes a much better option than a straight
direct summation of the series. Unfortunately, precisely because
of the presence of complementary error functions, this method
has two main disadvantages. The first one is that this kind of
functions have large computational costs, specially in the case
of complex arguments. Note that complex arguments appear in
(5), and also in (6) when becomes imaginary (which oc-
curs with the propagating modes of the waveguide).

In order to overcome this problem, in [12] an alternative ex-
pression for the case of lossless waveguides was given. The ex-
pression was based on the Taylor series expansion of the
function, allowing the calculation of new error functions with
real arguments. The second drawback of this formulation is the
difficulty in selecting appropriately the splitting parameter
for all values of the complementary error function arguments.
This parameter strongly affects the convergence rate of the se-
ries, but also the numerical accuracy of the complementary error
function. An incorrect selection of the splitting parameter will
lead to either slow convergence rate of the series, or serious nu-
merical errors. The numerical errors are due to the evaluation of

complementary error functions for arguments with very large
imaginary part. There are some studies proposing criteria for
the correct choice of the optimum value of the splitting param-
eter [1], [13], [14], which, for these kinds of cavities, it has been
found to be

(8)

Nevertheless, it has been observed that when the electrical size
of the waveguide increases, the value of must be even larger
than the proposed optimum in (8). In [13] another alternative
criterion is proposed, which takes into account the effect of the
frequency (electrical size of the cavity)

(9)

being the propagation constant of the first allowed
mode, and the largest argument allowed, without lost of pre-
cision, in the function. Then, the value of is selected
as the maximum between . When increases,
so does the number of terms needed to achieve convergence, re-
sulting into a greater computational cost.

In Section II-B we will introduce an alternative technique that
takes profit of the advantages of the Kummer and Ewald ap-
proaches, avoiding the main difficulties cited above.

B. Decomposition in Dynamic and Static Series in the Spectral
Domain

We will start again from the modal series in the spectral do-
main shown in (1). The Kummer technique is based on con-
sidering the asymptotic term of the series. In this situation the
expression of will be much larger than , so we will
have: . Taking for example the expression of the

component, we write

(10)

where we have defined the asymptotic term as

(11)

Now, if we add and subtract this asymptotic term to the original
series, we obtain

(12)
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The two series and are the so called dy-
namic and static parts of the original series, respectively. In the
dynamic part, as indexes increase, the term will
tend to , so the difference of the two terms will tend to
zero. This will increase the convergence rate of this dynamic
series. In addition, the problem of the divergence of the series
in is solved for this term, since the limiting condition

will be true irrespective of the source and ob-
server points positions.

What remains, then, is the calculation of the asymptotic term
shown in (12), in an efficient way. The key point of the proposed
technique is to apply the Ewald method to this asymptotic term.
It is important to notice that the resulting expressions are very
similar to those presented in equations (6) and (5). However, an
important difference arises in this case. In fact, in the limiting
case the following simplified expressions is obtained:

(13a)

(13b)

(13c)

(13d)

It is remarkable to notice that, in above expressions, the
functions in both terms will always contain real argu-

ments, allowing faster calculations. Another interesting feature
derived from the first fact is that the splitting parameter
can always be chosen as the optimal one according to (8), so
the summation of these series can be performed with very few
terms. In fact, the imaginary part of the argument will never
grow, as this imaginary part is always zero. Therefore, no
numerical problems will be encountered during the evaluation
of these complementary error functions.

Once the static term is evaluated in a very efficient way, the
question that remains open is if the dynamic term in (12) can be
further accelerated. The answer to this question is that the sum-
mation by parts algorithm presented in [10] can still be used for

this term, when the observation point is not close to the source
point. The formulation presented in [10] can be easily adapted
to our dynamic series. First, we write equation (12) in the fol-
lowing form:

(14)

where we have made the redefinition

(15)

For each value of the external sum in (14), we can consider
the infinite inner sum

(16)

which, applying basic trigonometric relations, can be expressed
as

(17)

Next, we will apply the summation by parts procedure as derived
in [10] to this inner sum. As shown in [10], the procedure starts
by splitting the sum into two terms

(18)

In (18), is the partial sum from to , and
is called the remainder, which can be transformed into

[10]

(19)
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The index in (19) indicates the order of the summation
by parts algorithm, are partial differences of the original
spectral domain function for , and are partial
sums of the highly oscillating sinusoidal terms. Using the results
presented in [10] we can write

(20)

The use of analytical closed form expressions for the partial
sums inside the brackets in (19), assures a rapid conver-
gence of the remainder (see [10, Eq. 8]). Thus, we can
see that the expression of the total inner series (18) will also be
accelerated, as the remaining term is a fixed finite sum.

Once the inner sum is efficiently evaluated, the external sum
exhibits a fast convergence behavior, and a direct evaluation is
proposed. A similar procedure can be easily applied to the other
components of the Green’s functions. Only, when we have the
product of cosine terms in the inner sum, then the summation of
two cosine functions appears in (17).

It is important to notice that this procedure works well when
the observation point is not close to the source point. In par-
ticular, [10, Eq. 8] completely fails if . In this case we
can follow an alternative strategy. If the difference of coordi-
nates is large enough, we can still apply the technique by inter-
changing the inner and outer series. On the contrary, if we are
also in a region where , then we will not be able to apply
the summation by parts technique for this case. It is important to
remark that this strategy represents an important difference with
respect to the algorithm proposed in [9]. Using the new strategy,
the summation by parts technique can be applied successfully to
all observation points fulfilling either or . In
the singular situation and , the extension of
the Kummer technique using a Taylor expansion is proposed in
Section II-C, in order to accelerate the dynamic series.

C. Acceleration of the Dynamic Term

In the analysis of practical microwave circuits in a given fre-
quency bandwidth, what it is important is the fast calculation of
the dynamic term of (12). This is because this is the term de-
pending on the frequency, and therefore, the term that needs to
be computed at each frequency point in the analysis. We then
concentrate the efforts in the acceleration of this dynamic term.

To increase the efficiency in the evaluation of the dynamic
term for the singular situation described above, we propose to
extract higher order asymptotic terms, following the Kummer
strategy. Applying the Taylor expansion to the propagation con-
stant , an asymptotic expression with two terms can be
obtained (see the Appendix)

(21)

If we look closely to (21), we can notice that we have ob-
tained an expression consisting on the first asymptotic term
we used previously, plus a second term exhibiting a
dependence. The use of a new asymptotic term in the Kummer
technique allows to improve the convergence rate of the dy-
namic series, as it will be shown in the results section.

As a new asymptotic term has been subtracted from the orig-
inal series, a second static sum must be added to recover the final
Green’s functions. The new static series adopt the following
form:

(22)

It is important to notice that this series exhibits a good con-
vergence behavior of the type , even in the critical case
of . Therefore, a direct evaluation of the series is pos-
sible. In addition, due to the static nature of the series, it has to
be computed only once for a given geometry. Then, it does not
add up new computational cost during the analysis of practical
circuits in a given bandwidth.

Apart from these considerations, we can also accelerate the
second asymptotic term by using the summation by parts tech-
nique, for observation points far from the source. Taking into
account all these results, we can suggest a new strategy for com-
puting efficiently the Green’s functions for any combination of
source/observer positions.

• First, if the difference is large enough, the spectral
approach should be used, as it needs few modes to converge
due to the intervening exponential term in (2a). Since this
series involves only the evaluation of sinusoidal terms, it
leads to faster calculations than the other forms of the se-
ries.

• On the contrary, if , we can apply the decom-
position in the dynamic and static series, employing two
asymptotic terms. For the first static term, the Ewald
method is used to accelerate the series. For the dynamic
series and for the second static term, we have to consider
two more situations.
— If and , the dynamic series and the

second static series are computed directly in the spectral
domain.

— In any other case, the two series can be efficiently evalu-
ated with the summation by parts technique, employing
very few terms as in the Ewald case.

For solving a MoM problem, the proposed approach allows
to compute the whole MoM matrix as

(23)

The elements and are computed only once for
a given geometry. Only the matrix is computed for
every frequency point. The final impedance MoM matrix is
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Fig. 2. Convergence rate for the total and dynamic series as a function of the
number of modes, for the�� component. Similar behavior can be observed
for the other components of the dyadic (not shown here).

recovered by introducing the frequency dependence as indicated
in (23).

III. RESULTS

First, we are going to show the convergence rates for the dif-
ferent series formulated in the previous section. Let us consider
the structure of Fig. 1 with . We will take
the source position of Source 1 and the observation point (all
the coordinates are shown in the addressed figure). For this test,
the frequency is fixed to 15 GHz. In Fig. 2, the convergence
rate for the component of the dyadic magnetic potential
Green’s function is presented for the critical case . The
figure presents the convergence of the original spectral series,
and of the dynamic series when one and two Taylor terms are ex-
tracted. As explained in the previous section, the spectral series
shows very poor convergence when . On the contrary,
the dynamic series shows better behavior, as a consequence of
the subtraction of additional asymptotic terms. We observe from
the figure that the extraction of the second static term allows to
improve convergence, gaining about an order of magnitude in
terms of precision for a fixed number of modes.

As the difference of -coordinates between source and obser-
vation points is not very small for the given example, the sum-
mation by parts technique can be applied to further accelerate
the dynamic series. The behavior of the summation by parts
technique is good in this situation, as shown in Fig. 3.

First, Fig. 3(a) shows the convergence rate of the internal sum,
where the summation by parts itself is performed. In this case
convergence is very fast, obtaining relative errors better than

with an order of the reminder greater than . The
convergence behavior also shows that the relative error progres-
sively reduces as the index grows [see (19)]. It is also inter-
esting to observe that the precision is enhanced by increasing
the order of the remainder . When is too large, the nu-
merical values of the successive differences in (20) are strongly

Fig. 3. Convergence rate for dynamic series of the �� component, accel-
erated with the summation by parts technique, for the same case as in Fig. 2.
Similar behavior is observed for the other components of the dyadic (not shown
here).

reduced as increases, leading to a saturation in the precision,
as can be observed for the case of . The important con-
clusion that arises from this result is that small values of and

can be used to achieve acceptable error precisions better
than .

On the other hand, Fig. 3(b) considers the external sum, which
converges rapidly as a consequence of the acceleration of the
previous inner series. In this case, the index has been fixed to
the value of , and the order of the remainder is taken
of the same value as the number of terms used in the
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Fig. 4. Convergence rate for the first static series (using Ewald method), for
the same case as in Fig. 2.

external sum. We can observe from the results that the conver-
gence of the external sum is fast. In addition, the convergence
rate for the external series is improved when a second Taylor
term is extracted from the series. For example, for a fixed preci-
sion of , only 20 terms are needed when using two asymp-
totic terms, while 50 modes are needed if only one asymptotic
term is extracted.

After studying the dynamic series, we will examine the static
part, which must also be evaluated for the calculation of the
Green’s functions. The first static series, on which the Ewald
method is applied, presents also a very fast convergence. Fig. 4
shows the relative error for the spectral components shown in
(13a), as a function of the number of terms in the Ewald series.
We can observe that just 10 Ewald terms are needed to achieve
a precision of . The spatial components in (13d) converge
even faster with the Ewald method, and only one term is needed
to obtain the final value of the series (within the numerical pre-
cision of the machine), so they are not included here.

Next, let us study the convergence of the second static se-
ries. We have to bear in mind that the Ewald method cannot be
applied to this series. Therefore, the same strategy as for the dy-
namic series will be used. Fig. 5(a) and (b) illustrates the conver-
gence rates for the (22), considering both a direct evaluation and
the summation by parts approaches. First, Fig. 5(a) shows that
this series will converge even if a direct evaluation is applied. In
addition, if the source point is far from the observation point, the
summation by parts can be applied. In Fig. 5(b) the convergence
rate of the external series is shown, when the internal series is
summed with and in the summation by parts
algorithm. The convergence behavior is similar to the one ob-
served for the dynamic series. In particular, we obtain a relative
error of when 40 modes are used in the external series.

The only question remaining is how to combine efficiently the
direct sum and the summation by parts, for the evaluation of the
dynamic and of the second static term discussed above. To illus-
trate how this combination can be efficiently made, we present

Fig. 5. Convergence rate for the second static series, considering the same case
as in Fig. 2.

in Fig. 6 the number of modes needed in the series to achieve
a relative error of , when the observation point is varied
along Line 2 shown in Fig. 1. In Fig. 6(a) we present the results
obtained for the dynamic series when one and two asymptotic
terms are extracted. We can observe that far from the singularity
the curve is almost flat. This is because in this region the sum-
mation by parts is applied, and the precision is achieved with
13–15 terms in the external series. This number of terms grows
slightly as we get closer to the singularity. Once the observa-
tion point is inside the near-source region (when , the
direct sum is performed, and the number of modes needed to
achieve the required precision increases. We see that very close
to the source, the number of terms increases with a maximum
of 750 modes. It is interesting to observe the important reduc-
tion in the number of modes required, when the second Taylor
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Fig. 6. Number of terms needed to achieve a precision of �� in the dynamic
series when the observation point is varied along Line 2 of Fig. 1. The source
point is placed at Source 1 of Fig. 1.

term is extracted from the series. The figure shows that only 250
modes are required to obtain the same precision, in the worst
case. Moreover, far from the singularity, where the summation
by parts is applied, very few modes are required in the external
series to achieve the same precision as before.

A similar convergence study is presented in Fig. 6(b), but
for the second asymptotic term [see (22)]. Far from the singu-
larity, where the summation by parts is applied, only 11 terms
are needed in the summation of the external series to achieve the
required precision of . Close to the singularity the direct
sum is applied. In this case we need 550 modes in the worst case
to achieve the required precision. However, it is important to re-
call that this computation will have to be done only once during
the analysis of a practical circuit in a given bandwidth.

TABLE I
COMPARISON BETWEEN OUR APPROACH AND THE EWALD METHOD FOR A

1000 POINTS FREQUENCY SWEEP

In the above analysis, the calculations of the Green’s func-
tions have been carried out using different techniques according
to the singular condition of the observer point, as related to the
source position. For an efficient calculation, it is important to
define correctly the limits of the so called near-source region,
where the direct sum is to be applied. If the near-source region
is defined too small, the summation by parts will not be effective
for observation points very close to the source. On the contrary,
if the near-source region is selected too big, we will end up ap-
plying the direct sum for too many observation points, with the
corresponding loss in efficiency. After a fine tuning of the sum-
mation by parts technique, we have found that the most efficient
way to define the near-source region is for observation points
satisfying the following conditions:

(24)

where is a threshold used to switch from the near-source
region to the far region. We have seen that the best efficiency
is obtained when this threshold takes a value around .
Apart from the better convergency rates, the most important fea-
ture of the proposed method is the independence with frequency
of the static series. To show the importance of this fact,Table I
compares the computational time between the normal Ewald ap-
proach used in [12] (complex argument case), and the dynamic-
static series decomposition with two asymptotic terms used in
this paper. Computations were made on a 2.8 GHz Pentium IV
processor, using the same observation and source points in two
different waveguides. The time reported in the table gives the
CPU time needed for the evaluation of 1000 frequency points
inside the band from 10 GHz to 20 GHz, considering Source 1
and point from Fig. 1.

In the first waveguide, the value of the splitting parameter
remains the same for both methods [applying (8)]. However,
with the approach derived in this paper, the Ewald technique is
applied only once to the first asymptotic term. This yields an im-
portant reduction in the computational time, as shown inTable I.
The time difference is even larger for the case of the second
bigger waveguide. In this case the splitting parameter must
be increased in the direct Ewald approach [using (9)]. This slows
down the convergence rate of the Ewald technique, requiring 80
terms in the series to reach the precision of . For the ap-
proach proposed in this paper, the splitting parameter is still se-
lected with (8), since it is applied only to the static situation. This
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leads to a smaller value of the splitting parameter, and hence to
a faster convergence. The gain in efficiency shown in Table I is
really important.

In order to validate the method proposed, we present in Fig. 7
the numerical results for the electric scalar potential Green’s
function , along lines 1 and 2 shown in Fig. 1. The wave-
guide dimensions are , and we have con-
sidered two source positions (Source 1 and Source 2 shown in
Fig. 1). Comparisons between the technique presented in this
paper with a direct application of the spectral and the spatial
approaches, are included. Also, results obtained with the tech-
nique developed in [9] for multilayered cavities are presented
for validation. In the case of Fig. 7(a), the observer point is al-
ways far from the source point. Therefore, using our approach,
the summation by parts technique is always used for the calcu-
lation of the Green’s function (the observer point never enters
into the near-source region). In fact, when , the inner
and outer series are interchanged, and the summation by parts
is applied to the -coordinate. This is an important advantage
of the strategy proposed in this paper, as compared to the two
dimensional summation by parts technique presented in [9]. We
have observed that the precision of is reached for all
observation points with a reminder of , using three
summation by parts iterations .

Finally, Fig. 7(b) shows a spatial sweep similar to the previous
one, but using line 2 shown in Fig. 1. In this case the sweep goes
close to the source, so the technique implemented in this paper
will have to switch between the summation by parts technique
and the direct sum of the dynamic series with two Taylor terms
extracted. The validation of the technique with the results ob-
tained using [9] shows that accuracy is maintained also for ob-
servation points very close to the source.

IV. CONCLUSION

In this paper, we have presented a new approach for the
efficient calculation of the Green’s functions inside a rectan-
gular waveguide. After exploring the conventional formulations
(spectral and spatial domain series), a new strategy has been
proposed. The idea is to apply the Kummer transformation,
using two asymptotic terms of the spectral domain Green’s
functions, obtained through a Taylor series expansion. Instead
of applying the Ewald method to the whole series, it is only
applied to the first asymptotic series. In this way the number
of terms needed in the Ewald technique is drastically reduced,
avoiding the numerical instabilities associated to the proper se-
lection of the splitting parameter. A key issue for the numerical
efficiency of the technique, is that only the dynamic term of
the series need to be recomputed for each new frequency point.
We have demonstrated that the dynamic series is accelerated
by an order of magnitude, by extracting the second Taylor term
from the original series. In addition, efficiency is increased
by using the summation by parts technique, when the source
point is placed far from the observer point. A new strategy for
the use of the summation by parts technique was presented in
this paper. Following this approach, the summation by parts
is only applied to the inner series. By interchanging the inner
and outer series, we have extended the range of applicability
of the summation by parts technique, as compared to previous

Fig. 7. Electric scalar potential Green’s function ���� when the observation
point is varied along Line 1 and Line 2 of Fig. 1, when the source is placed at
Source 1 and Source 2 also shown in Fig. 1. Frequency is 15 GHz.

works. The new developed Green’s functions are validated with
other techniques, showing that accuracy is preserved even for
observation points very close to the source point.

APPENDIX

TAYLOR EXPANSION OF THE ASYMPTOTIC EXPRESSION

In this appendix we give the details of the Taylor expan-
sion used to calculate the two asymptotic terms, needed in the
Kummer transformation used in the paper.

To proceed, we will start by rewriting the expression of
as

(25)
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Now we can use the Taylor expansion of the function

(26)

considering , and taking the first two terms,
we can apply (26) to (25), obtaining

(27)

Employing the new expression for , a new asymptotic term
for the spectral Green’s functions can be obtained as

(28)

Here, it is convenient to use another common Taylor expansion,
to separate the above expression into simple terms

(29)

Applying (29) to (28), the following expression is obtained:

(30)

Next, we may use a new Taylor expansion, this time for the
exponential function

(31)

Using (31) on the second exponential in (30), we obtain

(32)

We finally expand this expression, and assuming
, we retain only the first two terms in the expansion, obtaining

finally

(33)
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