
PI-OBS: a Parallel Iterative Optical Burst Scheduler for OBS Networks

P. Pavon-Mariño1, J. Veiga-Gontan1, A. Ortuño-Manzanera1, W. Cerroni2, J. Garcia-Haro1
1Universidad Politécnica de Cartagena (UPCT),Cartagena, Spain

{pablo.pavon, juan.veiga}@upct, aom@alu.upct.es, joang.haro@upct.es
2University of Bologna, DEIS Department, Italy

walter.cerroni@unibo.it

Abstract

This paper presents the PI-OBS algorithm, a

parallel-iterative scheduler for OBS nodes.
Conventional schemes are greedy in the sense that they
process headers one by one. In PI-OBS, all the headers
received during a given time window are jointly
processed to optimize the delay and output wavelength
allocation, applying void filling techniques, and
allowing traffic differentiation. Results show a similar
or better performance than the LAUC-VF algorithm,
commonly used as a performance bound for OBS
schedulers. The PI-OBS scheduler has been designed
to allow parallel electronic implementation similar to
the ones in VOQ schedulers, with a deterministic
response time.

1. Introduction

In the Optical Burst Switching (OBS) paradigm [1],
electronic traffic is assembled into variable length
optical bursts, which are injected into the OBS network

The work described in this paper was carried out with the support

of the BONE project (“Building the Future Optical Network in
Europe”); a Network of Excellence funded by the European
Commission through the 7th ICT-Framework Program.

This research has been partially supported by the MEC projects
TEC2007-67966-01/TCM CON-PARTE-1, and TEC2008-02552-E,
and it is also developed in the framework of "Programa de Ayudas a
Grupos de Excelencia de la R. de Murcia, F. Séneca".

Pablo Pavon Marino, Juan Veiga-Gontan, Alejandro Ortuño-
Manzanera and Joan Garcia Haro are with Universidad Politécnica de
Cartagena (UPCT), Plaza Hospital 1, 30202, Cartagena, Spain (phone:
+34 968325952; fax: +34 968325973; e-mail: {pablo.pavon,
juan.veiga}@upct, aom@alu.upct.es, joang.haro@upct.es.

Walter Cerroni is with the University of Bologna, DEIS
Department, Via Venezia 52, 47023 Cesena (FC), Italy (phone: +39
0547 339209; fax: +39 0547 339208; e-mail:
walter.cerroni@unibo.it).

by network edge nodes, and transparently routed across
the OBS network. The transmission of the burst payload
in a fiber is preceded by a burst header packet (BHP),
which is usually transmitted in a dedicated control
wavelength. BHPs include control information: the
burst payload transmission wavelength, the payload
duration, the offset time between the burst control
header and burst payload, the destination address and
the class of service.

Fig. 1 illustrates the generic architecture of an OBS
switching node with N input and output fibers, 1 control
wavelength (λ0) and n data wavelengths (λ1...λn) per
fiber. The optical switching fabric (OSF) transparently
switches optical bursts from input ports to output ports.
In this paper, we consider OSFs able to emulate output
buffering, with full wavelength conversion (e.g. like [2]
or [3]), and D fiber delay lines (FDLs) of duration
d=0,G,...,(D-1)G, where G denotes the FDL granularity.

Optical switching
fabric (OSF)

Electronic
control unit

0

λ0

λ1

λn

0

λ0

λ1

λn

N-1
λ0

λ1

λn

input header
detection system

output header
transmission system

N-1
λ0

λ1

λn

Fixed duration
payload delay DP

D

D

Fig.1. Scheme of an OBS node

The scheduling algorithm is responsible for

allocating a contention-free FDL and output wavelength
to switch every burst payload to its target output fiber.
Because of the variable length of the bursts, this process
may imply the creation of significant unused time gaps
(voids) between two consecutive bursts in an output
wavelength. The scheduling algorithms intended to

allocate shorter bursts to fill the voids in the output
wavelengths are called void filling algorithms.

Due to the strict timings of the JET [4] signaling
protocol used for delayed reservation, OBS scheduling
algorithms are affected by an unavoidable response time
constraint: the internal path in the OSF must be ready at
the moment of payload arrival. Sequential approaches,
processing input headers one by one, suffer from a
worst case response time which increases with the port
count. Therefore, they are not suitable for medium-to-
large scale OSFs. Furthermore, sequential approaches
are inherently greedy. As a general rule, it is preferred
to make joint resource allocations involving more than
one burst, seeking a better average performance.

This paper proposes a parallel scheduling algorithm
for OBS nodes, named PI-OBS (Parallel Matching
Optical Burst Scheduler). PI-OBS is suitable for a fast
parallel iterative implementation, with an algorithm
response time almost independent of the switch size. It
applies scheduling concepts present in the iSLIP-like
[5] parallel-iterative scheduling algorithms designed for
Virtual Output Queuing (VOQ) architectures. PI-OBS
jointly processes the burst headers arriving in a given
time window, using void filling techniques. It has burst
loss differentiation capabilities according to burst
header information.

The rest of the paper is organized as follows. Section
2 reviews related proposals found in the open literature.
The PI-OBS algorithm is described in section 3, and a
comparative performance study in included in section 4.
Finally, section 5 concludes the paper.

2. Related work

Many scheduling algorithms have been proposed so
far in the literature, where the optimal target is to
provide efficient resource utilization and minimum
burst loss [6].

The very first one [7] defines a time horizon for each
output wavelength, as the instant after which no burst
occupies the channel. Any channel with a horizon
smaller than the arrival time of the burst payload (or of
one of its copies delayed by the FDL buffer, if present)
is available to accommodate the incoming burst and the
algorithm selects the channel with the latest horizon in
order to minimize the bandwidth wasted due to voids.
For this reason the same scheduling technique is also
called Latest Available Unscheduled Channel (LAUC)
[8].

A major improvement in terms of performance is
achieved by adding void filling capabilities to the
Horizon policy, resulting in the Latest Available
Unused Channel with Void Filling (LAUC-VF)

algorithm [8]. Already scheduled channels are now
included in the search, given that they are unused for a
period (i.e. void) starting before the (possibly delayed)
payload arrival time and large enough to accommodate
the entire incoming burst. The unscheduled channels are
considered as a particular case of voids with infinite
length. The algorithm selects the suitable void with the
latest starting time, minimizing the gap left in front of
the incoming burst so that the achieved throughput can
be considered as an upper bound of the OBS node
performance.

In [9], a LAUC-VF variation was proposed which
considers burst QoS differentiation. After a header
processing is completed, the next header to be
processed is chosen giving precedence to that ones
associated to higher priority traffic.

Since LAUC-VF must keep track of all the voids in
the output channels, the algorithm is computationally
more complex and time-consuming than LAUC.
However, other variants of void filling scheduling
policies, such as MinSV, MinEV, BestFit [10] or HVF
[11] achieve the same loss ratios as LAUC-VF with a
significantly reduced complexity [1], thanks to the use
of efficient data structures and smart search techniques.
The most efficient scheduler compared in [1] has a
complexity of O(log K), where K is the number of
scheduled bursts.

Recently, the hardware implementation of an OBS
scheduler based on burst resequencing, which is able to
achieve optimal scheduling in O(1) complexity, has
been proposed [12]. This scheduler does not process
burst headers immediately as they arrive. Instead, it
delays and reorders them according to the respective
payload arrival time. Then, by applying a simple
Horizon policy, it is possible to schedule bursts that
would have required a void filling algorithm in
sequential header processing. However, this scheduler
is applicable to the bufferless case only, since it is able
to merely exploit the voids created by different offset
times and not by burst payloads delayed by FDLs.
Furthermore, due to the delayed header processing, data
bursts need an additional latency.

In order to implement a scalable OBS scheduler, the
dependence of the algorithm execution time from the
switch size should be as low as possible. This can be
achieved adopting a parallel processing scheme, as the
one described in a recent paper [13] which presents a
specific formulation of the scheduling problem and a
simulation of a viable hardware implementation with
the resulting response time.

Nevertheless, all approaches previously described
address the scheduling problem by searching fast and/or
parallel algorithms, for processing one single burst
header. However, headers are still processed

sequentially, which brings two persistent drawbacks: (1)
a sequential approach is greedy, (2) the system has to be
dimensioned for a worst case situation, with a high
number of headers to be processed in a short time
period. Therefore, a completely novel different
approach to a parallel scheduler is the one described in
this paper.

3. PI-OBS: Algorithm description

3.1. General view and time constraints

The PI-OBS algorithm is designed as a parallel
iterative algorithm, which is able to guarantee an upper
bound to the response time. Let us denote this response
time upper bound as TA µs. The algorithm is executed
periodically, every TI µs. The constraint TI≥TA ensures
that an algorithm execution starts strictly after the
previous execution is finished. The algorithm execution
starting at time t=t0, is responsible for jointly processing
the burst headers asynchronously received during the
time interval [t0-TI, t0]. We call this interval the header
arrival time window of the algorithm execution. After
algorithm execution, the scheduling decisions made for
all the headers processed are stored in the system so that
the correct reconfiguration of the OSF is applied when
each payload arrives to the OSF.

We denote TWC as the worst case time (µs) spanning
between the instant of header reception, and the
moment in which a path is ready for the payload. TWC is
the sum of three time parameters: (i) TI, as the worst
case time from header arrival to algorithm execution
(corresponding to a header received just at the start of a
header arrival window), (ii) the algorithm response time
TA, and (iii) the reconfiguration time TO of the optical
components of the OSF:

TWC = TI+TA+TO (1)

Two system parameters can be tuned to fulfill this

constraint: (i) a minimum offset time δm between the
burst header and the burst payload seen by SE node, and
(ii) an extra delay DP added in the payload path,
implemented by fixed duration FDLs in the data input
ports (see Fig. 1). Note that although this approach is
more commonly used in Optical Packet Switching
(OPS) nodes, it is also suitable in this case.
Consequently, the following must hold:

δm + DP ≥ TWC = TI + TA + TO (2)

3.2. Scheduler architecture

Fig. 2 depicts the main building blocks of the
proposed scheduler architecture. It is based on the
electronic interconnection of nNH input modules (left
hand side), and nN output modules (right hand side),
connected by means of a crossbar interconnection for
inter-module signaling.

O(0,0)

Arbiter
R1,R2

G(0,0)
CW(0,0)

O(0,n-1)

O(N-1,n-1)

I(0,0,0)
BHP info

Delay accepted
Void bound

I(1,0,0)

I(H-1,N-1,n-1)

O
ut

pu
t f

ib
er

 0

Signaling
interconnection

matrix

Fig.2. Scheduler architecture.

3.2.1.Input modules description. One input module
Ihfw exists per each horizon time block (h=0,...,H-1),
each input fiber (f=0,..,N-1), and each input wavelength
(w=0,...,n-1). Horizons in this context are consecutive
intervals of duration TI, in which we organize the future
payload arrivals. During the algorithm execution
starting at time t=t0, an input module Ihfw contains the
information about a payload whose first bit will arrive
to the OSF through input fiber f, input wavelength w,
within the time interval [t0-TI+TWC+hTI, t0- TI
+TWC+(h+1)TI). The closest horizon in time corresponds
to the payloads arriving to the OSF in the range [t0-
TI+TWC, t0+TWC). The time t0-TI+TWC is the earliest time
of arrival of a payload whose header was received at the
start of the current header arrival time window, t=t0-TI.
The number of time horizons to consider H, depends on
the difference between the maximum and minimum
offset time allowed in the system.

It must be guaranteed that at most one payload is
associated to each input module in an algorithm
execution. The reason is that each input module of the
scheduler is able to handle at most one payload arrival.
This implies that the minimum allowed payload length
(Lmin) plus the IBG must be greater than the period of
the algorithm execution TI.

Lmin + IBG > TI (3)

The information stored in each input module is (i)

the associated burst target output fiber, burst offset,
burst length and QoS class, (ii) the information about
burst allocation, to be updated during the algorithm
iterations: FDL and output wavelength assigned, and an

upper bound to the length of the void created from burst
head to preceding burst tail if the allocation took place.
The nature of this void length calculation is described
later in this section.
3.2.2.Output modules description. One output module
Ofw exists for each output fiber f=0,...,N-1, and output
wavelength w=0,...,n-1. Each output module contains
four control registers: (i and ii) two registers storing the
occupation of the output wavelength w along time:
R1(f,w) and R2(f,w), (iii) a register G(f,w) storing a grant
pointer, of length log2(nNH) bits, and (iv) one bit
register CW(f,w) setting the scanning direction of the
grant pointer. The utilization of these registers will be
made clear below.

3.3. Scheduler algorithm description

As mentioned before, one algorithm execution starts

periodically every TI µs. Let us suppose that current
algorithm execution starts at time t=t0. At this moment,
the input modules Ihfw, h=0,..,H-1, f=0,...,N-1, w=0,...,n-
1, contain the control information of the burst headers
which arrived in the header arrival time window [t0-TI,
t0). In each output module, the R1 and R2 registers
contain the same information: the occupation of the
output wavelengths by the scheduled payloads in
previous algorithm executions, which can still overlap
with arriving payloads. R1 will act as a backup copy of
R2 during algorithm execution.

Every algorithm execution is composed of a
sequence of CI algorithm iterations. Each iteration is
composed of a sequence of D delay cycles, one for each
FDL in the OSF. Each delay cycle i is devoted to find a
wavelength allocation for the arriving payloads if they
were delayed by the corresponding FDL i, i=0,...,D-1.
Each delay cycle consists of a sequence of 4 steps: (i)
request, (ii) grant, (iii) accept, and (iv) update.

The operations involved in the delay cycles of the
first iteration of the algorithm are:

(i) Request step (delay cycle 0,...,D-1): Executed in
parallel, in each of the nNH input modules. For input
module i with a payload destined to output fiber f, a
request signal is sent to the output modules associated
with all output wavelengths of the target output fiber:
Ofw, w=0,...,n-1. After the request signal, information
about the payload arrival time, payload duration, and
payload QoS is also transmitted through the signaling
interconnection matrix.
(ii) Grant step (delay cycle 0,...,D-1). It is executed in
parallel, in each of the nN output modules. The request
signals received from the input modules are scanned,
starting by the input module associated to input horizon
h, input fiber f and input wavelength w pointed by the

grant pointer G(f,w) of the output module. Internally,
the scanning order of the rest of (h,f,w) 3-tuples
continues lexicographically: a (h1,f1,w1) input module is
scanned before (h2,f2,w2) module if h1 is closer to h than
h2 in the clockwise or counter-clockwise direction,
depending on the state of the CW(f,w) bit. If h1=h2, 3-
tuples are ordered according to the same type of
distance from f1 and f2 to f. If f1 and f2 are also equal, the
input modules are ordered according to the distance
from w1 and w2 to w. Although arduous to describe,
these operations can be performed by arbiters
implemented as fast combinational circuits [14]. A grant
is sent to the first input module found whose burst does
not overlap either with existing bursts scheduled in
previous algorithm executions, nor allocated bursts in
previous delay cycles of the same algorithm iteration.
The arbiter gives precedence to input modules with
higher QoS class, before the input module position.
From the arbiter point of view, this approach is similar
to the precedence between strong and weak requests in
the VOQ algorithm described in [16]. The information
for checking allocation overlap is stored in the R2
register. Different arrangements of the information in R1
and R2 registers may lead to a trade-off between
response time and electronic implementation
complexity. For instance, if R1 and R2 registers are
implemented as bit masks, each bit representing
occupation during a small interval of time, the overlap
check is simplified into fast and parallel bit AND
operations. Furthermore, overlapping check in different
delay cycles is easily performed by bit-shifting the R2
register before the check. The grant signal (if any) is
transmitted through the interconnection matrix. After it,
information about the void created by this grant is also
transmitted: the time distance between the head of the
payload granted and the tail of the preceding payload
according to current allocation. This is easily calculated
as a by-product of overlapping check operation. Note
that the true void can be decreased if in subsequent
delay cycles a burst is allocated to fill the gap between
the current granted burst head and the preceding burst
tail.
(iii) Accept step (delay cycle 0,...,D-1). Executed in
parallel, in each of the nNH input modules. From the
grant signals received, the one with a smaller void is
selected. If that holds for more than one grant, the one
with the lowest wavelength index is preferred (first-fit).
Then, an accept signal is sent to the associated output
module. Note that (i) only the input modules which sent
a request can receive a grant, (ii) after sending an accept
signal, the input module does not enter into play for
future delay cycles in the same iteration.
(iv) Update step (delay cycle 0,...,D-2): Executed in
parallel, in each of the nN output modules. The internal

register R2 storing the occupation of the output
wavelength along time is updated with the new accept
signals information, so that future assignments in
different delays of the same iteration do not overlap
with the accepted allocation.

Once an iteration is finished, all the assignments

performed are erased. The occupation of the R2 register
is set to be R1 again: the system is reset to the state
previous to the first iteration in this algorithm
execution. The only information that remains in the
scheduler from one iteration to the next, is stored at the
input modules: each input module remembers the delay
and void associated to the allocation accepted in the
previous iteration, if any. This information will be used
in the request and grant steps of the next iteration.

The actions taken during request steps in iterations
2,..., CI are modified as follows. Let us suppose an input
module (h,f,w) which accepted an allocation for delay
D1 in the previous iteration, with a void bound of V1. In
the next iteration delay cycles d=0,...,D1-1, normal
operation is performed. If an accept signal is sent, the
input module refuses to send more request signals in the
next delay cycles. During delay cycle D1 (if the module
has not received a grant yet), the request signal is
accompanied with the size V1 of the void bound
information stored at the input module, which is sent to
the requested output modules.

The grant step is modified as follows. Each output
module grants the first input module following the
scanning order, for which (i) a request is received, and
(ii) the void generated by this allocation (checked from
the R2 register) is strictly lower than the void V1
published by that input module. Again, this
functionality can be implemented by fast binary
comparisons performed in parallel in all the output
modules. Note that the void comparison implies that
grants sent in iteration i to an input module, could be
sent to other modules in iteration i+1.

At the end of the last iteration, the allocations
accepted by the input modules are considered final. In
the output modules, the R2 register in each output
module contains the updated occupation. This
information is copied into R1. Before next algorithm
execution starts, R1 registers are modified to reflect a
packet propagation of TI µs. If R1 and R2 are bit mask
registers, this can be performed by fast bit shift
operations.
3.4. Grant pointers operation and system
initialization

As it happens in the iSLIP scheduler for VOQ

switches [5], the operation of grant pointers strongly

affects the performance of the system. If an input
module enters into a request step, it simultaneously
sends a request signal to n output modules, one per each
output wavelength of the target output fiber. It is of
interest to reduce the number of simultaneous grants an
input module receives, as at most one grant can be
accepted. The non-accepted grants correspond to delay
assignments not granted to other modules. Those
candidate allocations will not enter into play until next
iteration. Therefore, the grant pointers of output
modules corresponding to the same output fiber should
be desynchronized, in the sense that they point to input
modules as separated as possible one from the other in
the lexicographical ordering. Then, we increase the
chances that the grants are more uniformly spread
among the input modules. Similarly to algorithm [16]
for VOQ switches, and to algorithm [17] for slotted
OPS switches, this can be obtained by: (i) a grant
pointer initialization during system start-up which
maximizes the minimum lexicographical distance
between pointers, (ii) the CW bit is changed after every
algorithm execution, switching the scanning direction of
the input ports pointed by the grant pointers. This action
aims to improve system fairness when packet arrivals
are not uniform across input fibers, in the same way as
in [17]. (iii) Every two algorithm executions (with
opposite scanning directions) all the pointers increase
the value by one, modulo nNH.

3.5. Algorithm convergence

We define algorithm convergence time as the

number of iterations needed for the system to achieve a
stable allocation in all the processed bursts, which
would not change if more iterations were performed.

Property 1: Worst case convergence time is limited
by a finite bound.

Proof: Let Ihfw be an input module which has
received a grant for delay D1 in iteration i. In iteration
i+1, the same input module can receive a different
delay-wavelength assignment, only when (i) the
allocations in delay cycles 0,.., D1-1 have changed from
previous iteration, or (ii) the void bounds V1 announced
in delay cycle D1 change in any input module.

For delay cycle 0, only condition (ii) can hold, and a
variation in (ii) can only occur when an input module
has improved its void estimation. Therefore, this can
only happen during a finite number of iterations. After
that, allocations do not change in delay cycle 0. At this
moment, applying the same principle to delay cycle 1,
then 2, etc. convergence is guaranteed in a finite
number of iterations.

The PI-OBS algorithm addresses the multi-objective
optimization problem of allocating delays and output

wavelengths to arriving bursts so that: (i) the number of
bursts receiving a delay is maximized for each QoS
class, prioritizing higher class traffic, (ii) the average
delay of the allocation is minimized, (iii) the average
size of the voids generated is minimized.

Property 2: The PI-OBS stable allocations are
distance-1 local optimum solutions to the previous
problem.

Proof: We provide an intuitive proof. A distance-1
local minimum solution means that the allocation is not
improved by neighboring solutions which differ in at
most one assignment. Let us assume a solution in which
(i) one more burst could receive a delay-wavelength
instead of being dropped, or (ii) receive a better delay,
(iii) or receive an assignment with the same delay but
implying a smaller void. Clearly, this solution would
not be a stable allocation, convergence has not been
reached, and the algorithm would change the solution in
a further iteration.

4. Results

In the testing scenario, the switch under evaluation
SE receives traffic from N input neighbor nodes
(I0,...,IN-1), and is responsible for switching it to N
output target nodes (T0,...,TN-1). Connecting fibers have
n data wavelengths λ1,...,λn and one separated control
wavelength λ0.

Three different scheduling algorithms will be
evaluated in the SE node: LAUC, LAUC-VF and PI-
OBS. LAUC and LAUC-VF are sequential algorithms
which are commonly used as performance bound in
comparisons.

The reconfiguration time of the optical equipment
and the IBG time are assumed to be equal to 0.03 µs
(TO=IBG=0.03 µs). Both the input nodes and the SE
node under test respect this IBG time in their
assignments. Scheduling algorithms can easily do that
by artificially adding the value IBG to the payload
duration. Then, the scheduler guarantees that every
payload is followed by an idle time of IBG µs in the
output wavelength.

Each source node assembles bursts of payload
duration given by a truncated normal distribution.
Minimum burst length is set to 10 µs, and the maximum
burst length to 100 µs. Average burst length is set to 55
µs. The time between the assembling of two bursts is
exponentially distributed. Its average is calculated to
match the desired load value. After a burst is assembled,
the transmission wavelength and injection time in the
connecting fiber are selected as if the input node was a
LAUC-VF node, with an infinite number of FDLs.
Using LAUC-VF source nodes is considered a more

realistic scenario, which intends to reproduce the
correlations in burst arrivals that appear in different
wavelengths of the same fiber in an OBS network. The
granularity of the FDLs in the source nodes and the SE
node is made equal to 55.03 µs, the average burst length
plus the IBG time. We denote this as the perceived
average burst length, as it is the average burst length
observed by the scheduler. Previous works have shown
that a FDL granularity close to the average payload
duration optimizes system performance [18].

The time between two algorithm executions is set to
TI=10 µs. The algorithm response time is assumed to be
also TA=10 µs (so that the constraint TI≥TA is tight). The
minimum offset time of the bursts generated by the edge
node is calculated by assuming that the switch under
test has DP=0 µs extra payload delay. Then δm=20.03
µs. Bursts are generated with a random offset uniformly
distributed in the range [20.03, 80.03] µs. This implies
that 7 horizons of 10 µs each have to be used in the PI-
OBS algorithm. For the algorithm execution starting at
time t=t0, the first horizon contains the payloads
arriving to the OSF at time interval [t0+10.03, t0+20.03],
and last horizon for payloads arriving at the time
interval [t0+70.03, t0+80.03]. Note that in OBS
networks designed to have a constant offset time, the
number of PI-OBS horizons would be reduced to 1,
resulting in a relevant saving in implementation
complexity.

Target output node of the bursts is selected randomly
with uniform distribution. Two classes of service have
been defined in all the tests: 10% of the bursts are of
high priority traffic (Hi), and 90% of low priority or
best-effort traffic (BE). Only the PI-OBS algorithm
performs traffic differentiation.

Performance evaluation has been conducted by
means of discrete event simulation. The simulation tool
has been built on top of the OMNeT++ platform [19].
All the tests performed consist of 5 independent
samples, with 107 generated bursts each. Confidence
intervals are calculated for a 95% quality, using the t-
Student method. Confidence intervals obtained validate
the results, but are not shown in the figures for the sake
of clarity.

The first step in our study addresses the
dimensioning of the buffering in the SE switch, required
for guaranteeing an average bit loss probability below
10-5 for an 80% input load. Measuring the bit loss
probability means that the loss of a burst is weighted by
its duration. The variance of the payload duration is
made equal to the perceived updated average burst
length 55.03 µs. This corresponds to a coefficient of
variation of the payload distribution equal to 1, CV=1.

Results are shown in Table I. Note that PI-OBS and
LAUC-VF algorithms have a similar buffering

performance. In the DWDM scenario (n=64), 2 FDLs
are enough to guarantee the loss target. Also, results
confirm that LAUC algorithm strongly increases the
buffering requirements, because of its inefficient use of
resources. The same buffering requirements, not shown
in the table, have been obtained for CV=0.5 and
CV=1.5, with the only difference for the case n=16,
CV=0.5, where both LAUC-VF and PI-OBS schedulers
required one extra FDL.

Table I

FDL buffering {PI-OBS/LAUC-VF/LAUC}
 λ
 N n= 16 n = 32 n = 64

N =2 4 / 4 / >10 3 / 2 / >10 2 / 2 / 4
N =4 4 / 4 / >10 3 / 3 / >10 2 / 2 / 4
N =8 4 / 4 / >10 3 / 3 / >10 2 / 2 / 4

The subsequent tests included in this paper intend to

provide a deeper understanding of how LAUC-VF and
PI-OBS schedulers react during overload intervals. The
LAUC scheduler is removed from the picture because
of its well-known worse performance.

Fig. 3 and Fig. 4 show the burst loss probability
(BLP) of a switch with N=4 input and output fibers, and
n=16 wavelengths per fiber, under an input load of
95%, but with the buffering dimensioning of D=4 FDLs
(calculated in Table I for a bit loss probability of 10-5
under an 80% load). Naturally, that overload scenario is
supposed to be transient in an actual system, as an
unacceptable loss probability is obtained. We have
conducted similar tests for switch sizes N={2,4,8},
n={16,32,64}, not shown in the paper, which yield to
the same conclusions as the ones exposed below.

Fig. 3 shows the burst loss probability distribution,
depending on the payload size. Results yield to the
following conclusions: (i) short bursts have a better
chance to be allocated resources. All bursts larger than
approximately one half of the average payload length
are treated equally by the system. These effects appear
in both LAUC-VF and PI-OBS algorithms. (ii) PI-OBS
effectively differentiates the burst losses for the two
tested service classes: high class (Hi), and best effort
(BE). Nevertheless, there is room for investigating
scheduler variants that obtain a stronger traffic
differentiation (iii) the losses of the best-effort traffic in
PI-OBS algorithm are similar to the ones in the LAUC-
VF algorithm. The performance of high class traffic in
PI-OBS scheduler improves LAUC-VF results.

10 20 30 40 50 60 70 80 90 100
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Payload Length

B
ur

st
 L

os
s

P
ro

ba
bi

lit
y

Burst Loss Probability vs Payload Length

PI-OBS Hi

PI-OBS BE
LAUC VF

Fig. 3. BLP distribution (payload length).

Fig. 4 displays the burst loss probability distribution

as a function of the offset of the burst. Again, LAUC-
VF and PI-OBS are similar in the impact of the burst
offset on the loss probability for the overloaded
scenario, increasing the dropping probability for bursts
which were announced with a shorter offset.

20 30 40 50 60 70 80

10
-4

10
-3

10
-2

10
-1

Offset Time

B
ur

st
 L

os
s

P
ro

ba
bi

lit
y

Burst Loss Probability vs Offset Time

PI-OBS Hi

PI-OBS BE
LAUC VF

Fig. 4. BLP distribution (offset time).

The observed LAUC-VF results are comparable to

the ones obtained in other works which have studied
that scheduler performance, although under different
testing scenarios (e.g. see [19]). The most relevant
conclusions from our study are that PI-OBS, which is
designed to minimize the same objective function
without a greedy approach, results in a similar behavior
under overloading conditions.

While PI-OBS convergence has been proved in a
finite number of iterations, it is clear that shorter
convergence times may lead to hardware simplification.
Table II summarizes the algorithm convergence
information for PI-OBS in the same tests shown in
Table I. For each N={2,4,8}, n={16,32,64}, we include
the number of iterations in the algorithm such that an
optimal solution is obtained in the 99% of the time
slots, for three CV factors, CV={0.5, 1, 1.5}. We can
conclude that the convergence time does not depend

either on the number of fibers, nor the CV factor in
payload length distribution, but is slightly larger for a
larger number of wavelengths per fiber. Nevertheless,
the number of iterations for convergence can be
considered reasonably low.

Table II
PI-OBS Convergence

 λ
 N n= 16 n = 32 n = 64

N =2 6 / 6 / 6 8 / 8 / 8 10 / 10 / 10
N =4 6 / 6 / 6 8 / 8 / 8 11 / 11 / 11
N =8 6 / 6 / 6 8 / 9 / 8 11 / 11 / 11

5. Conclusions and future work

As far as the authors know, the PI-OBS is the first
proposal of a parallel-iterative scheduler for OBS
switches. In contrast to conventional greedy
approaches, all the headers received in a given time
window are jointly processed. This opens a field for a
performance gain, when compared to greedy
approaches like the LAUC-VF scheme. Also, algorithm
convergence studies show a response time
approximately independent from switch size. Observing
the similarities with VOQ schedulers, authors are
working on a practical parallel implementation of the
scheduler, exploring the trade-off between
implementation complexity and algorithm response
time.

Authors consider the PI-OBS as a first step.
Variations of PI-OBS can explore other strategies for
joint resource allocations, yielding to performance
improvements and/or hardware simplification.

7. References

[1] Y. Chen, C. Qiao, X. Yu, “Optical Burst Switching: A

New Area in Optical Networking Research”, IEEE
Network, vol. 18, no. 3, May/June 2004.

[2] C. Guillemot, et al., "Transparent optical packet
switching: the European ACTS KEOPS project
approach", IEEE J. Lightwave Technol., vol. 16, no. 12,
pp. 2117-2134, Dec. 1998.

[3] S. L. Danielsen, C. Joergensen, B. Mikkelsen and K.
Stubkjaer, "Analysis of a WDM packet switch with
improved performance under bursty traffic conditions
due to tunable wavelength converters", IEEE Journal of
Lightwave Technology, vol. 16, no. 5, pp. 729-735, May
1998.

[4] M. Yoo and C. Qiao, “Just-enough-time (JET): A High
Speed Protocol for Bursty Traffic in Optical Networks,”
IEEE/LEOS Tech. Global Info. Infra., pp. 26–27, Aug.
1997.

[5] N. McKeown, “iSLIP: A Scheduling Algorithm for
Input-Queued Switches”, IEEE/ACM Transactions on
Networking, vol. 7, no. 2, pp. 188-201, April 1999.

[6] F. Callegati, W. Cerroni, G. S. Pavani, “Key Parameters
for Contention Resolution in Multi-Fiber Optical
Burst/Packet Switching Nodes” (Invited Paper), Proc. of
IEEE Broadnets 2007, Raleigh, NC, Sept. 2007.

[7] J. Turner, “Terabit Burst Switching”, Journal of High-
Speed Networks, vol. 8, no. 1, 1999.

[8] Y. Xiong, M. Vandenhoute, H. C. Cankaya, “Control
Architecture in Optical Burst-Switched WDM
Networks”, IEEE Journal on Selected Areas in
Communications, vol. 18, no. 10, Oct. 2000.

[9] M. Yang, S.Q. Zheng, Dominique Verchere, “A QoS
Supporting Scheduling Algorithm for Optical Burst
Switching DWDM Networks”, in Proc. IEEE Globecom
2001, vol , pp.86-91.

[10] J. Xu, C. Qiao, J. Li, G. Xu, “Efficient Burst Scheduling
Algorithms in Optical Burst-Switched Networks Using
Geometric Techniques”, IEEE Journal on Selected Areas
in Communications, vol. 22, no. 9, Nov. 2004.

[11] G. Muretto, C. Raffaelli, P. Zaffoni, “Effective
implementation of void filling in OBS networks with
service differentiation”, Proc. of WOBS 2004, San José,
CA, USA, Oct. 2004.

[12] Y. Chen, J. Turner, P.F. Mo, “Optimal Burst Scheduling
in Optical Burst Switched Networks”, IEEE/OSA Journal
of Lightwave Technology, vol. 25, no. 8, Aug. 2007.

[13] F. Callegati, A. Campi, W. Cerroni, “A cost-effective
approach to optical packet/burst scheduling”, Proc. of
IEEE ICC 2007, Glasgow, UK, June 2007.

[14] C. K. Hung, et al. “Design and implementation of high-
speed arbiter for large-scale VOQ crossbar switches”,
Proc. of ISCAS’03 Conference, 2003.

[15] S. Mneimneh. “Matching From the First Iteration: An
Iterative Switching Algorithm for an Input Queued
Switch”, IEEE/ACM Transactions on Networking,
vol.16, no. 1, Feb.2008.

[16] Y. Jiang and M. Hamdi, “A fully Desynchronized
Round-Robin Matching Scheduler for a VOQ Packet
Switch Architecture”, IEEE Workshop on High
Performance Switching and Routing, Dallas, pp. 407-
411, 2001.

[17] P. Pavon-Marino, J. Garcia-Haro, A. Jajszczyk, “Parallel
Desynchronized Block Matching: A Feasible Scheduling
Algorithm for the Input-Buffered Wavelength-Routed
Switch”, Computer Networks, vol. 51, no. 15, pp. 4270-
4283, Oct. 2007.

[18] A. Rostami, A. Wolisz, “Impact of Edge Traffic
Aggregation on the Performance of FDL-Assisted
Optical Core Switching Nodes”, IEEE International
Conference on Communications, 2007, June 2007.

[19] http://www.omnetpp.org. Last accessed 29th Jan. 2009.
[20] J. L. Garcıa-Dorado, J. E. Lopez de Vergara, J. Aracil,

“Analysis of OBS burst scheduling algorithms with
stochastic burst size and offset time”, Proc. 10th Conf.
Optical Networks Design and Modelling, 2006.

