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Abstract. In this paper, the problem of precision reaching applications in ro-
botic systems for scenarios with static and non-static objects has been consid-
ered and a solution based on a neural architecture biologically inspired has 
been proposed and implemented. The goal of this solution is to combine 
robustness and capability mapping trajectories from two biologically 
inspired neural networks: HypRBF and AVITE. The Hyper Basis Ra-
dial Function (HypRBF) neural model solves the inverse kinematic in 
redundant robotic systems, while the Adaptive Vector Integration to 
End-Point (AVITE) visuo-motor neural model quickly mapping the dif-
ference vector between current and desired position in both spatial (vis-
ual information) and motor coordinates (propioceptive information). 
The anthropomorphic behaviour of the proposed architecture for reach-
ing and tracking tasks in presence of spatial perturbations has been 
validated over a real arm-head robotic platform. 
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1   Introduction 
Most movement tasks in robotics are defined in coordinate systems that are differ-

ent from the actuator space in which motor commands must be issued. Hence, move-
ment planning and learning in task space require appropriated coordinate transforma-
tions from task to actuator space [1,2,16] before motor commands can be computed. 
The transformation from kinematic plans in external coordinates to internal robot 
coordinates is the classic inverse kinematics problem, a problem that arises from the 
fact that inverse transformations are often ill – posed. The  approach taken in this 
paper is trying to solve this problem by using neural network learning of inverse 
kinematics of a redundant manipulator. Later we validate the model implementing it 



on a real robot platform composed of an ABB industrial robot guided by an anthro-
pomorphic vision stereohead. 

  
Trajectories in task space must be carried out by articulator or end-effector move-

ments. One possibility is to learn a position to position mapping from task space; e.g., 
each point in 3–D space can be mapped to a joint configuration that is satisfactory for 
this point. Another possibility is to use a directional mapping from desired movement 
direction in task space into movement directions in effector space (e.g., joint rota-
tions). The model proposed in this paper uses the latter form of mapping through a 
neural network training, because it provides an automatic compensation for externally 
imposed constraints on effector motion. The use of a directional mapping for move-
ment control is closely related to robotic controllers that utilize a generalized inverse 
of the Jacobian matrix [3,8,11,12,14,17]  The relationship between spatial velocity of 
the end-effector and the joint velocities of a manipulator such as a robotic arm is 
given by the following equation: 

 

 ( )� � θ θ∆ = ∆  ��� 
 
where ∆x is the spatial velocity vector of the hand, ∆θ is the joint velocity vector, 

and J(θ) is the manipulator’s Jacobian matrix, whose elements depends only on the 
joint configuration θ. To obtain a joint velocity vector that moves the hand at a de-
sired spatial velocity, we can rearrange this equation 

 

 ( )�� �θ θ−∆ = ∆  ����
 
where J -1(θ) is an inverse of the Jacobian matrix. For a redundant manipulator, a 

unique inverse for J does nor exist. In this case, J -1 is a generalized inverse, or pseu-
doinverse, of the Jacobian matrix. The most commonly used generalized inverse is 
the Moore – Penrose pseudoinverse, which has the desiderable property of returning 
the minimum norm joint rotation vector that can produce the desired spatial velocity. 

 
Learning inverse kinematics is useful when the kinematic model of the robot is not 

accurately available, when Cartesian information is provided in uncalibrated camera 
coordinates, or when the computational complexity of the solutions becomes too 
high. Learning methods are inherently self calibrating, avoiding problems due to 
kinematic singularities.  



 
Figure 1. Learning scheme for acquisition of the directional mapping that allows the 
transformation between desired spatial or task coordinates increments or velocities 
into joint rotations of the robot manipulator. 

 

 
Figure 2.- During performance, the adaptive control scheme proposed in this paper 
continuously computes through vision the difference vector in task coordinates be-
tween actual position of the end-effector and target position. This difference vector 
and propioceptive information about the current joint configuration are used by the 
neural network to compute the joint rotations that allows the system to reach the tar-
get. 

 
 
The learning paradigm used in this paper is the so called “direct inverse” ([10]; 

Figure 1). In this learning paradigm, movement commands are generated in effector 
space (typically random during training), and the system learns a mapping from the 
task space consequences of these movements to the movement commands that caused 
them. This inverse mapping can later be used to command effector space movements 
to achieve task space goals (Figure 2). Learning occurs during action perception cy-
cles in which correct robot configurations are reached and the visual information 
associated with the end-effector displacement is correlated with the joint increments  
that  allowed that displacement. So, inverse kinematic learning in that way will not 
demand impossible postures as can result from an ill conditioned matrix inversion. 

 
The major obstacle in learning inverse kinematics lies in the problem that the in-

verse kinematics of a redundant kinematic chain has infinite solutions.  Thus the 



learning algorithm has to acquire a particular and a valid inverse kinematic solution. 
This issue was characterized by Jordan [9] Jordan and Rumelhart [10] as the problem 
of non – convex mappings. These authors shown that in order to learn the inverse 
kinematics it is necessary that all joints velocities generated during training form a 
convex set. Unfortunately, as shown in [9,10], inverse kinematics has the non con-
vexity property and therefore does not permit direct learning of the inverse mapping. 
Nevertheless, as noted by Bullock et al [5], it is possible to transform the non convex 
problem of inverse kinematics learning into a convex problem by spatially localizing 
the learning task: within the vicinity of each robot configuration reached during learn-
ing, inverse kinematics is actually convex. Thus, inverse kinematics of a redundant 
system can theoretically be accomplished properly by learning an inverse mapping if 
a spatially localized learning algorithm is employed.  Following previous works by 
Bullock et al., [5] and  Guenther & Micci Barreca, [7] in the direct inverse model 
described later in this paper, learning generalizes to all spatial directions at each sam-
pled joint configuration; this is because the model learns a directional mapping that is 
an approximation to the Jacobian pseudoinverse at each joint configuration, and the 
approximate Jacobian pseudoinverse learned for one movement direction can be used 
for all other movement directions.  It’s also important to note that the directional 
mapping learned by the neural network model presented in this paper is locally linear, 
even for redundant systems. This means that if one only considers a small region of 
joint space, the set of joint velocity vectors that produce a desired spatial velocity is 
convex. The radial basis network described in subsequent sections utilizes different 
parameters in different regions of the workspace (corresponding to different radial 
basis functions) and smoothly interpolates between these parameter sets. It is also 
important to note that systems that use directional mappings as the system presented 
in this paper, can successfully reach targets even if the directional mapping contains a 
large amount of error. Therefore, any residual error that might exist; e.g. from assum-
ing linearity over too large a region of the workspace, will not prevent the system 
from reaching targets, but will instead only lead to curvature in the movement trajec-
tories. 

 

2 Learning Regularized Inverse Kinematics Solutions. HypBF 
Networks  

 
2.1 Regularization Networks. Hyper Basis Functions Networks. 
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where W is an unknown square matrix and superscript T indicates transpose. In the 
simple case of a diagonal W the diagonal elements assign a specific weight to each 
input coordinate, determining in fact the units of measure  and the importance of each 
feature. Notice that a set of Gaussian G functions with a diagonal W are equivalent to 
the same gaussians with their own spreads σ (i.e. calling  wll = 1/σl  and doing wlk =0 
if l � k)�

�

In this framework, the stage of learning is simply the stage of estimating from the 
data  the values of the parameters in the representation that has been showed above. 
Iterative methods can be used to find the optimal values of the various sets of parame-
ters , the cα, the W matrix and the tα, that minimize an error functional on the set of 



examples. Steeprest descent is the standard approach that requires calculations of 
derivatives. The error functional is defined as 
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The elements of the matrix A(θ) are the outputs of a regularization HyperBF net-

work and are calculated according to the following equations: 
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where  wa
kij are scalar parameters and the basis functions are Gaussian: 
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where µa

kl and σa
kl are parameters corresponding to the mean and variance of basis 

function k along dimension l. Parameters µa
kl correspond to centers tα of subsection 

2.1 and variances σa
kl corresponds to diagonal elements of matrix W, where wii = 

1/σa
ki. The parameters wa

kij, µa
kl, σa

kl, are learned using gradient descent during the 
action – perception cycle used to train the model. The action – perception cycle is 
induced by instanting random joint velocity vectors ∆θB

 (where the subscript B de-
notes a babbled movement, Figure 1) . For the parameters used to produce aij, the cost 
function or error functional that is minimized by gradient descent is: 
 

� ( )� ∆−∆=
	

	

$

	�
*θθ � �����

�������� ����∆θ	����	� ����8����� ���������
������ ���������
����	� ���������� ���������

�������� �����
���� ��� �#������� +�*,!� ���� 
������ �	�� ���	� ���� �������	���� 9��������

����
���
�����������
���������������!�



�
����	��-*�$������� ���������������	��������������	���������������	����9����

���������
���
����!�

�

�

"�� ������7��the data are a set of joints increments ∆θB generated randomly during 
training, equivalent to babbled movements. These joints rotations are carried out from 
certain joint configuration denoted by θ, that is the input to the HyperBF network. 
Babbled joint rotations induce spatial displacements of the end effector denoted by 
∆x, displacements that are measured by our stereohead vision system. HyperBF net-
work computes an approximate Jacobian pseudoinverse that is used to compute an 
estimation of ∆θB (∆θ). With this estimation we construct the functional of error or 
cost function H to derive the changes in parameters σ,µ and w of the network. In 
other words, the network learns to compute a linear approximation of Jacobian pseu-
doinverse at each joint configuration θ. 
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3   Visuo-Motor System for tracking and location 

 
The visuo-motor system implemented for testing the described neural architecture for 
reaching model follows neuro-biological models proposed in the CNS (Cognitive and 
Neural Systems) research group at the Boston University. Grossberg, Bullock and 
others, published some models of the animal neural system related with reaching 
process. Adaptation of these models to redundant robotic platforms has permitted to 
develop a neural control architecture for tracking and location objects. A colour-
based image visual processing algorithm together with an anthropomorphic robotic 
stereohead project the extracted features from the two images over the head motor 
joints. The relationship between both representation spaces is carried out by means of 
VAM (Vector Associative Maps) adaptive algorithms [13]. They consist of self-
organizing neural models that quickly project sensorial onto motor information in 
robust way. All the necessary knowledge of the robotic platform is learned by means 
of action – reaction cycles from visual-motor trials. This neural architecture has been 
developed integrating a set of neural networks, of some discovered biological func-
tion, carries out by the animal neural system. This visual-motor architecture contains 
two main modules corresponding with the interconnected processes of spatial internal 
representation module and the stereohead controller. 

3.1. Spatial Internal Representation Module 

This module carries out an internal Cartesian representation on a body-centred 
frame of the selected objective (robotic arm end-effector or object) position. This 
algorithmic module has been developed, starting from neural network models of how 
the human brain learns spatial representation, controlling sensory-guided and mem-
ory-guided eye and limb movements. This spatial representation is expressed in both 
head-centred and body-centred coordinates, because the eyes move within the head, 
whereas the head, arms, and legs move with respect to the body. In a binocular sys-
tem, it is possible to represent the position of an objective from the geometrical prop-
erties of the head: version (φ), vergence (θ) and elevation (γ), as figure 4 shows. 
Geometrical relationship between P(x,y,z) and P(φ, θ, γ) could be found in [4]. 
 

 
Figure 4. Stereohead reference system for object representation (P) 



3.2. Stereohead controller 

This module implements a visuo-motor control for the stereohead ocular joints, mov-
ing the neck and ocular joints of the stereohead. It places the stereohead joints in a 
situation of symmetric vergence, which is the most favourable position for visual 
processing and position representation. For the control of the ocular joints an AVITE 
algorithm [6] has been implemented. Figure 5 describes the main components of the 
neural head controller.  

 
 

 
 

Figure 5. Visuo-Motor controller for objective representation 
 
 

The neck controller has the function of maintaining the head structure in the best 
position in order to perform the visualization of the targets. The optimal position is 
that in which the head has φH=0. To solve this problem, a self-organizing neural net-
work based on AVITE model has been used. The mapping between version variable 
(φH) and a neck compensation variable (αpan) is established linearly by means of an 
adaptive weight. In the learning phase, panoramic movements with random values of 
incremental rotation angles are generated. Then, the ocular controller module fix the 
target and the spatial representation module calculates the new incremental values for  
(∆φH) with respect to reference situation (φH=0). 

[αR,αL,αE]: Motor joints position 
vector 

[x,y,z]: Objective position 
vector in cartesian 
reference system 
head-centred 

[θH,θH,θH]: Head-centred ob-
jective internal rep-
resentation vector 
(IRV) 

αpan: Neck joint position 

[∆θH,∆θH,∆θH]: Incremental IRV 

[θN,θN,θN]: Body-centred objec-
tive internal repre-
sentation vector 
(IRV) 



4 Experimental Robotic Platform  

For testing the behaviour of the described neural model, a robotic platform composed 
by the LINCE anthropomorphic robotic stereohead, one industrial robot arm from 
ABB Company and two colour cameras for object detecting has been employed. A 
client-server architecture has been designed for establishing the TCP/IP-based com-
munications between the robot arm controller, the robot head controller and the active 
vision system. In figure 6 a picture of the robotic installation is shown.  

 

 
 

Figure 6. NEUROCOR robotic platform 
 
In order to project the spatial coordinates for the object and the end-effector over the 
robot arm joint positions, two coordinate frames have been considered, one refereed 
to the body of the stereohead and other which is incorporated to the robot arm con-
troller. The implemented neural controller receives information from both systems 
and generates the neural weights map to project the difference vector (∆θ) from the 
joint positions over the difference vector (∆P) from the spatial positions. Thus, in 
figure 7, the scheme of the arm-head relative coordinate frame is represented.     
 
 
 
 
 
 
 
 

 
 
 

Figure 7.  Scheme of the relative reference system of the robotic platform 
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5 Results  

The implementation of the proposed system has been carried out in the below robotic 
platform. The obtained results have allowed the verification and tests for the capabil-
ity of the proposed neural architecture by adapting the neural map configuration to 
the dynamic environment with redundant robotic systems. The developed experi-
ments have been focused to analyze the accuracy of the model for reaching tasks as a 
function of error thresholds, its robustness when perturbations are considered, and the 
capability for tracking moving objects.  
 
The expression for the signal GO(t) is given by: 
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while the expression for final error E(t) in each instant   is: 
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where, ‘i’ indicates the x, y or z coordinate into the absolute reference system. The 
configuration data for the developed experiments are shown in Table 1. In all cases 
the arm-head relative position, defined by the R vector has been [-3000,0,800] the 
KGo gain = 20, the number of trials for the neural network is 3000, the dimension for 
the weights matrix is [3x3x250] and for the variance and center position of the gaus-
sians functions, [3x250] values have been considered for each matrix. The position of 
the robot arm end-effector is obtained for the image processing algorithm by means o 
a green label placed over the wrist, while the object (a small sphere) is detected by 
yellow colour. For the robot arm, only the base, shoulder and elbow joints of the 
industrial robot arm have been taking into account, due the rest of the joints intervene 
in the final orientation of the tool, which is far of the objectives for this work.  
 

Table 1.Configuration data for the experiments 

 Umbral 
error 

Initial 
joints Initial XYZ Target XYZ Perturbation 

P1 1 10,-50,15 2623,-66,742 2150,1250,150 NO 
P2 5 10,-50,15 2623,-66,742 2150,1250,150 NO 
P3 10 10,-50,15 2623,-66,742 2150,1250,150 NO 
P4 1 10,5,-5 1855,-202,503 Three points NO 
P5 5 10,-40,10 2736,-46,944 2150,1250,400 1600,-450,-200 
P6 5 10,-20,15 2129,-153,542 Slow motion YES 

P7 1 10,-20,15 2129,-153,542 YZ circular trajec-
tory YES 

 



For the verification of the reaching capabilities of the model the P1, P2 and P3 have 
been carried out, in absence of perturbations. The obtained results are represented in 
Figures  8 to10.  
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Figure 8. Evolution of end-effector in the experiment P1 
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Figure 9. Evolution of robot arm joints in the experiment P1 

 



Figure 10. Evolution of GO(t) and final error in the experiment P1 
 
For analyzing the relationship between the iterations number to reach the object and 
the required precision, P2 and P3 experiments have been carried out. The main results 
are compared and shown in Table 2. 
 

Table 2. Results for velocity vs. accuracy in reaching tasks 
Nº Experiment Final Error Iterations Final joints position 

P1 0,9916 81 [-55.80, 39.02, -24.37] 
P2 4,8596 40 [-55.86, 38.61, -23.70] 
P3 9,5301 30 [-55.95, 38.10, -22.85] 

 
The representation of the curved trajectory which is a particular characteristic of the 
HRBF neural model has been obtained in the P4 experiment for three different spatial 
positions of the sphere. Their deviations with respect to the optimum linear trajectory 
are represented in figure 11. 
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Figure 11. Curved trajectory for reaching with HRBF model in the experiment P4 
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In order to evaluate the behaviour of the HRBF neural model with the robotic plat-
form a reaching task with random perturbations has been experimented and analyzed. 
For the experiment P5, the system has been leaded to reach the sphere but in some 
instant, the object is quickly changed and the variation of the end-effector trajectory 
is represented in figures 12 to 14.   
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Figure12. Joint positions evolution in presence of perturbations in the experiment P5 
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Figure 13. Target and end-effector evolution in the experiment P5. 

 
 
 



 
 

 

 

 

Figure 14. Evolution of GO(t) and final error in the experiment P5 
 

 
Finally, the neural model HRBF has been tested for tasks involved tracking objects. 
For this case, the behaviour has been analyzed for both random (P6 experiment) and 
circular (P7 experiment) movements of the object. For this one, a circular trajectory 
for the object in the YZ plane has been generated helped by a mechanical device like 
a wheel. The obtained results are represented in figures 15 to 20. 
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Figure 15. Target and end-effector evolution in the experiment P6. 
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Figure 16. Joint positions evolution in tracking task in the experiment P6 

 
 
 
 

 

Figure 17. Evolution of GO(t) and final error in the experiment P6 
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Figure 18. Target and end-effector evolution in the experiment P6. 
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Figure 19. Joint positions evolution in tracking tasks in the experiment P7 
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Figure 20. Final error evolution in the experiment P7 

 
 
 
6   Conclusions  

 
In this paper a robust visuo-motor architecture applied to redundant robots for 

reaching tasks has been implemented and their results analyzed. The proposed neuro-
controller is based in AVITE neural models for the visuo-motor control of anthropo-
morphic stereoheads foveating objects and in HypBF neural networks for solving the 
inverse kinematic of redundant robot arms. A head-arm robotic platform over a cli-
ent-server architecture for TCP/IP communications has allowed to test the character-
istics of the proposed architecture focused to different operations: reaching with and 
without perturbations in the object position, foveating objects, and tracking 3D trajec-
tories. The combination of the robustness and accuracy of the HypBF model and the 
fast computing for the AVITE model, together the integration of both neural networks 
for the learning and performance phases gives a solution for reaching applications 
when the precision is a required parameter.  Several configurations and sceneries 
have been carried out for reaching a small sphere by means of colour-based visual 
algorithm and, in all the experiments, the minimum error has been found for a re-
duced number of movements for the robot arm.   
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