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Abstract. Robotic systems are becoming increasingly complex, as their
tasks and working environments become ever richer. As a result, there is
an urgent need to provide robots with self-awareness and self-adaptation
capabilities that allow them to autonomously deal, among other things,
with software and hardware failures, changes in the environment, or in-
teractions with other systems. The use of high-level models that can be
adapted at run-time by the robot itself, promises to significantly boost
the applicability and performance of robotic systems. This paper reports
our experience in applying the DiVA model-driven adaptive approach to
a robotics case study, describing its benefits and limitations for robotics.

1 Introduction

With increased flexibility and ease of use, robots are at the dawn of a new era,
turning them into ubiquitous helpers to improve our quality of life by delivering
efficient services in our homes, offices, and public places. In order to achieve
such flexibility, the management of uncertainties will be a key component of
success [17]. Enabling robots to manage the different sources of uncertainty they
must deal with (e.g., changes in the environment, altered requirements, software
and hardware failures, etc.) requires providing them with self-awareness and self-
adaptation capabilities [2]. This implies enabling robots to build and dynamically
adapt models of themselves and their environments.

The Strategic Research Agenda (SRA) [17], delivered one year ago by the
European Robotics Technology Platform, defines adaptation as a change to the
process or the method of execution performed by the system itself, generally at
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runtime. Adaptation may involve cognitive decision making and can take place
over both short and long timescales, affecting any level of the system. According
to the SRA, future robots, and later groups of robots, will adapt their hardware
and software to changes of the environment, work piece, and processes.

Among the mid- and long-term challenges related to adaptation (spanning
dimensions such as control, learning, modeling, etc.), the SRA highlights the need
for more automatic (or semi-automatic) use of models for different purposes,
including [...] adaptation and reconfiguration. In this vein, the Model-Driven
Engineering (MDE) paradigm promisses to bring great benefits to robotics [3].

In a context different from robotics, the DiVA Project3 proposes to lever-
age models both at design-time and runtime (models@runtime) to support the
dynamic adaptation of complex software systems. This paper reports our expe-
rience in applying the DiVA approach to a robotics case study, describing its
benefits and limitations for robotics.

The rest of the paper is organized as follows: Section 2 surveys related work;
Section 3 briefly introduces models@runtime in the context of the DiVA Project;
Section 4 describes our experience in applying the DiVA model-driven adaptive
approach to a robotics case study; Section 5 reports the lessons learned and open
challenges; and, Section 6 concludes and presents some future research lines.

2 Related Work

Since the late 90s, great research efforts have been made in self-adaptive and
autonomic software development. As a result, some interesting high-level refer-
ence models and frameworkshave been developed [14,9]. In addition, these efforts
have also resulted in modern execution platforms, such as Fractal [7], OSGi4 or
SCA5, which provide APIs for software introspection and reconfiguration. These
platforms currently exhibit some limitations as, for instance, they do not allow
to preview the effects of a reconfiguration until it is actually executed, or to
simulate what-if scenarios in order to evaluate different possible configurations
a priori. Moreover, in the case of complex adaptive systems, a large number of
low level reconfiguration scripts (calls to the reconfiguration API) need to be
manually coded, making the process cumbersome and error prone.

Putting the focus on the robotics domain, some interesting results have been
achieved by the bio-inspired and cognitive system communities on low-level robot
behavior adaptations based, e.g., on genetic algorithm mutations [10]. However,
in order to deal with the increasingly growing complexity of real-word robotic
systems and working environments, higher-level adaptation mechanisms need to
be developed. In this vein, it becomes necessary to shift the focus from low-
level self-adaptive algorithms to higher-level self-adaptive software components
and component-based architectures [9]. Furthermore, the envisaged adoption of
MDE by the robotics community promises not only to help raising the level of
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abstraction at which robotics systems are designed, but also enable their self-
adaptation using models@runtime.

Although there exist plenty of robotics-specific software architeture styles
and frameworks, commonly supported by platform-specific (and hardly inter-
operable) middlewares [15], most of them currently lack of support for model-
driven robotics software development and self-adaptation [11]. Among the few
model-driven tool-chains for robotics software development, it is worth highlight-
ing Smartsoft [18] and V3CMM [6], both enabling component-based platform-
independent design modelling and platform-specific code generation by means of
model transformations. However, to date, neither Smartsoft nor V3CMM sup-
port runtime software adaptation (V3CMM only supports structural and be-
havioural variability modelling at desing-time). Conversely, the work presented
in [8], addresses robotics software runtime adaptation at an architectural level
although, having not adopted a MDE approach, it strongly dependes on the
Prism-MW6 specific middleware platform.

Finally, it is worth highlighting the very interesting initiative started by the
BRICS project7, funded by the 7th EU Framework Program, where both MDE
and robotic system adaptation (to achieve robust autonomy) play a key role,
although these two goals do not appear explicitly related in the proposal.

3 An Overview of DiVA

The idea of “models@runtime” is to leverage models both at design-time and
runtime to monitor, dynamically adapt or evolve software systems. A dedicated
workshop8 is held at MODELS since 2006.

In the context of the DiVA project [16,5], we leverage models@runtime to sup-
port the design and the execution of Dynamic Software Product Lines (DSPL) [12].
At design-time, we describe four facets of a DSPL, that are then leveraged at
runtime to drive the dynamic adaptation process:

– Variability: describes the different features of the system, and their natures
(options, alternatives, etc)

– Environment/Context: describes the relevant aspects of the context we
want to monitor (environment), as well as the current context.

– Reasoning: describes when the system should adapt. It consists in defin-
ing which features (from the variability model) to select, depending on the
current context, using the appropriate formalisms.

– Architecture: describes the configuration of the running system in terms
of architectural concepts.

The role of these models is to formalize how and when a system should adapt.
Thus, adaptation models capture the variability in the system and in its context,
and link changes in the latter with configurations of the former.

6 http://csse.usc.edu/ softarch/Prism/
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It is important to note that designers do not specify the whole possible set
of architecture configurations in extension. Instead, each feature of the variabil-
ity model is refined into an aspect model that can be easily woven into a base
model (which contains components and bindings that should be present in all
configurations). This way, the system is designed in intention, and configurations
are explicitly built when needed. When a configuration is built (by aspect weav-
ing) it is first validated by checking some invariants. Then if the configuration
is valid, we rely on a model comparison (between the current configuration and
the newly produced one) to infer a safe migration path that is actually executed
to adapt the running system. This prevent designers from writing low-level and
error-prone reconfiguration scrips. Interested readers are referred to [16,5] for
more details about the use Aspect-Oriented Modeling in DiVA.

4 Applying Models@Runtime to a Robotics Case Study

4.1 Case Study Description

To illustrate how DiVA can address adaptation in robotics, we present a simple
case study developed using its current version. This experience will allow us to
later discuss the advantages and drawbacks of DiVA in the context of robotics.

The case study takes place in a room, containing a number of obstacles, where
two commercial robots (e-pucks 9) are initially placed at arbitrary positions. One
of them plays the role of Victim, while the other plays the role of Rescuer.

The goal of the Victim is to help the Rescuer find it as soon as possible.
To achieve this, it indicates its position using an acoustic or light signal. The
Victim uses the Bluetooth to communicate both changes in its signaling policy
and its current state, which can be: i) OK, ii) Wounded, or iii) KO. The Victim
is equipped with infrared (IR) proximity sensors to detect close objects, which
it can avoid adopting different strategies, namely:i) surround the obstacle, or
ii) change the movement direction. The first action has a greater impact on
energy consumption. Additionally, the Victim can adopt different strategies to
improve its visibility, namely: i) run randomly, ii) walk randomly, or iii) stay
still, in descending order in terms of visibility and resource consumption.

The goal of the Rescuer is to find the Victim in the shortest time possible
with the available resources. It is equipped with three sensors for this purpose,
each one having a different precision and consumption: i) camera, ii) micro-
phones (which can identify the direction of sound), and iii) IR proximity sen-
sors. It can receive Bluetooth communications from the Victim, allowing it to
select the most appropriate sensor and strategy to find it. The Rescuer uses the
same obstacle avoidance strategies as the Victim. Both robots are equipped with
sensors to measure environmental light and noise, and their battery level.

Robots are expected to dynamically adapt their behaviour depending on their
context (i.e., their role, battery level, light conditions, etc.) in order to achieve
their goals using the most appropriate sensors and strategies.

9 http://www.e-puck.org



4.2 Modeling Dynamic Variability and Adaptation

As described in Section 3, DiVA considers four facets of a DSPL: Variability,
Environment/Context, Reasoning, and Architecture. Next, we present the adap-
tation models developed for the case study using the DiVA Eclipse-based editors.

Fig. 1 shows how the context of both robots is modeled. In both cases, three
boolean contex variables capture the changes in the environmental light and
noise, and in the robot battery. The Rescuer includes two additional context
variables: Signal Notification and Victim State, which capture the changes in
the Victim’s signaling policy and state. Note that, whenever the Rescuer has no
information about the Victim, these variables are set to the UNKNOWN value. For
the Victim, only one additional variable is modelled: State, which is set by one
of the Victim’s internal components according, e.g., to the time it has been lost.

In robotics, we can think of three sources of contextual information having
impact in robot software adaptation: i) the environment, ii) the robot internal
state and resources, and iii) the perception of (and, eventually, the communica-
tion and collaboration with) other systems, either robotics or not.

Fig. 2 shows the variability model including the dependencies among the
variants and the adaptation constraints. The variants represent different possible
realizations of a variability dimension. For instance, there are three variants for
the Search Strategy dimension, one for each of the strategies the Rescuer can use
to find the Victim. As the caridinality of this dimension is set to [1..1], one (and
only one) of the strategies needs to be selected for each particular configuration
of the Rescuer. The Detailed strategy involves the highest search accuracy, and
thus requires the camera and microphones variants (see Dependency column).
The Available and Required expressions correspond to contexts in which the
variant respectively can or must be used. For example, given the importance of
energy consumption, it only makes sense to consider the Detailed strategy when
the battery of the robot is not low.

The next step is to model the properties relevant for the system, i.e., the func-
tional and extra-functional properties that need to be optimized. Each property
has a name and a direction, the later specifying if it should be minimized (0)

(a) (b)

Fig. 1. Context model for the robot playing the role of (a) Rescuer and (b) Victim.



(a)

(b)

Fig. 2. Model of the variability and constraints for (a) Rescuer and (b) Victim.

(a) (b)

Fig. 3. Selected properties for (a) Rescuer and (b) Victim.

or maximized (1). As shown in Fig. 3, we have selected to minimize the power
consumption, and maximize the search and signaling accuracy.

Fig. 4 shows the impact of variants (rows) on each property (columns). When
a dimension has an impact on a certain property, for each of its variant a quali-
tative appreciation of this impact has to be specified. For example, the Signaling
dimension affects both the power consumption and the signaling accuracy. In
particular, the Light Generator has a low power consumption and signaling ac-
curacy, while the Acoustic Generator has a medium power consumption and
a high accuracy. This table is the base to make different trade-offs among the
variants and to select the optimal configuration for the actual context.

Finally, Fig. 5 shows the robot adaptation rules. These are Priority Rules,
i.e., they capture the relevant system properties depending on the context. For
example, the rule Battery is low specifies that when the battery is low, optimiz-
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Fig. 4. Impact of variants on robot properties for (a) Rescuer and (b) Victim.

(a) (b)

Fig. 5. Robot adaptation rules for (a) Rescuer and (b) Victim.

ing power consumption has a high priority. Conversely, the Battery is ok rule
specifies that this is a secondary concern when the battery is OK.

It is worth noting that DiVA allows the simulation of the previous adapta-
tion models provided the user inputs a sequence of contexts (set of values for
the context variables). For each context, the simulator calculates and shows (it
must be said that not in a very friendly and readable way) the best possible
architecture configuration. This facility, has allowed us to perform multiple tests
on the models developed as part this work, although we decided not include
the screenshots showing the results for the sake of simplicity and for the space
limitations.

4.3 Runtime Architecture to Support Dynamic Variability

In order to support actual runtime adaptation in robotics, we can consider the
three-layer architecture developed as part of the DiVA project (see Fig. 6(a)).
In the platform-independent model-based layer, the components produce and
consume models, i.e., when the context model is updated, the Reasoner calcu-
lates a derived variability model accordingly. For all the features included in the
variability model, the Weaver composes the corresponding architectural model,
which then is checked and submitted to the proxy layer. The Proxy layer is re-
sponsible for bridging the gap between design-time models and the runtime. The



Causal Link component receives the architectural model and reconfigures the ar-
chitecture being executed by the robot. Additionally, the Monitoring component
observes runtime events generated at runtime by the probes in order to create
and update the context model. Finally, the Robotic layer basically contains all
the specific components of the robot (e.g. see Fig. 6(b)).

5 New Challenges for Runtime Adaptation in Robotics

Models@Runtime have demostrated promissing results for dynamically adapting
business system architectures. However, the experience reported in this paper
shows that several issues remain in this approach when applied to robotics. In
this section, we present a set of problems and challenges that we feel that are of
particular importance and that need to be addressed in the next stage of Model-
Driven Engineering for robotics. These challenges are the result of the lessons
learned from the experience described in Section 4.

– Cooperative adaptation engines. In DiVA, as in most adaptation approaches,
it is not easy to design several adaptation engines that need to cooperate. In
robotics, this is a fundamental requirement as robots often need to cooperate
with other systems (e.g., other robots). Thus, designers should be able to
model all adaptation engines and their relations.
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Fig. 6. (a) Runtime architecture to support dynamic variability in robotics. (b) Case
study robot component. Thick lines denote some variability degree.



– Multi-layer adaptation engines. Robots might belong to teams and, even-
tually, to other higher-order communities. Thus, they might need to adapt
themselves according to both individual and global adaptation strategies.
The current versions of DiVA can not manage layered engines in which the
adaptation can be driven both locally and a globally.

– Model the impact of context dimensions during simulation. To obtain a cor-
rect simulation, it would be interesting to model the impact of selecting
certain context dimensions. For instance, if the Bluetooth variant is deac-
tivated, it should not be possible to update the context (e.g., the state of
other robots). However, during the simulation step provided by DiVA, all the
context variables can be modified at any time, even if the variant controlling
the update of these variables is deactivated. This is a major drawback for
simulation. In fact, designers need to modify the context model themselves
to obtain a correct simulation at each adaptation step.

– Context sharing. DiVA allows the description of the relevant aspects to be
monitored (environment) as well as the current context. However, it does
not support context sharing, sometimes necessary in robotics (e.g., to allow
cooperating robots to share their local maps to obtain a global one).

– Context uncertainty management. If we add the possibility of sharing context
models, we also need to manage the confidence of the shared information.
Thus, it is important to know how safe or acurate is the information shared
by each robot, as it can (willingly or not) provide others with useless or even
dangerous information. Coupling context information with fuzzy logic could
simplify the design of context models [4].

– Using Model@runtime for implementing not only the system architecture but
also its components. Current approaches, such as DiVA, mainly model the
system architecture. As a consequence, the adaptation engine can only work
at that level (adding or removing components or bindings among them,
changing the value of component attributes, etc.) To support other kinds
of adaptation, it can be interesting to use models@runtime for component
implementation [13]. This would allow us to also adapt some parts of the
component implementation.

These six challenges are not exhaustive. They just aim to describe some of
the new requirements that need to be managed to make models@runtime usable
in the context of adaptive robotic systems.

6 Conclusions and Future Work

This paper reports our experience of using the DiVA model-driven approach
to design and implement an adaptive robotic system. Both the benefits and
the drawbacks of such an approach have been described. This paper makes the
following claims that, in our opinion, are worth being discussed at the workshop:

– As a community, we need to take the next step and adopt the perspective that
robotics systems are software intensive systems and their architecture has to



be properly modeled. As stated in [1] software architecture is, fundamentally,
a composition of architectural design decisions (dimensions in DiVA). These
design decisions (that fix some variation points) should be represented as
first-class entities in the software architecture and it should be possible to
add, remove and change architectural design decisions against limited effort.
For that, a “models@runtime” approach like DiVA provides a first answer.

– Models should be used both at design- and at run-time. There is a clear
benefit of modeling adaptive robotic systems, as the same models can be
used to simulate the robot behavior in a particular context, and then directly
executed by the robot at run-time.

– Robotic system are adaptive systems. They should be resource- and context-
aware. As systems with limited resources, robots cannot always be confident
in the context and cannot always collect the same level of information.

– Robotic systems should be designed to support cooperation with other sys-
tems. In that direction, model-driven engineering for robotics research should
share some knowledge and design principles with model-driven engineering
for Systems of Systems.

For the future, we plan to address some of the challenges identified in Sec-
tion 5. In particular, in the short- and mid-term, we will work in two main
directions: extending the DiVA framework so it can manage several adaptation
engines, and supporting a better context representation.
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