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ABSTRACT
One of the main problems to resolve in the processing of
biomedical images is the reduction of noise. The problem
is specially important if the noise has a multiplicative na-
ture (speckle noise), for instance if the object of analysisis
an ultrasonic image. In this report we carry out a review of
techniques which can be used to reduce this type of noise
on four-chamber view B-mode echocardiographic images
in an appropriated way. Different ways of nonlinear filter-
ing, adaptive techniques based on the statistical ordering
and a cubic spline interpolation will be shown as suitable
techniques for this objective but regarding quantitative and
qualitative results we have obtained, we can confirm that
a cubic spline filter is the most suitable filter that we have
reviewed.
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1. Introduction

The processing and treatment of the ultrasonic image has
become one of the themes which has drawn the attention of
researchers in the study of diagnostic systems based on the
analysis of images for a long time, mainly due to the non-
ionizing nature of the ultrasonic radiation and the conse-
quent reduction of risks for both the patient and the medical
professional. In this sense, it can be confirmed that some
aspects of the techniques used in the analysis of images
have been strongly influenced by the development of solu-
tions to typical problems in this biomedical domain such as
recognition of areas in the image with anatomical meaning
and tracking of their non-rigid movement.

One of the main problems associated with the en-
hancement of the echocardiographic image is the speckle
noise. This type of noise, which is coherent with the na-
ture of the ultrasound, is one of the main sources of im-
poverishment in the resolution and lack of ability to detect
the objects of the image, which makes up the content of
the clinical information. Images containing multiplicative
noise have the characteistic that the brighter the area the

noisier it is. A starting condition in any scheme oriented
to the reduction of this type of noise is that the designed
procedure must not imply a loss of contrast in the most sig-
nificant features of the image [1, 2, 3]. The primary goal of
speckle filtering ought to be the reduction of speckle noise
without sacrificing the information content to enhace the
diagnostic value of the image and for future segmentation
or tracking of non-rigid anatomical structures.

Our aim with this paper is to show a comparative
study of different reduction techniques based on the use
of filtering schemes. The set of actions over the image has
been tested on real four-chamber view B-mode echocar-
diograms of different patients elected randomly. The qual-
ity of images is relatively poor. The images are plagued
by low image intensity contrast, dropouts in the image in
which structures exhibit apparents gaps, or dissappear tem-
poraly in some frames of a sequence. The noise-smoothing
performances of the various filter are compared by means
of the mean square errors (MSE) measuring suppression of
noise and a parameterβ evaluating the performance of edge
preservation. The results shows that the spline filter allows
a high order of smoothness and of approximation on the
image. In addition, the computational load is less as com-
pared with other discussed techniques, since most of them
can require several iterations to smooth noise.

The body of this paper is organized in four sections.
Section 2 introduces the speckle noise nature as the start-
ing point to show the techniques of reduction which are
reviewed and commented in section 3. The next sec-
tion shows the results obtained after the application of
these techniques on the echocardiographic images, and the
achieved results are presented. The last section summarizes
the achieved conclusions in this study.

2. Speckle noise

A system of images is named ascoherentwhen the sys-
tem is subjected to the action of a coherent illumination,
that is, when the source points of the luminous radiation
have relations of fixed phase and, though their phases fluc-
tuate randomly, they do it in a synchronized way in order
to keep a fixed relative phase. In this class of systems, and



because of fluctuation of the source points in tune, the rela-
tions of the fixed phase allow to establish patterns of both
destructive and constructive interferences. When a coher-
ent ultrasonic radiation is reflected on a surface which has
the same size as the radiant wave length, the interference of
the waves produces a noise called speckle, whose nature is
different from the so called additive noise [4, 5, 6].

In the free space, the intensity of the speckle noise can
be considered as the infinite sum of independent, identical
phasors with amplitude and random phase. This yields a
representation of its complex amplitude as:

a(x, y) = aR(x, y) + jaI(x, y) (1)

whereaR andaI are independent Gaussian random vari-
ables, which have zero mean and varianceσ2

a. The intensity
field is the square phasor module, that is:

s = s(x, y) = |a(x, y)|2 = a2
R + a2

I (2)

The intensity of noise,ξ, presents a function with a density
of probability, Ps, of exponential type, with a parameter
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This distribution has a varianceσ2 = 2σ2
a and the same

mean as the previous value. A white noise with this kind
of statistical values receives the name offully developed
speckle.

When a plain object with complex amplitude distri-
bution either reflectance or transmittance,g(x, y), is im-
aged by a coherent lineal system with impulse response
K(x, y; x′, y′), the intensity of the observed image can be
written as:
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whereη(x, y) is the additive noise andΦ(x, y) represents
the distortion in the phase due to scattering of the reflection.
If the impulse response falls down quickly outside a region
Rcell(x, y), calledresolution cell, andg(x, y) approximates
to a constant in that region, then:

v(x, y) ' |g(x, y)|2|a(x, y)|2 + η(x, y)

= u(x, y)s(x, y) + η(x, y)
(5)

The functionu(x, y) represents the object intensity dis-
tribution (reflectance or transmittance) ands(x, y) corre-
sponds to the speckle noise intensity distribution. The
equation (5) shows the multiplicative nature of this type of
noise.

3. Echocardiographic image filtering:
speckle noise reduction

3.1 Nonlinear filter

Digital image noise appears to high frequencies of the spec-
trum but speckle is caused by scattered reflections pro-
duced by features that are small with respect to the wave-
length. These multiple small reflections results from a
roughs scattering surface with fine scattering structures.In
the frequency domain, speckle exhibts a low pass charac-
teristic. The use of nonlinear filters has been proposed in
the literature as an attempt to eliminate noise but keeping
the details of the image. Among these filters, the most ef-
fective ones are based on the statistical ordering of the data
collected from the image [7, 8].

The median filter is the maximum likelihood estimate
(MLE) for the Laplacian distribution. Studies about statis-
tical ordering have not finished at the median, other differ-
ent L-estimators have been tested such as: the maximum
and minimum values, the rank, the average point or the ex-
treme deviation. In general terms, all these nonlinear filters
can be optimized for any specific type of noise, and some-
times even of signal.

Summing up, nonlinear filters work satisfactorily in
those cases where the statistics of the image does not vary
among regions, but they do not work so much appropri-
ately in those cases where the density of the noise proba-
bility varies from region to region. In these cases, the most
effective choice is the design of some adaptive filter [9].

3.2 Adaptive order statistic filters

Adaptive filters, among others, can be used particularly for
the additive noise suppression:

xij = sij + nij (6)

wheresij is the estimation of denoise signal,nij is the
noise andxij is the observable signal to filter. Some au-
thors try to simplify the statistic of speckle noise throughof
a similar approximation. The following signal-dependent
noise model can be used for the signal with speckle noise:

xij = sij +
√

sijnij (7)

the reason for this approximation is that the different signal
processing stages inside the scanner (logarithmic compres-
sion, low-pass filtering, interpolation) modify the statistics
of the original signal [10].

According to this model of speckle noise, the speckle
noise can be suppress using adaptive filters because the
speckle noise is an additive noise. So, theminimal mean
square error(MMSE) estimator is defined as:

ŝij =

(

1 − σ2
n

σ2
x

)

xij +
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n

σ2
x

m̂x (8)



whereσn, σx, m̂x are local estimations of the standard de-
viation of the noise, the signal and the signal mean respec-
tively. Its adaptability is easily understandable. In homo-
geneous regions of the image, the standard deviation of the
noise is approximately the same as the standard deviation
of the signal. For that, in these regions, the MMSE fil-
ter only estimates the signal as a local mean,ŝij ' m̂x.
In those regions which contain a edge, the standard devi-
ation of the signal is much higher than that of the noise,
that is,σx >> σn, so, in these regions any type of filter-
ing (ŝij = xij ) is not developed. TheDouble Window-
Modified Trimmed Mean(DW-MTM) adaptive filter uses
the median as an estimator of the local mean and calcu-
lates a new local mean using only those pixels which are
located in a small range of grey levels around the median.
This reduces the noise in an effective way because it elim-
inates the extremes in the calculation of the mean estima-
tion. The DW-MTM filter’s work is easily understandable
like the MMSE. Set a pixel located into the image, then a
median filtering acts on it in a region of a certain size. The
median value calculated in this operation is used in order
to estimate the mean value of the local area. Afterwards,
a bigger window centered in the pixel is used to calculate
the mean of, being used only those pixels which are into
a certain range. Those which do not belong to that given
range, that is, the most extreme pixels in their grey lev-
els, are scrapped. The modulator value of the size of the
range,c, is function of the standard deviation of the noise
(c = kσn). The range chosen fork (typically between1.5
and2.5) is based on the assumption that the Gaussian noise
statistics implies that variations of grey level peak by peak
have to stay in the range±2σn. As k decreases, the filter
makes a worse filtering of the Gaussian noise.

Finally, another type of adaptive filtering would con-
sist in filtering the image in a combined way, that is, using
a different type of filtering in those areas with edges that
ones without edges. Such a filter, which is sensitive to the
impulsive noise, is namedadaptive window edge detection
(AWED). It works as follows: The filter initially starts with
a5 × 5 or 7× 7 window. The local image histogram in the
filter window is calculated and examinated. If impulses are
detected, they are rejected and the local images standard
desviation is calculated without these pixels. If the local
standard desviation is enough low, an homogeneous image
region is assumed and the moving average filter (mean fil-
ter) is used. On the other hand, if the local standard desvia-
tion is large an edge region is declared. If the window size
is 3 × 3 the median filter is used for image filtering, but if
the window size is greater than3×3, the window is reduced
and the whole procedure is repeated.

4. Cubic spline interpolation for noise reduc-
tion

The use of curve or surface approximation techniques
seems to be an interesting alternative to more conventional

adaptive methods that have a notorious computational load.
A polynomial local interpolation uses a finite number of
neighbour points to obtain any interpolated values,f(x),
that in general do not have continuous first or higher deriva-
tives. However, there are situations where the continu-
ity of derivative is an unappealable concern, for instance
when the interpolation function must provoke a fitting like
a low pass filter on data. Perhaps, the most popular func-
tion which accomplishes this request is the cubic spline.
This function produces interpolated data that are continu-
ous through the second derivative, more stable than polyno-
mials, with less possibility of oscillation between the tabu-
lated points and thus, more unsensitive to outliers.

If an one-dimensional spline is applied an one-
dimensional array of points, the technique can be ex-
tended to arrays in more than one dimension. Generally,
this is made by a sequence of one-dimensional interpola-
tions. In order to interpolate one functional value,m one-
dimensional splines along the rows of the picture are per-
formed. Instead of precomputing and storing all derivative
information, the algorithm precomputes and stores only
one second derivatives auxiliary table, in only one direc-
tion . Then the algorithm needs only to do spline evalua-
tions (not constructions) for them row splines. Recall that
a spline construction is a process of orderN , while a spline
evaluation is only of orderlogN , and that is just to find the
place in the table.

The use of cubic splines can go beyond simple in-
terpolation and their main advantage can be to provide a
convenient pass between the discrete and continuous sig-
nal domains. Other concerning applications are signal dif-
ferentiation which is particularly relevant in the contextof
edge detection, discrete algorithms for the convolution of
continuous signal and, data compression and noise reduc-
tion. In this last sense, the discrete cubic spline of order 0
corresponds to a moving average filter of sizem that can
be implemented recursively using a standard update pro-
cedure [11, 12]. Summing up, this procedure allows a su-
perficial fitting of the echocardiographic image and subse-
quently a noise reduction keeping the high frequency fea-
tures of the image for further processing. This technique
samples the values of the echocardiographic image for each
row of the image and for each four pixels; then the algo-
rithm calculates the fitting curve for each interval and re-
places the intermediate data for interpolated values. In the
same way, the procedure could be iterated for the columns.
Clearly, this technique is a data reduction method but can
be considered as a noise reduction procedure too.

5. Experimental results

The source of ultrasound echocardiograms was recorded
on a SVHS (orSeparated Video Home System) videocas-
sette. The records was obtained from real patient echocar-
diographs. In the first stage of processing it was necessary
to sample digitally the video images. So a videocassette
SHARP VC-D815, a frame grabber DT-3851, a personal



computer were used and a special software of acquisition
was implemented. Finally, we must point out that all the
experiences were developed in a SUN SPARCstation 20
with 64 MBytes of RAM memory and Solaris 2.5 as op-
erative system.

In such a particular domain, four-chamber view B-
mode echocardiographic images, it is essential to establish
the relative validity of the techniques revised in the previ-
ous section, and tuning them for this specific type of im-
age. In this sense, we have applied different sets of actions
on 25 sequences of echocardiograms (echotrainning set) of
several patients trying different procedures to reduce the
speckle noise without impoverishing the other features of
high frequency in the image. The echotraining dataset per-
mits us tuning of different parameters and estimations for
the filters. Later, we tested and checked our filtering tech-
niques over a new set of 15 test sequences (echotest set) of
different patients without modifying the tuning parameters.

We have submited to the action of different types of
adaptive filters based on the statistic ordering to test im-
ages. This type of filtering almost covers positively our
expectations in improving thesignal to noise ratio(SNR)
of the image. The performance of the MMSE adaptive fil-
ter depends clearly on the choice of the local measures both
the mean and the standard deviation of the signal, as well
as the standard deviation of the noise. In our case, we have
used several types of estimations for the standard deviation
of the noise, beingσn = 50 which that offered the best
results. In the case of DW-MTM filter we have adopted a
valueK = 1.5 and a standard deviationσn = 65. These
values are used in order to calculate the parameterc, as we
have previously pointed out , and it is extremely important
to limit the calculation of the mean value of a5×5 window.
In the case of AWED filter, we firstly use a7×7 window to
calculate the histogram, having previously eliminated those
pixels whose gray level exceeds 20% the local mean. For
the rest of pixels we use a edge detector (a Sobel mask) in
order to decide the existence of a edge. This choice is taken
when some pixel appears with a value higher than 20% of
the mean obtained after passing the Sobel mask. If a bor-
der is detected, the window reduces 2 pixels its size and
the process is repeated again. If any edge is not detected,
a mean filtering is performed according to the window size
in which the process is running.

The simply matching of the output images yielded
by the application of filtering techniques over the original
echocardiographic image cannot show the relative good-
ness of each technique due to their relative low contrast.
Therefore, it has to use alternative displaying procedures
which emphasize the effect of the filtering application on
the echocardiograms, first passing two edge detectors (So-
bel and DRF [13]) over the original and filtered image and
second matching differents profiles of original image ver-
sus filtered image. In Figure 1, we show the effect of the
adaptive filters based on order statistics for the profiles of
the echocardiograms and in Figure 2 and 3 the pass of edge
detectors.
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Figure 1. Filter comparison



In regard to the cubic spline (Figure 1(e)), the features
of this functions allow to improve the quality of the image,
what can be apparently observed via visual inspection, and
hardly affecting the most interesting features of the image.
The effect yielded on noisy profiles of the original signal,
as it is shown in Figure 1(e), is the best effect of the whole
set of techniques, keeping the information of all the border.
The image utility obtained for further stages of zones de-
limitation seems evident. The interpolation on the image
carried out by the spline produces a suppression of noise
without attenuating the edge amplitude. An important fact
is the reduction in the contrast of edges performed in all
cases of adaptive filtering, but that contrast of edges has
not been reduced in the case of cubic spline fitting as it is
showed in Figure 1.

(b) Original (c) AWED (d) MMSE

(e) DW-MTM (f) Homomorphic (g) Cubic Spline

Figure 2. Edge detection by means of Sobel operator on
different filtering echocardiographic images (Echotest-9).

Finally, it is necessary some type of quantitative eval-
uation that shows how the different algorithms can suppress
noise while the edges and other important features are pre-
served. In this sense, we have used the mean square er-
rors (MSE’s) of the processed images like measurement of
goodness for the estimation. The MSE is just one of dif-
ferent measures that we can use to calibrate speckle noise
suppression, so it cannot reflect the performance of edge
preservation. In order to evaluate the performance of edge
preservation, a parameterβ is proposed as [14].

β =
Γ(∆s − ∆̄s, ∆ŝ − ∆̄ŝ)

√

Γ(∆s − ∆̄s, ∆s − ∆̄s) · Γ(∆ŝ − ∆̄ŝ, ∆ŝ − ∆̄ŝ)
(9)

Γ(ti, t2) =
∑

(i,j)∈Image

t1(i, j) · t2(i, j) (10)

where∆s and∆ŝ are the high-pass filtered version ofs and
ŝ, original signal and signal estimation respectively, and

∆̄s and∆̄ŝ the version without filtering. A better effect of
edges preservation is produced by filters with highβ. The
values ofβ and MSE for each method are shown in Table 1.

(a) Original (b) AWED (c) MMSE

(d) DW-MTM (e) Homomorphic (f) Cubic Spline

Figure 3. Edge detection by means of DRF operator on
different filtering echocardiographic images (Echotest-9).

6. Conclusions

We can comment the relative success of some of the argued
techniques in a more detailed observation. Quantitative re-
sults demonstrate that non-linear filters can reduce the SNR
of the images with speckle noise, but they are less effective
when the statistic of the image varies region by region, as
it happens in our case. Under these conditions, the adap-
tive implementations are more effective but, on the other
hand, they are excessively dependent on the estimation of
the statistical parameters where they are based and, as the
algorithmic adaptability improves, they become more ex-
pensive computationally (for instance, AWED takes about
1 minute in a workstation Sparc20 to process a512 × 512
image) and they do not preserve the edges and other im-
portant features of the image in a efficient way. It is diffi-
cult for the adaptive techniques to tradeoff between speckle
suppression and detail preservation. Homomorphic filter
can be used with a similar ratio of performance with less
computational load.

Finally, an alternative noise reduction technique can
be performed by the fitting of a spline surface on the im-
age. This procedure allows a high order of smoothness
(MSE) because it demands itself continuity in the higher
order derivatives and of approximation on the image (β)
like it is shown in the obtained results. In particular, MSE
andβ values can be checked in the image profiles fitting.



Table 1. MSE andβ values for different methods

Processing Methods Mean set 1-5 set 6-10 set 11-15
MSE β MSE β MSE β MSE β

MMSE 80.69 1.266 78.57 1.250 81.23 1.255 82.27 1.293
DW-MTM 67.65 1.298 66.98 1.301 67.03 1.290 68.94 1.303
AWED 41.19 1.345 42.20 1.423 42.03 1.302 39.34 1.310
Homomorphic 81.69 1.315 81.50 1.401 81.49 1.375 82.08 1.169
Spline 55.86 1.618 54.27 1.615 55.90 1.623 57.41 1.616

In addition, this technique disposes of a computational load
better than the adaptive techniques in about half minute of
computational time. The cubic spline filter is used in a pre-
processing stage in a system based on DSP processor for
tracking of endocardial wall [15, 16, 17].
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