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Abstract
Our paper focuses on the case of SUR models with spatial effects. Specifically, the problem

that we pose is testing for the presence of spatial effects in these multivariate models, considering
that one of our main interests is to deal with the question of selecting the most adequate
specification for the data. In order to do this, we obtain several tests that check for the fundamental
hypothesis of the model, including the assumption of time stability of the spatial dependence
mechanisms. We solve the discussion in a maximum-likelihood framework because this facilitates
the obtaining of appropriate tests. The second part of the paper contains a Monte Carlo experiment
in order to study the behaviour of the two most popular model selection strategies, Specific-to-

General or General-to-Specific, using the collection of tests that have been proposed.
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1. Introduction

The Seemingly Unrelated Regression equations model (SUR from now on) is a popular
multivariate econometric formulation employed in very different fields, included the analysis of
spatial data. The basis of this approach are well-known since the initial works of Zellner (1962),
Theil (1971), Malinvaud (1970), Schmidt (1976) or Dwivedi and Srivastava (1978). Almost every
textbook in Econometrics includes a discussion about SUR, which it is available in the most
popular econometric computer programmes. It hardly requires any further justification.

Anselin (1988a) introduces the term of spatial SUR in reference to a special case of a more
general space-time model. According to him, the spatial SUR model ‘consists of an equation for
each time period which is estimated for a cross-section of spatial units’ (p. 141). A characteristic of
this approach is the existence of a limited heterogeneity. In fact, the regression coefficients are
assumed to be the same across individuals whereas individual unobserved effects are excluded.
Different spatial mechanisms may intervene in each equation (in example, intra-equation spatial
error autocorrelation, spatially autoregressive processes, etc). Usually, the cross-sectional
dimension of the sample (say R, number of individuals) is greater than the temporal dimension (say
T, number or cross sections). Rey and Montouri (1999), Fingleton (2001, 2007), Egger and
Pfaffermayr (2004), Moscone et al. (2007), LeGallo and Chasco (2008) or Lauridsen et al (2010)
employ a similar framework. If we need a more flexible model, in the sense of a greater
heterogeneity, the next step should consist of a panel data model, with fixed or random
unobservable effects (Anselin et al, 2007, Kapoor et al, 2007, Baltagi, 2008) and certain spatial
structure (Elhorst, 2003, 2005, 2008).

A different situation is produced when the time dimension is greater than the cross-sectional
dimension (the ratio R/T goes to zero). In this case the specification rests, mainly, in the time
dimension of the model. Heterogeneity emerges as an important question given that there are few
individuals, being possible to develop an equation for each individual in addition to the usual
interaction mechanisms. Arora and Brown (1977), Hordijk and Nijkamp (1977), Hordijk (1979) or
White and Hewings (1982) follow this approach. In this setting (rich temporal information but few
spatial details), the problem of specifying a spatial weighting matrix is of minor importance because
several consistent estimator can be obtained from the data. This is the way followed by Conley
(1999), Chen and Conley (2001), Coakley et at (2002), Pesaran (2005) or Conley and Molinari
(2008), among others. Problems appear when R increases at a rate similar to T. As indicated by
Driscoll and Kraay (1998), in this case it is necessary to introduce restrictions on the number of
parameters to keep under control the dimensions of the problem. Carlino and deFina (1999), Di

Giacinto (2003, 2006), Badinger et al (2004), or Beenstock and Felsenstein (2007, 2008) present



different application in this line that may be called of Spatial Vector Autoregressive models,
SpVAR.

In this paper we address the case of a SUR model, which involves spatial data, with spatial
effects, under the configuration of a finite T, a large R and a limited heterogeneity among
individuals. As said, our main problem is testing for the presence of spatial effects in the
specification and, then, to identify the type of spatial process that seems to be more adequate for the
data.

We are going to use a maximum-likelihood approach which facilitates the obtaining of
simple tests, generally well-behaved in a small sample context, based on the principle of the
Lagrange Multiplier. The work of Kelejian and Prucha (2004), dealing with systems of
simultaneous equations, including different spatial mechanisms, is very close to our own work.
These authors obtain a limited and a full information estimator, based on an approximation to the
optimal set of instruments for different cases of interest. As a complement of their work, Kelejian
and Prucha (2004, p.40) demand ‘the development of further tests of hypotheses in a spatial system
framework’. Baltagi and Pirotte (2009) focus on the estimation of properly SUR models with spatial
error components, examining both maximum likelihood and generalized moment methods.
According to their simulation experiment, the behaviour of both estimation algorithms is similar,
conditioned to the correct specification of the model. This means that some specification tests are
needed to guide the estimation. In sum, as expressed by LeGallo and Dall’erba (2006, p. 279), the
current situation is not fully satisfactory: ‘For our SUR specification with spatial autocorrelation
and spatial regimes, no specification procedure has been formally suggested’.

The paper contains seven sections. In the second section we specify a general SUR model
with spatial effects, that we call SUR-SARAR model. In the third section we develop a maximum-
likelihood framework in order to test for the presence of spatial effects in this specification. The
fourth section introduces, in a SUR context, the well-known robust and marginal Lagrange
Multipliers. Some extensions follow in the fifth section. In the sixth we solve a Monte Carlo
experiment directly aimed at study the behaviour of the two most popular model selection
strategies, Specific-to-General and General-to-Specific, using the collection of tests developed in
the previous sections. Finally, the seventh section comments the main conclusion reached in our
work.

2. Specification of the model.
In the rest of the paper, we are going to deal with a SUR model which includes some spatial

mechanisms, like the following:
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Vet Ugt and &g are (Rx1) vectors, Xg 1s a matrix of exogenous variables of order (Rxk,), B¢ is a
vector of parameters of order (kgx1), Az and pg are two scalars', Iy is the identity matrix of order
(RxR) and W, and W, are two known weighting matrices of order (RxR). In terms of Kelejian and
Prucha (2001), this is a SUR model with Spatial ARAR(1,1) process” (SUR-SARAR for the sake of
brevity).

The observations are dated in period t (t=1, 2,..., T) and they proceed from R individuals
(spatial units), which are spatially distributed. The distinctive feature of model (1) is that there exist
spatial spillover effects. The weighting matrices W; and W, describe how these spillovers are
produced. The specification of these matrices is rather arbitrary (Haining, 2001). The elements of
the main diagonal are zero whereas a nonzero value outside this diagonal reflects that the two
observations are (geographically, sociologically, technologically, etc) neighbours. For simplicity’s
sake, we will assume that the two weighting matrices coincide (W;=W,=W).

The spatial SUR model of Anselin (1988a) corresponds to the case of G=1, as discussed in
Mur and Loépez (2009). This model is, in fact, a panel data model given that it contains R
individuals, T cross-sections and 1 equation. The case of R individuals, G equations and 1 cross-
section is more in line with the SUR spirit (Elhorst, 2003); obviously, the two approaches can be

combined. In what follows, we maintain the general framework of (1). In matrix terms:

Ay =XB+u
Bu=¢
&~ N(0,Q)
(2)
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Where k = Zg’:lkg; A=Ip ®[IgGr —~A®W] and B=11 ®[Igr —Y® W], A (respectively Y)

is an (GxG) diagonal matrix with the parameters A, (respectively p,) and ® is the Kronecker

' The subindex t used in the specification of matrices A, and By means that we do not exclude the possibility of having
time varying spatial dependence parameters, Ay and/or py;.

* That is, with an autoregressive structure both in the main equation and in the equation of the errors. Spatial moving
average structures are also of interest but they are not included by length restrictions.



product. Moreover Q=Ip ®X_ &Iz where X, =[ggij;i,j=1,2,...,GJ is a GxG matrix. We

assume normality in the error terms.
It is important to consider the followings remarks:

e We order the sampling information, first, temporarily; then, we sort each cross section by
equation and, finally, by individuals.

e Different set of regressors may intervene in each equation although, in order to simplify, we
assume that the vector of parameters of each equation (B¢, g=1, 2,..., G) is the same across
cross-sections and individuals.

e Accordingly, we assume that the parameters of spatial dependence (A, pg, g=1, 2,..., G) are
also constant in time but that may vary between different equations.

e The SUR effect is due to the fact that the same individual (the spatial unit) decides,
simultaneously, about G different problems (equations). This situation is similar to the
existence of an unobserved random effect which affects in the same manner to all
individuals in each equation; the random effect varies between equations. Baltagi and Pirotte
(2009) go a step further by introducing individual unobserved random effects, which allow

them for a greater heterogeneity:

Ay=XB+u
Bu=¢+p
€1 m Mg
= |82 iu=[1r®Irg]mn=| 2 [ n,= N2g 3)
€T nG nRg
TGRxI GRxl Rxl
E[e]=0 E[ec]=Q=3,®lIy
E[u]=0 E[w]=2=1; %, ®I |
E[en']=0

Ny 18 the effect associated to the r-th individual in the g-th equation, n', = (nlr;n oM Gr)

is the vector of effects for the r-th individual, X, = E[nrn'r] = [Gnij;i,j =1, 2,...,G];Vr a

GxG covariance matrix and Jr=Itl’t a TxT matrix of ones. Both terms are assumed to be
orthogonal’.
Following Kelejian and Prucha (2004), in the specification of (2) we assume the usual set of

hypothesis: a) The spatial lag is well-behaved in the sense that the elements in the main diagonal of

? Baltagi and Pirotte (2009) order the information, in first place, by equation, then by time and finally by individuals.
Moreover, they do not use autoregressive mechanisms in the main equation; only autoregressive or moving average
processes in the equation of the errors.



the weighting matrices W, and W, are zero, the matrices Ay and By are nonsingular and the row
and column sums of the matrices Wi, W, Agtl and Bgtl are uniformly bounded in absolute value;

b) The matrix of exogenous variables, X, is well-behaved given that it is of full column rank and its
elements are uniformly bounded in absolute value; ¢) The innovation terms &=[ €1, €, .-, €Grt]  for
each r and t, are distributed independently and identically with zero mean and a nonsingular
variance covariance matrix X.. We add the hypothesis of normality to facilitate the maximum-
likelihood approach.

Next we are going to discuss the case of the SUR-SARAR model as presented in (2).
Moreover, we present the cases of the SUR-SLM model (obtained after introducing the restrictions
pe=0, ¥V g in (2)) and the SUR-SEM model (the restrictions in (2) are A,=0, V g).

3. Testing for the presence of spatial effects in a SUR-SARAR model.
The logarithm of the likelihood function of the SUR-SARAR of (2) is the following:

RTG

1(y;6) =—Tln(2n)—%]n|)2|+T[zg:1]n‘]3g‘+zgzlln‘AgH_ (Ay-XB)'B'Q 'B(Ay - XB)

2

4
where ¢'= [B'; AL SAGIPE S pG30ij] is the vector of parameters, of order (k+2G+G(G+1)/2)x1 and
Ql=Ip er'® Iz . The ML estimation results in a nonlinear optimization problem which can be

solved applying standard numerical techniques (Wang and Kockelman 2007). In the Appendix,
Section A.I we include more details.

The null hypothesis of absence of spatial effects in the SUR model of (2) is:
Hoikg=pg=0(Vg) vs  Ha: NoH, (%)

After a few calculi the final expression of the corresponding Lagrange Multipliers test” is:

-1
_ -1 g
. . oo —Inplpglpr  In M,
LMERRAR = [g ™). 8 } PP P "o~ 7226) (6)
o o Ipn Ipp | | &), |*

4 In what follows we will use a compact standard notation:

um=[ 20y, [ {10y, | 2@y, ] -7

where g(0) is the score (vector of first derivatives of the likelihood function), 1(0) the information matrix, df means
degrees of freedom and ‘|H,y’ means evaluated under the hypothesis Hy.



with g = ﬁ‘[IT ®(>:-1Egg)®w]y and g, = ﬁ'[IT ®():‘1Egg)®w}ﬁ where {i is the
g=1....G g=1,..G
(TGRx1) vector of residuals of the SUR model, estimated in the absence of spatial effects, and E®
a (GxG) matrix whose elements are all zero except the (g,g) which is 1.
The SUR-SLM model is a particular case of the SUR-SARAR of (2), which includes lags of
the endogenous variable on the right hand side of the equation but there is no spatial structure in the
equation of the errors. That is:

Ay=X
er N(o?s;)8 )

where A =It ®[IGR —A®W] and Q is the same matrix of (2). The hypothesis of no spatial

effects becomes:
Ho:Ag=0 (Vg) Vs Hy : No H, (8)

The Lagrange Multiplier is (Section A.II of the Appendix for the details):
-1
SUR _ -1 2
LMsiv =80, [IM - IXBIBBIBK} g, =1 (© (9)

Finally, the SUR-SEM model includes spatial dependence in the equation of the errors but

there are no spatial lags of the endogenous on the right hand side of the main equation:

y=XB+u
Bu=c¢
e~ N(0,9Q)

(10)

This model is well known since the seminal work of Anselin (1988b). We include it here
only to give a more complete view of the discussion. The null hypothesis of no spatial effects is:

Hy:py =0(Vg) vs Hy:No Hy (11)

The obtaining of the corresponding Multiplier is straightforward (Section A.IIl of the
Appendix):

S — ' -1 2
LM = €'y, [1oe] 2oy, 227 (12)

4. The robust and the marginal Lagrange Multipliers: SUR-SLM vs SUR-SEM models.

The tests of the last section shall help us to improve the specification of a spatial SUR model
although, probably, they will not be definite. The problem with these three tests is that they are not
robust to local misspecification errors in the alternative (Davidson and McKinnon, 1996).
Consequently, they are not good instruments in order to identify the type of model that has
intervened in the data generating process (DGP from now on). This lack of robustness confer great

importance to the work of Bera and Yoon (1993), which obtain the correction needed for the raw



Multipliers in order to behave properly. Next, we present the case of LMSE& and LMSE& tests,

following Anselin et al (1996).
The likelihood function of the SUR-SARAR model, L[g;A;p], depends on three groups of

parameters: those associated to the basic SUR structure, ¢'= [B';Gij], those related to the spatial lag

of the endogenous variable, A'=[i;;--:;1g], and those that introduce spatial dependence into the

error terms, p'= [pl, »PG] The LMEUR tests the hypothesis that vector A is zero assuming

implicitly that vector p is zero. The null hypothesis of the LM ggﬁ refers to vector p, assuming that

vector A is zero. As its well documented in the literature (see, for example, Anselin et al, 1996,
Florax et al, 2003, or Mur and Angulo, 2008), both tests will behave properly only if the DGP has

been correctly specified
Let us assume that the DGP is L, [¢;A], then LMSLML)Xz(G; o) where G refers to the

degrees of freedom and a is a noncentrality parameter. If the null hypothesis, Ho: A=0, is true then

the noncentrality parameter will be zero. On the other hand, if the DGP is of the type

Ha:A=§; / JR with &, # 0 and finite, the noncentrality parameter becomes o = &; 'Tj.¢&; Wwith
Do = Inp = IMPI&IPLPX . It is simple to verify (Anselin et al, 1996) that o > 0, which increases the
power of the LM SUR test.

Problems appear when the DGP is L, [g;p] where, effectively, A is zero. If we, erroneously,

assume that the DGP is L;[g;A], the impact of vector p will be omitted which is a source of
confussion. Let us assume that p = & 0 / JR and £ o * 0; the null hypothesis, Hy:A =0, is true and,

as expected, LMEE&L)XZ(G; o) . However, the noncentrality parameter will not be zero but

=g p'pr.(pIX}(pIpx.(pg 0 with Dpo = Inp = IM)I&IPIW. In sum, if the DGP is of the SEM type, the

LMSE& test will tend to reject, unduly, the null hypothesis. By a similar reasoning, it can be

shown that something similar happens with the LMSE& test: it will tend to reject, unduly, the null

hypothesis (Hq: p = 0) if the DGP is of the SLM type.

Bera and Yoon (1993) propose the development of ‘size-resistant’ tests in order to assure
the desired Type I error level even under local misspecifications of the alternative hypothesis. A
natural solution is to adjust both the score and the information matrix that appear in the raw

Lagrangre Multipliers. The objective is to ‘robustify’ these Multipliers and the procedure is



relatively simple (here we are using the restricted version of the model, Ho: A =p=0). As shown

by Anselin et al. (1996), this adjustment works well in a spatial context. In our case and using the

results of Section A.I in the Appendix:

Ho:hg=0; Vg}
Ha: No Ho (13)
«SUR _ -1 , 1 -l - 2
LM sim ™~ [g(x)HO - pr.wlp.(pg(p)m} |:I7v(p_1kp.(p1p-(plkp-(p:| [g(x)Ho - pr.(PIp.(pg(p)Hol'l‘s %~ (G)
Ho: Py = O;Vg}
Ha: No Ho (14)
«SUR _ _ \ _ -1 1 2
LM sgmMm ™ [g(p)Ho - I;hp.(PI;L.(Pg(MHJ |:IP'(P_I7“P'(PI7V(PI7”P'(P:| |:g(p)H0 - Ikp'(plx.(Pg(k)Ho}a;X (G)
where:
_ -1 ge
o, = [IT ®<): E )®W}y
g=L..G (15)
_a ~Ipge ~
o, = 0| 1r ®(zE Jew]a
g=L..G
o
X X 0 X'[IT ®y ®W}XB
— TR —Ipplj = ISt — IBK —
Lo = 0 TtT[Z E°X"E } Ion =115 |7 g=12,..G
gs
1,J,8,r=1,2......G 0

Lop=| 80 |=[0] ;= GgS(B'X'[IT®Egs®(W'W)}Xﬁ+ggstr(W'W)) +(Taw?)1g
[Towe ] L0 12,...G
gs=1,2,...,

Ipp= Ttr(W'W) { Ggscgs }-I— I Ipr = T(tl‘(W'W) + tl‘(WW)) Ggscgs
g,5=1,2,.....G g,s=1,2,.....G

U is the (TGRx1) vector of residuals of the SUR model, estimated in the absence of spatial effects.
The marginal Multipliers deal with the same problem but from a different perspective given

that, in the alternative hypothesis, they use the unrestricted model, L[g;A;p]. Specifically, for the
case:

Hy: pj= py=..= pg Vvs Hp: No Hy (16)
the DGP of the null hypothesis is L;[g;A]=L[¢;%;0] (the same for A). The expression of the

marginal Multiplier is:

LIS o/ 2= 20y, [ 10y, | [0, |20 17)
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where ‘(p/A)’ means that we test a set of zero restrictions on the parameters p conditioned on the

unrestricted ML estimation of the parameters A and ¢. The score ( g(e)‘HO) must be evaluated in the

ML estimation of the SUR-SLM of (7):

a
P _ _
aBl 0 8
~ 0
o, : ] A
eOly, = | “ai* |=| 2 |=| SLisiae| (2B )@ W Jaso, (18)
0. Pgl |0
g 0
a : :
| 9oij

where Ggpm¢ is the (GRx1) vector of residuals of the SLM model corresponding to the t-th cross-
section. In order to obtain the value of the statistic of (17) we need the element (3,3) of the inverse of
the information matrix (let us call it I(p/ QSLM)\_Hloa where Qg 1s the vector of parameters that
intervene in the SLM model: 0gp\ = [B,k, Gij } "). Using the partitioned inverse matrix we can obtain

these results:

-1
1 1
/M)y, = |:IP»P_IP,GSLMIGSLM,GSLMIGSLMP} (19)
Tpp —T{tr(W'W)IGJr[ %0 gs ]tr(W'W)} (20)
g,S:LZ,....,G (GXG)
Ipos =108 Tpt Ipo]=[0 Tpa OJ(Gx(k+G+G(G_Dj .
2

Ip = {tr[IT ®(z ESLE®)® (W'W)+ 17 ® (EXE ® (WW)]AI} -
g,s=1,2,.....G (GxG)

The discussion is similar for the parameters A. The null hypothesis is:
Hyp: A= Ay=..= A5 vs Hu: No Hy (23)

in which case the DGP becomes L, [¢;p] = L[;0;p]. The marginal Multiplier is:

LSH o= 20y, [ 10y, [0, |00 .

as
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now ‘(A/p)’ means that we test a set of zero restrictions on the parameters A conditioned on a

unrestricted ML estimation of the parameters p and ¢. The score ( g(e)‘HO) evaluated in the ML

estimation of the SUR-SEM of (11) is:

_ﬂ )
op
R o
o\ — T & [ g2\ w—(x-1YE® |® ww]
gO, =| ar" |= 6gg =| 28 'sEMe (Z ) ; (Z ) WWI]yi] (25)
8pg 0 0
o
| 9oij |

where gspm ¢ is the (GRx1) vector of residuals of the SEM model corresponding to the t-th cross-
section (&spm,t = [IGR -T® W}[yt - Xtﬁ] ). As before, we need the element (2,2) of the inverse of

the information matrix (let us call it I(k/eSEM)‘_HlO, Osem 1S the vector of parameter that intervene in

the SEM model: gy = [B, P, Gij]), which is equal to:

-1
-1 B -1
1 /p )\Ho B [Im_IX’GSEMIGSEM,GSEMIGSEMJ} (26)
Lo = Tr(WW)I; +{B'X'HE.\ XB + trHS.\,B QB!
AL G SEM SEM
g.s=1,2,....G (GxG) (27)
_ R -1
HE = (Ir ®ES @ W) B Iy @2 '@ 1 |B(1 ®EX W)
T 05em = [17"[3 lhp IkaG](Gx(k+G+G(G_l)j (28)
2
Dop= B'X'(IT ® E&E ®W')B'Q‘1BX (29)
g=1,2......G (ka)
I =1tr{OB (1T ®ELE @ W)B(1r @ EE@ W)+ (11 © EXES ® WW)} B~ (30)
g,s=1,2,.....G (GXG)
o= tr[IT ®(Eij):‘1)®1R]B(IT REHE® W)B—l 31)

gi,j=1,2,....G [GXG(C;DJ
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4.1- Testing for the hypothesis of common factors: SUR-SLM vs SUR-SEM models.

The hypothesis of common factors plays an important role in the specification of a cross-
sectional econometric model (Burridge, 1981). In general, this test combines, in a unified framework,
the information provided the marginal and the robust Multipliers’. This discussion is well known in the

standard case and is easily transferrable to the SUR case. The ample model of the test is:
y=Ir @YOW)y+XB+ (It @l ®W)Xy+¢
€~ N(O,Q) =Q= IT ®Z®IR

(32)

As before, Y is a (GxG) diagonal matrix of autocorrelation coefficients, B and y are (kxI)

vectors of parameters. The hypothesis of common factors states that:

[Y®IR]B=Y
No Ho

Ho:

(33)
Ha:

} — LRCOMgyg = 2[log(H ) —1og(H)] ~ % *(Gk)
as

where log(H ) is the estimated log-likelihood for the model of the alternative hypothesis (that of 32)

and log(H) is the estimated log-likelihood corresponding to the model of the null hypothesis:

o, 0 0 - 0 8,1 v, o1 | To
0 p, O -0 Brl |72 PP, =7, 0
Ho:[Y®IR[B=y=>|{0 0 p; - 0 |®Ix | Bs|-[v3]|=0=| pPy—v5 |=| O
00 0 - pg Bl 176 peBs—r1a) L

(34)
Vy=(IT®Y®W)y+XB+(IT®Y®W)Xy+¢
:>[IGR—Y@W]yt—[IGR—Y@W]xtBth;Vt

Yt~ xP=ut
Btut =¢&t
Bi=[Igr—Y®W]

Obviously, the model of the null hypothesis is the SUR-SEM of (10). If we cannot maintain
this set of Gk restrictions, the model of the alternative hypothesis appears in (32). This specification
will lead us to the SUR-SLM of (7) only in the case that we could not reject the additional
hypothesis that vector y is zero.

5. Some extensions of the basic SUR case.

In continuation we present some extensions of the basic spatial SUR model. In the first
place, we examine the problem of the lack of constancy (among equations, between cross-sections)
of the parameters of spatial dependence; then we review the question of the diagonality of the

matrix.

> It should be remembered that what it really does is to test whether a SEM mechanism is adequate for the data (Mur
and Angulo, 2006)
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5.1- Testing for the constancy of the parameters of spatial dependence

The coefficients of spatial dependence of the SUR model specified in the second section are
allowed to vary between equations. However, in some cases it may be important to test if these
coefficients are equal for the whole set of G equations. Using another more general perspective, in
some circumstances the hypothesis of interest may be that of the temporal stability of these
coefficients, allowing them to they take on different values for each equation. In continuation, we
discuss the first, most restrictive assumption leaving aside the case of the temporal homogeneity of
the parameters’.

The results obtained under the assumption of constancy among equations of the coefficients
of spatial dependence are equivalent to those presented in the third section, although the estimation

algorithms are simpler. For example, the SUR-SARAR model of (2) now becomes:

Bu=¢

Ay=XB+u

A=I®[Igg ~A®W] =11 [ I ®(Ig -AW) |=I; ®A (35)
B=1; ®[Igr ~YOW] =11 &[ I ®(Ig —pW) |=1; ®B

where A and B are two (RGXRG) matrices. The number of parameters to estimate reduces to

(k+2+G(G+1)/2). If we use a SLM model:

Ay=XB+e¢
8~N(O,Q):Q:IT ®Z®IR

(36)
A=I1 ®[Igg ~A®W] =11 ®| I ®(Ig —AW) |=I1 ®A
Now, the number de parameters to estimate is (k+1+G(G+1)/2), the same as in the SEM

case, under the assumption of constancy:

Bu=¢

y=XB+u

A (37)
B=I; ®[Igg ~Y®W] =11 ®I ®(I —pW)] =I5 ®B

It is obvious that the hypothesis of homogeneity is a critical restriction that must be tested
adequately. One simple solution is the likelihood ratio which compares the likelihoods of the ample
and of the restricted models (that is, the model of (2) against the model of (35) in the SUR-SARAR
case; the model of (7) against that of (36) in the SUR-SLM case and the model of (10) against that

of (37) in the SUR-SEM case). This procedure requires the estimation of both models whereas in

® The details for this case can be obtained from the authors.
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the case of the Lagrange Multiplier we only need the estimation of the restricted model’. Other
things being equal, the LM appears preferable. Below we present the details.

As said, in the SUR-SARAR case, we compare the unrestricted estimation of model (2) with
the restricted version of (35). These two models are related by the following set of 2(G-1)
restrictions:

Hy: A=Ap=..=Lg and p;=p,=...=p5 Vvs Hu: No H (38)

As it is well-known, the Lagrange Multiplier is the quadratic form of the score vector on the

inverse of the information matrix, both terms evaluated under the null hypothesis. That is (Section

A.IV of the Appendix):

-1
LMERar () = [ 2Oy, [ 100y, | 2Oy, |- 770 1) (39)
with:
_ﬂ ;
P e ] i 0 |
o Bl _TGtr[ A‘lw} +(Ay-Xp) [y @z ®@(B'B) (1@ W)y | (40)
on g -1,.G
g(e) — g — [Ho | — ~ g=l,... .
o =) ol Sy, | |-TG| B™'W ]+ (Ay-XB) Iy @ 7' ® (B'W) ] (Ay - XB)
Opg 8(0),, g=1..G
l e ]| 0 |
- “lno
In the case of the SUR-SLM of (7), the null hypothesis contains (G-1) restrictions:
yp
Hp: Aj=A2=..=Ag Vs Hu: No Hj (41)
The expression of the Multiplier does not vary:
-1
LMEE0) =[Oy, 110y, | [e@)y, =276 -0 (“2)
with:
ol
0
6[13 EB)y, o 0 B (43)
2O, = o B |7 —TGtr[A w} +(Ay-XB) [y @ '@ I (116 ® W)y
ERRECH ’
| 9oij

Finally, in the SUR-SEM of (10) we obtain:
Hy: p;=py=...=pg vs H, : No H (44)

7 The Wald test is another alternative that we skip due to length restrictions.
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with:
-1
LMEE (P =[ 20y, 10y, | [e®), -2’60 (45)
where:
al
s £p) 0
al o . , o (46)
2Oy, = aor| || ~TGtr| B™'W |+ (y-XB) [1r ® 2~ ® (B'W) |(y - XB)
o B, ’
_ac’ij_|H0

5.2- Testing for the diagonality of the matrix 2.

A characteristic of SUR models is the assumption of linear dependence between the random
terms of the G equations, which explains the importance of the hypothesis of non-diagonality of the X
matrix. This problem is well known in the literature where we can find different proposals. Among
them, the Likelihood Ratio and the Lagrange Multiplier tests (Breusch and Pagan, 1980) fit properly in
our framework. The only aspect that we should consider is that these diagonality tests will be used in

models where there exists a certain spatial structure. For example, in the case of the SUR-SARAR of

2):

Bu=¢

Ay=XB+u }
(47)

matrix X refers to the correlation structure that exists between the errors of the G equations, once
the spatial dependence that intervenes in the specification has been filtered. Then, we obtain the test

in the usual way:

012 0
0 o2 0
Ho | = TREE ZE s~ 6@/ (48)
0 0 .. o}
Ha: No Ho
with:

T R (A S ~ ~
z“tzlzrzl(gtrg_Sg)(gtrs_ss)
rgs=
T R ([ 2 V2 /5T $R (2 _2\2
Z:tzlzrzl Etrg” €g Zt:lzrzl(gtsr_ss)

Iy 1s the correlation coefficient obtained between the residuals of equations g and s. Breusch and

(49)

Pagan (1980) use the LS residuals because they discuss the assumption of diagonality in a static
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model, but this is not our case. In the framework of (47), and under the null hypothesis of
diagonality, we have a series of ML residuals obtained from the estimation of a spatial model
(SARAR, SLM or SEM) for each of the G equations.

6. A Monte Carlo study on the problem of specifying spatial SUR models.

The results of the previous section should help us to improve the specification of a given
spatial SUR model. We are confidence in these techniques because, in a previous study (Mur and
Lépez, 2010), simpler versions of them worked reasonable well. We are going to focus the
discussion in another aspect of the problem; specifically, in the question of selecting the most
adequate spatial structure for the data at hand. In the remaining of this section, we are going to
compare the performance of two well-known selection strategies: a General-to-Specific, Gets in
short, or a Specific-to-General, Stge, approach. This problem has received a considerable attention
in mainstream econometrics where there exists a huge amount of published work (see, for example,
Charemza and Deadman, 1997, Campos et al, 2005, or Liitkepohl, 2007). Recently, in a context of
spatial modeling, this debate has been raised by Florax et al (2003, see also Florax et al, 2006,
Hendry, 2006, and Mur and Angulo, 2009).

The evidence is not totally conclusive: whereas the Gets approach seems to be more robust
to severe misspecifications of the model, the Stge approach is simpler and more efficient when the
model is reasonably well-specified. Our purpose is to extend this discussion to a spatial SUR model
using the tests developed in the previous sections. First we briefly present the two strategies;
section 6.2 focuses on the design of the Monte Carlo and in section 6.3 the main results of this
Monte Carlo are discussed.

6.1- Gets vs Stge: Main characteristics.

In Figure 1 we present a sketch of a Stge strategy to solve the problem of selecting the most

appropriate specification for a SUR model (other combinations of the statistics, in a Stge

framework, are possible; we present our favorite alternative).



17

FIGURE 1: A Stge algorithm to spatial SUR model selection .

| Y=Xp+e |

N @
SUR

Likelihood ratios

| sursem | [ sursim e SUR-SARAR | | SUR-SIM

+ T Reject Null Hypothesis ;4 Non Reject Null Hypothesis
The starting point is the simplest admissible model which, in our case, will be the SUR

model with no spatial effects (Spatially Independent Model, SIM from now on). LMSYR , is the

adequate statistic at this stage. The SIM model will be chosen if the null cannot be rejected and the
process finishes at this point. On the contrary, we will use the robust Multipliers to select the SUR
model with spatial effect that corresponds to the alternative hypothesis. Four different situations can

be considered:

* SUR

()- v spy 1S significant but y yp< SR

v s not statistically significant. The model appears to

be a SEM. We confirm this identification by means of the corresponding likelihood ratio.

x« SUR

*SU'R . . .
(b)- Lm*grpy 18 significant but yp*coh

M is not statistically significant. The model appears to

be a SLM. As before, we confirm the selection by means of the corresponding likelihood
ratio.
(c)- Both robust Multipliers reject their respective null hypotheses. We use the marginal
Multipliers:
(c.1)- LMSPR(L/p) and LMEUN(p/ 1) are statistically significant; we select a SARAR

model.
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(c.2)- Only LMSER(p/ ) is statistically significant; we select a SEM model.

(c.3)- Only LMSPR(L/ p) is statistically significant; we select a SLM model.

(d)- None of the two null hypotheses can be rejected with the robust Multipliers. We conclude

that it is a SIM model.

Figure 2 describes the functioning of a Gets algorithm with the statistics that we have
developed (other combinations are possible). According to Hendry (1980) the idea is to start with a
very general model in order to avoid unnecessary restrictions. This model must be consistent with
the data (i.e., the random term must behave as expected, and all other hypotheses should also be
fulfilled). In our case, let us start with the ‘the autoregressive distributed lag model’ of the first
order’ ADL introduced by Bivand (1984, p27):

y=(Ir ®Y®W)y+XB+ (I ®l; ® W)Xy +¢

(50)

As indicated, this model must be consistent with the data which means that the error term of
(50) should be spatially independent. That is the point of the LMggm/K) test. If we cannot
maintain this assumption, the model of (50) is not valid as ‘encompassing model’ If, on the

contrary, we cannot reject the null hypothesis, the Gets algorithm continues with the simplification

process depicted in Figure 2.
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FIGURE 2 A Gets algorithm to spatial SUR model selection

| Y=pWY+XB+WXy+e |
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Likelihood ratios

SUR-SARAR f---

T Reject Null Hypothesis ;4 Non Reject Null Hypothesis

The Common Factor test plays a very important role in the Gets algorithm in order to
discriminate between SEM and SLM models. We have two options:
(1)- If we reject the Common Factor hypothesis, the evidence is in favor of a SLM model.
The likelihood ratio should confirm this identification.
(i1)- If we cannot reject the Common Factor hypothesis, there is a SEM structure in the

data, pure or combined with a SLM component. We will solve this point using the
marginal Multiplier, LMEVR(A / p), in the following sense:

(1)- A pure SEM model emerges when we cannot reject the null hypothesis.
(i1)- A SARAR model is advisable when the previous null hypothesis is rejected.

The last result is an indication against the encompassing model of (50):

6.2- Design of the Monte Carlo.

The purpose of this exercise is to compare the performance of the two strategies of model
selection in a SUR context. We are going to simulate in the Data Generating Process up to four
processes: a SIM, a SEM, a SLM and a SARAR. Success of a strategy, Stge or Gets, means highest
probability of selecting the right model.

We have included only one regressor, plus a constant term equal to 2, in each equation of the

DGP. The regressor has been obtained from a N(0,1) distribution and each regressor enters into the
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equation with a coefficient of 3. This assures that, in the absence of spatial effects, the R” statistic of
the Least Square (LS) regression of each equation will take, on average, a value of 0.9. The SUR
system is made by 3 equations (G=3), 3 cross-sections (T=3) and 49 spatial units (R=49). Overall,
the results are quite robust to these values. Moreover, we have used a (7x7) regular lattice assuming

rook contiguities in order to obtain the weighting W matrix, which has been row-standardized.
The SUR structure corresponds to the X = {Gij =1, ifimj;0,=c, ifi# j} matrix in (2) for

which we have used two specifications according to the values of c: a medium level of cross-error
dependence, ¢=0.5, and a high level, c=0.9. The values used in the spatial correlation coefficients, p
and A, are 0.1, 0.3, 0.5 and 0.9.
We study the behavior of the two specification strategies under the following situations:
(1)- Ideal conditions (normality, homoskedasticity, ...), though we do not known which DGP
(SIM, SEM, SLM or SARAR) has generated the data.
(i1)- Non-normality in the error terms. We consider two possibilities: a Wishart distribution
with covariance matrix X, and 1 degree of freedom and a Multinomial distribution MN(10;
0.5, 0.3, 0.2). The tails of the Wishart distribution are more dense that in the normal case
whereas the Multinomial is an extreme case of non normality and negative correlation.
(ii1)- Heteroskedasticity. We allow the variance of random term of each equation to vary across
time, maintaining constant the correlations of the SUR structure. That is, the specification of

the matrix Q now becomes: Q=Ar ®X_. @I being At a diagonal matrix. We have tried
two different mechanisms of heteroskedasticity: (i)- A random structure which means that
the elements of matrix Ay are obtained, in each trial, from a U(0,1) distribution; (ii)- An
increasing pattern of heteroskedasticity reflected in the values the diagonal matrix Ay as:
At = [511 =1§j= 5j_1j_1(1+7c);j =2,....,T; TEZO.l:I; this means that the variance increases

by a 10% in time period.
(iv)- Misspecification of the weighting matrix. In this case, the weighting matrix of the DGP is
of the queen type whereas the tests are solved using a rook type matrix.
(v)- Endogeneity. We introduce some dependence between the regressor and the error term of
each equation using a linear or a non-linear relationship:
(v.a) X=0, € + apn; where o+ o2 =1, a3 = 0 and n~N(0,1).
(v.b) X=exp(oe)texp(an); where oi+on=1, a0 =0 and n~N(0,1).

Finally, each experiment has been repeated 1000 times.
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6.3- Main results

The data of Table 1 are the percentages that the two strategies correctly select the process of
the DGP, simulated under ideal conditions. The first column identifies the DGP used in the
simulation, the second column the values of the coefficients of spatial dependence and the degree of
correlation between the equation; the following two blocks contain the percentages corresponding

to a Stge strategy and to the Gets approach.

Table 1: Stge vs Gets under ideal conditions

Percentages of correct identification of the DGP

Stge Gets
¢ A p| SIM SLM SEM SARAR SIM SLM SEM SARAR

SIM 0.0 -- --|0965 0.010 0.022 0.003 | 0.923 0.018 0.051 0.008
0.3 0.1 --|0.188 0.762 0.003 0.047 | 0.130 0.750 0.021 0.099
SLM 0.3 0.3 --|0.000 0.949 0.000 0.051 | 0.000 0.913 0.000 0.087
0.3 0.5 --|0.000 0.955 0.000 0.045 | 0.000 0.914 0.000 0.086
0.3 0.9 --|0.000 0.949 0.000 0.051 | 0.000 0.933 0.000 0.067
0.3 -- 0.1/ 0.884 0.031 0.079 0.004 | 0.792 0.030 0.155 0.023
SEM 0.3 -- 0.3/ 0.073 0.005 0.894 0.024 | 0.020 0.004 0.888 0.088
0.3 -- 0.5/ 0.000 0.000 0.974 0.026 | 0.000 0.000 0.892 0.108
0.3 -- 0.9/ 0.007 0.000 0.956 0.037 | 0.000 0.000 0.841 0.159

0.3 0.1 0.1| 0,118 0.732 0.064 0.083 | 0.044 0.692 0.110 0.154
0.3 0.3 0-3| 0.000 0.064 0.000 0.936 | 0.000 0.059 0.000 0.941
0.3 0.5 0.5/ 0.000 0.000 0.000 1.000 | 0.000 0.000 0.000 1.000
0.3 0.9 0.9/ 0.005 0.000 0.000 0.995 | 0.000 0.000 0.000 1.000

SARAR

0.9 0.1 --|0.000 0.951 0.000 0.049 | 0.006 0.893 0.000 0.101
SLM 0.9 0.3 --|0.000 0.951 0.000 0.049 | 0.000 0.910 0.000 0.090
0.9 0.5 --|0.000 0.956 0.000 0.044 | 0.000 0.911 0.000 0.089
0.9 0.9 --|0.000 0.952 0.000 0.048 | 0.000 0.933 0.000 0.067
0.9 -- 0.1/ 0.887 0.019 0.075 0.004 | 0.973 0.003 0.021 0.003
SEM 0.9 -- 0.3/ 0.065 0.000 0.887 0.045 | 0.441 0.000 0.500 0.059
0.9 -- 0.5/ 0.000 0.000 0.954 0.046 | 0.010 0.000 0.864 0.126
0.9 -- 0.9/ 0.008 0.000 0.963 0.029 | 0.000 0.000 0.874 0.126

0.9 0.1 0.1| 0.000 0.837 0.000 0.163 | 0.002 0.774 0.000 0.224
SARAR 0.9 0.3 0.3| 0,000 0.023 0.000 0.977 | 0.000 0.019 0.000 0.981
0.9 0.5 0.5/ 0.000 0.000 0.000 1.000 | 0.000 0.000 0.000 1.000
0.9 0.9 0.9/ 0.000 0.000 0.000 1.000 | 0.000 0.000 0.000 1.000
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In general terms, we can say that both strategies perform reasonably. The overall percentage

of correct identifications 81.3% for the Stge approach and 77.7% for the Gets approach. Both

algorithms perform better with SLM models (with percentages of 92.8% and 89.5) than with SEM
(72.3% and 62.9% respectively). The Gets only appears slightly superior if the DGP is SARAR.

Moreover, the correlation between the equations appears to have a minimal impact on the

performance of both algorithms, which are more sensible to the intensity of the spatial dependence,

especially for SEM processes.

Tables 2a, 2b show the results corresponding to the case of non-normality. In the first case,

we used a Wishart distribution and a Multinomial in the second table.

Table 2a: Stge vs Gets with Non-normal errors. Wishart distribution

Percentages of correct identification of the DGP

Stge Gets

¢ A p| SIM SLM SEM SARAR SIM SLM SEM SARAR

SIM 0.9 0.0 0.0 0.968 0.010 0.011 0.004 |0.983 0.009 0.004 0.004
0.9 0.1 --10.133 0.816 0.002 0.038 |0.183 0.722 0.004 0.091

SLM 0.9 0.3 --|0.0056 0.952 0.000 0.043 [0.000 0.910 0.000 0.090
0.9 0.5 --|0.002 0.961 0.000 0.037 |0.000 0.929 0.000 0.071

0.9 0.9 --|0.000 0.958 0.000 0.042 |[0.000 0.942 0.000 0.058

0.9 -- 0.1/ 0885 0.016 0.077 0.010 |0.939 0.008 0.048 0.005

SEM 0.9 -- 0.3| 0.157 0.003 0.803 0.032 |0.190 0.001 0.726 0.083
0.9 -- 0.5/ 0.061 0.000 0.907 0.032 |0.001 0.000 0.879 0.120

0.9 -- 0.9/ 0.004 0.000 0.960 0.036 |0.000 0.000 0.874 0.126

0.9 0.1 0.1| 0.105 0.720 0.019 0.139 |0.093 0.694 0.012 0.201
SARAR 0.9 0.3 0.3| 0.010 0.041 0.000 0.949 |0.000 0.034 0.000 0.966
0.9 0.5 0.5| 0.007 0.000 0.000 0.993 |0.000 0.000 0.000 1.000

0.9 0.9 0.9| 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000

The consequences of using such non-normal distributions are dramatic.

Overall, the

percentage of correct selections decreases to 63.5% for the Stge strategy and 60.5% in the case of

Gets. The SEM processes are very bad identified in both cases, with a ridiculous percentage of right

decisions that almost zero in the case of the Multinomial. On the contrary, SARAR processes are

reasonably well treated with percentages above 80% for the two algorithms and with both

distributions (Wishart and Multinomial).
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Table 2b: Stge vs Gets with Non-normal errors. Multinomial distribution.

Percentages of correct identification of the DGP

Stge Gets

c A p SIM SLM SEM SARAR SIM SLM SEM SARAR

SIM 09 00 0.0 | 0.984 0.008 0.000 0.008 [0.949 0.003 0.010 0.038
09 01 -- 10.004 0.699 0.000 0.297 [0.001 0.633 0.000 0.366

SLM 09 03 -- 10.014 0.610 0.000 0.376 [0.000 0.456 0.000 0.544
09 05 -- 10.000 0.498 0.000 0.502 [0.000 0.235 0.000 0.765

09 09 -- 10.000 0.185 0.000 0.815 [0.000 0.089 0.000 0.911

09 -- 0.1 |0.945 0.018 0.000 0.033 [0.944 0.007 0.007 0.042

SEM 09 -- 03 ]0489 0.069 0.010 0.430 [0.870 0.024 0.004 0.102
09 -- 05 |0.151 0.007 0.005 0.837 [0.714 0.002 0.000 0.284

09 - 09 10,000 0.000 0.046 0.954 [0.295 0.000 0.000 0.705

09 01 0.1 |0.011 0.545 0.000 0.444 [0.000 0.476 0.000 0.524
SARAR 09 03 0.3 |0.002 0.101 0.000 0.897 [0.000 0.004 0.000 0.996
09 05 05 |0.000 0.000 0.000 1.000 [0.000 0.000 0.000 1.000

09 09 09 |0.000 0.008 0.000 0.992 [0.000 0.001 0.000 0.999

The results corresponding to heteroskedasticity appear in Tables 3a-3b. The performance of
both strategies worsens only slightly in relation to the results observed under ideal conditions. Now
the percentage of correct identifications is 81.8% for the Stge algorithm and 75.6% for the Gets.
Once more, the worse results correspond to SEM processes where these percentages are 71.9% and
53.2% respectively. The pattern of heteroskedasticity, random or increasing along time, has a

minimal impact on the aggregated scores.



Table 3a: Stge vs Gets with heteroskedasticity. Q=Ap ®X_. &I . Random pattern

Percentages of correct identification of the DGP

Stge Gets
¢c A p|SIM SLM SEM SARAR|SIM SLM SEM SARAR
SIM 0.9 0.0 0.0/ 0.969 0.008 0.018 0.005 [0.912 0.026 0.053 0.009
0.9 0.1 --|0.000 0.960 0.000 0.040 |[0.000 0.905 0.000 0.095
SLM 0.9 0.3 --|0.000 0.958 0.000 0.042 |0.000 0.924 0.000 0.076
0.9 0.5 -- | 0.000 0.953 0.000 0.047 |[0.000 0.923 0.000 0.077
0.9 0.9 --10.000 0.949 0.000 0.051 |[0.000 0.939 0.000 0.061
0.9 -- 0.1/ 0874 0.030 0.083 0.008 |0.979 0.006 0.015 0.000
SEM 0.9 -- 0.3/ 0.060 0.001 0.890 0.046 |0.432 0.000 0.512 0.056
0.9 -- 0.5/ 0.000 0.000 0.958 0.042 [0.012 0.000 0.871 0.117
0.9 -- 0.9/ 0.013 0.000 0.939 0.048 |0.000 0.000 0.847 0.153
0.9 0.1 0.1 0.000 0.832 0.000 0.168 |[0.000 0.779 0.000 0.221
SARAR 0.9 0.3 0.3| 0.000 0.032 0.000 0.968 |0.000 0.023 0.000 0.977
0.9 0.5 0.5/ 0.000 0.000 0.000 1.000 |{0.000 0.000 0.000 1.000
0.9 0.9 0.9

0.001 0.000 0.000 1.000 |0.000 0.000 0.000 1.000

Table 3b: Stge vs Gets with heteroskedasticity. Q= A1 ® X, ® Iy . Increasing pattern

Percentages of correct identification of the DGP

Stge Gets
¢c A p|SIM SLM SEM SARAR|SIM SLM SEM SARAR
SIM 0.9 0.0 0.0/ 0.946 0.010 0.039 0.004 |0.881 0.024 0.083 0.012
0.9 0.1 --|0.000 0.907 0.000 0.093 |[0.000 0.846 0.000 0.154
SLM 0.9 0.3 --|0.000 0.908 0.000 0.092 |[0.000 0.868 0.000 0.132
0.9 0.5 -- | 0.000 0.900 0.000 0.100 |[0.000 0.866 0.000 0.134
0.9 0.9 --|0.000 0.897 0.000 0.103 |[0.000 0.884 0.000 0.116
0.9 -- 0.1/ 0845 0.030 0.111 0.012 |0.960 0.006 0.026 0.008
SEM 0.9 -- 0.3|0.082 0.001 0.865 0.050 |0.406 0.001 0.510 0.083
0.9 -- 0.5/ 0.000 0.000 0.965 0.035 [0.021 0.000 0.825 0.154
0.9 -- 0.9/ 0.010 0.000 0.944 0.046 |[0.000 0.000 0.810 0.190
0.9 0.1 0.1 0.000 0.799 0.000 0.201 |[0.000 0.743 0.000 0.257
SARAR 0.9 0.3 0.3 0.000 0.041 0.000 0.959 |0.000 0.038 0.000 0.962
0.9 0.5 0.5/ 0.000 0.000 0.000 1.000 |{0.000 0.000 0.000 1.000
0.9 0.9 0.9

0.001 0.000 0.000 0.999 |0.000 0.000 0.000 1.000
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Table 4 focuses on the impact of a misspecified weighting matrix (we have defined less
connections that the real ones). The consequences of this systematic under-specification are very
severe on both approaches. When the DGP is of the SLM type, the two strategies obtain very poor
scores, well below the 50% of correct identifications with a minimum 5.5% in the case of the Gets
algorithm. The situation improves slightly if the process is of the SEM type (57.5% and 10.5%
respectively), and changes drastically for SARAR processes where the Gets algorithm attains an

80.0% of correct identification whereas the Stge percentage is only 15.7%.
Table 4: Stge versus Gets under misspecification of W.

Percentages of correct identification of the DGP

Stge Gets

¢c A p|SIM SLM SEM SARAR|SIM SLM SEM SARAR

SIM 0.9 0.0 0.0/ 0.965 0.010 0.022 0.003 |0.923 0.018 0.051 0.008
0.9 0.1 --|0.000 0.945 0.000 0.053 |0.122 0.219 0.000 0.659

SLM 0.9 0.3 --|0.000 0.768 0.000 0.232 |0.000 0.000 0.000 1.000
0.9 0.5 --|0.000 0.179 0.016 0.802 |0.000 0.000 0.000 1.000

0.9 0.9 --|0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000

0.9 -- 0.1/ 0916 0.026 0.044 0.006 |0.982 0.007 0.008 0.003

SEM 0.9 -- 0.3|0.401 0.020 0.517 0.047 |0.800 0.002 0.144 0.054
0.9 -- 0.5/ 0.004 0.000 0.919 0.076 |0.200 0.000 0.268 0.532

0.9 -- 0.9|0.014 0.000 0.819 0.167 |0.000 0.000 0.000 1.000

0.9 0.1 01| 0.002 0.919 0.003 0.070 |0.101 0.215 0.000 0.684
SARAR 0.9 0.3 0.3| 0.000 0.860 0.000 0.138 |0.000 0.000 0.000 1.000
0.9 0.5 0.5| 0.001 0.837 0.004 0.144 |0.000 0.000 0.000 1.000

0.9 0.9 0.9| 0.000 0.726 0.000 0.274 |0.000 0.483 0.000 0.517

Finally, Tables 5a and 5b contain the details for the case of endogeneity, of a linear type in
Tables 5a and of a nonlinear type in Tables 5b. The behavior of both strategies sharply deteriorates
as the endogeneity becomes stronger. In this case, there is a strong tendency for the two algorithms
to identify mixed SARAR processes. This is particularly evident in the case of SEM processes with
a percentage of correct identifications almost zero in the linear and in the nonlinear case. The Stge
algorithm appears to be more robust when the process of the SLM type whereas the Gets approach

attains better results in the case of SARAR processes.



Table Sa: Stge vs Gets under endogeneity. Linear case: X=a;€ + a;n

Percentages of correct identification of the DGP

Stge Gets

¢ A p| SIM SLM SEM SARAR|SIM SLM SEM |SARAR

o1 = 0.2 O = 0.8

SIM |0.9 0.0 0.0] 0.962 0.019 0.018 0.001 |0.936 0.000 0.049 0.015

0.9 0.1 --| 0.005 0.970 0.000 0.025 |0.833 0.000 0.000 0.167
SLM 0.9 0.3 -- | 0.000 0.970 0.000 0.030 |0.000 0.000 0.000 1.000
0.9 0.5 0.0| 0.000 0.962 0.000 0.038 |0.000 0.000 0.000 1.000
0.9 0.9 0.0] 0.002 0.956 0.000 0.042 |0.000 0.000 0.000 1.000
0.9 -- 0.1] 0.879 0.024 0.052 0.008 |1.000 0.000 0.000 0.000
SEM 0.9 -- 0.3] 0.211 0.003 0.724 0.058 |0.668 0.000 0.331 0.001
0.9 0.0 0.5/ 0.011 0.000 0.931 0.058 |0.307 0.000 0.660 0.033
0.9 0.0 0.9] 0.012 0.000 0.912 0.076 |0.000 0.000 0.320 0.680
0.9 0.1 0.1]| 0.006 0.868 0.000 0.126 |0.725 0.000 0.000 0.275
SARAR 0.9 0.3 0.3| 0.001 0.044 0.000 0.955 |0.000 0.000 0.000 1.000

0.9 0.5 0.5| 0.003 0.000 0.000 0.997 |0.000 0.000 0.000 1.000
0.9 0.9 0.9/ 0.962 0.019 0.018 0.001 |0.936 0.000 0.049 0.015

o= 0.5 ol = 0.5

SIM (0.9 0.0 0.0/ 0.965 0.018 0.010 0.006 |[0.932 0.000 0.042 0.026

0.9 0.1 --|0.173 0.808 0.000 0.019 |0.712 0.000 0.003 0.285
SLM 0.9 0.3 --| 0.000 0.986 0.000 0.014 |0.000 0.000 0.000 1.000
0.9 0.5 --]0.000 0.985 0.000 0.015 |0.000 0.000 0.000 1.000
0.9 0.9 --10.001 0.963 0.000 0.036 |0.000 0.000 0.000 1.000
0.9 -- 0.1 0.898 0.043 0.034 0.006 |0.549 0.000 0.428 0.023
SEM 0.9 -- 0.3/ 0.333 0.036 0.304 0.327 |0.381 0.000 0.535 0.084
0.9 -- 0.5]/ 0.002 0.000 0.547 0.451 |0.083 0.000 0.564 0.353
0.9 -- 0.9/ 0.040 0.000 0.321 0.639 |0.000 0.000 0.092 0.908
0.9 0.1 0.1 0.071 0.836 0.000 0.093 |0.583 0.000 0.002 0.415
SARAR 0.9 0.3 0.3| 0.000 0.092 0.000 0.908 |0.000 0.000 0.000 1.000

0.9 0.5 0.5/ 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000
0.9 0.9 0.9] 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000

o= 0.8 Oy = 0.2

SIM |0.9 0.0 0.0| 0.962 0.018 0.018 0.002 |0.932 0.000 0.045 0.023

0.9 0.1 -- | 0.000 0.952 0.000 0.048 |0.000 0.000 0.000 1.000
SLM 0.9 0.3 -- | 0.000 0.941 0.000 0.059 |0.000 0.000 0.000 1.000
0.9 0.5 -- | 0.000 0.962 0.000 0.038 |0.000 0.000 0.000 1.000
0.9 0.9 -- | 0.000 0.954 0.000 0.046 |0.000 0.000 0.000 1.000
0.9 -- 0.1] 0.102 0.802 0.008 0.085 |0.166 0.000 0.007 0.827
SEM 0.9 -- 0.3| 0.000 0.264 0.000 0.736 |0.000 0.000 0.000 1.000
0.9 -- 0.5]| 0.000 0.002 0.000 0.998 |0.000 0.000 0.000 1.000
0.9 -- 0.9/ 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000
0.9 0.1 0.1| 0.000 0.922 0.000 0.078 |0.000 0.000 0.000 1.000
SARAR 0.9 0.3 0.3| 0.000 0.259 0.000 0.741 |0.000 0.000 0.000 1.000

0.9 0.5 0.5| 0.000 0.002 0.000 0.998 [0.000 0.000 0.000 1.000
0.9 0.9 0.9/ 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000




Table Sb: Stge vs Gets under endogeneity. Nonlinear case: X=exp(a;€)+exp(a,n)

Percentages of correct identification of the DGP

Stge Gets

¢ A p | SIM | SLM | SEM [SARAR| SIM | SLM | SEM | SARAR

o= 0.2 Qi = 0.8

SIM |0.9 0.0 0.0] 0.967 0.011 0.019 0.003 |0.928 0.000 0.057 0.015

0.9 0.1 --| 0.000 0.969 0.000 0.031 |0.023 0.000 0.000 0.977
SLM 0.9 0.3 --| 0.000 0.967 0.000 0.033 |0.000 0.000 0.000 1.000
0.9 0.5 0.0| 0.000 0.959 0.000 0.041 |0.000 0.000 0.000 1.000
0.9 0.9 0.0] 0.000 0.956 0.000 0.044 |0.000 0.000 0.000 1.000
0.9 -- 0.1]|0.887 0.027 0.063 0.006 |1.000 0.000 0.000 0.000
SEM 0.9 -- 0.3|0.133 0.002 0.820 0.044 |0.918 0.000 0.075 0.007
0.9 0.0 0.5| 0.000 0.000 0.941 0.059 |0.241 0.000 0.694 0.065
0.9 0.0 0.9] 0.016 0.000 0.927 0.057 |0.000 0.000 0.522 0.478
0.9 0.1 0.1]| 0.000 0.850 0.000 0.150 |0.019 0.000 0.000 0.981
SARAR 0.9 0.3 0.3| 0.000 0.044 0.000 0.956 |0.000 0.000 0.000 1.000

0.9 0.5 0.5| 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000
0.9 0.9 0.9] 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000

o= 0.5 ol = 0.5

SIM (0.9 0.0 0.0| 0.964 0.021 0.009 0.006 |[0.929 0.000 0.039 0.032

0.9 0.1 -- | 0.067 0.908 0.000 0.025 |0.864 0.000 0.000 0.136
SLM 0.9 0.3 --| 0.000 0.987 0.000 0.013 |0.000 0.000 0.000 1.000
0.9 0.5 --]0.000 0.981 0.000 0.019 |0.000 0.000 0.000 1.000
0.9 0.9 --10.002 0.964 0.000 0.034 |0.000 0.000 0.000 1.000
0.9 -- 0.1]0.916 0.031 0.027 0.012 |0.944 0.000 0.055 0.001
SEM 0.9 -- 0.3]0.371 0.021 0.335 0.273 |0.839 0.000 0.142 0.019
0.9 -- 0.5/ 0.006 0.000 0.629 0.365 |0.364 0.000 0.435 0.201
0.9 -- 0.9/ 0.030 0.000 0.403 0.567 |0.000 0.000 0.158 0.842
0.9 0.1 0.1]| 0.042 0.858 0.000 0.100 |0.755 0.000 0.000 0.245
SARAR 0.9 0.3 0.3| 0.000 0.076 0.000 0.924 |0.000 0.000 0.000 1.000

0.9 0.5 0.5/ 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000
0.9 0.9 0.9] 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000

o= 0.8 Oy = 0.2

SIM |0.9 0.0 0.0| 0.969 0.021 0.009 0.001 |[0.927 0.000 0.046 0.027

0.9 0.1 -- | 0.000 0.957 0.000 0.043 |0.029 0.000 0.000 0.971
SLM 0.9 0.3 -- | 0.000 0.971 0.000 0.029 |0.000 0.000 0.000 1.000
0.9 0.5 -- | 0.000 0.968 0.000 0.032 |0.000 0.000 0.000 1.000
0.9 0.9 -- | 0.000 0.962 0.000 0.038 |0.000 0.000 0.000 1.000
0.9 -- 0.1] 0.856 0.081 0.042 0.020 |0.994 0.000 0.002 0.004
SEM 0.9 -- 0.3]0.017 0.104 0.092 0.787 |0.327 0.000 0.044 0.629
0.9 -- 0.5/ 0.000 0.000 0.001 0.999 |0.000 0.000 0.001 0.999
0.9 -- 0.9/ 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000
0.9 0.1 0.1 0.000 0.905 0.000 0.095 |0.002 0.000 0.000 0.998
SARAR 0.9 0.3 0.3| 0.000 0.124 0.000 0.876 |0.000 0.000 0.000 1.000

0.9 0.5 0.5/ 0.000 0.000 0.000 1.000 [0.000 0.000 0.000 1.000
0.9 0.9 0.9/ 0.000 0.000 0.000 1.000 |0.000 0.000 0.000 1.000
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6. Final Conclusions

SUR models approach is a very popular technique to deal simultaneously with
multidimensional data, which requires few assumptions and computation efforts. However, as far as
we know, since the seminal work of Anselin (1988a and b), very little has been said about
combining SUR models with spatial processes. We have tried to fill this gap. Specifically, we have
developed a collection of tests, based on the principle of the Lagrange Multiplier, that are efficient
in detecting the presence of spatial elements in SUR models.

According to the results of the simulation, a traditional Specific-to-General approach is
slightly preferable to the inverse General-to-Specific procedure. Both algorithms of model selection
seem to work reasonable well under ideal conditions. The Stge procedure tends to select more
parsimonious models whereas the Gets algorithm shows a high propensity towards SARAR models.
However, the two approaches are very sensitive to anomalies in the DGP. Misspecification of the
weighting matrix and (severe) departures from the assumption of normality affect to a great extend
the behavior of both algorithms. Endogeneity and heteroskedasticity have more impact on the Gets

procedure.
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Appendix: Results of the ML estimation of the SUR models with spatial effects

This Appendix contains additional results on the ML estimation of the different SUR models
introduced in Sections 3, 4 and 5. Specifically, we focus on the expressions of the score vector and
of the information matrix for the different models and on the corresponding Lagrange Multipliers.
Section A.I. The SUR-SARAR model.

As indicated, the compact expression of this model is:

Ay =XB+u
Bu=c¢

e~ N(0,Q)

A=1; Olgg ~A®W (A1)
Q:IT ®E®IR

The logarithm of the likelihood function of the model of (A1) is the following:

(Ay—XB)'B'(I; ®Z®Ig ) 'B(Ay—Xp)
2

I(y;0) = —%Gln(zn)—§1n|z| +T 28, n[B, |+ 28 ||| -

(A2)

where Q7 !=1 ez ®lg; 0'= [B';}Ll;---;xG;pl;~--;pG;Gij:| is the vector of parameters of the model,

of order (k+2G+G(G+1)/2)x1. The score vector has the following structure:

o | )

B X'B'Q7'B(Ay - XB)

% ~Tur[ Ag'W |+ (Ay-XB)'B'Q'B(I; ®E£ @ W)y A3
g®=| 5°|= —Ttr[Bglw]+(Ay—XB)'B'Q—1(IT®Egg ®W)(Ay—XB)

AL _ R —Ipijw—1 .

aglg _Etr[z—lEij}_l_(Ay XB)B[IT ®(); E'x )®IR}B(Ay XB)

- L 2 2 ]

| 9o |

where EU (analogously E®®) is a (GxG) matrix whose elements are all zero except the (i,j) and the

(j,1) which are 1. The set of second derivatives is:

2
o1 _ _x'B'o-BX
opop’
%1
PO g
%1
Pop,
%1
Pooi;

- -X'B'Q"'B(I; ®EE£ @ W)y
(A4.2)

- —X'[B'{IT ® (2—1Egg ) ® W} + {IT ® (Eggz‘l) ® W'}B}(Ay— XB)

—-X'B| Iy @(z Bz )@ 1 |B(Ay - XB)
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2
;—; - —Ttr[A;wA;w]—y'(IT Q@ E ®w)'B'Q—1B(1T Q@ E& ®w)y
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o (It ®E* @ W) B’ 'B(I; O @ W)y
021 ' gg 11 'l gg g8
o ——(Ay-Xp)|(1r @E= © W)@ B+B'Q Iy OEE @W)|(I; B2 @ W)y
g
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e = (Av=xB) (1r ®E= @ W )[IT ®(zEix )®1R}B(Ay_x;3)
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The expected value of these terms, changing the sign, is™:
Ipp = X'B'Q7BX
Ig, = X'B'Q—IB(IT QESE ®W)A_1X[3; g=12,..G
(AS.a)

IBpg =0; g=12,...,G

IBGij:O; iajzl,z,....,G

2
¥ For brevity’s sake, we use the notation Iy = _E|: Gl } .

onoy'
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e = T“[A?WA?W] +B' X' HiGAgXB+ rH R A BB g=12,...,G
I, 0. =B X H RARXB+ rHER AR B OB 2,5=1,2,....G

Ip, = tr{[QB'_l(IT ®ELE O W |B(Iy ®E @ W|+(Iy ®ELE™ ®WW)}(BA)_1}; gs=12..,G

Do, = tr[IT ®(Eij ):‘1) ®IR}B(IT @ EE ®W)(BA)_1; 2ij=12..,G

(A5.b)
Ipp, = Ttr[Béleélw] + th'_l[IT ® (Egg}:‘lEgg ) ® (W'W)}B*Q; g=12,...G
ngps = trB'_1|:IT ® (ESS Z_lEgg ) ® (W'W):|B—IQ; g,8= L2,....,.G (ASC)
Ip o, = tr[IT ®(E z‘lEij)®W}B"1; eii=1,2,..G
g 1
oo, = %tr[):‘lEij):‘lEsr} ijsr=12..G (A5.d)

where HE,, = A'—I(IT ®ES ®W)'B'[IT ®z—1®1R]B(IT ® E8 ®W) Al and g% is the element

(t,s) of the matrix x~!. We introduce the following ordering of the information matrix:

CIpp Ip o Ipp Ipo |
(kxk) (kxT) (kxT) (kx(T(T +1)/2))
T I?»p Ie
(TXT) (TxT) (Tx(T(T +1)/2))
1(0) = Iop Tpo (A6)
(TXT) (Tx(T(T +1)/2))
IGG
(T(T+1)/2)
i X(T(T+1)/2)) |
The null hypothesis that there are no spatial effects in the SUR model of (A1) is:
Ho:Ag =Py ZO;Vg}
Ha:No Hj
Under HO =A=B= IGTR (A7)

—>u=e&

y=XB+u
8~N(O,Q):>Q:IT ®Z®IR

The score of (A3) becomes:
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i -1gee , '
o . lto a [IT ®(Z E )®WJy z;f:lszzlcsgﬁthytS Zstlchtr(ﬁgyLs) (A8)
gO),,; = an — (O — e=1,..G _ g=1,.G _ e1..G
. ai SP), ﬁV[IT ®(271Egg)®w}ﬁ Z:tT=IZS=1 o BlgWis ZS:I c#tr(liglrs)
1,.G 1,.G
Pel %), el..G = e
a | L : i I |
| 9oij | ] )

u is the (TGRx1) vector of residuals of the SUR model, estimated in the absence of spatial effects.
The score is made up of two sub-vectors of zeros, of orders (kx1) and (G(G+1)/2)x1, respectively,

and another two non-zero sub-vectors, both of order (Gx1), as appears in (AS8). Furthermore

ﬁg _ I:ﬁlg ﬁZg ﬁTg :|(RXTR) YL = [yL1 Y2 VLG ](RXTRG)
Yig = [Wygl Wyga + Wygr :|(RxTR) =[0G iG] parg)
Upg = [Wﬁgl Wigy -+ Wigr ](RxTR)

The elements of the information matrix, also under the null hypothesis, are:
Ipp=X'Q"X

g, =X It X EE @W[Xp; g=12.....G

(A9.a)
Ipp =0; t=12,....,G
IBGU_O= ,j=12,...,G
Lo, = ogg(ﬁ'x'[IT ® E&8 ®(W'W)}XB+gggtr(W'W))+TtrW2; g=12,..G
I = ogs(B'X'[IT ®ES ®(W'W)]XB+Ggstr(W'W)); g5=12,...G
D, = T804 [tr(W'W) +tr(WW)]; g=1,2,...,G (A9.b)
I, = To&ogs[r(W'W) + r(WW)]; g,5=1,2,....,G
ng%:o; g1,]=12,...,G
Ipp = T[ tr(W'W) o804+ r(WW) |, g=12,...G
ngpS:Tchchtr(W'W); gs=12,..G (A9.¢)

ngGij - 0’ g919.1 = 1a23----9G
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:Btr[z‘lEijz‘lEer; iLisr=12,...G (A9.d)

GijOsr 2

All these elements have been defined previously. To sum up, the information matrix

becomes:
- Ipp Iga 0 0 ]
(kxk)  (kxG) (kxG)  (kx(G(G +1)/2))
I Inp 0
(GxG) (GxG) (Gx(G(G+1)/2))
1Oy, = Iop 0 (A10)
(GxG) (Gx(G(G +1)/2))
IGG
(G(G +1)/2)
| X(G(G +1)/2)) |

This matrix is block-diagonal:

_IBB Ipa 0
(k) (kxG)  (kxG)
_ | VY VY
M (GxG) (GxG)
Iop
§ (GxG) |
IGG
ey =| Mii Mlz} =1 (G(G-1)/2 All
()IHO [le M22 M2 _S(G((G—l))/g)) ( |
0
Mi2=|0
0
Mi2=[0" 0 0]

The sub-matrix I, is diagonal, which implies that the ML estimators of p, and of A, under
the null hypothesis, are correlated for the same equation but they are independent for different

equations; that is, Cov(p,,A,) =0 if g#s and Cov(p,,%,) # 0 if g=s. The Lagrange Multiplier, for
the hypothesis of (A7), is the quadratic form of the score evaluated in the null hypothesis (as in AS8),
on the inverse of the information matrix, also evaluated in the null hypothesis (as in A9 and A10).
The final result is:

LMK =[50, [ 10} ] 20, |20

as

(A12)

-1
_ ~1 g
Lo~ Inplpplpn  In Mo | _ .2
SUR _| 4! ' BB p ~
= LM = (26)
SARAR |:g (k)‘”(’ 8 (p)n(’:||: ka IPP:| [g(p)no asx
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Section A.Il. The SUR-SLM model.

The model that corresponds to this case is:

Ay=XB+¢
e~ N0,Q)=Q=1; ®X®Iy

(A13)
A=IT ®[IGR —A®W]

Matrix Q appears in (Al). The logarithm of the likelihood function, introducing the SLM

structure of (A13), is:

I(y;0) = —%111(27:) —%1n|)2| +TxS, In|A

g‘_<Ay—XB>'<IT®22®IR>1(AY—XB> (A14)

where 0'= [B';M;"';kG;Gij] is the vector of parameters of the model, of order (k+G+G(G+1)/2)x1.

The score vector has the following structure:

ol
68[15 X'07(Ay-XB) (A15)
2(0) = I = —Ttr[At_IWJ+(Ay—X[3)'Q—1(IT®Egg ®W)y
il L (ay=xp) [ @ (=B 2 01 [(Ay - XP)
P —Btr[):_lEU}r
[doij] | 2 2 |

The second derivatives corresponding to this case are:

021
=-X'0 X
OBoP’ Q
01
- X0 I- OES @ W Alé6.
3Porg Q (T )y ( a)
0’1 i
:-X'[I ®(x-Eiy-1)® }A _X
oo, T (): > ) Ir |(Ay —XB)
2
ot —Ttr[A-IWA-lw]—y'(IT ® £ ®W)'Q-1(IT Q@ E ®w)y
or2 &8
021
=y ES QW|' QI ®ESE @ W Al6.b
a}»gﬁ}»s y ( T ) Q ( T )y ( )
0’1 i
=—(Ay-X '[1 lx E'y !|® }1 QEL QW
Ongdoy (Ay-XB)'| It (Z 2) IR(T )Y
6_12 :Btr[):*lEUE*IEUJ—(Ay—XB)'[IT ®(}:71E1J271EU):71)®IRJ(AY_XB)
acijz 2 (A16.c)
o'l TR ST —Ippi) | _ . — ST g2 —Igpii g2 =1 —
e — tr[): £y E] (Ay-Xp) [IT®(): gy gy )®1R}(Ay XB)

The expected values, changing the sign, are:
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Ipp=X'Q"X

Ipy, = X'Q-I(IT ® EE ®W)A-1XB; ¢=12,..G (A17.2)

I, =0 0,j=12...,G

L, =T Ag'WAG'W |+ B X HEEXB+ rHERD g=12,...G

I, =B X HEWXB+rHEWD g5=12,...G (A17.b)

Lo, = tr[IT ®(Eij2‘1)®1R}(IT ® £ ®W)A—l; @i,i=1,2,...G

Lo, = [ EEIE T | 12,06 (Al7.c)

where HE, =A'*1(IT QE® ®W)'[IT ®2*1®1R](IT Q@ ES8 ®W)A*1 and g8, as before, is the

element (g,s) of matrix y~!. Now we use the following ordering of the information matrix:

Ipp  Ipa Ipo
(kxk) (kxG) (kx(G(G+1)/2))
= I I
10)= (GxG)  (Gx(G(G 11)/2) (A.18)
IGG
(G(G+1)/2)
L x(G(G+1)/2) |

The null hypothesis in which we are interested is that the spatial lag of the endogenous

variable that appears in the right-hand side of the SUR model of (A13) is not relevant:

Ho:Ag=0;Vg
Ha:Ro Ho (A19)
_ y=XB+¢
Under Ho=A=lgr = ¢ _N(0,0) = 0Q=1; ®E®]
The score of (A15) becomes:
g _ -
agl 8B, 0 0 0 (A20)
&0y, = ENEELE ﬁ'[IT ®(Z_1Egg) ®W}y = 2L 0% Wyy |=| X0y )
g _ e=1..G 0
aj . 0 0
| 9o | ) )
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As before, U is the (TGRx1) vector of residuals of the SUR model in the absence of spatial

effects and yi. the spatial lag of vector y. The other terms have been defined before. The elements of

the information matrix, also under the null hypothesis, are:

w1
Ipp=X'Q"X
Iy, = X'[IT ® y -1 ®W}XB; g=12,..G

IBGij:O; iajzl,z,....,G

L, = Ggg[B'X'(IT ®ESE ® (W'W))XB+ csggtr(W‘W)} +TW?; g=1,2,...G

Ikgxs = GgS[B'X'(IT ®E® ®(va))XB+ Ggstr(W'W):|; g,s=12,..,G
I)\.gGij:O; g,l,J=1,2,,G
1%.%=%tr[z-lEijz—lESf} ijsr=12..G

This matrix has a block-diagonal structure:

Ipp  Ipa
| ] My =| 50 (20
Ipp Ipa 0
(kxk) (kxG) (k)(;)G) : (GxG)
= I _| M1 M2 _ oo
1(9)\Ho (GxG) (Gx(G(G-1)/2)) [le sz M2z i((GG((GG_ll))//zz)))
IGG
(G(G-1)/2) My = 8
L x(G(G-1)/2)) |
Miz2=|0 0]

Finally, the Lagrange Multiplier, emerges as:

LMSh = [g(e)lHoHI(e)lHo ng)mokxz@)

-1
SUR _ 1 _ -1 2
= LMSR = ¢ @)\Ho[m LTl | g0y, 1@

Section A.III The SUR-SEM model.

The specification corresponding to this model is:

y=XB+u
Bu=¢
e~N@O0,Q)=Q=IT LRI

B=1; ®[Igr —Y®W]

The logarithm of the likelihood function is:

(A21.a)

(A21.b)

(A21.c)

(A22)

(A23)

(A24)
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y—Xp)B(1; ®X@Ig ) 'B(y-XB)
2

RTG

1(y:0) === (A25)

TR (
1n(27t)—71n|2‘.| + TZngl ln‘Bg‘ -
where ¢'= [B';pl;---; p G;Gij] is a vector of parameters, of order (k+G+G(G+1)/2)x1. The score vector

has the following composition:

T _
ag)l X'B'Q7'B(y—XB) (A26)
(0) = o |7 —Ttr[Bglw}(y—XB)'B'Q—l(IT®Egg ®W)(y—XB)
o | | R iy (v=XB)Blr ®(zE x )@ 1k [B(y-XB)
Ocij; ——tr[z‘lE” } * 2

The second derivatives of the log-likelihood function are:
%1
oBop’
%1
6B6pg
%1
PIoij

=-X'B'Q " BX

_ _X'[B'{IT ®(z B )@ W]+ iy @(E2x)® W'}B}(y— XB) (A27.2)

- —X'B'[IT ® (z—lEijz‘l) ® IR}B(Y—XB)

2
% = _Ttr[Bgleng] —(y- XB)'(IT RQE& ® W)'Q_I(IT QEE ® W)(y B XB)
0’1
8pg8ps
o°l
9p Oai;

_ —(y—XB)'(IT ® E& ®W‘)Q—1(IT ®E™ ®W)(y-Xp) (A27.b)

—~(y-Xp) (1 @E= O W) 1; © (2 'EVx ) ® 15 | B(y - XB)

6Gij (A27C)

2 . .
o1 _ Btr[):*lEsr}:*lEUJ—(y—XB)'B'[IT ®(z Bz Eix )@ IR]B(Y_XB)
06i0osr

Their expected value, after changing the sign are:

_Y'R'-1
IBB =X'B'O"'BX
IBpg =0; g=12,....G (A28.a)

IBGijZO; iaj:1,2,....,G
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Ip,p, = Ttr[B;WB;W] + tr];"l[lT ® (Egg y - IEgee ) ® (W'W)}B—IQ; g=12,..G
Ip,p, = trB"l[IT ®(E*x E®|® (W'W)}B‘IQ; gs=12,.,G (A28.b)
p.oy = tr[IT ®(Ee >:‘1Eii)®w}3'—1; @i i=12....G

TR ii ..
Loy = Ttr[z—lE’Jz—lE“]; ijs.r=12,..G (A28.c)

We use the following ordering of the information matrix:

Ipg Ipp I
(kxk) (kxG) (kx(G(G +1)/2))
_ Ipp Ip
10) (GxG) (Gx(G(Gc-Slr 1)/2)) (A29)
IGG
(G(G+1)/2)
| x(G(G+1)/2)) |

The null hypothesis that we want to test is that there is no SEM structure in the error terms

of the SUR:

Ho:p,=0;Vg B y=XB+¢
Ha:No o [ Onder Ho=B=lme =7 _No,0p0=1; 0zl (A30)

The score of (A26) under the null hypothesis of (A30) becomes:

al - .
agl 26, 0 0 0 (A31)
Pg ’ g=1..G g=L,.G 0
a| [E, 6 0
| 9o ) )

u is the (TRGx1) vector of residuals of the SUR model without spatial effects and Uy its spatial
lag. The elements of the information matrix, under the null hypothesis, are:
Igp=X'Q7'X

Igp,=0; g=1.2,...G (A32.2)
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Ipp, = Tr(W'W) (o0 +1); g=12,...G

ngps = TGgSGgStr(W'W)a gas = 1: 2:-'-'7G (A32b)
=0, gi,j=12,....,G
P4 Cij
TR i ..
GG = Ttr[z IEVy 1Eer; i,j,s,r=12,.....G (A32.0)

The structure of that matrix is, once again, block-diagonal:

| Ipp
(Joxk) 0

_ ] Mii = Ioo

Ipg O 0 (GG -1)/2)

(kxk)  (kxG) (kxG) N x(G(G —1)/2))

I(e) _ Ipp O — Mll M12 M22 _ Ipp (A33)
[Ho (GxG) (Gx(G(G-1/2) |~ [Ma1 M2 | (GxG)
I 0
(GG-1/2) Mi2 = o}

i x(G(G-1)/2)) | Miz=[0" 0]

This result facilitates the obtaining of the corresponding Multiplier:

<[y, 1oy, | e, |20

SUR _ 4 -1 _ A34
— LMSEM =8 (p),, [IPP] SOy ~ (434

= [ZElszlcsgﬁigWﬁts '[Ipp]_l [ZLZSlcsgﬁ'thats] ~1%(G)
g=1..G g=1,..G as
Section A.IV. Testing for the constancy of the spatial dependence coefficients.

The log-likelihood function of the SARAR model specified in expression (35) is similar to
that of expression (2). The first corresponds to the restricted version and the second to the
unrestricted version of the model. The log-likelihood function of the restricted model is:
Ay—XB)'[IT ®Z_l®(l§'l§)}(Ay—X[3)

2

RTG

I(y:0) = - ln(2n)—%ln|2| +TGIn|B|+ TG In|A| ! (A35)

The score vector is more compact in the restricted model:
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_(% XTIy @z '®®B'B)|(Ay-Xp) |
a —TGtr[ A—lw]+(Ay—xB)'[1T ®x '@ B'B) (116 ® W)y
2(0) = ‘2 - —TGtr[f;_IW]+(Ay—X[3)'[IT®):‘1®(I§'W)](Ay—X[3) (A36)
i _Btr[z_lE@+<Ay-XB>'[IT®(E*E“‘z*)®<ﬁ'ﬁ>}<Ay—Xﬁ>
| | 2 2 |

It is easy to test for the absence of spatial effects in the specification of (35). Now the null

hypothesis only affects to two parameters:

Ho:A=p=0

Ha: No HO}:>Under Ho=>A=B=Irg (A37)

The associated Multiplier is:

-1
Lo — Dgladlen 1 S,
:LMgUARARR(ConS):[g oy, 8 '(p)HJ{ o kp} { ‘ ]~X2(2) (A38)

Tph Ipp | | &), |
with:
IBB—X'|EIT®EI®IR X
I =X'| ;@ @W|XB e
’ . ! 1Nt 1 , g()&)‘ﬂ :Z;F:lut(z 1®IR)WYt A39
T, = TG (W' W) + tr(WW)] + B X Iy @7 @(W'W) | XB o o)W (A39)
Ipp = TG[tr(W' W)+ tr(WW)] g(p}HO_thlut X ®ly | Wi

12 = TG tr(W'W) + tr(WW))
The discussion for the Spatial Lag Model of (36) is very similar. Now, the log-likelihood

function and the score vector are as follows:

Ay—XB)‘[IT ®x! ®1RJ(Ay—XB)

I(y;0) = —$1n(2n) —%mm +TG1n|A|- ( 5 (A40)
_ﬂ - r ]
B | |X[werTen|(ay-xp)
al .
2= = |- ~TGu A7'W |+ (Ay-X8) {1y ® 27 ® I (116 @ W)y (Ad1)
al _ (Ay=XB)| Iy ®(xEix )@ 1R |(Ay - XB
| 9o | —%tr[E_IEU}+( ) [ ! ( > ) R}( )

The hypothesis that parameter A is zero leads us back to the SUR without spatial effects:

Hop: A=0 _
Ha: No HO} = Under Ho= A= ITRG (A42)
and the Multiplier results to be:

SUR , ~ -1
= LMgin " = e My, iy gy, ;;Xz(” (A43)
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with:

gy =i Ol | Wy,
heo

IBB =X' IT®Z_1®IR X (A44)
Iy =X| [ ®L ' ® g [XB
15.= TG[tr(W'W) + tr(WW)] + B'X'[IT @y ®(W'W)]XB
Finally, the log-likelihood function and the score vector for the SEM of (37) are:
(y-XB)| Iy @z '@ B'B) |(y-XB
1(y;e)=_$1n(2n)-%m|z|+m1n‘3‘—( )[T 5 ]( ) (A45)
_ﬂ i}
B | |X[lrex®®B)|(y-Xxp)
ol . - A46
g(0) = % = —TGtr[B IWJ+(y—XB)'[IT ®);‘,‘1®(B'W)](y—XB) (A46)
t
_ ' —Ipli -1 B P _
al —Btr[ . (y-Xp) [IT ®(zEix)o B B)J(y XB)
90| | T2 TLE 2 |
The null hypothesis of absence of spatial effects implies that parameter p is zero:
Ho:p=0 _
Ha - No Ho= = Under Hy=B=Irg (A47)
The expression of the Multiplier is:
SUR(cons) _ - 2
LMsev = 8'(p), Top&(py, =4 D
(A48)

00, = L[z 11 Wi
Ipp = TG[tr(W'W) + tr(WW)]

The problem addressed in Section 5.1 refers to the assumption of constancy of the
parameters of spatial dependence introduced in the SUR specifications. In the case of the SARAR
model associated to the hypothesis of (38), the Lagrange Multiplier appears in expression (39) and
the information matrix that should be introduced in this expression is:

Igp Ipr Ipp Ipo
10) = v Inp Ins (A49)

Ipp Ipo

IGG



where 0 = [IT ®IG® (IR - XW)} y—Xp and & = [IT ®IG®(IR — f)W)]ﬁ . Furthermore:

Igp = X' IT®Z_1®(]§']§)}X
' —_ A ' N _1
IBngX It ®(Z lEgg)®(B WBA )}XB; g=12,..,G
IBpg =0; g=12,..G
IBGij :O’ iaj:1,2,....,G

D = TGtr(A'W'A W)+ Gggﬁ'X'[IT QEL @A'_IW'ﬁ'ﬁWA_I} XB
oo AW BBAW(BB) |

I = 5B X Iy O @AW B'BWA™) |xp
ooy ArWBBAWB'H) | g2

I,p, = To®o gl B 'WBWA B! [+ Te(WWA ') g=12...G

~ —lywiR A=la—1].
ngps = chgscgstr B' W BWA B ; gs= 1,2,““’(}
_ 0 ift#iorg+j
oo™ | Toter(AIW) _ ifgmi

- ~ “wwa-l]-
Ip,p, = TGtr| BWB™W |+ Too,qtr| BWWB™|; g=12...,G
Ipp, = Tcgscgstr[ﬁ'_1WW']§_q; gs=12,..,G

0 ifg#iand g#]
Ipoi = Tcgitr[]”;v_1W} if g=i or t=
TR ; -
Lo, == 0 EEEET; ijsr=12...0
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(A50)

In the case of the SLM model to which refers the hypothesis of (41), we will need the following

information matrix in order to solve for the expression of the Lagrange Multiplier that appears in (42):

Ipp Ipn Ipo
T,R
0= Lo Do

Ioo
Ipp =X 1 ®X " ®1g |X
X[ (-8 oW % 512G
Ips, =0 1j=12,....T
I 2, = TGtr( ATWIATIW) + g8 X'[IT QF®® A'_]W'WA_I}XB
+To Ggg“[A'_IW'WA_I};g =1,2,...G
1,2, = 05 B'X | Iy ®ES @R 'WWA™) | XB+ToP oir| A7W'WA™|
;t,s=12,....,G

B 0 ifg#iorg#]
Duoi T\ Totsr(A W) if =i

= Btr[z‘,_lEij 2_1Esr}; i,j,s,r=12,...,G

IGistr 2

(A51)
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Finally, the same can be said with respect to the SEM model of (10). The null hypothesis of time-
constancy appears in (24), the Lagrange Multiplier is that of (45) in which intervenes the following

information matrix:

Ipp Igp Ipo
Iop Ipos
IGG
Ipp =X Iy ®2 ' ®(B'B) |X
Igp, = 0; t = L2,....G
IBGij =0; 1,j=12...,G
S W A —lyx71 ~—1 |,

A ] va—l].
ngpS:TGgSGgstr[B' WW'p J, gs=12,...G

1(0) =

(AS52)

0 ifg#i,g#jand i#]
Ip o, = | To®ir B W/ ifi#j and g=ior t=j
Tor| g W | if g=i=j

TR ii ..
= —tr[z‘lE”z‘lEsr}; i,j,s,r=12,...G

I GijOsr 2



