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Abstract—In this paper, we present an automatic system and
algorithms for the classification of marble slabs into different
groups in real time in production line, according to slabs quality.
The application of the system is aimed at the marble industry, in
order to automate and improve the manual classification process
of marble slabs carried out at present. The system consists of a
mechatronic prototype, which houses all the required physical
components for the acquisition of marble slabs images in suitable
light conditions, and computational algorithms, which are used to
analyze the color texture of the marble surfaces and classify them
into their corresponding group. In order to evaluate the color
representation influence on the image analysis, four color spaces
have been tested: RGB, XYZ, YIQ, and K-L. After the texture
analysis performed with the sum and difference histograms algo-
rithm, a feature extraction process has been implemented with
principal component analysis. Finally, a multilayer perceptron
neural network trained with the backpropagation algorithm with
adaptive learning rate is used to classify the marble slabs in three
categories, according to their quality. The results (successful clas-
sification rate of 98.9%) show very high performance compared
with the traditional (manual) system.

Index Terms—Artificial neural networks, marble surfaces, pat-
tern classification, principal component analysis, sum and differ-
ence histograms, texture analysis.

I. INTRODUCTION

MARBLE products have their principal application in cov-
ering big surfaces for decoration, using marble slabs.

Due to the great importance of the visual appearance, the re-
quirements needed for the quality of these slabs do not refer
only to technological parameters (such as endurance or polish
rate), but also to aesthetic appearances, such as color homo-
geneity, texture, or spots, in order to maintain a certain level
of uniformity in the whole surface. However, as a natural mate-
rial, marble is highly heterogeneous and therefore, there are not
two identical marble slabs. These visual parameters are impor-
tant not only in the initial stages of construction, but also when
improvements must be made to these surfaces. In these cases,
the new slabs used must match with the older ones (they can be
even from different suppliers), in order to maintain an aesthetic
homogeneity.
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These requirements make it necessary to classify marble slabs
into homogeneous classes or groups according to their quality
and appearance. But since the control of these features is not
economically feasible during the extraction of the raw material
in the quarries, the classification process must be carried out
at the end of the production line, where human experts evaluate
and classify the product according to the visual parameters men-
tioned before. However, this method of classification presents
three major problems: 1) the subjective criterion of the operator
(even different operators, due to shift work), 2) the visual fa-
tigue after a period of time, which degrades the performance of
the classification, and 3) the light conditions may change during
the day, offering different visual perceptions of a same pattern
at different times. All these problems generate results highly de-
pendent on subjective and changing conditions, so they could be
greatly improved with objective and nonvariable criteria.

These drawbacks can be solved by using an automated
system capable of performing the same processing tasks that
are currently done by the human experts, so the classification
homogeneity could be improved and, at the same time, the
manufacturing cost could be reduced. Previous works [1], [2]
describe analysis of the statistical properties of the marble slabs
(variance, correlation between color channels, etc.), taking
into account only color information, extracted from the first
order histogram, without texture analysis. In [1], Euclidean and
Bayesian classifiers were used, while in [2] both supervised
(BackPropagation) and unsupervised (ART2) neural networks
were used as classifiers. In [3], texture analysis is introduced
as a new approach to improve previous results, using Sum and
Difference Histograms (SDH) for texture analysis and LVQ1
neural networks for classification. In all these cases results were
promising, but still unacceptable for an industrial application.
Besides, the mechatronic prototype was not built yet, and only
the algorithms were developed.

Other works related to the analysis of marble textures can
be found in [4], where a method is presented for the segmenta-
tion of grains in marble textures, and [5], which describes a fea-
ture extraction method based on color segmentation for marble
slabs classification. In [6], a novel method based on a bottom-up
segmentation algorithm for granites is presented, taking into
account both color and texture properties. Besides, automated
visual inspection has been also applied to other natural prod-
ucts, like cork [7] and wood [8], [9]. Other studies of automated
inspection and classification of textures and materials are de-
scribed in [10]–[12]. Finally, a more comprehensive description
about automated visual inspection and its applications can be
found in surveys like [13]–[15].
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Fig. 1. “Crema Marfil Sierra de la Puerta” marble slabs images of three different qualities: (a) extra, (b) commercial, and (c) low.

In this paper, we present an automatic system for the inspec-
tion and classification in real time of marble slabs in production
line according to their quality, by evaluating their colorimetric
and textural properties. The system consists of a mechatronic
prototype that houses all the required physical components for
the acquisition of visual images of marble slabs, and computa-
tional algorithms (running on a PC computer) that perform tex-
ture analysis, feature extraction, and classification of the marble
surfaces.

The next sections are organized as follows. In Section II,
we provide a brief overview about the visual characteristics of
the marble surfaces to classify and about the adopted solution.
In Section III, we describe the different components forming
the mechatronic system. The computational algorithms for tex-
ture analysis, feature extraction and classification are detailed in
Section IV, while the results obtained are discussed in Section
V. We conclude with some remarks in Section VI.

II. SYSTEM OVERVIEW

A. Visual Characteristics of the Marble Textures

Although the system described here has been designed to
work with any marble variety, for testing and validating the al-
gorithms we have used slabs of the type “Crema Marfil Sierra de
la Puerta”, which is the variety of major production in the Re-
gion of Murcia, Spain. Fig. 1 shows slabs images of this marble
variety.

This kind of marble is characterized by smooth gradients of
color, and, in some cases, by the presence of veins on the sur-
face. Although there is not a unique criterion for classifying this
kind of marble slabs, color scheme is often used to perform the
classification in subtypes or subgroups of this variety, each one
containing slabs of similar color schemes. On the other hand,
veins and texture are usually considered as a measure of quality
(the fewer veins or spots, the greater the quality of the slab). In
our study, three categories or qualities have been considered:
extra, commercial, and low quality (sorted from high to low
quality). Each category has marble slabs, so our data-
base consists of patterns.

Since we cannot find any repeated structures in a marble slab
because it is a natural product, we have used statistical methods
to extract textural features, instead of structural methods.

B. Adopted Solution

Each variety of marble has its own characteristic visual
properties and parameters. Thus, the development of a flexible
system capable of classifying any type of marble according
to these parameters requires a physical machine (comprising
several elements for capturing the slabs images) and compu-
tational algorithms (for image processing and classification).
In the following lines we describe a general overview about
the automatic classification process. The details about the
mechatronic prototype and the computational algorithms will
be reviewed in Sections III and IV respectively.

In the automated system described here, the marble slabs in
the production line pass under a charge-coupled device (CCD)
color video camera, located perpendicularly to the slab plane,
which obtains the color image for the entire slab. The camera
is placed in an enclosure (visual inspection unit), which con-
tains a specific illumination system in order to avoid external
lighting influences and to assure that the slabs do not receive
light reflections from other materials. Once the image has been
captured, it is preprocessed with an image acquisition board and
saved in an industrial PC computer, which runs the computa-
tional algorithms.

Then, texture analysis based on the gray level dependence
between adjacent pixels is made with the SDH algorithm [16],
which extracts for each slab a set of statistical, textural-depen-
dent parameters that characterize that pattern. A feature extrac-
tion operation is then performed over this data set with prin-
cipal component analysis (PCA), which generates a new data
set, smaller than the original, and without redundant informa-
tion. These new data are used as inputs for the neural classifier,
a multilayer perceptron neural network, trained with the Back-
Propagation algorithm with adaptive learning rate. The output
of the classifier provides the category or group where the pat-
tern has been assigned according to its quality (three categories
in our case). Finally, an industrial labeling machine sticks an
identification bar code (including the category, date, and time)
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Fig. 2. Automation of the whole marble quality classification process: from image acquisition to the pallets.

on the slab surface, which is read by a bar code scanner to allow
the marble slab to be placed in the corresponding pallet with an
XY-palletizer. Fig. 2 illustrates a schematic representation of the
whole classification process.

With the automatic classification system described in this
paper, we intend to achieve four main advantages:

1) a decrease in the cost of marble slabs production, which
means an increase in competitiveness (due to the full au-
tomation of the classification process and to a faster clas-
sification rate than the manual process);

2) an increase in the quality control standard of the marble
slabs classification, since marble is classified with an ob-
jective and uniform-through-time criterion;

3) better discrimination between different qualities, that al-
lows factories to supply better products without econom-
ical losses, since the market price of these products is usu-
ally established by the slabs quality;

4) development of a custom, flexible system, which could be
applied to the classification of different marble varieties
(even to other natural-texture products, like granites) with
little or no modifications in the texture analysis and clas-
sification algorithms.

III. MECHATRONIC SYSTEM

The complete physical system comprises four different
modules:

• mechanical components;
• electrical components;
• illumination system;
• image acquisition system.

A. Mechanical Components

Basically, the mechanical system consists of two parts.

1) An enclosure (100-cm long 80-cm wide 110-cm
high) [Fig. 3(a) and (b)] mounted over a conveyor belt
[Fig. 3(c)], completely closed to avoid the influence of
external light. This enclosure (visual inspection unit)
allocates the illumination system [Fig. 3(d) and (e)], the
camera for image acquisition, and a positioning sensor
for detecting slabs, all of them described below.

2) A conveyor belt (220-cm long 83-cm wide 80-cm
high), which incorporates manual guides to adjust them

to the width of the slabs (there are two possible widths: 30
and 40 cm), avoiding in this way undesired rotations. The
conveyor belt has been designed to work with variable
speed, adjusted using an asynchronous driver.

When the system is inserted in the production line of the fac-
tory, the conveyor belt acts as the element that links the pro-
duction line with the automatic classification system. In this
way, marble slabs are driven inside the visual inspection unit
at constant speed, so that the video camera captures the images
without stopping the belt. After that, the slabs are carried out-
side, ready to be classified in the corresponding group once the
image processing and classification have been performed.

B. Electrical Components

The electrical components needed for driving the mechan-
ical system are an electrical motor (0.37 kW, 220 V) coupled to
the conveyor belt, and a frequency converter (Toshiba VF S7S
2004P) for selecting the desired speed. The input signal of the
frequency converter is used for setting the speed of the motor
when it is connected to a reference voltage. This voltage signal
is manually controlled with a custom-designed electronic board,
which incorporates a D/A converter to allow the desired speed
to be set from the computer.

For detecting the moment in which the marble slab is in the
correct position under the camera, a photoelectric fiber-optic
sensor has been used (Keyence FS-M1, with fiber optic FU-73).
When a slab interposes between the emitter and the receiver of
the sensor, the voltage signal changes indicating to the image
acquisition board that a new capturing cycle has just started.

C. Illumination System

A specific illumination system, placed inside the visual in-
spection unit, was designed to provide uniform lighting for the
entire surface of the slabs, avoiding at the same time reflections
on the marble surface from the elements that are placed inside
the visual inspection unit (like the video camera).

The illumination system uses white light from neon tubes
(color temperature: 3800 K). Several tests were made by in-
stalling the tubes in different positions to avoid reflections on
the marble surface, and finally, the best results were obtained
with eight neon tubes arranged in vertical position, four on each
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Fig. 3. Prototype of the visual inspection unit built to automate the marble classification process. (a), (b) External views of the prototype. (c) Conveyor belt,
which carries the slabs in and out of the visual inspection unit. (d), (e) Detail of the inside view, showing the position of the neon tubes, (upper part) the color video
camera, (lower part) and the marble slab.

side of the two that are parallel to the movement of the conveyor
belt [Fig. 3(d) and (e)]. The light intensity is manually adjusted
to achieve good quality in the captured images.

The inner lateral sides of the visual inspection unit are cov-
ered with white surfaces, in order to achieve a good diffusion of
light. In this way, the image obtained does not need any subse-
quent treatment to overcome the effects of an irregular illumina-
tion. On the other hand, the ceiling of the visual inspection unit
and the floor (the conveyor belt) are both painted anti-reflecting
black color to avoid reflections and achieve better discrimina-
tion between the marble surface and the background.

D. Image Acquisition System

The system used for acquiring the images of marble slabs
consists of a high-resolution, solid-state CCD color video
camera (JVC, model TK-1270E), and an image acquisition
board (Matrox Electronic Systems, model Genesis). The
camera is located in the central part of the upper side of the
visual inspection unit, in order to capture the whole surface
of the slabs without distortion. The distance between the
camera and the slabs has been settled in 100 cm. Together with

the camera, a software-controlled zoom lens (Canon, model
PH10 8.5 RGE) has been used. The Genesis image acquisi-
tion board also includes a comprehensive library of functions
for image processing.

IV. COMPUTATIONAL ALGORITHMS

When the marble slabs leave the production line, they are car-
ried into the automatic quality classification system. The actions
that occur during the image inspection process are the following:
image preprocessing, texture analysis, feature extraction, and
classification. Next, we describe in detail each of them.

A. Image Acquisition and Preprocessing

Initially, when the positioning sensor triggers the slab de-
tecting signal, an internal timer in the acquisition board is ac-
tivated. This performs a time delay, which allows the slab to
be centered under the camera. Since there are slabs of several
sizes, different delays were experimentally established for each
size: (a) 1.5 s for 30 30 cm slabs, (b) 1 s for 40 30 cm slabs,
and (c) 0.5 s for 60 40, and 60 30 cm slabs. Then, when the
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time delay ends, the image is captured, and several functions
from the image acquisition board library are executed to remove
the background pixels (usually black, due to the conveyor belt)
from the captured image, leaving only the pixels of the marble
slab surface. Finally, the image is saved in the PC computer as
a RAW file in RGB color coordinates, provided directly by the
image board.

The importance of the color representation of the marble sur-
faces makes it necessary to analyze different color coordinates
(color spaces), in order to choose that which gives the best per-
formance. The comparison between different color spaces is
needed because their performances are strongly application de-
pendent, and the best one must be chosen ad hoc [17].

Four different linear color spaces, used in our previous works
[3], were evaluated: RGB (the three monochromatic primaries),
XYZ [based on the Commission Internationale de l’Eclairage
(CIE) tristimulus values], YIQ [developed by the National Tele-
vision Systems Committee (NTSC) for transmission efficiency],
and K-L [18] (also called Ohta or , which is achieved
by computing the Karhunen–Loève Transform). For each color
space, colors are represented with three independent coordi-
nates. All images were converted from RGB format (in the RAW
file) to the other three color spaces using (1)–(3)

(1)

(2)

(3)

Each channel of color representation can be considered as a gray
picture, whose pixels have gray level values within the range
defined for that color coordinate. Except for RGB, the rest have
one or more coordinates which do not cover exactly the range
[0–255]. In these cases, a linear scaling process was performed
to adjust the values within that range.

B. Texture Analysis

In this work, apart from the color, the texture of the image
has been taken into account. Tests made showed that, although
in some cases the veins in the marble surface are hardly dis-
tinguishable, their analysis is very important to determine the
subclass to which the pattern belongs, as well as its quality, thus
achieving better results than in the case of considering only color
information. The method used for texture analysis is the sum and
difference histograms (SDH) algorithm [16].

This algorithm is an alternative to the classic algorithm of
co-occurrence matrices (COMs) [19]–[21], based on the spa-
tial gray level dependence (SGLD) method. Since each channel
of the color image presents 256 gray levels, the requirements
of memory storage and time consumption with COM are huge
(processing of three 256 256 matrices). SDH offers in this
sense a very good alternative to traditional COM used for tex-
ture analysis, with experimental results showing that SDH are

as powerful as COM for texture discrimination, and with the ad-
vantages of decreasing computation time and memory storage
space. A recent and thorough comparison of texture analysis
methods for synthetic and real (natural) textures can be found
in [22].

For a large number of gray levels (usually 256), the two
vectors obtained from SDH require much less memory storage
space than the matrix of COM, and so, the processing is much
faster because 1) the amount of data to process is smaller, and 2)
the double sums for the COM statistical parameters computed
are reduced to single sums in the SDH algorithm. The number
of elements to analyze grows as a quadratic function with the
number of gray levels for COM, while it grows linearly for
SDH. Next, the SDH algorithm is briefly presented.

Let us consider a texture image, denoted
by , with

the set of quantized gray levels.
Let us also consider two picture elements, and

, separated by the vector distance ,
where is the subset of indexes specifying the texture region
to be analyzed. Then, for a relative displacement , the
sum and difference are defined as

(4)

(5)

From (4) and (5), we can define two -dimensional
vectors, the normalized sum and difference histograms, as

(6)

(7)

with

(8)

(9)

(10)

In our case, , because it is necessary to
use a large number of gray levels since the considered
images present smooth gradients and very similar gray
levels. Thus, for each color image (three gray level im-
ages or channels), there are six 511-dimensional vectors

, and .
The neighborhood between pixels, defined by , can

be chosen arbitrarily. In our case, for simplicity, the nearest 8
neighbors of a pixel have been considered (Fig. 4). It must be
noted that opposite directions produce the same SDH vectors,
so only four nonopposite directions are necessary. In order
to achieve a rotation-independent algorithm, each histogram
vector has been computed as the average value for their cor-
responding four neighborhood directions: ,
and .

After computing the resultant six histogram vectors ( and
, with ) we obtain 3 channels 2 vectors/channel

511 elements/vector 3066 elements. In order to reduce the
dimension of this set of characteristics used to describe the tex-
ture, seven statistical features are computed for each pair of vec-
tors , as defined in [16]: mean, variance, energy, cor-
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Fig. 4. Representation of the 8 neighborhood directions of a pixel. Opposite
directions, e.g., (d ; d ) = (0; 1) and (d ; d ) = (0;�1), produce the same
SDH vectors, so only four nonopposite directions are necessary.

relation, entropy, contrast, and homogeneity (Table I). Finally,
this results in 3 channels 7 features/channel 21 features,
which express the information of the six histogram vectors in a
more compact form. Although each channel has been treated as
a gray level image (256 pixel intensities), the set of 21 parame-
ters contains color and textural information. Other methods that
combine color and texture to classify images are described in
[23] and [24].

C. Feature Extraction

Since the number of parameters used to describe
each pattern is still high, a feature extraction method is neces-
sary in order to reduce the number of features used to classify
the marble textures. It is well known that for high-dimensional
feature spaces, the design of the classifier can be very com-
plicated and would produce poor results (curse of dimension-
ality [25]). The algorithm used for feature extraction has been
the PCA [26], also known as the Karhunen–Loève transform in
signal processing.

This algorithm is a linear, nonparametric technique that has
been widely used for analyzing data sets when a big number
of variables are involved. This method transforms the original
set of variables into a new set of the same size, whose vari-
ables, called principal components (PC), are computed as linear
combinations of the original variables, in such a way that they
form an orthogonal basis (noncorrelated), so redundant infor-
mation is removed. The new set of variables is sorted from high
to low variance, and usually the variances of the first few prin-
cipal components account for almost 100% of the total variance
of the original data, thus allowing the design of a much simpler
classifier.

In this work, PCA has been applied to the statistical data
set computed with the SDH algorithm in order to reduce the
number of features from 21 to a smaller number. Previously to
the PCA transformation, the statistical parameters were normal-
ized to achieve a new data set with mean and standard deviation
equal to 0 and 1, respectively, with

(11)

where is the normalized feature, is the nonnormalized
feature, and are respectively the mean and variance of

TABLE I
STATISTICAL PARAMETERS USED FOR CLASSIFICATION, EXTRACTED

FROM THE SUM AND DIFFERENCE HISTOGRAMS

feature is the
number of patterns in the database, and is the number
of features used to describe each pattern. After applying PCA,
we selected a subset of features, where is the number of prin-
cipal components that their individual contributions are equal or
greater than 0.5% of the total variance of the data set.

D. Classification

For real-time classification of marble slabs in production line,
a database was created for each color space with input/output
pairs of patterns for which their quality category is known pre-
viously (off-line). These patterns will act as reference to classify
on-line the new patterns.

To build this input/output mapping, a heteroassociative artifi-
cial neural network has been chosen, as these structures present
very good capabilities for learning and generalizing informa-
tion. In particular, the neural network used has been the mul-
tilayer perceptron paradigm, trained with the gradient descent
BackPropagation algorithm with adaptive learning rate.

The structure of the neural network consists of three feedfor-
ward layers: 1) the input layer, with neurons (one neuron for
each one of the principal components), 2) the hidden layer,
with six neurons, and 3) the output layer, with three neurons
(one per quality category: extra, commercial, and low). The ac-
tivation functions chosen were the hyperbolic tangent for the
hidden layer and the linear function for the output layer. The
following parameters have been used for training the network:
0.0001 for goal error, 0.01 for the learning coefficient, 3000
epochs as maximum number of iterations, 1.05 and 0.7 as the ra-
tios for increasing and decreasing the learning rate, respectively,
and 1.04 for the maximum performance increase threshold. The
learning rate is updated after each epoch, increasing it by a factor
1.05 when the performance decreases toward the goal, and de-
creasing it by a factor 0.7 when the performance increases by
more than a factor 1.04.

Since the number of patterns in the database is low, the
leave-one-out method has been used for training the neural net-
work, in order to obtain more reliable results. In each training,
a data set made up of 74 patterns (textural features and desired
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outputs) was preprocessed with normalization (mean and
standard deviation ) and PCA transformation, previously
to the presentation of the inputs to the neural network. The re-
maining pattern (chosen for validation) was left out from these
operations. After the training, the validation pattern was trans-
formed with the same parameters used for the normalization and
PCA transformation of the other 74 patterns, and presented to
the input of the neural network. Finally, the output of the neural
network was postprocessed to undo the normalization process
and to obtain the correct output for the validation pattern.

For each color space, the performance of the classifier has
been evaluated by computing three parameters usually used in
diagnostic decisions: the percentages of correct classifications
(%CCs), false positives (%FPs), and false negatives (%FNs),
using the following expressions:

% (12)

% (13)

% (14)

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives, and FN is the
number of false negatives. Since these parameters are defined to
evaluate binary classifications, we have considered each classi-
fier (one for each color space) as three binary classifiers (one
for each marble quality category) for evaluation purposes only.
That is, in order to evaluate TP, FP, TN, and FN parameters for
one color space, we can consider three classifiers: , and

, for the extra , commercial , and low quality
categories, respectively. For , the TPs are the patterns clas-
sified as patterns, the TNs are the non- patterns ( and

) classified as non- patterns, the FPs are the non- pat-
terns classified as patterns, the FNs are the patterns clas-
sified as non- patterns, and so on for and . From this,
we obtain that the value of %CC is the same for the three classes
for a specific color space, so it can be considered a result from
the color space classifier instead of a result for a specific class.

Sensitivity (SE), specificity (SP), positive predictive value
(PPV), and negative predictive value (NPV) are also estimated
using the following expressions [27]:

(15)

(16)

(17)

(18)

All these parameters have been computed for the three classes
for all the color spaces.

V. EXPERIMENTAL RESULTS

After computing PCA, we selected for each color space the
number of features as the number of principal components
that have a contribution equal or greater than 0.5%. For this
number of principal components, the accumulated variance is
around 99% in all cases. Table II shows the variance (in %)
for the selected principal components for the four color spaces.

TABLE II
VARIANCE IN PERCENTAGE OF THE PC

SELECTED FOR EACH COLOR SPACE

According to this table, , and for the RGB, XYZ,
YIQ, and K-L color spaces, respectively.

The graphical representation of PC #2 versus PC #1 (Fig. 5)
shows the pattern distribution for each color space. Patterns for
extra, commercial and low classes are represented, respectively,
with symbols , and . From this figure, it can be seen
that the pattern distribution for RGB and XYZ is very similar,
and in both cases, can almost be separated from the other
two classes for the bidimensional distribution, while and
cannot be separated at all. In contrast, for YIQ and K-L, is
very well separated from the other two classes (better than in
the RGB and XYZ cases), while and cannot be separated
completely yet. This shows that the three classes cannot be com-
pletely separated with only the first and second principal compo-
nents, although it is possible with more principal components.

In YIQ and K-L color spaces, it can be seen that the first
principal component acts as an index of the slab quality (the
higher the positive value, the lower the quality). That is, patterns
of classes and (good qualities) are at the left side of the
graphs, while patterns of class (bad quality) are at the right
side of the graphs. It was also confirmed by visual inspection
that texture of the patterns at the right part of the graphs was
coarser (worse) than the texture of the patterns at the left part,
although all of them are considered as ‘low quality’ patterns.

For each color space, we trained a neural network with the
leaving-one-out method. Each training experiment consisted of
75 trainings, each one with 74 patterns in the training data set,
leaving out 1 pattern for validation. The pattern that was left out
was rotating, in order to validate the 75 patterns. Since our data-
base contains a low number of patterns, for each color space, ten
training experiments were performed for each validation pat-
tern, and their results averaged to increase the reliability. Fig. 6
shows the confusion matrices for the four color spaces. They
represent in each row the real class of the patterns, and
in each column the quality group where the patterns were
classified by the neural network. Ideally, for a perfect classifica-
tion, the diagonal cells should be 100 (the percentage of patterns
classified in each class), and 0 for the nondiagonal cells.

From Fig. 6 and Table III, we can see the different per-
formances of each color space. RGB and XYZ performed
very similar, achieving poor results (only three quarters of the
samples were correctly classified). For these two color spaces,
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Fig. 5. PCA plots (PC #2 versus PC #1) for the four color spaces: (a) RGB, (b) XYZ, (c) YIQ, and (d) K-L.

Fig. 6. Confusion matrices for the (a) RGB, (b) XYZ, (c) YIQ, and (d) K-L color spaces, showing the percentage of patterns classified in each class.
Results have been averaged for ten trainings of the neural network with the leave-one-out method for each color space. Rows (C ) represent the real quality
category of the patterns, while columns (C ) represent the quality category assigned to the patterns by the neural network.

class was discriminated better than the other two classes
% % , while and

had lower values.
In contrast, YIQ and K-L achieved very good results, with

very high rates of correct classified patterns ( %
and %). Besides, in the K-L space, class was
perfectly discriminated % , without
overlapping with classes and , while in the YIQ space
these results were also very good, although with an average of

% patterns from class classified in class .
The discrimination between and was also very good in

these two color spaces, especially in the case of K-L, which pro-
vided the best results % , with very low values
of false positives and negatives %

% % % , thus allowing almost
completely the discrimination between and patterns.

The analysis of the results for the K-L color space showed
that errors only occurred between extra and commercial quali-
ties (both very similar), while slabs of low quality (not suitable
for decoration purposes) were always correctly identified and
classified. From an economical point of view, this is a very im-
portant result, since slabs of high and low qualities are never
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TABLE III
PERFORMANCE OF THE NEURAL NETWORK CLASSIFIER

FOR THE RGB, XYZ, YIQ, AND K-L COLOR SPACES

confused, so the marble slabs supplied are always in agreement
with their cost.

These results are highly related to how intensity (texture in-
formation) is decoupled from chrominance (color information)
in YIQ and K-L. Intensity is concentrated on channels Y and

, whereas chrominance information is provided by channels
I, Q, and , with spatial bandwidth significantly reduced.
Thus, YIQ, and K-L provide texture and color information in
separate channels, so the texture information needed to classify
marble images according to their quality is extracted better than
in the case of RGB and XYZ, which do not provide such a clear
separation between texture and color.

Besides, the approach used in this paper for marble classifica-
tion (texture parameters computed using SDH and transformed
with PCA) improves the results obtained in [28], in which the
successful classification rate is 90% for a set of 30 marble tex-
tures classified in three classes (extra, commercial, and low) ac-
cording to their quality. In this case, the features computed for
pattern classification were the energy and median of the ver-
tical details coefficients for a discrete wavelet decomposition of
level 3.

VI. CONCLUSION

A new system, fully automated, for the inspection and
classification in real-time of marble slabs in production line
has been presented in this paper. The system consists of a
mechatronic system, computer vision equipment, and software
algorithms for texture analysis, feature extraction, and pattern
classification.

The mechatronic design and the software are especially ro-
bust for working in industrial environments, where the results
obtained have proven very high performance compared with the
traditional (manual) classification system.

Texture analysis was made with the sum and difference
histograms, based on the gray level difference between adjacent
pixels, which provides a reliable method to characterize the
image texture. One of the greatest improvements with respect

to our previous works was the feature selection process with
PCA, which reduced the number of features, retaining high
levels of the original information. This provided a good set of
features, without redundant information, as inputs to the neural
network, thus resulting in fast convergence and good learning
capabilities.

The comparison between four color spaces (RGB, XYZ, YIQ,
and K-L) showed that YIQ and K-L performed very well, while
RGB and XYZ achieved poor results. The best results were ob-
tained for the K-L color space, with 98.9% patterns correctly
classified and 100% discrimination for patterns (the lowest
quality).

This automatic classification system increases the homo-
geneity of the product supplied by factories, and reduce time,
cost and discrepancies in the marble industry, since this system
may be used as a standard for marble quality control and
classification. This also allows for an objective comparison
between marble slabs of the same variety coming from different
places. Finally, this system may also be useful for other natural
products, like granites or wood.
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