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Abstract

Wastewater treatment process design involves the optimization of multiple conlict-
ing objectives. The detection of diferent equivalent solutions in terms of objective 
values is crucial for designers in order to eiciently switch to the new optimal opera-
tion policies if changes in the process conditions or new constraints occur. In this 
work, the dynamic multi-objective optimization of a municipal wastewater treatment 
plant model is carried out. The aim is to simultaneously optimize an economic cost 
term and an eluent quality index. The selected process variables for the optimiza-
tion are (1) an aeration factor in the aerated tank previous to the clariier, and (2) 
an internal recycle low rate. Their time proiles are approximated using the con-
trol vector parameterization technique. To solve the multi-objective problem and 
ind the Pareto front, the NSGA-II algorithm has been used. The simulation of dif-
ferent realistic scenarios which impose operational constraints (e.g., maintenance 
operations) reveals that, indeed, multiple solutions exist at least in some areas of the 
Pareto front. It is observed that diferent control proiles can produce nearly identical 
results in terms of Pareto solutions. The a priori knowledge of these equivalent solu-
tions for diferent scenarios provides the decision makers with alternative choices 
to be adapted to their organizations policies when events altering decision variables 
bounds or adding new constraints to the process model occur.

Keywords Wastewater treatment plant · Multiobjective optimization · Dynamic 
optimization · Multiple solutions
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1 Introduction

Wastewater treatment plants (WWTPs) are crucial nowadays to process the indus-
trial and/or urban eluents generated in modern societies. Many WWTPs use 
activated sludge to eliminate organic and nitrogen compounds. Such plants, when 
designed to treat high volumes of water, usually consist of (1) an aerobic area, in 
which organic compounds as well as ammonia and nitrites are oxidized, (2) an 
anoxic area, in which nitrates are reduced to gaseous nitrogen, and (3) a clariier 
to separate the microbial culture from the water being treated.

The reduction of the WWTP carbon footprint is not just an environmental 
issue. There are also important economic repercussions, and benchmarking is a 
powerful tool to help reducing economical costs (Molinos-Senante et  al. 2014). 
For instance, wastewater treatment accounts for about 3% of the U.S. electrical 
energy load similar to that in other developed countries (McCarty et  al. 2011). 
Depending on the particular WWTP considered, energy becomes the most impor-
tant cost factor or the second after personnel costs (Molinos-Senante et al. 2010). 
Among the energy costs, aeration and recycle costs are the highest.

Due to the strict legal and environmental standards that WWTPs must meet, 
eicient optimization and control tools are mandatory to achieve an optimal-cost 
operation when dealing with such systems. Model-based optimization is one the 
most eicient approaches to carry out this task (Rivas et al. 2008; Vanrolleghem 
et  al. 1996). In particular, dynamic optimization (i.e., optimization considering 
time-varying variables) is a powerful tool for engineers and practitioners in order 
to ind the optimal operating conditions and/or to infer the optimal design of 
WWTPs. A key aspect in the design and optimization of WWTPs is that the math-
ematical models describing the processes are inherently nonlinear and dynamic. 
This requires the use of robust tools to perform the process optimization. As an 
additional obstacle to ind the optimal operating conditions of such processes, 
the presence of several conlicting objectives to be optimized at the same time 
must be considered (e.g. productivity and sustainability), which advises the use 
of sophisticated formulations to ind the Pareto front. Typical objective functions 
usually include operational costs and product quality measured as the amount of 
pollutants in the eluent.

Some recent examples of the literature that address the problem of inding the 
optimal operating conditions in WWTPs are the following:  Lukasse and Kees-
man (1999) performed a simulation study using an optimal control methodology 
and selecting from among the best simulated situations; Samuelsson et al. (2007) 
used operational maps from simulations to choose optimal set points; Yong et al. 
(2006) evaluated diferent control strategies using the COST Simulation Bench-
mark Model Copp (2002), Moles et al. (2003) tested several global optimization 
methods for simultaneously optimizing operation and design of a WWTP located 
in Spain; Schütze et al. (1999) proposed an integrated approach for the optimiza-
tion of control strategies; Egea et al. (2007) used surrogate model based optimi-
zation to accelerate the solution inding of the computationally expensive model 
of a WWTP. In single-objective optimization the diferent authors have usually 
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focused in the aeration energy, which causes the highest economical costs in 
WWTPs and its optimization can produce important savings (Åmand and Carls-
son 2012; Balku and Berber 2006; Chachuat et al. 2001, 2005; Luo and Biegler 
2011; Ozturk et al. 2016).

Design and optimization of WWTPs allows the selection of multiple objectives 
related to operation, physical design, location and others (Denysiuk et  al. 2018; 
Espírito Santo et al. 2013). However, most of the scientiic literature refers to optimi-
zation and control of the operational aspects. For instance, Fu et al. (2008) consid-
ered diferent objectives mainly based on the eluent quality and pumping energy. 
Flores-Alsina et al. (2010) combined multivariate statistics and life cycle assessment 
concepts to choose a set of diferent criteria to be optimized simultaneously. Zhang 
et al. (2014) proposed a multi-objective optimization problem where multiple elu-
ent quality indexes as well as the treatment costs where optimized with the help of a 
surrogate model. Beraud et al. (2009) solved a multi-objective optimization problem 
similar to the one presented in this work. They considered the simultaneous optimi-
zation of the eluent quality and the energy consumption. More recently, Hreiz et al. 
(2015) studied the inluence of diferent time-varying variables over two conlict-
ing objectives, namely the mean nitrogen concentration in the eluent and the net 
electrical consumption in a small size WWTP. In this work, the authors included the 
idea of excess sludge incineration to produce energy. Chen et al. (2015) tested dif-
ferent control strategies in an activated sludge plant using the SA

2/OCM process to 
simultaneously optimize the eluent quality and the operational costs. A recent con-
tribution Qiao and Zhang (2018) analyzed the dynamic set-point controller proiles 
in a WWTP by multi-objective optimization. More examples about multi-objective 
and/or dynamic optimization in WWTPs can be found in the review by Hreiz et al. 
(2015).

The most popular optimization algorithm to solve multi-objective optimization 
problems, which has been used in many of the references cited above, is NSGA-
II (Deb et al. 2002). This evolutionary algorithm has been modiied and combined 
with other optimization approaches (e.g., Fettaka et al. 2015), becoming one of the 
most important references for multi-objective optimization, with implementations in 
many programming languages. Other evolutionary methods or metaheuristics have 
also been used for solving multi-objective problems in WWTPs (Han et al. 2019). 
WWPTs model- based design and optimization are computationally expensive tasks. 
For this reason, diferent researchers have used surrogate model-based optimization 
methods alone or in combination with evolutionary algorithms. For instance, Fu 
et al. (2009) compared the results of the optimization or urban wastewater systems 
using NSGA-II and ParEGO, a surrogate model-based multi-objective optimization 
algorithm (Knowles 2006). More recently, Hartikainen et  al. (2015) implemented 
the approximation method PAINT within an interactive optimization platform to 
construct computationally inexpensive surrogate problems for the original wastewa-
ter treatment problem.

The aim of this work is to ind and analyze the optimal control proiles of a 
WWTP model that uses the activated sludge process in a multicriteria approach. 
Both the aeration and recycle rate policies are investigated in order to simultane-
ously optimize an economic term and the eluent quality. Preliminary optimization 
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results suggest that diferent control proiles can lead to equivalent solutions in terms 
of objective values. These equivalent solutions can be calculated by diferent proce-
dures. Here we have implemented two diferent (possible) operational scenarios in 
which the control variables are forced to change their values in a period of time 
to simulate maintenance operations or even a failure. Knowing these (alternative) 
equivalent solutions can be of great importance for WWTP plant operators to know 
which operational conditions must be applied in case of certain events to maintain 
the desired standards as much as possible. This approach is related to the concepts 
introduced by Lewis et al. (2014) that explore the idea of dynamic s-Pareto frontiers 
and preferences, or by Vallerio et al. (2015), which consider operational risks and 
uncertainties as additional objectives to solve multi-objective optimization problems 
of non-linear dynamic processes. The idea of simulating possible realistic scenarios 
in a multiobjective formulation could be compatible with the interactive optimiza-
tion platforms to analyze WWTP optimization problems proposed in recent years 
(Hakanen et al. 2013; Hartikainen et al. 2015).

This work is organized as follows: Sect. 2.1 presents a description of the WWTP 
model under study; in Sect. 2.2 the multi-objective dynamic optimization problem is 
formulated, and the obtained results considering an undisturbed formulation and two 
possible scenarios are presented, compared and discussed in Sect. 3. The inal sec-
tion depicts the main conclusions of the study.

2  Methods

2.1  WWTP model description

The WWTP which is the object of this study is modelled by the Benchmark Simula-
tion Model No. 1 (BSM1) which can be deined as a simulation protocol defining a 

plant layout, a process model, influent data, test procedures and evaluation criteria 
(Copp 2002; Jeppsson and Pons 2004). It includes a pre-denitriication system con-
sisting of 5 main units, the irst two being anoxic and the rest aerobic. The scheme of 

Fig. 1  COST Benchmark WWTP model layout
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the plant also includes a secondary clariier that separates the microbial culture from 
the eluent treated. Figure 1 shows the plant layout.

There are two recycle loops in the plant: internal and external. The internal one 
recycles nitrates from the last (aerated) reactor to the irst (anoxic) reactor. The 
external one recycles activated sludge and connects the bottom of the clariier with 
the plant entrance.

The BSM1 arose to test diferent control strategies for the operation of this type 
of plants regarding carbon and nitrogen removal. It has been used in hundreds of 
applications regarding WWT Plants (Jeppsson et al. 2013). The system dynamics are 
described by algebraic mass balance equations, ordinary diferential equations for 
the biological processes in the bioreactors, as deined by the ASM1-model (Henze 
et  al. 1987), and the double-exponential settling velocity function   (Takács et  al. 
1991), for a total number of around 100 diferential algebraic equations (Alex et al. 
2008). The volumes of the reactors are, respectively, 1000 m3 for the anoxic units 
and 1333 m3 for the aerated ones. The secondary settler has 10 layers with a total 
area of 1500 m2 and a depth of 4 m.

The inluent dynamics are also deined in BSM1 and three diferent weather con-
ditions can be chosen: dry, rain and storm weather. These are introduced as input 
iles and can be used as standard and realistic representation of inluents in the men-
tioned weather conditions, although there are several diferent approaches to gen-
erate such inluent dynamics  (Martin and Vanrolleghem 2014). The iles contain 
inluent information every 15 min for a total period of 14 days. Evaluation functions 
comprise a 100-day initialization period until steady state is achieved, followed by a 
period of 14 days of a type of weather deined by the corresponding input ile. Cal-
culations on the plant performance are based on the data obtained from these last 14 
days.

Given the physical design of the plant, there is a number of candidate control 
variables to optimize diferent possible objectives. The BSM1 deines two control 
variables by default: nitrate concentration in reactor 2 and dissolved oxygen in reac-
tor 5. In the original implementation two controllers are modeled to control the men-
tioned variables by manipulating the internal recycle low rate ( Qintr ) and the oxygen 
transfer coeicient in reactor 5 ( K

L
a

5
 ). In this work we have used the “open-loop” 

implementation of the BSM1 and approximated the mentioned manipulated vari-
ables using zero-order polynomials according to the control vector parametrization 
approach (CVP, see Sect. 2.2.1) (Vassiliadis et al. 1994a, b). The aim is to ind the 
manipulated variables dynamic proiles to simultaneously optimize two performance 
indexes: one related to the process economy and another one related to the process 
sustainability. The problem formulation and further details on the solving approach 
are given in the following section.

2.2  Problem formulation

Diferent criteria can be deined in BSM1 in order to ind eicient and sustain-
able operating conditions. The most usual criteria are related to economical costs, 
often as a weighted sum of aeration and pumping energy costs (which represent 
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the highest energetic cost in WWTPs) plus the cost of wasted sludge treatment, 
and the eluent quality considering all the possible remaining pollutants and their 
concentrations in the outlet stream. These two criteria counter each other, allow-
ing multiobjective formulations to be made. The economical cost term has been 
deined in this work as follows.

where AE stands for the aeration energy needed in the aerated tanks in kWhd−1 , 
PE is the pumping energy needed in the recycles, also in kWhd−1 , and Psludge is the 
wasted sludge that must be treated in kgd−1 . Those terms are weighted according 
to Vanrolleghem and Gillot (2002). The aeration energy is given by:

where K
L
a

i
(t) is the mass transfer coeicient in the i-th aerated reactor at time t (in 

units of h−1).
The pumping energy term is deined as:

where Qintr(t) is the internal recycle low rate, Q
r
(t) is the return sludge recycle low 

rate and Q
w
(t) is the wasted sludge low rate, all of them at time t with units m3

d
−1.

The wasted sludge to be treated, Psludge , is calculated as:

where TSS
w
 is the total suspended solids in the low wastage.

Regarding the second criterion, the eluent quality in kg pollution units d−1 is 
deined as follows:

where T is the time horizon (i.e. 14 days), SSe, CODe, BODe, SNkj,e and SNO,e are the 
total suspended solids, chemical oxygen demand, biological oxygen demand, total 
Kjeldahl nitrogen and nitrites/nitrates nitrogen, respectively, all of them measured in 
the eluent. Qe is the eluent low rate. The weighting coeicients �

i
 are taken from 

Vanrolleghem et al. (1996).
Once the objectives have been deined the general multiobjective dynamic 

optimization problem is formulated, which aims to ind the time varying control 
proiles ( �(t) ) in order to optimize a given set of objectives represented as cost 
functions ( � ) subject to the system dynamics and possible algebraic constraints 
(Banga et al. 2005). Mathematically:

(1)C = AE + PE + 3Psludge

(2)AE =
24

T ∫
t14 days

t0

5
∑

i=3

(

0.0007K
L
a

i
(t)2 + 0.3267K

L
a

i
(t)
)

dt

(3)PE =
0.04

T ∫
t14 days

t0

(

Qintr(t) + Qr(t) + Qw(t)
)

dt

(4)Psludge = TSSw ⋅ Qw(t)

(5)EQ =
1

T ⋅ 1000 ∫
t14 days

t0

⎛
⎜
⎜
⎝

�SS ⋅ SSe(t) + �COD ⋅ CODe(t)

+�BOD ⋅ BODe(t) + �Nkj ⋅ SNkj,e(t)

+�NO ⋅ SNO,e(t)

⎞
⎟
⎟
⎠
Qe(t)dt
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subject to:

where the vector of objective functions, � (Eq. 6), contains all the objectives consid-
ered in the problem. In our case, the objectives were already deined as f1 = opera-
tional costs (Eq. 1) and f2 = eluent quality (Eq. 5). x is the vector of state variables 
(i.e. those variables that change with time and that can not be controlled, such as 
pollutants concentrations). Copp described a total number of 13 variables for this 
model (Copp 2002). u is the vector of control variables (the aeration factor in the last 
aerated reactor and the internal recycle low rate in our case) whose variation with 
time need to be found to optimize the objective functions. Equation 7 represents the 
system dynamics (dynamic mathematical model that deines the BSM1). Equation 8 
represents the values of the state variables at the beginning of the process ( t = 0 ). 
Equations  9 and 10 represent, respectively, equality and inequality constraints, 
which can be considered at the end of the process or at intermediate times (e.g. a 
maximum pollutant concentration in the eluent). In our formulation no additional 
constraints have been imposed apart from the process dynamics. Finally, Eq. 11 cor-
responds to the lower and upper bounds for the control variables (e.g., the minimum 
and maximum aeration and internal recycle low rate allowed for the operation). In 
our problem those bounds are deined as [0, 360] h−1 for K

L
a

5
 and [0, 70000] m3

d
−1 

for Qintr . The values of the operational variables not considered as control variables 
(e.g., aeration rates in tanks 1–4 as well as inluent, wastage and external recycle 
low rates) are those deined in Copp (2002) and remain constant during the optimi-
zation procedure. The accurate solution of the diferential-algebraic equation (DAE) 
system deined in Eq.  7 often requires the use of an implicit ordinary diferential 
equation (ODE) solver. In this work we have used the ode45 and ode15 included in 
Matlab-Simulink, where the BSM1 was implemented. The integral terms included 
in the objective functions are numerically solved by discretization, using the same 
time step size as in the ODE solution.

(6)min
�(t)

�(�(t), �(t))

(7)
d�

dt
= �(�(t), �(t), t)

(8)�(t0) = �0

(9)�(�(t), �(t)) = �

(10)�(�(t), �(t)) ≤ �

(11)�
L
≤ �(t) ≤ �
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2.2.1  CVP for approximating the control variables

A number of solution methods can be used for solving the general dynamic optimi-
zation problem (Srinivasan et al. 2003). For the problem formulated above, a con-
trol vector parameterization approach (CVP) is employed. CVP is a direct method 
which transforms the original problem into a non-linear programming (NLP) prob-
lem, which must be solved by a (global) optimization solver (Banga et  al. 2005). 
This method enables the discretization of the control problem by dividing the time 
horizon into a number of time intervals so that nonlinear programming (NLP) tech-
niques can be applied to the resulting inite-dimensional optimization problem. 
According to this method, basis functions, usually low order polynomials, are used 
to approximate the control variables within the time intervals. This parameterization 
method transforms the ininite-dimensional optimization problem into a nonlinear 
programming problem. Thus, the diferential equality constraints describing the sys-
tem dynamics are integrated for each evaluation of the performance index of inter-
est. The CVP method has also been used in other applications involving anoxic/aer-
ated systems (Balku et al. 2009). In this work we have used zero order polynomials 
(i.e. steps) to approximate our control variables. We have considered 20 ixed-length 
time intervals for each control variable, which results in a non-linear optimization 
problem with 40 decision variables

2.3  Considered scenarios

The analysis of some adjacent solutions in the Pareto front of the problem formu-
lated in Eqs.  6–11 suggests that control proiles with diferent shapes can lead to 
very similar solutions in terms of objective values. This can be observed in the Sup-
plementary Information where sweeps of the control proiles corresponding to all 
points (200) in the Pareto fronts of the solved problems are shown as igures. An 
example is given by the adjacent solutions #33 and #34 of the undisturbed problem, 
where diferences between control proiles can be observed whereas the values of 
the objectives are almost identical. To check whether this can be found in other parts 
of the Pareto front, we propose a procedure in which extra constraints to the optimi-
zation problem are added so that the shape of some control variables is intentionally 
changed with respect to the undisturbed case. From a practical point of view, these 
constraints should relect realistic situations or events that can occur during practical 
operations of WWTPs like unexpected failures, maintenance operations or punctual 
changes in environmental requirements or energy consumption. The Pareto fronts of 
the new optimization problems are then compared with the one of the undisturbed 
problem to check if there is any kind of overlapping. In this study we propose two 
very simple scenarios. In the irst one we simulate that aeration in tank 5 (corre-
sponding to our irst control variable) does not work for some time at the beginning 
of the process due to a failure. In the second one recirculation is not allowed for 
some days (also at the beginning of the process) simulating maintenance operations. 
In the considered scenarios the modiication of the optimization problem formulated 
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above is straightforward: the number of decision variables is reduced. In particular, 
we consider only 36 decision variables from the initial set of 40 since we choose 4 
time intervals in which the incumbent control variables are forced to be zero. Other 
more complex scenarios that involve the formulation of new constraints, changes 
in the bounds, etc. can be conceived, but, for illustrating the idea of multiplicity of 
solutions, the proposed scenarios are suitable.

2.4  Optimization method

The whole formulation in Eqs.  6–11 is a non linear programming problem that 
must be solved with speciic optimization solvers. In the context of WWTP opti-
mization,  Egea and Gracia (2012), Egea et  al. (2007) showed that the associated 
problems are multimodal. Further, problems resulting from the application of CVP 
are also frequently multimodal. Thus, global optimization solvers must be used. For 
problems with multiple (conlicting) objectives like the presented here, the aim is to 
ind the optimal trade-ofs between such objectives. This trade-of is represented in 
the Pareto front. All solutions in the Pareto front are optimal in the sense that it is 
not possible to improve one of the objectives without worsening one or more of the 
rest.

In this work we have used the popular evolutionary multi objective optimization 
method NSGA-II Deb et al. (2002) already mentioned in Sect. 1, which is used to 
capture the Pareto front of the proposed multi-objective model and furthermore, the 
inal optimal control proiles can be selected based on the preference of the deci-
sion-maker. NSGA-II is a revised version of the NSGA (Srinivas and Deb 1994). 
The NSGA uses an evolutionary process with surrogates for evolutionary opera-
tors including selection, genetic crossover, and genetic mutation. The population is 
sorted into a hierarchy of sub-populations based on the ordering of Pareto domi-
nance. Similarity between members of each sub-group is evaluated on the Pareto 
front, and the resulting groups and similarity measures are used to promote a diverse 
front of non-dominated solutions. NSGA is a very efective algorithm but has been 
generally criticized for the high computational complexity of non-dominated sort-
ing, the lack of elitism and the need to specify the sharing parameters. Compared to 
the simple NSGA algorithm, the NSGA-II improves the computational eiciency by 
reducing the time-complexity from O(MN

3 ) to O(MN
2 ), where M is the number of 

objectives and N is the size of the dataset. Furthermore, it has a better sorting algo-
rithm, incorporates elitism and no sharing parameter needs to be chosen a priori. 
The NSGA-II uses ( � + �)-selection instead of a secondary population as its elit-
ist mechanism. The multi-objective optimization was carried out using the follow-
ing parameters of the NSGA-II algorithm: binary tournament selection, number of 
generations (200), population size (200), crossover probability (0.9), mutation prob-
ability (0.1). The simulation model was implemented using the software MATLAB 
& Simulink. Each member of the population was computed using a cluster with 8 
nodes. Such nodes are equipped with 2 Intel Xeon E5-2620 at 2 GHz and 32GB of 
RAM memory.
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3  Results and discussion

The dynamic multiobjective optimization problem formulated above was solved for 
the dry-inluent data set. A similar procedure could be performed considering the 
other weather conditions or a combination of them. The obtained Pareto fronts for 
the undisturbed, scenario 1 and scenario 2 problems are shown in Fig. 2. The results 
correspond to all the 14 operation days. The shape of the Pareto fronts is similar to 
that obtained in Costa and Santo (2011), Guerrero et al. (2012), Hreiz et al. (2015).

As shown in Fig. 2, the Pareto fronts indicate that, as expected, the improvement 
of one objective deteriorates the other, i.e. a lower Eluent Quality index involves 
increasing the operational costs and vice-versa. To avoid confusion with the nomen-
clature, it should be recalled that a lower EQ index means a higher eluent quality. 
Regarding the control proiles, three main areas in the Pareto fronts can be distin-
guished: a) an area with low operational costs and poor eluent quality (Area 1), 
b) an area with high operational costs and good eluent quality (Area 2) and, c) an 
intermediate area (Area 3). Figure 3 shows the control proiles for the representative 
solutions (undisturbed problem) of each area presented in Table 1.

The combination of the Pareto front and the control proiles associated to each 
solution are useful decision tools to design the process and possible control strat-
egies. Figure  3 shows expectable control proiles from the qualitative point of 
view regarding the areas they refer to. In Area 1 (low operation costs and poor 
eluent quality, Fig. 3a), almost no aeration and recirculation are applied, which 
reduces the electricity consumption but also the oxidation and de-nitriication 
capacity. In Area 2 (high operation costs and good eluent quality, Fig. 3b), the 
aeration and specially the recirculation become signiicant, which increases nota-
bly the electricity consumption but allows a better oxidation and de-nitriication. 

Fig. 2  Pareto fronts for the 
undisturbed, scenario 1 and 
scenario 2 problems

Table 1  Representative 
objective values for the 3 
main areas of the Pareto front 
(undisturbed problem)

Monetary units ( d−1) EQ (kg 
poll units 
d
−1)

Area 1 13927 8924

Area 2 16765 6718

Area 3 14992 7584
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The proiles in Area 3 (solution balancing both objectives, Fig. 3c), seem to rep-
resent an intermediate case between the previous ones, with punctual episodes of 
high aeration rates and an almost continuous intermediate recycling rate.

Going back to Fig. 2, where the pareto fronts for the considered cases (undis-
turbed, scenario 1 and scenario 2) are shown, it can be observed that all the three 
Pareto fronts converge in Area 1. While this is not a general case and the picture 
could be diferent when simulating other scenarios, two aspects should be high-
lighted: (1) despite of the constraints imposed in scenarios 1 and 2, the same (or 
very similar) solutions in terms of objective values regarding the Area 1 of the 
Pareto front can be achieved, and (2) due to these constraints, the control proiles 
leading to those equivalent solutions must present diferent shapes. The identiica-
tion of such shapes would allow WWTP operators to eiciently change the oper-
ating conditions when some of the considered scenarios occur without damaging 
any of the pursued objectives. An additional conclusion from Fig.  2 is that the 
absence of recirculation has a deeper impact on the pareto solutions of area 2 than 
the absence of aeration in tank 5. This could be provoked because, although no 
aeration is applied on tank 5, tanks 3 and 4 are also aerated, which produces some 
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Fig. 3  Control proiles for representative solutions in the diferent areas of the Pareto front (undisturbed 
problem)
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oxidation of ammonia to nitrates. However, the lack of recirculation to increase 
nitrates reduction to nitrogen can not be compensated by any other mechanism.

To illustrate the existence of the mentioned multiple solutions we have selected 
similar solutions from Area 1 of the three pareto fronts. Table 2 shows the objec-
tive function values for each of them and Fig. 4 shows their corresponding control 
proiles.

The maximum diferences from the objective values in Table 2 are below 0.1% 
for EQ and 0.4% for the operational costs, thus we can consider them as equivalent 
solutions from the point of view of the objectives. However, Fig.  4 shows diferent 
control policies for each scenario. This would prove the existence of multiplicity 
of solutions and their previous identiication would allow to react eiciently when 
one of these events occur during WWTPs operation. Figure 4a (middle) shows the 
constraint imposed in scenario 1: no aeration during the irst 1–3 days of the pro-
cess, while Fig. 4b shows the one of scenario 2: no recirculation between days 4 and 
7. Interestingly, the optimal aeration proile for this scenario 2 considers almost no 
aeration within the same period (days 4–7). The reason for this could be to avoid an 
excess of nitrates in the eluent during a certain period of time.

The fact that multiple equivalent solutions can be found for diferent scenarios in 
a system is not a general claim of this study. Certain systems can be very sensitive to 
changes in operational conditions which make very diicult to ind such equivalent 
solutions. But for WWTPs, since typical control variables are usually related to aer-
ation and recirculation and the objectives are related to operational costs and eluent 

Table 2  Equivalent solutions in 
terms of objective values from 
the Pareto fronts of the three 
considered scenarios

Monetary units ( d−1) EQ (kg 
poll units 
d
−1)

Undisturbed 14,454 8183

Scenario 1 14,493 8175

Scenario 2 14,509 8176

time (d)

0 2 4 6 8 10 12 14

K
L
a
5
 (

d
-1

)

0

50

100

time (d)

0 2 4 6 8 10 12 14

K
L
a
5
 (

d
-1

)

0

50

100

time (d)

0 2 4 6 8 10 12 14

K
L
a
5
 (

d
-1

)

0

50

100

(a) KLa5 control profiles

time (d)

0 2 4 6 8 10 12 14Q
in

tr
 (

m
3
 d

-1
)

# 104

0

2

4

time (d)

0 2 4 6 8 10 12 14Q
in

tr
 (

m
3
 d

-1
)

# 104

0

2

4

time (d)

0 2 4 6 8 10 12 14Q
in

tr
 (

m
3
 d

-1
)

# 104

0

2

4

(b) Qintr control profiles

Fig. 4  Control proiles for equivalent solutions from the Pareto fronts. Top: undisturbed; middle: sce-
nario 1; bottom: scenario 2
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quality, these equivalent solutions may exist. Therefore, by means of dynamic simu-
lation and multiobjective optimization we encourage the simulation of diferent real-
istic and possible scenarios to identify such equivalent solutions, if they exist, and 
anticipate the control actions when these simulated events occur in the real process.

4  Conclusions

WWTPs have a high environmental and economical impact because of the eluent 
quality returned to the environment and their high energy consumption, respectively. 
These two objectives are usually simultaneously considered when designing these 
plants. They are conlicting objectives, and determining their trade-ofs is crucial in 
the decision making process. The non-linear, dynamic and multiobjective nature of 
the models describing WWTP processes make that the optimization problems for-
mulated for the design are complex and they must be solved with eicient and robust 
optimization techniques to obtain the Pareto front of optimal solutions.

Once the Pareto front has been obtained the simulation of possible and realis-
tic operational scenarios (e.g., typical failures, maintenance operations, possible 
changes in legislation, etc.) can be performed to identify equivalent solutions in 
terms of objectives by comparing the obtained pareto fronts, and use the best con-
trol policy adapted to the incumbent event. In this work we have considered two 
simple realistic scenarios and have detected that this multiplicity exists in some area 
of the Pareto front. The application of this methodology could result in “alterna-
tive” Pareto fronts (or areas of the Pareto front) in terms of control proiles, which 
would enrich the knowledge of the process and would allow diferent options for the 
design. The exploitation of this idea can be quite relevant in the decision making 
process within current scenarios in which the energy costs are luctuating hourly, 
supplying the decision maker a set of possible strategies to follow depending on the 
actual economical, technical or legal circumstances.
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