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We also show that this type of ω-limit sets can always be realized (up to topological equivalence)
by smooth flows but cannot be realized by analytic flows.

Keywords: flow, ω-limit set, feasible family, exceptional set, exceptional ω-limit set.
Mathematics Subject Classifications (2000): 37C70; 34C05, 37C10.

1. Introduction

Let S be a compact surface with empty combi-
natorial boundary. By a (continuous) flow on
S we mean a continuous map Φ : R × S → S
satisfying Φ(0, u) = u for every u ∈ S and
Φ(t, Φ(s, u)) = Φ(t + s, u) for every t, s ∈ R

and u ∈ S. Starting from the seminal works of
Poincaré and Bendixson, the qualitative theory
of surface flows was extensively studied in the
twentieth century and still remains an area of
intensive research, see [Aranson et al., 1996],
[Aranson & Zhuzhoma, 1998], [Nikolaev, 2001],
[Nikolaev & Zhuzhoma, 1999] for recent accounts

of the state of the art in this subject.

No doubt the jewel crown of this theory is
the celebrated Poincaré-Bendixson theorem. Un-
der some restrictions it provides a very simple de-
scription of ω-limit sets in the plane (or the sphere)
setting. (The ω-limit set of a point u or its orbit
Φu(R), Φu(t) := Φ(t, u), is the set ωΦ(u) = {v ∈
S : ∃tn → ∞; Φu(tn) → v}. The α-limit set αΦ(u)
is analogously defined now taking tn → −∞. We
emphasize that all the results in this paper concern-
ing ω-limit sets are true for α-limit sets as well; the
proofs require no essential changes.) Original for-
mulations by Poincaré [Poincaré, 1886] and Bendix-
son [Bendixson, 1901] required some differentiabil-
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ity properties for the flow, but since the thirties it is
well known that this result is of a purely topological
nature [Whitney, 1933], [Bohr & Frenchel, 1936],
[Bebutov, 1939]. The presentation below can be
found, for instance, in [Aranson et al., 1996; The-
orem 3.1, p. 63]:

Theorem 1.1 (Poincaré-Bendixson). Let Φ be
a flow on the sphere S2 and let u ∈ S2. If ωΦ(u)
does not contain any singular point, then it is a
periodic orbit.

Recall that a singular (respectively, a periodic)
orbit is that consisting of a single point (respec-
tively, realized by a periodic solution Φu(t) of the
flow).

The Poincaré-Bendixson theorem renders a
precise description of the ω-limit sets containing
no singular points for flows on the sphere. This
description has simultaneously a topological and a
dynamical character: from the topological point of
view the theorem says that, in the prescribed con-
ditions, the ω-limit set of u is a (topological) circle;
from the dynamical point of view it says that the
ω-limit set of u is a periodic orbit.

Now the question of describing ω-limit sets
with arbitrarily many periodic points, in S2 and
other compact surfaces, suggests itself. The lit-
erature provides many results in this regard. An
especially beautiful one, due to A. J. Schwartz
[Schwartz, 1963], says that the Poincaré-Bendixson
theorem holds true for C2 flows on arbitrary
surfaces after just including an additional possi-
bility: the ω-limit set may also be the whole
torus T2 (when the flow is conjugate to an
irrational rotation). We emphasize that the
smoothness requirement is sharp [Denjoy, 1932].
For a nice converse of Schwartz’s theorem see
[Gutierrez, 1986]. A different trend of work, ini-
tiated by Solncev [Solncev, 1945] and Vinograd
[Vinograd, 1952] in the forties and culminated in
[Balibrea & Jiménez, 1998], aims to describe ex-
plicitly how a closed set and a family of curves
must look like to become, respectively, the set of
singular points and the set of nonsingular orbits
of some ω-limit set for a sphere flow. In arbi-
trary surfaces and assuming that the set of singular
points is finite, more concise (but less informative)
descriptions are very well known, see for instance

[Aranson et al., 1996; Theorem 3.6, p. 86]:

Theorem 1.2. Let Φ be a flow on S having finitely
many singular points and finitely many orbits con-
necting these points. If u ∈ S, then ωΦ(u) is either
a singular point, a periodic orbit, a polycycle, or a
quasiminimal set.

By a polycycle we mean the union of finitely
many singular points (possibly repeated) and
finitely many nonsingular orbits (without repeti-
tions) connecting the singular points in a specific
order: the time oriented j-th orbit connects the j-
th and (j + 1)-st singular points. A quasiminimal
set is the ω-limit set of a nontrivial recurrent orbit
(recurrent means the orbit is contained in its own
ω-limit set; nontrivial means that it is neither a
singular point nor a periodic orbit).

The above-mentioned results concern the dy-
namical side of affairs. If one is just interested in
knowing the topological structure of ω-limit sets re-
gardless the type of orbits they are made of, then
the following theorem, essentially due to Vinograd
[Vinograd, 1952] settles the question in S2.

Theorem 1.3 ([Vinograd, 1952]). Let Φ be a
flow on S2 and let u ∈ S2. Then ωΦ(u) is the bound-
ary of a simply connected region O, ∅  O  S2.

Conversely, if Ω is the boundary of a simply
connected region O, ∅  O  S2, then there are a
smooth (C∞) flow Φ on S2 and u ∈ S2 such that
Ω = ωΦ(u).

In 1995 D. V. Anosov [Anosov, 1995] (see also
[Nikolaev & Zhuzhoma, 1999; p. 39]) remarked
that Vinograd’s topological characterization is no
longer true for the projective plane P2 and posed
the problem of finding an appropriate characteriza-
tion of ω-limit sets in this setting. This being our
source of inspiration, we undertook the task of fully
characterizing ω-limits for surface flows in a series
of papers [Jiménez & Soler, 2001], [Soler, 2003],
[Jiménez & Soler, 2004], [Jiménez & Soler, 2004b].
The present one is the last step towards such a char-
acterization.

We answered Anosov’s question in
[Jiménez & Soler, 2001] by showing that ω-
limit sets in P2 are the boundaries of regions with
nonempty connected complementary. Next, the
second author characterized ω-limit sets on the
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Klein bottle B2 as boundaries of regions O with
nonempty connected complementary such that
either O is simply connected, or there is a non-null
homotopic circle C ⊂ O such that the boundary
of O is contained in the boundary of one of the
components of O \ C [Soler, 2003].

Together with the sphere S2, the projective
plane P2 and the Klein B2 are the easiest sur-
faces to work with because they admit no flows
having nontrivial recurrent orbits [Aranson, 1969],
[Thomas, 1970], [Markley, 1969], [Gutierrez, 1978].
In [Jiménez & Soler, 2004] we extended the previ-
ous results by characterizing ω-limit sets of nonre-
current orbits in arbitrary surfaces. If by a regular
annulus we mean an annulus (i.e., a space home-
omorphic to R2\{(0, 0)}) with two boundary com-
ponents, then the generalization can be stated as
follows.

Theorem 1.4 ([Jiménez & Soler, 2004]). Let
Φ be a flow on S and let u ∈ S. Assume that (the
orbit of) u is nonrecurrent or that Int ωΦ(u) = ∅
and S \ ωΦ(u) has a finite number of components.
Then ωΦ(u) is a boundary component of a regular
annulus in S.

Conversely, if Ω is a boundary component of a
regular annulus in S then there are a smooth flow
Φ on S and u ∈ S \ Ω such that Ω = ωΦ(u).

Any surface different from S2, P2 or B2 ad-
mits flows having some nontrivial recurrent orbits.
The description of the ω-limit sets of this type of
orbits (quasiminimal sets), is rather more compli-
cated. Sometimes a quasiminimal set can also be
the ω-limit set of a nonrecurrent orbit (see the Den-
joy flow below), hence the previous theorem applies,
but this is not often the case.

Quasiminimal sets have been studied in the lit-
erature in great depth. For instance, Chapter 2
from the recent monography [Aranson et al., 1996]
devotes Sections 3 (partially) and 4 (totally)
to them. In this context the works of
Hilmy [Hilmy, 1936], Cherry [Cherry, 1937], Măıer
[Măıer, 1943], Gutierrez [Gutierrez, 1986], and
Marzougui [Marzougui, 1996], among many oth-
ers, deserve to be mentioned. Surprisingly enough,
while these and other works involve a close un-
derstanding of the topology of quasiminimal sets,
their precise topological characterization has almost

never been addressed for. The present paper in-
tends to fill this gap.

Obvious examples of quasiminimal sets that
cannot be realized by nonrecurrent orbits are those
with nonempty interior. It is easy to show that
such an ω-limit set is the closure of some transi-
tive region, that is, a region invariant by the flow
(which means that is the union set of some orbits
of the flow) with the property that all orbits in the
region are dense in it. Transitive regions were par-
tially characterized in [Smith & Thomas, 1988] and
then, completely, in [Jiménez & Soler, 2004b].

Theorem 1.5 ([Jiménez & Soler, 2004b]).
Let Φ be a flow on S and let u ∈ S. Assume
that IntωΦ(u) 6= ∅. Then there exists a region
O ⊂ S such that Cl O = ωΦ(u) and O is not
homeomorphic to S2, P2, nor to any region in B2.

Conversely, if O ⊂ S is a region not homeo-
morphic to S2, P2, nor to any region in B2, then
there are a smooth flow Φ on S and a point u ∈ O
such that ωΦ(u) = Cl O.

Thus, in order to complete the intended topo-
logical description of ω-limit sets for surface flows,
we are bound to understand the structure of quasi-
minimal sets with empty interior that cannot be ω-
limit sets of any nonrecurrent orbit. This is exactly
what we do in this paper. In [Aranson et al., 1996;
p. 54] nontrivial recurrent orbits whose ω-limit set
has empty interior are called exceptional. We are
looking for even rarer ω-limits (those which cannot
be realized by a nonrecurrent orbit) but it seems
apt to keep using this word to describe them.

Definition 1.6. Let Φ be a flow on S. We say
that Ω ⊂ S is an exceptional ω-limit set (for Φ) if
IntΩ = ∅ and it is the ω-limit set of a nontrivial
recurrent orbit, but of no nonrecurrent orbit, of Φ.

We say that Ω ⊂ S is an exceptional set if it is
an exceptional ω-limit set for some flow on S, and it
is not the ω-limit set of a nonrecurrent orbit for any
flow on S (or equivalently, in view of Theorem 1.4, it
is not a boundary component of a regular annulus).

The following example will help to clarify these
notions. Our starting point is the irrational flow
on the torus T2. After blowing up one of the or-
bits to a full band of orbits we can generate the
well-known Denjoy C1 flow Ψ [Denjoy, 1932], see
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[Aranson et al., 1996; pp. 24–27] for a modern pre-
sentation. If the interior of this band is denoted by
O and we write Σ = T2 \O, then the empty interior
set Σ is minimal, that is, it is the ω-limit set of all
orbits in Σ and, in fact, of all orbits of Ψ. Notice
that although all orbits in Σ are exceptional, Σ is
not an exceptional ω-limit set for the flow Ψ be-
cause it is also the ω-limit set of all orbits inside O,
which are nonrecurrent. Of course O, even although
it keeps spiralling around T2, is simply connected
and hence its boundary Σ is one of the boundary
components of the regular annulus O\{p}, where p
denotes an arbitrarily chosen point of O. This is in
consonance with Theorem 1.4.

The next step is fixing a circle D transversal to
the flow Ψ. The band O intersects D at consecutive
(with respect to time) segments, open in D, with
endpoints ai, bi, i ∈ Z. We denote these segments
by (ai; bi). If the increasing sequence (in)∞n=−∞ is
appropriately chosen, then the segments (ain ; bin)
can also be made to be consecutive in D, thus con-
verging to respective points p and q of D when
n → ±∞. If f is the vector field associated to Ψ
and we multiply it by a nonnegative scalar function
vanishing exactly at K = {p, q}∪

⋃
n[ain ; bin ], where

[ai; bi] denotes the closure of (ai; bi), then it gener-
ates a new flow Ψ∗ having K as its set of singular
points. Moreover, K decomposes O into a family of
consecutive simply connected regions {Kn}n, and
every orbit of Ψ∗ contained in one of this regions
has a singular point as is α-limit set and another,
different one, as its ω-limit set. All orbits of Ψ out-
side O (except those ending at one of the points
p, q or ain , bin) remain the same for Ψ∗. Hence
Σ becomes an exceptional ω-limit set for Ψ∗. We
emphasize that Σ is a quasiminimal set for Ψ∗ but
not a minimal set because it contains some singular
points. On the other hand, recall that Σ is not an
exceptional set because it is the ω-limit set of all
nonrecurrent orbits of Ψ.

Finally, to create an exceptional set in T2 it suf-
fices, starting from Ψ∗, to collapse each arc [ain ; bin ]
to a point to obtain a flow Φ having countably many
singular points, all of them belonging to the circle
E arising after the collapse of the arcs [ain ; bin ].
This flow has an exceptional ω-limit set Ω whose
complement set is a pairwise disjoint union of sim-
ply connected regions {On}n. The closure of each
region On consists of a family Rn of parallelizable

orbits and two singular points, which are the α-
and the ω-limit set of all orbits in Rn. Thus Ω
cannot be a boundary component of a regular an-
nulus, that is, it is an exceptional set. What the
main result of this paper (Theorem A) essentially
says is that all exceptional sets have a topological-
dynamical structure similar to that previously de-
scribed. We emphasize that, in order Ω to be excep-
tional, it does not suffices that it is the boundary
of a disjoint union of infinitely many simply con-
nected regions: just think of the flow arising from
the irrational torus rotation after blowing up an in-
finite number of orbits. The truly important point
is that the closure of each of these regions is still
(maybe after removing a few appropriately chosen
boundary points) a simply connected surface, even
although it may spiral around T2 for quite a long
time.

2. Statements of the results

Before stating precisely our results some terminol-
ogy is required.

By a surface we mean a second countable Haus-
dorff topological space such that every point has
a neighbourhood homeomorphic to the unit disk
D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}; thus its combi-
natorial boundary, which is the set of points where
the surface is not locally homeomorphic to the open
unit disk {(x, y) ∈ R2 : x2 + y2 < 1}, need not
be empty. Throughout the paper, S will always
denote a compact surface with empty combinato-
rial boundary. We recall that S admits an essen-
tially unique smooth (C∞) (even analytic) differ-
ential structure, which we fix from now on and to
which we refer when speaking about smooth and
analytic flows below.

We fix a distance dist(·, ·) on S compatible with
its topology. If A ⊂ S, then IntA, Cl A and diamA
denote the interior, the closure and the diameter
of A. When we say that R ⊂ S is a surface, we
are referring to the induced topology in R, when
the combinatorial boundary of R (as opposed to its
topological boundary BdR) will be denoted by ∂R.
If A, B are compact subsets of S, then dH(A, B)
denotes the Hausdorff distance between A and B,
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that is,

dH(A, B)

= max{max
u∈A

min
v∈B

dist(u, v), max
v∈B

min
u∈A

dist(u, v)}.

A curve B in S is the image B = ϕ(I) of a
continuous one-to-one map ϕ : I → S, with I being
a nondegenerate interval or the unit circle S1 =
{(x, y) ∈ R2 : x2 + y2 = 1}. In the particular cases
when I is a compact interval or I = S1, we call B,
respectively, an arc (whose endpoints are the image
by ϕ of the endpoints of I) and a circle. Sometimes
we refer to an arc with endpoints u and v as [u; v].

Let R be a surface. We say that a circle C ⊂ R
is null homotopic if there exists a continuous map
H : [0, 1] × [0, 1] → R satisfying H(t, 0) = α(t),
H(t, 1) = α(0) and H(0, s) = H(1, s) = α(0) for
every t, s ∈ [0, 1]; here α : [0, 1] → C is a continuous
onto map and α|[0,1) is one-to-one. The surface R
is simply connected if there is a homeomorphism
h : D2\P → R for a compact set ∅ ⊂ P ⊂ S1. When
P = S1 and P = ∅ we respectively say that R is an
open disk and a disk. Simply connected surfaces
are characterized by the property that all circles
they contain are null homotopic, see Lemma 3.2
below. As it is well known every circle in S is either
orientable or nonorientable, depending on whether
it has a small neighbourhood which is an annulus or
a Möbius band, respectively. (Recall that a Möbius
band is a space homeomorphic to D2 \ {(0, 0)} after
identifying opposite points in S1).

Roughly speaking, exceptional sets will be char-
acterized as the boundary of the union of infinitely
many, pairwise disjoint, simply connected surfaces
(we call them feasible families in Definition 2.4).
The combinatorial boundaries of these surfaces, and
the surfaces themselves, have some special proper-
ties. We describe them via the Definitions 2.1 and
2.2 below.

Definition 2.1. Let B be a family of curves in S,
let p ∈ B ∈ B and let O be a neighbourhood of p.
We say that O is a Whitney regular neighbourhood
of p (with respect to B) if for every ǫ > 0 there is
δ > 0 such that:

(a) if [p′; q′] ⊂ O ∩ B′ for some B′ ∈ B and
dist(p′, q′) < δ, then diam([p′; q′]) < ǫ;

(b) if [p; q] ⊂ O ∩B, p′ ∈ O ∩B′ for some B′ ∈ B

and dist(p, p′) < δ, then there is [p′; q′] ⊂ O ∩
B′ such that dH([p; q], [p′; q′]) < ǫ.

We say that B is Whitney regular if every point from
every B ∈ B has a Whitney regular neighbourhood.

Definition 2.2. Let R ⊂ S be a simply connected
surface and let C ⊂ S be an orientable non-null
homotopic circle. We say that R twists around
C if there are a positive integer k, a subset N of
{1/2, 3/2, . . . , k− 1/x2}× {0, 1}, and a homeomor-
phism φ : ((−1/2, k + 1/2) × [0, 1]) \ N → R such
that:

(i) C ∩ Cl R =
⋃k

i=0 φ({i} × [0, 1]);

(ii) if ǫ > 0 is very small and i ∈ {0, 1, . . . , k− 1},
then φ([i, i + ǫ) × [0, 1]) and φ((i + 1 − ǫ, i +
1] × [0, 1]) lie at opposite sides of C;

(iii) there is l ∈ {1, . . . , k} such that neither (l −
1/2, 0) nor (l − 1/2, 1) belong to N .

If l is as (iii), then we call the set φ([l−1, l]×[0, 1]) a
twisting section of R and the set φ([l−1, l]×{0, 1})
its twisting boundary. We denote the union set of
all twisting sections of R by Υ(R) and the union
set of all their twisting boundaries by Υ(∂R).

Remark 2.3. Of course all previous definitions de-
pend on C, but in what follows the curve C will
always be precisely stated, so this will not lead to
confusion.

Definition 2.4. Let {Rn}
∞
n=1 be a family of pair-

wise disjoint simply connected surfaces in S and let
C ⊂ S be an orientable non-null homotopic circle.
We call {Rn}

∞
n=1 a feasible family for C if the fol-

lowing properties hold:

(i) all Rn twist around C and, for every m, the
set Rm∪Cl (

⋃
n Υ(Rn)) is a neighbourhood of

∂Rm;

(ii) the family of the components of all combina-
torial boundaries ∂Rn is Whitney regular;

(iii) for every u, v ∈
⋃

n BdRn and every ǫ >
0 there is an arc A ⊂

⋃
n ∂Rn satisfying

dist(u, A) < ǫ, dist(v, A) < ǫ.

We are ready to state the main result of this
paper:
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Theorem A. If Ω ⊂ S is an exceptional set, then
there is a feasible family {Rn}

∞
n=1 for some circle C

such that Ω = Bd
⋃

n Rn.

Conversely, if {Rn}
∞
n=1 is a feasible family for

some circle C and Ω = Bd
⋃

n Rn, then Ω is an ex-
ceptional set. Moreover, there is a homeomorphism
h : S → S such that h(Ω) is an exceptional ω-limit
set for a smooth flow on S.

In the example from the Introduction, the sets
Rn are those defining the feasible family from The-
orem A, but it is important to stress that the circle
C is not the circle E there (in fact it contains all
singular points of the flow), but a circle “parallel”
to E containing no singular points. More precisely,
if in this example R is any of the sets Rn, then (with
the notation of Definition 2.2), it intersects C at the
arcs φ({i} × [0, 1]), 0 ≤ i ≤ k, and intersects E at
the arcs φ({i + 1/2} × [0, 1]), 0 ≤ i < k.

Thus, in the example, the corresponding set N
in Definition 2.2 is empty, but in general this need
not be the case. To understand this, it suffices to re-
place some points φ(i+1/2, 0) or φ(i+1/2, 1) by sin-
gular points, and then “blow them up” to full disks
of singular points, towards and from which spiral
pairs of components of the combinatorial boundary
of R. Observe that in such a case, Cl R is not even
“contractible to one point”, that is, S \ Cl R is not
homeomorphic to S minus one point. We emphasize
that such a surgery can be done (in an appropriate
way) to infinitely many of the surfaces Rn without
adding new singular points apart from those in the
newly created disks.

Admittedly the formulation of Theorem A is
rather complicated but it is difficult to suggest clear
improvements. In fact there are families {Rn}

∞
n=1

of pairwise disjoint simply connected surfaces in the
torus T2 satisfying two of the three conditions in
Definition 2.4 and such that Bd

⋃
n Rn is not an ω-

limit set for any flow on T2. More precisely, a coun-
terexample can be found satisfying (ii), (iii) and
even with all Rn twisting around some curve C, and
also a counterexample (even in the sphere S2) sat-
isfying (ii) and (iii) and such that Rm ∪Cl (

⋃
n Rn)

is a neighbourhood of ∂Rm for every m. Similarly,
there are families satisfying (i), (iii) and with just
(a) or (b) failing in Definition 2.1 for which the con-
verse statement of Theorem A does not hold. One
could interpret (iii) as a strong form of connect-

edness, because there is also a counterexample for
the converse statement of Theorem A where (i) and
(ii) are satisfied and the set Bd

⋃
n Rn is connected.

These counterexamples are constructed in full de-
tail in [Soler, 2005; Chapter 3].

As explained two paragraphs above, there is no
hope either to improve the topological description
of the surfaces Rn. Still, it must be emphasized
that if the set of singular points of the flow is totally
disconnected, then the feasible family {Rn}n from
the first part of Theorem A can be chosen so that
Cl Rn is homeomorphic to a disk for every n. This
can be done using ideas and techniques similar to
those in [Balibrea & Jiménez, 1998].

Together with Theorems 1.4 and 1.5, Theo-
rem A provides the following full topological char-
acterization of ω-limit sets for surface flows, already
announced in [Jiménez & Soler, 2006]:

Corollary B (Structure of ω-limit sets). Let
Ω ⊂ S. Then Ω is an ω-limit set for some flow on
S if and only if one of the following alternatives
occurs:

(i) Ω is one of the boundary components of a reg-
ular annulus;

(ii) Ω is the closure of a region homeomorphic
neither to S2, nor to P2 nor to any region in
B2;

(iii) Ω is the boundary of the union of the sets from
some feasible family.

Of course the smoothness part of Theorem A
is not optimal because Ω is realized as an ω-limit
set of a smooth flow via a homeomorphism. This
cannot be helped, because it is easy to provide ex-
amples of exceptional sets which are ω-limit sets of
no smooth flows. Notice also that, although an ex-
ceptional set can always be realized as an ω-limit set
by a smooth flow up to homeomorphism, there are
flows having exceptional ω-limit sets that are not
topologically equivalent to a smooth (or, for that
matter, a C2) flow. (Here we say that two flows
Φ, Ψ on S are topologically equivalent if there is a
homeomorphism h : S → S mapping the orbits of
Φ onto orbits of Ψ which preserves the induced ori-
entations by the flows.) To devise a simple example
we use, on the one hand, the exceptional set Ω we
constructed at the end of the Introduction to this
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paper, modifying the flow Φ to include a circle of
singular points in one of the components of T2\Ω.
Similarly we include, on the other hand, a circle of
singular points in the dense band for the Denjoy
flow Ψ. After taking off the open disks enclosed by
the circles and gluing both circles, we get a flow on
the double torus, still having Ω as an exceptional ω-
limit set. By Gutierrez’s theorem [Gutierrez, 1986],
this flow is not topologically equivalent to any C2

flow.

In fact, as our second main result emphasizes,
if an excepcional set is an ω-limit set for some flow,
then this flow must be pretty “exceptional” as well.

Theorem C. If Ω ⊂ S is exceptional and Φ is a
flow on S realizing it as an ω-limit set, then the set
of singular points of Φ has infinitely many compo-
nents.

It is well known that if the flow Φ is an-
alytic, then its set of singular points has a fi-
nite number of components (for a proof see, e.g,
[Jiménez & Llibre, 2007; Theorem 4.3]) so, by The-
orem C, it cannot have an exceptional set as one of
its ω-limit sets. It is important to emphasize that it
is quite possible for an analytic flow to have an ex-
ceptional ω-limit set: Cherry’s flow [Cherry, 1938]
is a paradigmatic and remarkable example.

Thus in the analytic setting ω-limit sets admit
the following simpler description:

Corollary D. Let Φ be an analytic flow on S and
let Ω be an ω-limit set for Φ. Then either Ω is the
boundary component of a regular annulus or it is
the closure of a region homeomorphic neither to S2,
nor to P2 nor to any region in B2.

Needless to say, Corollary D is far from provid-
ing a topological characterization of ω-limit sets for
analytic flows. For instance in S2 there are many
simply connected regions whose boundary cannot
be an ω-limit set for any analytic flow. Up to home-
omorphisms, the ω-limit sets of analytic flows have
been recently characterized for the surfaces R2,S2

and P2 in [Jiménez & Llibre, 2007].

3. Proofs of the direct statement of Theo-
rem A and of Theorem C

We begin by stating two well-known ge-
ometrical lemmas on surfaces, see, e.g.,
[Jiménez & Soler, 2004; Theorem 2.3 and
Lemma 2.4] for the proofs. In the first one
Mg (respectively, Ng) denotes a fixed orientable
(respectively, nonorientable) connected surface of
genus g. Since these surfaces are unique up to
homeomorphisms, the sphere S2, the torus T2, the
projective plane P2 and the Klein Bottle B2 are
homeomorphic to M0, M1, N1 and N2, respectively.
We denote by S∗ and S∗∗ the (noncompact) surface
which results after removing one and two points,
respectively, from S. Again, notice that S∗ and S∗∗

are uniquely defined up to homeomorphisms. By
R ∼= T we mean that R and T are homeomorphic.

Lemma 3.1. Assume that S is connected, let C ⊂
S be a circle and let g be the genus of S.

(i) If C is nonorientable (thus S ∼= Ng), then
either S\C ∼= M(g−1)/2,∗ or S\C ∼= Ng−1,∗.

(ii) If C is orientable and S\C is connected, then
S\C ∼= Mg−1,∗∗ (if S ∼= Mg), and S\C ∼=
M(g−2)/2,∗∗ or S\C ∼= Ng−2,∗∗ (if S ∼= Ng).

(iii) If C is orientable and non-null homotopic,
and S\C = O1 ∪ O2 for some pairwise dis-
joint open sets O1 and O2, then there are
positive integers g1, g2 such that g1 + g2 = g
with Oi

∼= Mgi,∗, i = 1, 2 (if S ∼= Mg), and
such that 2g1 + g2 = g with O1

∼= Mg1,∗,
O2

∼= Ng2,∗, or g1 + g2 = g with Oi
∼= Ngi,∗,

i = 1, 2 (if S ∼= Ng).

Remark 3.1. If S and C are as in the previous
lemma one more (trivial) possibility could arise:

(iv) If C is orientable and null homotopic then
S\C = O1 ∪ O2 for some pairwise disjoint
open sets O1 and O2 such that O1

∼= S∗ and
O2

∼= S2
∗.

Lemma 3.2. Let R be a connected surface, R 6∼=
S2. Then R is simply connected if and only if it
contains no non-null homotopic circles.

Until the end of the section the surface S, the
quasiminimal set Ω and the flow Φ on S satisfy-
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ing Ω = ωΦ(u) for some u ∈ S will remain fixed.
There is no loss of generality in assuming that S is
connected.

Now we need some terminology. We say that
a disk N ⊂ S is a flow box for Φ if there is an
embedding θ : [−1, 1] × [−1, 1] → N such that
θ([−1, 1] × {s}) is an orbit segment of Φ for ev-
ery s ∈ [−1, 1]. It is well known that every
nonsingular point has a flow box neighbouring it
[Whitney, 1933]. We say that a circle C is transver-
sal to Φ if for every y ∈ C there is a flow box Ny

(θy : [−1, 1] × [−1, 1] → Ny) such that θy(0, 0) = y
and θy({0} × [−1, 1]) = Ny ∩ C. Since u is recur-
rent, there is an orientable transversal circle C to
Φ intersecting Φu(R) [Gutierrez, 1978; Lemma 1.2].
Notice that C is non-null homotopic because u is re-
current and that C ∩ Ω is a Cantor set because Ω
is quasiminimal and by [Gutierrez, 1986; Structure
Theorem, St. 4]. From now on we also fix the circle
C.

In what follows, if a, b ∈ C, then [a; b] will al-
ways refer to an arc in C or an orbit segment of
Φu(R) with endpoints a and b. What arc we are
exactly referring to will be easily inferred from the
context. We also mean [a; a] = {a}. We denote by
A(C) the partition of C made up by all the (possi-
bly degenerate) arcs [a; b] ⊂ C satisfying one of the
following statements:

• [a; b] is the closure of a component of C\Ω;

• a = b and it is not contained in the closure of
any component of C\Ω.

Since Ω is both the α- and the ω-limit set
of uncountably many orbits in Ω [Cherry, 1937],
[Aranson et al., 1996; Theorem 2.1, p. 57], we can
assume that the orbit of u if one of them, and also
that it does not contain any endpoint of some non-
degenerate component of C\Ω. We emphasize that
A(C) ∼= C when A(C) is endowed with the quotient
topology (because C ∩ Ω is a Cantor subset of C),
see for more details [Gutierrez, 1986; (3) in Proof
of Lemma 3.9].

The key tool in the proofs of the direct state-
ment of Theorem A and Theorem C is a paper
by Gutierrez [Gutierrez, 1986] where quasiminimal
sets were investigated to a great depth. We next
detail the part of this work we are interested in.

For the point u having the properties listed
above and the circle C, let f : D ⊂ C → C be the

forward Poincaré map induced by the flow Φ, that
is, f(v) = Φt(v) with t the first positive number
such that Φt(v) ∈ C (whenever this makes sense).
The forward Gutierrez map fC : D ⊂ A(C) →
A(C) is defined by fC([a; b]) = [c; d] whenever one
of the following two conditions is satisfied:

• a = b ∈ Φu(R) and c = d = f(a);

• [a; b] ∩ Φu(R) = ∅ and there are
points {pr}

∞
r=1, {qn}

∞
r=1 in Φu(R) such

that limr→∞ pr = a, limr→∞ qr = b,
limr→∞ f(pr) = c, limr→∞ f(qr) = d; more-
over, for every r we have that [a; b] ⊂ [pr; qr],
[c; d] ⊂ [f(pr); f(qr)], and the circle

[pr; qr]∪ [pr; f(pr)]∪ [f(pr); f(qr)]∪ [qr; f(qr)]

is the boundary of a disk.

The backward Poincaré map g : E ⊂ C →
C and the backward Gutierrez map gC : E ⊂
A(C) → A(C) are similarly defined. Notice that
f and g, and similarly fC and gC , are inverse each
other (whenever their composition makes sense).
Also, observe that if [a; b] 6= [c; d] are in D, then
fC([a; b]) 6= fC([c; d]) regardless these images be-
long to D∪E or not, and a similar statement holds
for g. Hence we use the notation g = f−1 and
gC = f−1

C , when f i(p) and f i
C(A) have the obvious

meaning for every i ∈ Z.

Now we have:

Theorem 3.3 ([Gutierrez, 1986]). The follow-
ing statements hold:

(i) A(C) \ (D ∪ E) is finite;

(ii) any forward or backward full orbit of the map
fC is dense in A(C).

By a forward (resp. backward) full orbit of
fC we mean the sequence {f i

C(A)}∞i=0 (respectively,
{f−i

C (A)}∞i=0) whenever it is well defined.

From now on we assume additionally that Ω is
a exceptional set. Then we can get some additional
information about the orbit of u:

Lemma 3.4. Let O be a component of S\Ω. Then
Φu(R) ∩ BdO = ∅.
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Proof. Assume the contrary. Then BdO = Ω. If
O is simply connected and p is an arbitrary point
of O, then Ω is one of the boundary components
of the regular annulus O\{p} (the other one is
the point p itself). If O is not simply connected,
then we use Lemma 3.1 and Lemma 3.2 finitely
many times to find pairwise disjoint non-null ho-
motopic circles {Ci}

n
i=1 in O and a compact surface

N , ∂N = 0, such that O\
⋃n

i=1 Ci is homeomor-
phic to a region V ⊂ N with the property that
V ∪ {qj}

l
j=1 is simply connected for some points qj

from N . Let h : O\
⋃n

i=1 Ci → V denote the cor-
responding homeomorphism, find a circle D ⊂ V
enclosing the points qj and let U be the component
of O\(h−1(D)∪

⋃n
i=1 Ci) containing Ω in its bound-

ary. Clearly, U is a regular annulus and Ω is one
of its two boundary components (being h−1(D) the
other one).

Thus, in any case, we have proved that Ω is one
of the boundary components of a regular annulus in
S. This is impossible because Ω is exceptional.

The exceptionality of Ω also implies that
the Gutierrez maps have some special properties.
Namely, let A ∈ D (respectively, A ∈ E) be a non-
degenerate arc. We say that A is forward consistent
(respectively, backward consistent) if fC(A) ∈ D
(respectively, f−1

C (A) ∈ E) is also nondegenerate
and there is a component of S\Ω intersecting both
A and fC(A) (respectively A and f−1

C (A)). Then
we have:

Lemma 3.5. The map fC has neither forward nor
backward full orbits of, respectively, forward and
backward consistent arcs.

Proof. Suppose not. Then some of the sequences
{f i

C(A)}∞i=0 or {f−i
C (A)}∞i=0 is well defined and

hence dense in A(C) (Theorem 3.3(ii)); moreover
it consists exclusively of nondegenerate arcs. Since
there is a component O of S \Ω intersecting all arcs
of this dense sequence, we get Φu(R) ∩ C ⊂ BdO,
which contradicts Lemma 3.4.

Let {Ok}k denote the family of components of
S\Ω intersecting C at some arc from D ∩ E , but at
no arc from A(C)\ (D∪E). Let O = Ok for some k
and fix an arc A ∈ D ∩ E contained in O. Accord-
ing to Lemma 3.5, there are (minimal) nonnegative
integers l, m such that f l

C(A) is not forward consis-

tent and f−m
C (A) is not backward consistent. No-

tice that the sets f−m
C (A) and f l

C(A) also belong to
D ∩ E and their definitions only depend on O. We
denote them in the next lemma by, respectively, Ak

and Zk.

Lemma 3.6. Let O = Ok for some k. Then the
following statements hold:

(i) If B is the family of orbits of Φ in BdO inter-
secting C, then T = O ∪

⋃
B∈B

B is a simply
connected surface;

(ii) Cl O contains some singular point;

(iii) if U = Or for some r 6= k and Ak 6= Zr,
Zk 6= Ar, then there are disjoint disks D and
E such that O ⊂ D, U ⊂ E, and BdD∪BdE
does not contain any singular point.

Proof. Let A, l and m as before. For every
−(m + 1) ≤ i ≤ l + 1 write f i

C(A) = [ai; bi]
and find points {pr}

∞
r=1, {qr}

∞
r=1 in Φu(R) satis-

fying limr→∞ f i(pr) = ai, limr→∞ f i(qr) = bi,
[ai; bi] ⊂ [f i(pr); f

i(qr)] for every r, and such that
every circle

[f−(m+1)(pr); f
−(m+1)(qr)]

∪ [f−(m+1)(pr); f
l+1(pr)] ∪ [f−(m+1)(qr); f

l+1(qr)]

∪[f l+1(pr); f
l+1(qr)]

is the boundary of a disk Dr intersecting C exactly
at the sets [f i(pr); f

i(qr)]. Due to Lemma 3.4 and
the specific properties of O (take also into account
the transversality of C), Cl O does not intersect any
of the circles Bd Dr, hence Cl O ⊂ Int Dr for every
r.

We prove (i). We have that ClT intersects the
transversal C exactly at the arcs [ai; bi], −m ≤ i ≤
l. Thus T is locally homeomorphic to a disk at all
points ai, bi, −m ≤ i ≤ l (and hence at all points
from T because the definition of B), that is, T is
a surface. Furthermore, O (and then T ) is simply
connected because Ω (and then S \O) is connected,
so D1 \ O is connected as well.

We prove (ii). Let v ∈ BdO. If ωΦ(v) is a
periodic orbit, then Ω = ωΦ(u) contains a periodic
orbit hence it is a periodic orbit itself (see, e.g.,
[Aranson et al., 1996; Lemma 1.6, p. 41]), a con-
tradiction because u is nontrivial recurrent. Then
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ωΦ(v) must contain a singular point (recall that
Cl O is contained in a disk so we can use a standard
Poincaré-Bendixson argument) and we are done.

To prove (iii) we define, with respect to the
region U , the sets [cj ; dj ] and the disks Es in similar
fashion to the sets [ai; bi] and the disks Dr with
respect to O. By the hypothesis all sets [ai; bi],
[cj ; dj ] are pairwise disjoint, hence there are r and
s such that Dr and Es are also disjoint. These are
the disks D and E we are looking for.

We are ready to prove the first statement of
Theorem A. Let {Rn}n denote the family of sur-
faces R such that IntR = Ok for some k, ∂R is
the set of points from BdR whose orbit intersects
C, and m ≥ 1 or l ≥ 1 with the notation before
Lemma 3.6. Notice that all Rn are well-defined
simply connected surfaces by Lemma 3.6(i). More-
over, the condition on the numbers m and l ensures
that they have twisting sections, that is, they twist
around C. Furthermore, they are pairwise disjoint.

Observe that, by Theorem 3.3(i), there are at
most finitely many components of S\Ω intersecting
C which also intersect some arc from A(C)\(D∪E).
The closure of the union of such components cannot
intersect Φu(R) (Lemma 3.4). Then every arc from
A(C) close enough to a given point of Φu(R) ∩ C
is included in a twisting section of some Rn (here
we also use the continuity of Φ and the transversal-
ity of C). This implies Ω = Bd

⋃
n Rn (and then,

because of Lemma 3.4, that the family {Rn}n is
infinite), that Rm ∪ Cl (

⋃
n Υ(Rn)) is a neighbour-

hood of ∂Rm for every m, and property (iii) in Def-
inition 2.4. Furthermore, the existence of a flow
box neighbouring every nonsingular point of S and
the fact that every given component of ∂Rn is a
set Φv(I) for some v ∈ S and some open interval
I, guarantee property (ii) in Definition 2.4. Hence
{Rn}n is a feasible family for C and the proof of
the direct part of Theorem A is finished.

Theorem C is a direct consequence of
Lemma 3.6(ii) and (iii), because these statements,
together with the infiniteness of the family {Ok}k,
immediately imply that the set of singular points of
Φ has infinitely many components.

4. Proof of the converse statement of The-
orem A

We recall that a curve B in S was defined in Sec-
tion 2 as the image B = ϕ(I) of a continuous one-
to-one map ϕ : I → S for either an interval or a
circle I. We call ϕ a parametrization of B. In the
particular case when I = [a, b] we get an arc with
endpoints ϕ(a) = u and ϕ(b) = v to which we some-
times refer as [u; v]. We emphasize that if I is not
compact, then the immersion ϕ : I → S need not
be an embedding, that is, the restriction ϕ : I → B
need not be a homeomorphism.

We say that two parametrizations ϕi : Ii → B,
i ∈ {1, 2}, induce the same orientation on B if
ϕ−1

2 ◦ϕ1 : I1 → I2 is an increasing homeomorphism.
This defines an equivalence relation in the family
of parametrizations of B and each of its equiva-
lence classes is called an orientation of B, any of
the maps belonging to one such class being called
a parametrization compatible with that orientation.
After associating a curve one of its orientations we
get an oriented curve. Notice that some curves (e.g.
the “eight figure”) admit more than two orienta-
tions; still, all curves we will use admit just two.
If A is an oriented arc and ϕ : [a, b] → A is a
parametrization of A compatible with its orienta-
tion, then we call ϕ(a) = u and ϕ(b) = v, respec-
tively, the initial and the final endpoint of A and
use the notation [u, v], rather than [u; v], to repre-
sent A.

Recall also that if A, B are arcs, then the Haus-
dorff distance between A and B is defined by

dH(A, B) = max{max
u∈A

min
v∈B

dist(u, v), max
v∈B

min
u∈A

dist(u, v)}.

If in addition A and B are oriented, then the
Fréchet distance between A and B is defined by

dF (A, B) = inf
h∈H

max
u∈A

dist(u, h(u)),

where H is the family of all homeomorphisms h :
A → B preserving the orientations of A and B.
Here we mean that h preserves the orientations of
A and B if whenever ϕ : I → A is compatible with
the orientation of A, h ◦ ϕ is compatible with that
of B.

To illustrate the difference between the Haus-
dorff and Fréchet distances consider an horizontal
arc A, three horizontal arcs B1, B2, B3 very close to
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A and the “S”-shaped arc B arising after connect-
ing the right endpoints of B1 and B2 and the left
endpoints of B2 and B3 with small arcs. The num-
ber dH(A, B) is very small; the number dF (A, B) is
not.

Also in Section 2 we introduced the notion of
Whitney regular family of curves (Definition 2.1),
which played an important role in the definition of
feasible family and hence in the formulation of The-
orem A. It was formulated in the early thirties by
Whitney when looking for conditions to ensure that
a curve foliation gives rise to a flow [Whitney, 1933].
Next we explain Whitney’s approach in some detail.

Assume that all curves from the family B are
immersions of R or S1, are pairwise disjoint and
fill an open subset U of S (we then say that B
is full). Then Whitney showed in [Whitney, 1933]
that Whitney regularity is equivalent to the prop-
erty that for every p ∈ B ∈ B there are a neighbour-
hood U of p in O and a homeomorphism h : [0, 1]×
[0, 1] → U such that every arc h([0, 1] × {x}), x ∈
[0, 1] is contained in some curve from B. (Inciden-
tally, he showed that property (a) in Definition 2.1
is redundant some years later [Whitney, 1941] —
this need not be the case if the family B is not full.)

Furthermore, assume that in Definition 2.1 all
curves from B are oriented (with their subarcs in-
heriting the corresponding orientations) and replace
(b) by

(b)’ if [p, q] ⊂ O∩B (respectively, [q, p] ⊂ O∩B),
p′ ∈ O ∩ B′ for some B′ ∈ B and dist(p, p′) <
δ, then there is some [p′, q′] ⊂ O ∩ B′ (resp.
[q′, p′] ⊂ O ∩B′) such that dF ([p, q], [p′, q′]) <
ǫ (respectively, dF ([q, p], [q′, p′]) < ǫ)

(when we call B a full Whitney regular orientable
family). Then Whitney proved in [Whitney, 1933]
(see [Nikolaev, 2001; pp. 216–222] for a recent ref-
erence) that there is a flow realizing B as its set of
nonsingular orbits. More precisely:

Theorem 4.1 ([Whitney, 1933]). Let B be a
full Whitney regular orientable family and let U de-
note the union set of the curves from B. Then there
is a flow Φ on S such that every curve from B is
an orbit of Φ. Moreover, the points from S\U are
exactly the singular points of Φ and the orientation
of every curve from B coincides with that induced
by Φ.

Later on we will resort to Theorem 4.1 to con-
struct the required flow in the converse statement
of Theorem A. This construction is rather involved,
so we have divided it into several steps. To begin
with, we must still introduce another variation of
Whitney regularity, its main feature described by
Lemma 4.3.

Definition 4.2. Let B be a family of curves in S
and let D ⊂ S. We say that B is almost regular
in D if for every ǫ > 0 there is δ > 0 such that if
[p′; q′] ⊂ D∩B′ for some B′ ∈ B and dist(p′, q′) < δ,
then diam([p′; q′]) < ǫ.

If B is almost regular in S, then we just say
that B is almost regular.

Observe that this is just property (a) in Defi-
nition 2.1. In particular, if D is a Whitney regular
neighbourhood for some family of curves B, then B
is almost regular in D (and the family of the inter-
section curves of B with D is almost regular).

Lemma 4.3. Let B be an almost regular family of
arcs. Then for every B ∈ B there are parametriza-
tions ϕB : [0, 1] → B such that the family {ϕB}B∈B

is equicontinuous.

Proof. Find finite decompositions Pr of S into disks
with pairwise disjoint interiors and diameters at
most 1/r, r ∈ N. We can suppose that each Pr+1

refines Pr, that is, if T ∈ Pr+1, then there is
P ∈ Pr such that T ⊂ P . Now, for every given arc
B ∈ B, it is easy to construct inductively partitions
Qr = Qr

B of the interval [0, 1], with each Qr+1 re-
fining Qr, and define correspondingly the map ϕB,
in such a way that all intervals from Q1 have the
same length, all intervals from Qr+1 contained in
the same interval from Qr have the same length,
and, finally, for every interval [a, b] ∈ Qr there is
a disk T ∈ Pr such that {ϕB(a), ϕB(b)} ⊂ T and
ϕB([0, 1]\[a, b]) ∩ T = ∅. The equicontinuity of the
maps ϕB follows from Definition 4.2 and the fact
that each interval from a partition Qr

B has at least
length 1/(Πr

s=1 CardPs).

Throughout this section, {Rn}n denotes a fea-
sible family for some circle C and A is the family of
components of all combinatorial boundaries ∂Rn of
the surfaces Rn. Also, K denotes the ternary Can-
tor set, with {(ai, bi)}

∞
i=1 being the family of com-
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ponents of [0, 1]\K and N =
⋃

∞

i=1{ai, bi}. When
speaking about a partition of K we refer to the cor-
responding decomposition of K into pairwise dis-
joint compact sets after intersecting K with a finite
family of pairwise disjoint compact intervals cover-
ing it. As before, if P,Q are partitions of K, then
we say that Q refines P if for every L ∈ Q there is
M ∈ P such that L ⊂ M .

4.1. Regularizing the boundaries of the sur-

faces Rn

Subsection 4.1 is the most difficult part of our
construction. Here we show that every arc A in
the combinatorial boundary of each of the surfaces
Rn is “regularizable”. Essentially this means that,
near to and together with A, the family of twisting
boundaries of all twisting sections of the surfaces
Rn is rectifiable. The union set of these twisting
boundaries has empty interior, so there is no hope
of embedding any square [0, 1]× [0, 1] in it; thus we
are looking for an embedding of K × [0, 1] instead.
Indeed in such a case one gets more or less by force
an embedding of [0, 1] × [0, 1] into the union set of
A and the twisting sections of the surfaces Rn; once
this is done it is relatively easy to define the desired
flow by means of Theorem 4.1 (see Subsection 4.2).
At this stage only properties (i) and (ii) in Defini-
tion 2.4 are used; we will need Definition 2.4(iii) at
the very end of proof to show that the flow we have
just constructed satisfies the required properties.

Definition 4.4. Let A′ ⊂ ∂Rm be an arc for some
m. We say that A′ is regularizable if there is an
embedding h : [0, 1] × [0, 1] → S such that:

(i) h([0, 1] × {0}) = A′ and h([0, 1] × {1}) ⊂
Υ(∂Rl) for some l;

(ii) for every i there is Rk such that h([0, 1] ×
(ai, bi)) ⊂ Υ(Rk) ∩ Int Rk and h([0, 1] ×
{ai, bi}) ⊂ Υ(∂Rk).

We call every such map h a regularization of A′.

If A is an arc and p ∈ A is not an endpoint of
A, then we call p an inner point of A. We call the
union set of all inner points of A its inner set and
denote it by InnA. If A = [u; v], then we also write
InnA = (u; v).

Lemma 4.5. Let p ∈ ∂Rm for some m. Then
there are arcs A, B, Y, Z, an open neighbourhood U
of p, and a family of arcs E such that:

(i) the inner sets of the arcs A, B, Y, Z are pair-
wise disjoint, their union set is the boundary
of a disk D, and E is the family of arcs in⋃

n Υ(∂Rn) lying in D and intersecting BdD
at exactly one point of Y and one point of Z;
moreover:

– p ∈ InnA and A ⊂ ∂Rm,

– B ⊂ Υ(∂Rl) for some l,

– D ∩ Rm = A and D ∩ Rl ∩ W = B for
some neighbourhood W of B,

– there is an arc [p; p′] ⊂ U ∩ D with
(p; p′) ⊂ Int D and p′ ∈ InnB;

(ii) if u ∈ U ∩ IntD ∩
⋃

n Υ(∂Rn), then there is
E ∈ E such that u ∈ E;

(iii)
⋃

n Υ(Rn) is dense in D;

(iv) E is almost regular in D; in particular, E ∪
{A, B} is an almost regular family.

Proof. The main ideas of the proof are illustrated
by Figure 1. Let O be a small open disk neigh-
bouring p (whose closure is a disk) such that, by
Definition 2.4(ii),

A is almost regular in ClO (1)

and, by Definition 2.4(i),

O ⊂ Rm ∪ Cl (
⋃

n Υ(Rn)). (2)

We also assume that there is an arc A = [r; q] ⊂
∂Rm with p ∈ (r; q) ⊂ O and r, q ∈ BdO, which
disconnects O into two open disks, one of them
included in IntRm and the other one, call it V ,
disjoint with Rm. In particular observe that if
u ∈ V ∩ BdRn for some n 6= m, then u ∈ Υ(∂Rn)
and there is an arc [ru; qu] ∈ Cl O ∩ Υ(∂Rn) with
u ∈ (ru; qu) ⊂ O and ru, qu ∈ BdV \A. Fix now a
much smaller open neighbourhood U of p and de-
note by D the family of all arcs [ru; qu] with the
additional property that u ∈ U . Then

inf
X∈D

diamX > 0. (3)

Let us define in D an equivalence relation ≈ as
follows. If X, X ′ ∈ D then we say that X ≈ X ′ if
either X = X ′ or the following two conditions hold:
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• either X is not contained in the disk in ClV
delimited by X ′ and A, or X ′ is not included
in the disk in ClV delimited by X and A;

• the disk in ClV enclosed by X, X ′ and the
(possibly degenerated) disjoint arcs E, E′ ⊂
BdV \A connecting their endpoints contains
no arc from D intersecting just one of the sets
E, E′.

We denote by [X] the equivalence class containing
X. Also, we introduce in D/ ≈ a partial order rela-
tion ≺ by saying that [X ′] ≺ [X] if [X ′] 6= [X] and
InnX ′ is contained in the component of ClV \X
not including A. Clearly, both ≈ and ≺ are well
defined.

We claim that there is a maximum for this
ordering. Notice that (1) and (3) imply that ev-
ery infinite subset of D/ ≈ contains some pair
[X ′] ≺ [X]. In fact, if D/ ≈ is infinite, then it is
easy to construct either an infinite increasing chain
[X1] ≺ [X2] ≺ [X3] ≺ . . . or an infinite decreasing
chain [X1] ≻ [X2] ≻ [X3] ≻ . . . . On the other hand,
observe that if [X ′] ≺ [X], then there is [X ′′] with
[X ′′] ≺ [X] and [X ′] ⊀ [X ′′], [X ′′] ⊀ [X ′], and we
can use the previous chain to construct an infinite
subset of D/ ≈ such that [X] ⊀ [X ′] for each of
its pairs of points [X], [X ′], a contradiction. Thus
D/ ≈ is finite and (2) implies that p is in the closure
of the union set of all arcs from some [X] ∈ D/ ≈.

Next we show that [X] is the maximum for ≈.
To do this, take a sequence Xr ∈ [X], r ∈ N,
approaching p, and such that any Xr+1 lies be-
tween A and Xr. Since the arcs Xr are contained
in ClV ⊂ Cl O, (1) implies that the family {Xr}
is almost regular. By Lemma 4.3 and the Arzelá
theorem, we can assume that the corresponding
parametrizations ϕXr

: [0, 1] → Xr ⊂ V converge
uniformly to some continuous map ϕ : [0, 1] → V .
Moreover, (1) implies that if ϕ(a) = ϕ(b) = u, then
ϕ([a, b]) = {u}. Hence ϕ([0, 1]) is an arc. Indeed,
in view of Definition 2.4(ii), we can assume that
there is a neighbourhood of ClO which is a regu-
lar neighbourhood of p and then A = ϕ([0, 1]) (this
is the only moment in the whole proof where we
need property (b) of regular neighbourhood in Def-
inition 2.1). This clearly implies that [X] is a max-
imum for ≺.

Say X ⊂ Υ(∂Rl). Slightly modifying O if nec-
essary, we can assume that either the open disk R

enclosed by A, X and corresponding arcs in BdV
does not contain any points of IntRl close enough
to X, or that all points of R close enough to X be-
long to IntRl. It is not restrictive to assume that
the first case occurs, since otherwise there is an arc
X ′ ∈ [X] in ClR that can be connected to X via
an arc F in Υ(Rl) ∩ Cl R ∩ U with InnF ⊂ Int Rl

(in particular X ′ ⊂ Υ(∂Rl)), and again possibly
modifying O we can assume that the open disk en-
closed by A, X ′ and the corresponding arcs in BdV
does not contain any points of IntRl close enough
to X ′. We can also assume that there is a curve
(p; p′) ⊂ U ∩ R with p′ ∈ InnX. Now it suffices
to take B = X and choose as Y and Z the above-
mentioned arcs in BdV , with D = Cl R, and E
being the family of all arcs from [X]\{X} included
in D. Indeed, the definition of [X] and its condition
of maximum for ≺ guarantee that E is the family
of arcs from D contained in D\(A ∪ B), and then
the family of arcs in

⋃
n Υ(∂Rn) lying in D and in-

tersecting Bd D at exactly one point from Y and
one point from Z (since any such arc must inter-
sect (p; p′) and hence belong to D); thus (i) and (ii)
are satisfied. Properties (iii) and (iv) follow from
(1) and (2).

In the following four lemmas the point p ∈ ∂Rm

will remain fixed. Our immediate aim is to show
that there is a regularizable arc A′ ⊂ ∂Rm with
p ∈ InnA′ (Lemma 4.9). Until then we use the
notation of Lemma 4.5 and assume that all arcs
from E are oriented so that their initial endpoints
lie in Y .

Let F denote the family of all oriented arcs in
D with initial endpoint in Y and final endpoint in
Z and endow it with a structure of metric space
by using the Fréchet distance dF . We introduce in
F a partial order relation < as follows: F < F ′ if
F 6= F ′ and the sets in D enclosed by A and F
and by F ′ and B have pairwise disjoint interiors.
Observe that < is a total ordering in E .

Lemma 4.6. Let (Er)r ⊂ E be an increasing (re-
spectively, decreasing) sequence and, for every r, let
Dr ⊂ D be the disk delimited by A (resp. B) and
Er. Then Cl(

⋃
r Dr) is a disk in D delimited by

A and an arc E ∈ F and (Er)r converges to E in
(F , dF ).

Proof. Assume for instance that (Er)r is increas-
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Fig. 1. In the above figure the only possible equivalences are X6 ≈ X7, X4 ≈ X8 and X1 ≈ X2 ≈ X3;
if this is so, then the only inequalities are [X1] ≺ [X9], [X4] ≺ [X9], [X5] ≺ [X9], [X6] ≺ [X9] (thus, for
instante, [X1] 6≺ [X4] and [X4] 6≺ [X1]).

ing. Using the equicontinuity of appropriate
parametrizations ϕr = ϕEr

: [0, 1] → Er we can
find a subsequence (ϕrl

)l converging uniformly to
some ϕ : [0, 1] → D with E = ϕ([0, 1]) an arc
(Lemma 4.5(iv) and Lemma 4.3). Moreover E ∈ F
and, because of the monotonicity, the disk in D de-
limited by A and E is Cl(

⋃
rl

Drl
) = Cl(

⋃
r Dr). A

similar argument shows that every subsequence of
(Er)r has a sub-subsequence converging to E. This
suffices to guarantee the convergence of the whole
sequence (Er)r.

Lemma 4.7. There is an order preserving bijective
map Σ : N → E such that, for every i, there is
k = k(i) satisfying Σ(ai), Σ(bi) ∈ Υ(∂Rk).

Proof. Take an arbitrary arc E ∈ E , say E ⊂
Υ(∂Rk). Because of Lemma 4.5(i), (ii) and (iii) we
can find an arc F in Υ(Rk)∩D∩U with its inner set
in IntRk, and having one of its endpoints in E and
the other one in some E′ ∈ E with E′ ⊂ Υ(∂Rk). In
particular, the disk in D delimited by E and E′ en-
closes no other arc from E . Say for instance E < E′.
Then we define Σ(a1) = E, Σ(b1) = E′. Repeat-
edly using this procedure and taking Lemma 4.5(i)
and (iii) into account we easily get the desired map
Σ.

In view of Lemmas 4.6 and 4.7, the arcs
F−

x , F+
x ∈ F given by F−

x = limz→x,z∈N,z<x Σ(z)
and F+

x = limz→x,z∈N,z>x Σ(z) are well defined for
every x ∈ K. Here we mean F+

z = Σ(z) (respec-
tively, F−

z = Σ(z)) if z = ai (respectively, z = bi)
for some i, and also F+

0 = A, F−

1 = B. Clearly, we
have F−

x ≤ F+
x < F−

y ≤ F+
y whenever x < y. Fur-

thermore, because of Lemma 4.5(ii), (iii) we have
for every x:

• F−
x ∩ F+

x 6= ∅;

• neither the first nor the last intersection point
of F−

x and F+
x lie in U ;

• there are no arcs in F−
x and F+

x exactly inter-
secting at their endpoints.

Thus F−
x and F+

x intersect exactly at an arc Fx

that contains all points from (F−
x ∪ F+

x ) ∩ U .
From the construction it is clear that the family
{F−

x , F+
x }x∈K is almost regular. Hence, if we define

in {F−
x , F+

x : x ∈ K} ⊂ F an equivalence relation
∼ by identifying F−

x and F+
x for any x ∈ K, we can

reuse the argument from Lemma 4.6 to prove that
the map Γ : K → {F−

x , F+
x : x ∈ K}/ ∼ given by

Γ(x) = [F−
x ]∼ = [F+

x ]∼ is a homeomorphism.
Next we improve this result by introducing the

family G of all subarcs of the arcs Fx, x ∈ K. After
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orienting the arcs from G in the natural way and
endowing it with the Fréchet distance, G becomes
a metric space. As it turns out:

Lemma 4.8. There is a continuous map Θ : K →
G such that Θ(x) ⊂ U and Θ(x) is a subarc of Fx

for every x ∈ K, and p ∈ Inn Θ(0).

Proof. Let [p; p′] be as in Lemma 4.5(i) and let ǫ > 0
be small enough such that all points of D which are
at a distance less than 2ǫ of [p; p′] belong to U .
Using the uniform continuity of Γ we can construct
a sequence of partitions Kr of K, r ∈ N, with every
Kr+1 refining Kr, and arcs Gr

x ⊂ Fx, such that:

• every G1
x has some inner point in [p; p′] and

its endpoints are at a distance at less ǫ/2 and
at most 3ǫ/2 from [p; p′];

• dF (Gr
x, Gr

y) < ǫ/2r+1 for every pair of points
x, y belonging to the same L ∈ Kr;

• Gr
x = Gr+1

x whenever x is simultaneously the
smallest point of some L ∈ Kr and some M ∈
Kr+1.

It is routine to check that every sequence (Gr
x)r con-

verges to some nondegenerate arc Gx ⊂ Fx and that
the map Θ(x) := Gx is continuous. We emphasize
that p is the inner point to G1

0 belonging to [p; p′];
hence p ∈ InnG0.

Lemma 4.9. There is a regularizable arc in ∂Rm

having p as an inner point.

Proof. First we explain how to define the map h at
[0, 1] × K so that its image is the union of all arcs
from Θ(K), with Θ the map from Lemma 4.8; later
on we extend it to the rest of points of [0, 1]× [0, 1].

Since Θ is continuous, there is d1 > 0 such that
diam(Θ(x)) > d1 for every x ∈ K. We claim that
there are an integer l(1), a number 0 < ǫ < 1

2 and
finite sets Px ⊂ Θ(x), with CardPx = l(1) + 1 and
Px containing the endpoints of Θ(x), such that the
distance between consecutive points of any Px is
greater than ǫ and less than 1/2.

To prove this we proceed as follows. Find ǫ′ > 0
small enough so that all subarcs of the arcs Θ(x)
with endpoints at a distance at most 2ǫ′ have di-
ameters less than min{d1, 1/2}: this is possible be-
cause the family {Θ(x)}x is almost regular. Now it

is easy to construct sets P ′
x ⊂ Θ(x) containing the

endpoints of Θ(x) such that the distance between
every pair of consecutive points of P ′

x is at most 2ǫ′

and the distance between every pair of points of P ′
x

is at least ǫ′: for instance, the closest point of P ′
x

to the initial endpoint of Θ(x) is the last point in
Θ(x) which is exactly at a distance ǫ′ from its initial
endpoint.

Since D is bounded, there is a number l(1) such
that every subset in D whose points are pairwise
separated by a distance at least ǫ′ has cardinal-
ity at most l(1). Now, to construct the set Px,
we fix two consecutive points u and v of P ′

x, add
to P ′

x a point w1 in Θ(x) between u and v with
dist(u, w1) = dist(v, w1), then add a point w2 be-
tween u and w1 with dist(u, w2) = dist(w1, w2) and
so on, until getting a set of the desired cardinality
l(1) + 1. Clearly, the number ǫ = ǫ′/2l(1) does the
job.

Because of the uniform continuity of Θ, there
is a partition L1 of K such that if x, y ∈ L ∈ L1,
then dF (Θ(x), Θ(y)) < ǫ/4. Now, starting from the
points of the above sets Px, it is simple to reason as
in Lemma 4.8 to find continuous maps Θ1

j,L : L → G

for every L ∈ L1 and every 1 ≤ j ≤ l(1), such that
Θ1

j,L(x) ⊂ Θ(x) and, moreover, the initial endpoint

of Θ1
1,L(x) is the initial endpoint of Θ(x), the final

endpoint of Θ1
l(1),L(x) is the final endpoint of Θ(x),

and the final endpoint of Θ1
j,L(x) is the initial end-

point of Θ1
j+1,L(x), 1 ≤ j < l(1). Furthermore, we

can assume that diam(
⋃

x∈L Θ1
j,L(x)) < 1 for every

j and every L ∈ L1.
More generally, iterating this process it is pos-

sible to find a sequence (Lr)∞r=1 of partitions of K,
an increasing sequence (l(r))r of positive integers
with l(r) dividing l(r + 1) for every r, and continu-
ous maps Θr

j,L : L → G for every 1 ≤ j ≤ l(r) and
L ∈ Lr, having the following properties:

• Θr
j,L(x) ⊂ Θ(x); moreover, the initial end-

point of Θr
1,L(x) is the initial endpoint of

Θ(x), the final endpoint of Θr
l(r),L(x) is the

final endpoint of Θ(x), and the final endpoint
of Θr

j,L(x) is the initial endpoint of Θr
j+1,L(x),

1 ≤ j < l(r);

• if x ∈ M ⊂ L with L ∈ Lr, M ∈ Lr+1, and
k = s + (j − 1)l(r + 1)/l(r) with 1 ≤ j ≤
l(r), 1 ≤ s ≤ l(r + 1)/l(r), then Θr+1

k,M (x) ⊂
Θr

j,L(x);
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• diam(
⋃

x∈L Θr
j,L(x)) < 1/r for every 1 ≤ j ≤

l(r) and L ∈ Lr.

Hence, for any t ∈ [0, 1] and x ∈ K, we can con-
struct a sequence of integers 1 ≤ jr ≤ l(r) and a
sequence of sets Lr

x ∈ Lr, such that jr/l(r) → t
as r → ∞, {x} =

⋂
∞

r=1 Lr
x, and Θr+1

jr+1,Lr+1
x

(x) ⊂

Θr
jr,Lr

x
(x) for any x. Clearly, the map h(t, x) =

⋂
∞

r=1 Θr
jr,Lr

x
(x) is well defined and continuous in

[0, 1] × K.
Now we must extend h to the rest of [0, 1] ×

[0, 1]. To do this let us first emphasize the following.
Since all arcs Θ(x) lie in U , Lemma 4.5(ii) implies
that for every given ρ > 0 there is δ > 0 such that
if u ∈ Θ(ai), v ∈ Θ(bi) and dist(u, v) < δ, then
there is an arc [u; v] ∈ U with diam([u; v]) < ρ and
(u; v) ⊂ Int Rk(i) (see the notation in Lemma 4.7).

In particular, if (ai, bi) lies between L, M ∈ Lr

and we take 0 ≤ j ≤ l(r), then we can con-
struct pairwise disjoint arcs Xi

j connecting the fi-
nal endpoints of the arcs Θj,L(ai) and Θj,M (bi)
(if j = 0 then we mean the initial endpoints of
the arcs Θ1,L(ai) and Θ1,M (bi)), with inner sets in
Int Rk(i) ∩ Υ(Rk(i)), and such that if we denote by
Di

j the disk enclosed by Xi
j−1, Xi

j , Θj,L(ai) and

Θj,M (bi), 1 ≤ j ≤ l(r), then diam(Di
j) → 0 as

i → ∞ uniformly with respect to j.
If we define h on [0, 1] × [0, 1] just taking care

that it extends its previous definition on [0, 1] × K
and it maps homeomorphically any rectangle [(j −
1)/l(r), j/l(r)] × [ai, bi] onto Di

j , then we get the
map we are looking for.

We are ready to finish this stage of the con-
struction:

Proposition 4.10. Let A ⊂ ∂Rm be an arc. Then
it is regularizable.

Proof. Clearly it is sufficient to show that if
A′, A′′ ⊂ ∂Rm are regularizable arcs intersect-
ing in a proper subarc of both A′ and A′′, then
A′∪A′′ is regularizable as well (for then we can use
Lemma 4.9 and a simple compactness argument to
prove that A is regularizable).

To do this take respective regularizations
h′, h′′ : [0, 1] × [0, 1] → S of A′ and A′′ such that

• h′([0, 1] × {x}) ∩ h′′([0, 1] × {x}) is a proper
subarc of both h′([0, 1] × {x}) and h′′([0, 1] ×
{x}) for any x ∈ K;

• for every component (ai, bi) of [0, 1]\K there
is Rk such that h′([0, 1]× [ai, bi])∪ h′′([0, 1]×
[ai, bi]) is a disk in Υ(Rk).

Clearly, such regularizations do exist: essentially we
just need to take regularizations of A′ and A′′ whose
images are very close to them and reparametrize in
the second variable.

Observe that the function t : K → R map-
ping each x ∈ K to the corresponding t = t(x)
such that h′(t, x) is the endpoint of h′([0, 1] ×
{x}) ∩ h′′([0, 1] × {x}) closest to h′(0, x) is contin-
uous. Now it is easy to define a homeomorphism
h : [0, 1]×K → h′([0, 1]×K)∪h′′([0, 1]×K) mapping
[0, 1]×{x} onto h′([0, 1]×{x})∪h′′([0, 1]×{x}) and
such that h(0, x) = h′(0, x), h(1, x) = h′(1, x) for
every x, and then extending it (as in the final part
of the proof of Lemma 4.9) to a homeomorphism
h : [0, 1]× [0, 1] → h′([0, 1]× [0, 1])∪h′′([0, 1]× [0, 1])
satisfying the requirements of Definition 4.4.

4.2. Construction of the flow

Let {Al}
∞
l=1 be the family of the components of all

twisting boundaries of the twisting sections of all
surfaces Rn and fix a “left side” and a “right side”
for C. Using Proposition 4.10 it is easy to construct
embeddings hl : [0, 1] × [−1, 1] → S such that, for
every l, hl({0, 1} × [−1, 1]) ⊂ C, hl([0, 1] × [−1, 0])
is the twisting section including Al, hl|[0,1]×[0,1] is a
regularization of Al, and, if ǫ > 0 is small enough,
then hl((0, ǫ)× [−1, 1]) is on the right side of C and
hl((1 − ǫ, 1) × [−1, 1]) is on the left side of C.

Next we construct for every l the family Bl of
arcs hl([0, 1] × {x}), x ∈ Il, with Il inductively de-
fined by I1 = [−1, 1] and Il ⊂ [−1, 1] being the
maximal interval including 0 in its closure such that
h([0, 1]× Il)\C intersects no arc from Bm for m < l
(or Il = ∅ if no such interval exists). Let B denote
the family of all curves with are a maximal union of
some arcs from

⋃
l Bl (in the case that the endpoint

of one of the arcs the curve consists of belongs to
just that arc then we take it off from the curve).

After orienting the curves from B so that they
always approach C from its left side and escape C
from its right side, it is easy to check that B is a
full Whitney regular orientable family of curves in
S. Use Theorem 4.1 to obtain the corresponding
flow Φ.
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4.3. Finishing the proof

We show that Ω = Bd
⋃

n Rn is a quasiminimal set
for Φ and that Φ is topologically equivalent to a
smooth flow on S.

Let {Vr}
∞
r=1 be a countable basis of neighbour-

hoods in S and let {Vrs
}s be the subfamily of neigh-

bourhoods intersecting Ω. Notice that (after taking
off its endpoints if necessary) every component of
every Υ(∂Rn) is an orbit of Φ. Now we use Defini-
tion 2.4(iii) (for the first and last time in the proof)
and Proposition 4.10 to construct a family {Ds}s of
disks with Ds+1 ⊂ Ds for every s, all intersecting
Ω and with diameters tending to zero, such that
the orbits of all points from Ds intersect Vrs

. Let
{p} =

⋂
s Ds. Then p ∈ Ω and the closure of its

orbit contains Ω. Indeed it is exactly Ω because
Ω is clearly invariant. Then either αΦ(x) = Ω or
ωΦ(x) = Ω. After reverting if necessary the orien-
tation of Φ, we get p ∈ ωΦ(p) = Ω.

Now we prove that Φ is topologically equiv-
alent to a smooth flow on S. According to
[Gutierrez, 1986] we must prove that every mini-
mal set of Φ is trivial, that is, it is either a singular
point, a periodic orbit, or the whole surface S = T2

(the torus) with Φ being (topologically equivalent
to) the irrational flow on T2. Assume that M is a
nontrivial minimal set of Φ and take q ∈ M . We
claim that q ∈ Ω. Suppose not. Since q is not
singular, q ∈ Int Rk for some k. Since Ω is invari-
ant and BdRk ⊂ Ω, Int Rk is invariant. Then the
restriction of Φ to R×Int Rk is a flow on IntRk hav-
ing a nontrivial recurrent point, which is impossible
for planar flows (here we use that the surface Rk is
simply connected).

Thus ωΦ(q) = M ⊂ Ω = ωΦ(p). As both p
and q are nontrivial recurrent, a theorem of Măıer’s
[Măıer, 1943] (see also [Aranson et al., 1996; Theo-
rem 2.3, p. 65]) implies that M = Ω. But Ω cannot
be minimal; for instance, every set Υ(∂Rn) consists
of nonrecurrent orbits of Φ. We have arrived at a
contradiction.

To conclude the proof we show that there is no
flow Ψ : R× S → S satisfying ωΨ(u) = Ω for some
u /∈ Ω. In view of Proposition 4.10, we can as-
sume that u ∈ Int Rk for some k. Since BdRk ⊂ Ω,
the whole orbit of u is in IntRk, which means that
BdRk = Ω. But this is impossible since, as Propo-
sition 4.10 emphasizes, if v ∈ ∂Rk then there are
points from Ω\∂Rk as close to v as required (which

cannot belong to BdRk because Rk is a surface).
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Cherry, T. M. [1937] “Topological properties of
the solutions of ordinary differential equations,”
Amer. J. Math. 59, 957–982.

Cherry, T. M. [1938] “Analytic quasi-periodic
curves of discontinuous type on a torus,” Proc.
London Math. Soc. (2) 44, 175–215.

Denjoy, A. [1932] “Sur les courbes définies par les
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