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Abstract—The purpose of this paper is to describe an integrated
tool whose aim is to assess the residential demand profile flexi-
bility through the control of space conditioning loads, mainly air
conditioner and heat pump appliances. This assessment has been
divided into two principal tasks—an estimation of the controllable
load and a selection of the optimum load control strategy according
to a target profile and a set of prefixed constraints. The tool also
provides the aggregated load behavior, allowing a comparison be-
tween different load strategies.

This tool can be applied from the customer’s and the utility’s
side. An application example to a real environment is also pre-
sented.

Index Terms—Direct load control, energy management, load
identification, load modeling.

I. INTRODUCTION

N THE last decade, electrical power systems have experi-

enced a series of changes and pressures which have modi-
fied the operation and planning of their most complex level: the
distribution of the electric power to their end-users. From those
changes, we can highlight the deregulation of the power market,
the increasing significance of the distributed generation, and the
continuous rise of the demand of energy.

In an ideal electricity market, demand-side has the opportu-
nity to participate and compete with supply-side, for example,
through demand-side bidding (DSB) [1]. To achieve the estab-
lishment of this market, it is necessary to develop and improve
tools to manage, forecast, and evaluate the possibilities to per-
form bidding in these scenarios. Nowadays, unfortunately, the
full participation of the demand in the energy and reliability
markets is the exception rather than the rule [2].

This market establishment process is also accompanied with
both: the technological maturity of small-size power plants,
which allows a decentralization of the supply; and the rapid
penetration of combined power and heat cogeneration, which
improves the economical effectiveness of the distributed energy
resources.

With respect to the demand growth, in this decade, the Euro-
pean Union assumes that the requirement of electricity will in-
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crease more than any other primary energy resource. This pat-
tern is due to the successful adoption of new electrotechnolo-
gies, as well as the emergence of new end-uses in the tertiary
and domestic sectors. For example, the growth experienced in
the electrical demand of residential users in Spain was up to 30%
in the 1997-2002 period.

Traditionally, demand-side management (DSM) has been
considered an efficient tool from supply-side. Unfortunately,
some barriers have arisen to the DSM policy implementation.
The reasons for this decline in the application of DSM policies
are the following:

* residential customers are resistant to change in general,
mainly due to the comfort problems detected in previous
load management experiences;

* energy efficiency is not a high priority, in short term, for
medium and large customers—there are a number of is-
sues that have a higher priority, for example competitive-
ness, productivity, or quality—and they are reluctant to the
risk—(i.e., not only from economical point of view)—as-
sociated with the changes in technology;

* decrease of governmental and utility funds to promote
DSM policies since the beginning of the deregulation
process.

In spite of these barriers during the last years, we expect that
the new market should offer a lot of interesting opportunities to
look for customer demand flexibility based on legal, econom-
ical, and technological factors. For example, and from a legal
point of view, in a deregulated system, the demand and supply
sides compete on an equal footing and they should have a sim-
ilar potential as tools for the system operator.

For system operation purposes, there is no theoretical reason
as to why the load cannot provide some of the services—relia-
bility, energy, or ancillary— traditionally supplied by utilities,
and perhaps with a lower response time.

For small and medium residential and commercial customers,
the new market is a unique opportunity to reduce their costs
through the management of their energy demand, applying load
management and/or energy storage policies to perform demand
bids in energy, balancing, or ancillary markets. This manage-
ment of customer demand could be both utility-driven, the tradi-
tional DSM, or customer-driven: the so-called demand-respon-
sive policies, not considered yet for small users.

To profit these opportunities, small users—through a demand
aggregator—and medium users need software tools, as the one
presented in this paper, to evaluate how flexible their demand is,
in order to correct or improve their bids in energy markets by an
appropriate management of their energy storage loads—air con-
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ditioner, heat pumps, electrical thermal storage devices, . . .. The
results presented in this paper assume an interesting tool for util-
ities, distributors and, of course, medium and small customers
to achieve the maximum profitability in this new scenario. The
data and results are focused on a university scenario, the Uni-
versidad Politécnica de Cartagena, a medium customer in the
deregulated Spanish market, which could perform energy bids
in the near future.

II. DEMAND FLEXIBILITY ASSESSMENT PROCESS

The developed tool to evaluate the demand flexibility and
estimate the aggregated load behavior is basically formed by
two differenced tasks. The first one covers the load disaggre-
gation and identification problem, being possible to deduce the
controllable load percentage—due to space conditioning loads,
mainly air conditioner and heat pump appliances—for each in-
terval time A,,. These values offer an initial estimation of the
demand flexibility opportunities; since the larger the control-
lable load percentage is, the higher profile modifications could
be achieved. These outputs are used as inputs of the second
task. In this task, the main objective is to determine the load
control strategy which, applied on the controllable loads, min-
imizes the quadratic distance between a prefixed target and the
global demand profile. The developed algorithm also allows to
predict how the initial profile can finally be modified, shifting
energy demanded from peak to nonpeak periods according to
several constraints. This assessment is completed by applying
the control actions to elemental load models previously devel-
oped and, subsequently, deduce the controlled and uncontrolled
aggregated behavior. In the light of these results, and taking
into account the discomfort degree—indoor temperature alter-
ations—suffered by the customer as a consequence of the duty-
cycle modifications, it is possible to modify both the target de-
mand profile and the constraints, determining the new results.
Therefore, a close-loop process can be defined, of which the
final results and assessment will depend on the operator opinion
and perspectives.

The global diagram is shown in Fig. 1, where the main tasks
have been boxed with discontinuous lines. In this scheme, the
methodologies applied in each step have also been indicated.
The following two sections are, respectively, focused on de-
scribing each of the tasks previously presented: load identifica-
tion, and solution and simulation of optimum load control strate-
gies.

III. CONTROLLABLE LOAD ESTIMATION PROBLEM

In order to evaluate the possibilities of applying a load control
strategy, an initial load research study has to be done. This load
research will provide the answer to the question of which is the
percentage of the total load that can be controlled along a time
period. As itis an evaluation, it is preferred a load research study
that gives a quick answer to this question rather than a more
exact study, but with greater time and money requirements.

With these requirements in mind, a bibliographical research,
see [3], of the principal techniques for end-use monitoring
was made, being the most advantageous for our purposes the
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Fig. 1. Global tool scheme.

so-called nonintrusive techniques, which does not need access
to customer loads in contrast with intrusive techniques.

These nonintrusive techniques simplify the hardware re-
sources, using complex software that processes nonintrusive
appliance unidirectional signatures. A signature is defined as
any measurable parameter of the total load that gives infor-
mation about the nature or operating state of an individual
appliance in the load [4].

Non-intrusive load monitoring [4] is a nonintrusive technique
designed to monitor, at a single point of an electrical circuit that
supplies power to a number of devices, the desired load data
using as load signature the step changes in the total measured
power due to the connection or disconnection of the devices. As
the aggregation level increases, this signature is more difficult to
use for identification purposes, principally due to two problems:
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the number of power step changes increases, and the percentage
of the power step, relative to the total load decreases. To over-
come these difficulties, the solution is the use of other signatures
that could be observed at higher aggregation levels.

As for our load research purposes, there is no need to identify
the load absorbed by individual appliances, but an estimation of
the total controllable load, two different signatures have been
studied as signatures of a nonintrusive load monitoring tech-
nique that gives us an approximation of the controllable load.
These signatures are harmonic frequency and subharmonic fre-
quency signatures. The former signature is used in the technique
entitled load decomposition, while the latter is used in a tech-
nique named SEMM signal. Both methods have in common that
they analyze the current and voltage waveforms measured at a
single point of the distribution network, so that they can give
results of their predictions in real time.

A. Load Decomposition Technique

This technique is similar to the Fourier analysis of a wave-
form, decomposing the original waveform into a set of basic
waveforms. The main difference between both methods is the
set of waveforms used. In this way, while the Fourier analysis
uses a set of sinusoidal waveforms, the load decomposition tech-
nique uses the current waveforms absorbed by individual loads,
[S]. Thus, first we have to obtain, in the laboratory, individual
electrical models of typical loads. Then, the current waveforms
predicted by these models are used as the set of basic waveforms
for the decomposition of the current measured at a certain point
of the distribution network.

In [6], the process proposed to obtain the individual load
models was the following: each device was supplied by a set
of six different voltage levels, recording its input currents. Each
voltage level was as distortion-free as possible, making the as-
sumption that, for most devices, small distortions in the shape of
the input voltage do not affect the current significantly. Finally,
the Fourier components of the current amplitudes and phases
up to the 30th harmonic were stored. In this methodology, the
harmonic interaction between voltage and current harmonics
of different order was neglected. In order to take into account
this interaction, the ECAM model, described in [7], has been
used in our nonintrusive load identification process [8]. This
ECAM model is a black-box-type model that relates the sup-
plied voltage harmonics with the absorbed current harmonics of
the load through a matrix named enhanced crossed admittance
matrix (ECAM)

L1 = [Y(0)] Vinx1 6]

nxm
where V,,,»1 is a vector formed by the fundamental component
and its harmonics up to order m of the supplied voltage; and
I, 1 is a vector formed by the fundamental and the harmonics,
up to order n of the current absorbed by the load.

The ECAM matrix [Y(#)],xm depends on 6, being 6 the
phase of the present voltage harmonic with respect to the fun-
damental component.

The results obtained in laboratory with this load decompo-
sition process have shown that it is not possible to obtain reli-

able information about individual loads, despite modeling the

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 1, FEBRUARY 2004

25 T T T T T T T
——— Electronic Group (EG)

oz Magnetic Ballast (MB)

oxoom - Resistance Group (RG)

NIRENI

H_H A
i i jpu
§

N
(=}

ey
o

fury
(=]

Total load identified (%)
o

& o
]
|
ST
—_
=

K

0 2 4 6 8 10 12 14 16
Test number

0

—

(=}
T

0
Jury
wu

Fig. 2. Load group decomposition error.

harmonic interaction between voltage and current. However, if
the initial decomposition of the measured current is finally ag-
gregated into groups with similar electrical behavior, then the
results obtained for each group could be used for obtaining in-
formation about the total load absorbed by each one Fig. 2.

In our laboratory tests, three groups were made: a resistance
group (RG), a magnetic ballast group (mainly fluorescent
lamps) [MB], and the electronic group (mainly computers)
[EG]. The resistance group includes the rest of the load that
remains after the magnetic ballast group and the electronic
group were identified. Therefore, it contains mostly motor and
resistance loads.

For our identification purposes, the use of the load decompo-
sition method will give an upper limit of the load absorbed by
the air conditioner loads. It is an upper limit because it will also
give us the power demanded by loads whose behavior (current
absorbed) is similar to a resistance. The benefit of this method
is that measuring at a single point of the distribution network
we can obtain an estimation of the load absorbed by all of the
controllable loads being supplied.

A distinct approximation to obtain an estimation of the con-
trollable load could be the study of the SEMM signal, which is
only related with motor loads.

B. SEMM Signal Technique

This technique analyzes the current subharmonic produced
by the electrical loads that contain single phase motors, as could
be, for example, air conditioner loads, heat pumps, refrigerators,
etc. This subharmonic can be used as a nonintrusive signature
that will give us information about these loads [4].

In order to study the suitability of this signal, measurements
of the current absorbed by typical air conditioner loads were
made. It was found that for all of the measured loads, the current
absorbed by them presented a subharmonic whose frequency
varied from 1 to 3 Hz (Fig. 3). As can be seen, the current
presents a subharmonic oscillation in its maximum and min-
imum magnitudes. These maximum and minimum values, per
cycle of such current, are separately plotted. In both cases, a
ripple of around 0.5 A and 1 Hz oscillating over a constant value
of 4 A can be found. This subharmonic signature could be im-
proved if both curves were added, since the constant value disap-
pears and the subharmonic amplitude is doubled. This last sig-
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nature, obtained by adding the extreme values, for each cycle,
is named SEMM signal.

Since the subharmonics of different devices are not synchro-
nized in time, the total amplitude of the subharmonic current
absorbed by an aggregation of such loads will present a cancel-
lation effect similar to the harmonic currents, which is due to the
phase-angle diversity of individual harmonics [9]. This ampli-
tude cancellation behavior implies that as the aggregation level
increases, the reliability of this SEMM signal decreases, which
is due to the subharmonic magnitude reduction.

Despite this behavior, a Monte Carlo simulation has been
made to investigate the combined effect of subharmonic can-
cellation due to an aggregation of air conditioner loads. For
each simulation, corresponding to a specific load aggregation
level, it has randomly been chosen, from the set of measured air
conditioners, a current waveform that has also been randomly
shifted in time to simulate a random load connection process.
This process has been done as many times as needed until the
simulated load equals the desired load aggregation level. To take
into account the contribution of different air conditioner appli-
ances with different subharmonic frequencies, it has been neces-
sary to use as identification signature the RMS value of the sim-
ulated SEMM signal. The results obtained are shown in Fig. 4.

As seen in Fig. 4, when the RMS value of the SEMM signal
increases, the interval of total air conditioner load identified also
increases, but in greater proportion. This implies that, as ex-
pected, this method could only be used for identification pur-
poses under low aggregation levels.

On the other hand, this information could be used as an al-
ternative way to obtain information of the power demanded of
the air conditioner load presented at a certain point of the dis-
tribution network. Besides, it can also be used to modulate the
predicted values obtained using the previously introduced load
decomposition technique.

IV. CONTROL AND SIMULATION PROBLEM

A. Elemental Load Modeling

Traditionally, the aggregated power consumption of a resi-
dential load group has been obtained from the analysis of indi-
vidual load behaviors. In this way, most authors have previously
developed single load models, which allowed them to estimate
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Fig. 5. Elemental load model. Comparison of results. (a) Energy comparison.
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the individual demand profiles and, subsequently, derive the ag-
gregated consumption.

During the last two decades, physically-based load modeling
has been the most common methodology. The first application
examples can be found in [10], [11]; whereas in [12], the sto-
chastic aspect of the individual customer loads is also taken into
account. Afterwards, [13] and [14] offer an improved but more
general version of the previous load models.

In all cases, these models offer suitable consumption fore-
casts when the simulated time period is not very long, but
present significant discrepancies if several hours are con-
sidered—which could be a typical implemented load control
strategy period. For this reason, we have developed an improved
third-order physically based elemental load model that takes
into account parameters neglected in previous studies, and
offers more accurate results when several hours are simulated
[15].

In order to show the suitability of the developed elemental
model in comparison with previous residential elemental load
models, Fig. 5 presents a comparison between real data, the
proposed elemental model, and two second-order models: in
the first one, the internal wall thermal capacity has been ne-
glected, and, in the second, an indoor equivalent thermal ca-
pacity, which takes into account the internal partitions and the
indoor environment, has been considered. As seen in Fig. 5,
the proposed model offers lower errors than the second-order
simplified elemental models, with forecasted energy discrep-
ancies around 30%. In the case of the parallel equivalent ca-
pacity model, it gives results closer to the real data. However,
its thermal and electrical elemental behavior still continue sub-
stantially far from the real performance (see Fig. 6). Therefore,
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we propose to apply our developed third-order elemental load
model to avoid these deficiencies and simulate correctly the
electrical and thermal behavior.

B. Aggregated Behavior of Elemental Loads

Different aggregation methods have been developed as an
answer to specific problems in electrical power systems,
showing a parallel development together with the elemental
load models. Thus, the first contributions proposed a simple
addition of elemental loads, improving this initial approach
by running a residential simulation elemental model for a
long duration (e.g., a typical summer) and later estimating the
probability-distribution to give the joint probability of an air
conditioner appliance being ON for given input parameters
[16]. In [17], one of the first attempts to introduce stochastic
processes for aggregation purposes can be found, based on
Markov chains. Later, several authors proposed to assemble
the houses into different classes; such as in [13] a classification
is suggested according to the air conditioner ratings, and [12]
presents a methodology based on an elemental load aggregation
into a group called homogeneous group by a similarity of the
functional as well as electrical behavior. During the last decade,
the aggregation problem was mainly solved by means of
describing the appliance state dynamics—ON, OF F—through
the interaction of two coupled Fokker—Planck partial differential
equation [14], [18]; solution previously proposed by Malhamé in
[19] and applied in this case as homogeneous as no-homogeneous
elemental load groups. Recently, the aggregation problem has
been considered by defining a limit case, consisting in the
aggregation of an infinite number of structurally identical
infinitesimal loads with a given total mean power. Obviously,
the limit case would be an infinite number of identical loads
with a total constant power demand. Finally, one of the most
recent works written about the residential load behavior has
been again focused on cold load pick-up. In this case, a
delayed exponential model has been suggested to simulate the
aggregate demand, where the power consumption is initially
constant, and then decreases exponentially toward a stationary
level [20].

From our point of view, these methodologies have usu-
ally offered a partial characterization about the aggregated
behavior—by means of assuming average values for duty-
cycle and elemental demands. Besides, the solution based
on Fokker—Planck, one of the most widely used, presents an
increasing mathematical complexity when the model param-
eters are considered as random variables or the number of
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those parameters is increased, since the elemental load model
expressions are explicitly considered in the coupled partial
differential equations. In order to solve these deficiencies, we
propose to define a nonparametric estimate of the marginal
density = — f(¢;z) of x4,(t) at any desired time ¢, based
on the simulation of NV independent trajectories up to time
T. The estimator, for a given time ¢, at z, is the kernel
density estimator, see, for example, [21] for an account of
the subject.

Fig. 7 shows the results obtained for an elemental load group,
in which the thermal parameters have been modeled as random
variables according to their nature and typical range, using the
proposed elemental load model [22].

C. Algorithms of Load Control Strategies

The development of algorithms to control space conditioning
residential loads have traditionally been related to demand-side
management, specifically in load management programs. One
of the first objectives was to decrease the generation costs, in
this way, enumeration methods were initially applied to eval-
uate a sequence of candidate control schedules and, then, select
the control schedule giving the lowest cost [23]. Afterwards, the
objectives also included operational cost savings, as well as load
peak decreasing, [24]. In order to achieve these objectives, dif-
ferent methodologies were implemented, such as dynamic pro-
gramming [25]-[27] and linear programming [28], [29]. During
the last years, alternative methodologies have been proposed
with similar objectives; examples can be found in [30] and [31],
which applied fuzzy logic and fuzzy dynamic programming, re-
spectively, to reduce system peak loads and system operation
costs. On the other hand, [32] proposed to schedule ON/OFF
switching of residential appliances in accordance with a pre-
defined load reduction profile through the pulse width modu-
lation (PWM) methodology. Its main disadvantage is that the
load reduction target curve was related to the interruptible load
group—partial load demand, and not to the global demand pro-
file. Finally, more recent authors have presented decision tools
to select load control strategies in a multiobjective framework
[33]. Nevertheless, these approaches start from a predefined
strategy set—considered as input variables—and, therefore, it
is assumed the control strategy selection process as a previous
step which is necessary to solve.

Therefore, and taking into account the works previously pre-
sented, an algorithm to generate load control strategies has been
developed in order to control optimally the space conditioning
residential loads and modify the global demand curve profile ac-
cording to a specific target load curve previously prefixed. This
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point of view allows us to apply the algorithm as utility-side as
customer-side, assessing how flexible the global demand profile
is. Constrained multivariable predictive control methodology
has been used, avoiding typical load control problems as pay-
back effect and shifting the demand from peak to nonpeak pe-
riods [34].

V. ASSESSMENT EXAMPLE

The proposed methodology is illustrated in this section for
a system study. The system is located in an university area,
formed by three department and lecture room buildings, with
the total system peak demand being 450 kW. In this example,
the controllable load has been divided into three groups, where
each group is assumed to have 75 devices ranging from 1 to 5
kW. The conditioning elemental spaces present a relevant di-
versity of their thermal and electrical parameters: from 10 to
100 m? floor space, external wall orientations uniformly dis-
tributed, from 10 to 35% of window surfaces, three-phase and
single-phase appliances, etc. To take into account all of this vari-
ability, the elemental load model parameters have been char-
acterized by means of random variables, selecting the suitable
density function profiles according to the modeled parameter
nature.

A. Load Identification: The Demand Disaggregation

The demand disaggregation is the first task that has to be done
and its final result is a measurement of the controllable load
percent due to space conditioning loads in the university area.

A preliminary analysis of the typical loads present in its facili-
ties was done. And it was found that the principal loads were: air
conditioner loads, lighting—mainly magnetic ballast with fluo-
rescent tubes, and computer loads.

In this study case, there was no possible confusion about the
loads that were present in the resistive group—mainly air condi-
tioner, and this facilitated the use of the load decomposition non-
intrusive method, which simplifies the measurement process be-
cause it can be used at higher aggregation levels than the SEMM
signal technique. In this way, it was only considered necessary
the measurement of the current and voltage waveforms at the
distribution transformer of the three buildings.

In order to make the waveforms acquisition process, a spe-
cially developed software was implemented that took the require
voltage and current data, for each phase, at 5-min intervals and
with the necessary speed of sampling to perform the decompo-
sition process. Previously, a database of model loads had to be
created, measuring in laboratory the current absorbed by each of
the loads when they were supplied with different voltage wave-
forms generated with an arbitrary waveform generator, thus ob-
taining their ECAM load model.

With the acquired voltage and current waveforms—mea-
sured at the distribution transformer—and the available load
models—measured in laboratory—the load decomposition
technique was applied. The final results of the decomposition
process are shown in Fig. 8, where the curves represent the load
absorbed by each of the basic load groups.
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B. Control Strategies: Demand Flexibility Range

Once the disaggregation problem has been solved, it is pos-
sible to assess how flexible the demand profile is. A typical day
period has been selected and a target reference profile has been
defined according to the desired modifications. Fig. 9 shows
the global demand profiles as well as the partial demand corre-
sponding to a specific customer group, taking into account the
results derived from the load identification process.

The load control algorithm, according to the input parameters
and the prefixed constraints, gives a control action vector for
each customer group. These values represent the relationship,
for each 15-min interval time, between the energy demanded
with control and the energy absorbed by the load group if these
elemental loads were uncontrolled. Fig. 10 shows the obtained
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results and the final demand profile when the control actions
(Fig. 11) are implemented.

In order to evaluate the customer comfort level under
this kind of action, the proposed elemental load model and
smoothing techniques have been used to know the aggregated
behavior. In this way, three space conditioning residential load
groups have been simulated according to the characteristics of
the studied system. Fig. 12 shows the density function profiles
corresponding to one of these load groups when their control
actions are implemented, comparing these results with its
natural behavior. These curves have been determined, in both
cases, for a simulated time of 120 min, which correspond to a
consumption reduction period—control actions below 1. In the
same way, this kind of information can be useful to know how
much the indoor temperature has been modified, and achieve
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an additional viewpoint in reference to a specific control
strategy, allowing the introduction of constraint modifications
and testing more flexible demand profiles.

VI. CONCLUSION

A tool to assess the demand profile flexibility by means of
controlling space conditioning residential loads is presented.
The developed environment solves two interrelated objectives:
the controllable load identification problem, and the selection
and simulation of an optimum load control strategy according
to a prefixed target demand profile. The former has been formu-
lated by means of a nonintrusive methodology—I/oad decompo-
sition technique—that uses the current and voltage waveforms
measured at a point of a radial distribution network; the latter
is solved through the use of multivariable constraint predictive
control methodology. The simulation of the controllable load
groups is made by aggregating elemental load models through
an aggregation methodology previously proposed by the au-
thors.

As main advantages of this integrated tool, in comparison
with previous approaches, the following can be pointed out: in-
dividual load monitoring is not necessary to estimate the con-
trollable load; shaping global demand according to a target pro-
file can be obtained; and the aggregation process is not associ-
ated with the mathematical expressions of the elemental loads,
but to their individual simulation results.

The tool could be applied from both the utility’s and the cus-
tomer’s point of view. An application of the proposed tool is
also presented in order to test it in a real environment.

REFERENCES

[1] L E. Agency, “Task VIII. Demand Side Bidding in a Competitive
Electricity Market,” Demand-Side Management International Energy
Agency Tech. Rep., 2001.

E. Hirst, “Reliability benefits of price-responsive demand,” IEEE Power

Eng. Rev., vol. 22, 2002.

[3] A.T. Almeida and E. L. Vine, “Advanced monitoring technologies for
the evaluation of demand-side management programs,” I[EEE Trans.
Power Syst., vol. 9, pp. 1691-1697, Aug. 1994.

[4] G. W. Hart, “Nonintrusive appliance load monitoring,” Proc. IEEE, vol.
80, no. 12, pp. 1870-1891, Dec. 1992.

[S] H. Yan, D. Czarkowski, L. Birembaum, E. Levi, and J. Hajagos, “Exper-
imental test of a load model in the presence of harmonics,” Proc. Inst.
Elect. Eng., Gen. Transm. Dist., vol. 146, no. 2, pp. 186—192, Mar. 1999.

[6] R. Mancini, Z. Zabar, L. Birembaum, E. Levi, J. Hajagos, and S. Kali-

nowsky, “An area substation load model in the presence of harmonics,”

IEEE Trans. Power Delivery, vol. 11, pp. 2013-2019, Oct. 1996.

J. Fuentes, A. Gabaldén, F. Canovas, and A. Molina, “Harmonic model

of electronically controlled loads,” in IEEE Power Eng. Soc. Summer

Meet., vol. 3, July 2000, pp. 1805-1810.

J. Fuentes, A. Gabaldén, E. Gémez, A. Molina, and F. Ruz, “Object

oriented architecture of a load decomposition identification system at

distribution level,” in Proc. 14th Power Syst. Comput. Conf., June 2002.

[9] A. Mansoor and W. M. Grady, “Analysis of compensation factor in-

fluencing the net harmonic current produced by single-phase nonlinear

loads,” in Proc. 8th Int. Conf. Harmon. Quality Power, Oct. 1998, pp.

883-889.

S. Ihara and F. C. Schweppe, “Physically based modeling of cold load

pickup,” IEEE Trans. Power App. Syst., vol. 100, pp. 4142-4150, Sept.

1981.

T. Calloway and C. Brice, “Physically-based model of demand with ap-

plications to load management assessment and load forecasting,” IEEE

Trans. Power App. Syst., vol. PAS-101, pp. 4625-4630, Dec. 1982.

C. Y. Chong and R. Malhamé, “Statistical synthesis of physically based

load models with applications to cold load pickup,” IEEE Trans. Power

App. Syst., vol. PAS-103, pp. 1612-1628, July 1984.

[2

—

[7

—

[8

—_—

[10]

[11]

[12]



FUENTES et al.: INTEGRATED TOOL FOR ASSESSING THE DEMAND PROFILE FLEXIBILITY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

A. Pahwa and C. W. Brice, “Modeling and system identification of
residential air conditioning load,” IEEE Trans. Power App. Syst., vol.
PAS-104, pp. 1418-1425, June 1985.

C. Alvarez, R. Malhamé, and A. Gabaldén, “A class of models for load
management application and evaluation revisited,” IEEE Trans. Power
Syst., vol. 7, pp. 1435-1443, Nov. 1992.

A.Molina, A. Gabaldén, J. A. Fuentes, and C. Alvarez, “Implementation
and assessment of physically based electrical load models: application
to direct load control residential programmes,” Proc. Inst. Elect. Eng.,
Gen. Transm. Dist., vol. 150, no. 1, pp. 61-66, Jan. 2003.

M. L. Chan and G. B. Ackerman, “Simulation-based load synthesis
methodology for evaluating load-management programs,” IEEE Trans.
Power App. Syst., vol. PAS-100, pp. 1771-1778, Apr. 1981.

H.-T. Nguyen, J. D. Birdwell, and F. Hall, “A physically-based low-order
model for aggregate air conditioner loads,” in Proc. Amer. Contr. Conf.,
June 1982, pp. 1152-1154.

J. C. Laurent and R. P. Malhamé, “A physically-based computer model
of aggregate electric water heating loads,” IEEE Trans. Power Syst., vol.
9, pp. 1209-1217, Aug. 1994.

R. P. Malhamé and C. Y. Chong, “Electric load model synthesis by dif-
fusion approximation of a high-order hybrid-state stochastic system,”
IEEE Trans. Automat. Contr., vol. AC-30, pp. 854-860, Sept. 1985.

E. Agneholm and J. Daalder, “Cold load pick-up of residential load,”
Proc. Inst. Elect. Eng., Gen. Transm. Dist., vol. 171, no. 1, pp. 44-50,
2000.

W. Hrdle, Smoothing Techniques: With Implementation in S. New
York: Springer-Verlag, 1991.

A. Molina, A. Gabaldén, M. Kessler, and J. A. Fuentes, “Application
of smoothing techniques to solve the cooling and heating residential
load aggregation problem,” in Proc. VII Int. Conf. Probabilistic Methods
Appl. to Power Syst., vol. 2, 2002, pp. 879-886.

R. Bhatnagar and S. Rahman, “Dispatch of direct load control for fuel
cost minimization,” IEEE Trans. Power Syst., vol. PWRS-1, pp. 96-102,
Nov. 1986.

J. Chen, F. N. Lee, A. M. Breipohl, and R. Adapa, “Scheduling direct
load control to minimize system operational cost,” IEEE Trans. Power
Syst., vol. 10, pp. 1994-2001, Nov. 1995.

A.1. Cohen and C. C. Wang, “An optimization method for load manage-
ment scheduling,” IEEE Trans. Power Syst., vol. 3, pp. 612-618, May
1988.

Y.-Y. Hsu and C.-C. Su, “Dispatch of direct load control using dynamic
programming,” IEEE Trans. Power Syst., vol. 6, pp. 1056-1061, Aug.
1991.

D.-C. Wei and N. Chen, “Air conditioner direct load control by
multi-pass dynamic programming,” [EEE Trans. Power Syst., vol. 10,
pp. 307-313, Feb. 1995.

C. N. Kurucz, D. Brandt, and S. Sim, “A linear programming model for
reducing system peak through customer load control programs,” IEEE
Trans. Power Syst., vol. 11, pp. 1817-1824, Nov. 1996.

K.-H. Ng and G. B. Sheblé, “Direct load control—a profit-based load
management using linear programming,” [EEE Trans. Power Syst., vol.
13, pp. 688-695, May 1998.

K. Bhattacharyya and M. L. Crow, “A fuzzy logic based approach to
direct load control,” IEEE Trans. Power Syst., vol. 11, pp. 708-714, May
1996.

H.-T. Yang and K.-Y. Huang, “Direct load control using fuzzy dynamic
programming,” Proc. Inst. Elect. Eng., Gen. Transm. Dist., vol. 146, no.
3, pp. 294-300, May 1999.

N. Navid-Azarbaijani and M. H. Banakar, “Realizing load reduction
functions by aperiodic switching of load groups,” IEEE Trans. Power
Syst., vol. 11, pp. 721-727, May 1996.

H. Jorge, C. H. Antunes, and A. G. Martins, “A multiple objective deci-
sion support model for the selection of remote load control strategies,”
IEEE Trans. Power Syst., vol. 15, pp. 865-872, May 2000.

675

[34] A.Molina, A. Gabaldén, J. A. Fuentes, and F. J. Canovas, “Approach to
multivariable predictive control applications in residential HVAC direct
load control,” in Proc. IEEE Summer Meeting, July 2000.

Juan Alvaro Fuentes Moreno received the electrical engineering degree from
the University of Zaragoza, Zaragoza, Spain, in 1994, and the Ph.D. degree from
the University Politécnica de Cartagena, Cartagena, Spain, in 2001.

Currently, he is with the Department of Electrical Engineering at the Uni-
versity Politécnica de Cartagena. His research interests include load modeling,
control, and optimization.

Angel Molina Garcia (S°01) received the electrical engineering degree from
the University Politécnica de Valencia, Valencia, Spain, in 1998, and the Ph.D.
degree from the University Politécnica de Cartagena, Cartagena, Spain, in 2003.

Currently, he is with the Department of Electrical Engineering at the Univer-
sity Politécnica de Cartagena, Cartagena, Spain. His research interests include
demand-side bidding, load modeling, theory, and direct load control applica-
tions.

Antonio Gabaldén Marin (M’96) received the electrical engineering and Ph.D.
degrees from the University Politécnica de Valencia, Valencia, Spain, in 1988
and 1991, respectively. Currently, he is with the Department of Electrical Engi-
neering at the University Politécnica de Cartagena, Cartagena, Spain.

His research interests include demand-side management, demand-side bid-
ding, end-use efficiency, load modeling, and distribution automation.

Emilio Gomez Lazaro received the M.Sc. and Ph.D. degrees in electrical en-
gineering from the University Politécnica de Valencia, Valencia, Spain, in 1995
and 2000, respectively.

Currently, he is an Associate Professor of Electrical Engineering at the Uni-
versity Politécnica de Cartagena, Cartagena, Spain. His current research inter-
ests include numerical methods for electromagnetism, large-scale parallel com-
puting, scientific computing and engineering, load modeling, and control.

Carlos Alvarez Bel (M’80) received the electrical engineering and Ph.D. de-
grees from the University Politécnica de Valencia, Valencia, Spain, in 1976 and
1979, respectively.

Currently, he is Professor in the Department of Electrical Engineering at the
University Politécnica de Valencia. His research interests include demand-side
management, distribution automation, and electric markets.



