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Politécnica de Cartagena dónde todo han sido facilidades y ayuda. Aqúı he conocido a profesores
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Resumen

Los esquemas de subdivisión y multiresolución se han utilizado en las últimas décadas en muchas
aplicaciones que requieren del diseño geométrico. Estas aplicaciones son numerosas en la industria,
por ejemplo para la fabricación de coches y barcos, y también en la industria cinematográfica
para generar diferentes formas tanto en 2D como en 3D. Los esquemas de subdivisión se basan
en un proceso de refinamiento sucesivo de un conjunto inicial de datos discretos. Se genera un
nuevo conjunto de datos más denso de acuerdo con algunas reglas espećıficas. A su vez, este nuevo
conjunto se refinará aún más. En este punto surgen diversas cuestiones matemáticas importantes, y
que van desde asegurar la convergencia de los esquemas a estudiar la suavidad de la función ĺımite,
la estabilidad de los esquemas de subdivisión, el orden de aproximación y los requisitos necesarios
para su aplicabilidad en problemas de la vida real. En particular, es importante el análisis de las
capacidades de preservación de los esquemas para algunas propiedades cruciales que podŕıan estar
presentes en el conjunto inicial de datos, tal como la convexidad.

Los esquemas de subdivisión generan algoritmos rápidos para la fácil construcción de curvas
y superficies [26], [29]. Todas estas cualidades los convierten en una herramienta interesante para
diversas aplicaciones industriales. Además, su estrecha relación con esquemas de multirresolución
abre la puerta a más aplicaciones en el campo del procesamiento de datos y señales. Los procesos
de compresión y eliminación de ruido son fáciles de implementar mediante el uso de esquemas de
multiresolución y se ha comprobado que son bastante eficientes. Véase, por ejemplo [35], [5], [2].

Una cuestión principal a la hora de elegir un esquema de subdivisión adecuado es la propiedad
de conservación de la convexidad, porque muchas aplicaciones la requieren. Se han hecho muchos
esfuerzos en este sentido, véase por ejemplo [27], [32], [33], [37].

La estabilidad es también un problema principal en las aplicaciones de la vida real, ya que los
diseños finales se generan mediante el refinamiento de un conjunto inicial de puntos que suele estar
afectado por algún error. Por lo tanto, es esencial hacer un seguimiento del error y mantenerlo por
debajo de una tolerancia prescrita. Algunas referencias recomendadas sobre la estabilidad de los
esquemas de subdivisión y multiresolución pueden consultarse en [24], [9], [11], [1], [3], [15].

Harten derivó una teoŕıa que conecta estrechamente los operadores de reconstrucción con los
esquemas de subdivisión y multiresolución [35], [5]. Las reconstrucciones no lineales aparecen como
una buena opción para minimizar los efectos adversos de las posibles singularidades y para mejorar
la adaptación a los datos dados. Esta teoŕıa no es tan fácil de estudiar como para el caso lineal. Los
operadores de reconstrucción no lineales dan lugar a esquemas de subdivisión y multiresolución no
lineales. Para dejar claro el tipo de dificultades que se pueden encontrar, mencionamos por ejemplo
el caso del análisis de estabilidad. A este respecto, se ha demostrado que todos los esquemas de
subdivisión y multiresolución lineales son estables, mientras que se necesita un análisis particular
para cada esquema no lineal concreto.

Los esquemas de multiresolución están profundamente conectados con los esquemas de subdi-
visión y heredan muchas de sus propiedades. Para más información sobre estas herramientas se
puede consultar [5] como primera referencia.

En [6] se introdujo una reconstrucción no lineal denominada PPH y se estudió el esquema
de subdivisión asociado. Esta reconstrucción se definió con el fin de adaptarse a la presencia de
potenciales singularidades. Consiste en una modificación ingeniosa de la interpolación centrada de
cuarto orden de Lagrange a trozos. Para implementar la adaptación, la reconstrucción se realiza
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localmente en un intervalo [xj , xj+1] usando los valores disponibles de la función en las cuatro
abscisas centradas {xj−1, xj , xj+1, xj+2}, y teniendo en cuenta dos aspectos principales. El primer
aspecto es que la modificación en un área donde la función subyacente es suave debe hacerse de tal
manera que las cantidades alteradas no cambien significativamente, de modo que la modificación
siga siendo O(h4), donde h representa el espaciado del mallado. El segundo aspecto es que en
los intervalos adyacentes a una singularidad, pero que no la contienen, la reconstrucción conserve
cierto orden de aproximación, de hecho O(h2), al contrario de lo que ocurre con su homólogo lineal
que pierde completamente el orden de aproximación.

Esta tesis se dedica principalmente al estudio del operador de reconstrucción no lineal PPH
en mallados no uniformes. En algunos casos y para demostrar determinados resultados teóricos
haremos uso de mallados σ cuasi uniformes, que no son otra cosa que un tipo de mallados no
uniformes que aparecen en casi todas las aplicaciones prácticas. La definición exacta se da más
adelante.

Esta memoria está organizada con la estructura que a continuación se detalla. Obsérvese que
todos los caṕıtulos han sido redactados para permitir su lectura fácil, haciéndolos lo más auto-
contenidos posible. Cada caṕıtulo ha dado lugar a un art́ıculo de investigación. Dichos art́ıculos
han sido presentados para su publicación en diferentes revistas matemáticas indexadas en el Jour-
nal Citations Report (JCR) dentro del primer cuartil de revistas en los ámbitos de Matemáticas
o Matemáticas Aplicadas. En algunos casos, los art́ıculos ya han sido publicados y la referencia
exacta se incluye tanto al principio del caṕıtulo como en la bibliograf́ıa.

Caṕıtulo 2 En [11], se consideró el problema de estabilidad del esquema de subdivisión PPH en mallados
uniformes mediante el uso de ciertas propiedades de contractividad de las diferencias dividi-
das de segundo orden. En este caṕıtulo proponemos un estudio paralelo utilizando diferencias
divididas de primer orden en su lugar, obteniendo una menor constante de estabilidad, más
ajustada a la realidad. El estudio se realiza para datos iniciales convexos procedentes de
funciones suaves. Dado que el esquema de subdivisión PPH considerado preserva la convexi-
dad [37], [10], la propiedad de convexidad de los datos iniciales está garantizada en todas las
escalas de refinamiento. A lo largo de este caṕıtulo introducimos el esquema de subdivisión
PPH, damos el esquema resultante para las primeras diferencias, y el resultado que garantiza
la convergencia del esquema. También estudiamos la contractividad del esquema para las
diferencias, y probamos el resultado de estabilidad anunciado mejorando la constante de es-
tabilidad en [11] y en [33] para datos iniciales estrictamente convexos que satisfacen una cierta
restricción. Finalmente, damos un ejemplo numérico para mostrar las potenciales aplicaciones
de la teoŕıa presentada y algunas conclusiones.

Caṕıtulo 3 Damos una definición del operador de reconstrucción PPH para datos sobre mallados no
uniformes, y estudiamos algunas propiedades de este operador en mayor profundidad. En
particular, nos centramos en la suavidad de la reconstrucción y en la conservación de la
convexidad de los datos iniciales. Demostramos que la reconstrucción PPH da una función
C∞, excepto para los nodos en los que la función sigue siendo C0 y donde las diferencias
entre la primera, segunda y tercera derivadas laterales son de tercer, segundo y primer orden
respectivamente (véase la definición 7).

En [10], los autores demostraron que el esquema de subdivisión asociado en mallados uni-
formes preserva la convexidad de los puntos de control. En este art́ıculo, intentamos deter-
minar si este resultado sobre preservar la convexidad puede extenderse para el operador de
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reconstrucción y no sólo en mallados uniformes, sino también en mallados σ cuasi-uniformes
con σ ≤ 4.

El caṕıtulo comienza con la definición del operador de reconstrucción PPH sobre mallados no
uniformes. Para ello, se hace uso de una media armónica ponderada con los pesos adecuados.
A continuación, se muestra que el nuevo operador de reconstrucción equivale al operador de
reconstrucción PPH original cuando se restringe a mallados uniformes. La definición se da
para mallados generales no uniformes, aunque para establecer algunos resultados teóricos,
se consideran mallados σ cuasi-uniformes. A continuación, se estudian algunas propiedades
básicas de la reconstrucción PPH, como la reproducción de polinomios de segundo grado, el
orden de aproximación, la suavidad, la acotación del operador, la continuidad de Lipschitz y
la conservación de la convexidad. También se analiza la reconstrucción cuando se trata de
datos iniciales estrictamente convexos (o cóncavos). Por último, se presentan algunas pruebas
numéricas y se incluyen algunas conclusiones.

Caṕıtulo 4 En este caṕıtulo, analizamos el comportamiento del operador de reconstrucción PPH en
presencia de discontinuidades de salto. Probamos la adaptación a la presencia de una dis-
continuidad de salto en el sentido de que se mantiene algún orden de aproximación en la
zona cercana a la discontinuidad, al contrario de lo que ocurre con los operadores lineales que
pierden completamente el orden de aproximación. También demostramos, tanto teóricamente
como en los experimentos numéricos, la ausencia de oscilaciones debidas al fenómeno de Gibbs.

Caṕıtulo 5 La media armónica original presenta dos caracteŕısticas indeseables para nuestros fines. La
primera es la posible división por cero en el denominador, y la segunda la necesidad de
la hipótesis x = O(1), e y = O(1), junto con |x − y| = O(h) para poder asegurar que
la media armónica se mantendrá cerca, O(h2), de la media aritmética. En el operador de
reconstrucción los argumentos x e y de la media armónica son diferencias divididas de segundo
orden, y entonces no es una sorpresa que los problemas mencionados surjan cerca de los
puntos de inflexión o cerca de las singularidades de la función subyacente. Para resolver
ambos problemas en este caṕıtulo se presenta una definición general de lo que se entiende
por un operador de traslación. A continuación, se hace uso de este operador para modificar
la media armónica ponderada de tal manera que se obtiene una nueva media adaptada que
conserva propiedades similares a la original, lo que es de vital importancia para ser empleada
en la definición del operador de reconstrucción PPH adaptado. Se estudian varias opciones
posibles de expresiones concretas para el operador de traslación para trabajar en combinación
con el operador de reconstrucción PPH. En particular, se define una forma de elegir una buena
opción en función de los datos espećıficos a los que se va a aplicar con el fin de adaptarse
en presencia de discontinuidades y mantener el orden de la reconstrucción alrededor de los
puntos de inflexión.

Los nuevos resultados contenidos en el caṕıtulo parten de la mencionada definición y estudio
del operador de traslación. A continuación, se analiza el comportamiento del operador de
reconstrucción PPH mejorado con respecto al orden de aproximación. Posteriormente, se
presentan algunos operadores de traslación espećıficos, y se da una forma de seleccionar
un parámetro de traslación adecuado en función de los datos. Se presentan algunas pruebas
numéricas para confirmar los resultados teóricos. Por último, se ofrecen algunas conclusiones.

Caṕıtulo 6 Dedicamos este caṕıtulo a relacionar el operador de reconstrucción PPH con los splines
suavizantes en un intervalo dado [a, b]. Los splines suavizantes se construyen mediante tro-
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zos de reconstrucción polinómicos que se enlazan de forma suave en los nodos de control y
satisfacen el problema de minimización

min
p ∈ Πn

J(p) := min
p ∈ Πn

∫ b

a
p′′(x)2 dx+

∑
j

µj(p(xj)− fj)2, (1)

donde Πn representa el espacio vectorial de los polinomios de grado menor o igual a n. El
funcional considerado implica un compromiso, dominado por los pesos µj , entre un término
de baja curvatura y un valor pequeño de la distancia acumulada al conjunto inicial de datos
(xj , fj).

En concreto, se destacan dos propiedades principales que van a ser cruciales para los propósitos
que se persiguen: La preservación de la convexidad cuando se parte de un conjunto discreto
de datos convexos y un término de curvatura bajo. Esta última propiedad sobre la curvatura
es parte de lo que se va a estudiar a lo largo del caṕıtulo. Más concretamente, se estudia el
término de curvatura del funcional para las reconstrucciones de Lagrange y PPH, tanto en el
caso uniforme como en el no uniforme. Los resultados del estudio realizado parecen indicar
que la conexión entre la reconstrucción PPH y los splines suavizantes podŕıa dar lugar a
aplicaciones muy interesantes.

Caṕıtulo 7 Los esquemas de subdivisión no lineales han surgido como variación de los esquemas lineales
para adaptarse a los datos espećıficos en uso. La no linealidad se refiere a los esquemas de
subdivisión dependientes de los datos que también pueden implicar operaciones no lineales
en su definición. Entonces, inherentemente, están diseñados para superar ciertos inconve-
nientes que aparecen cuando se trata con sus homólogos lineales, como por ejemplo el mal
comportamiento en presencia de discontinuidades aisladas. Un caso particular de este tipo
de operadores se definió en [6] y se denominó PPH (Piecewise Polynomial Harmonic). Este
esquema consiste básicamente en una ingeniosa modificación del clásico esquema de subdi-
visión de Lagrange con cuatro puntos. Se han realizado varios estudios sobre sus propiedades
y rendimiento en diferentes aplicaciones, véase por ejemplo [6], [10], [32]. Dos objetivos prin-
cipales de este esquema de subdivisión están relacionados con el tratamiento de datos que
contienen discontinuidades aisladas, reduciendo los efectos indeseables, y con la preservación
de la convexidad de los datos iniciales, mientras se mantiene un soporte centrado basado en
cuatro puntos.

En el caṕıtulo 3 se extendió la definición del operador de reconstrucción PPH a mallados
no uniformes. A su vez, este hecho nos permite extender el esquema de subdivisión PPH
a este tipo de mallados no uniformes, y realizar un estudio paralelo en este nuevo entorno.
Para superar algunas dificultades técnicas en las pruebas teóricas, se ha considerado una
restricción a mallados σ cuasi-uniformes en algunos resultados. El esquema resultante es
bastante interesante en términos de aplicaciones debido a la suavidad casi C1 de la función
ĺımite, que permite aproximar con precisión funciones continuas con esquinas, y también
debido a sus buenas propiedades en cuanto a la preservación de la convexidad de los datos
iniciales.

A lo largo del caṕıtulo se recuerda el operador de reconstrucción PPH sobre mallados no
uniformes. Se presenta una breve reseña sobre el entorno de multirresolución interpolatoria
de Harten, que está estrechamente relacionado con los esquemas de subdivisión interpolato-
ria. A continuación, se define un esquema de subdivisión asociado. Esta definición se da
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para mallados generales no uniformes, aunque para establecer algunos resultados teóricos se
consideran mallados σ cuasi-uniformes. A partir de este punto, se analizan las principales
cuestiones sobre los esquemas de subdivisión. En particular, se demuestran algunos resulta-
dos sobre la convergencia del esquema, la suavidad de la función ĺımite y la preservación de
la convexidad. Además, se realizan algunas pruebas numéricas para comprobar la suavidad
teórica de la función ĺımite y el comportamiento del esquema de subdivisión no lineal.

Caṕıtulo 8 La media aritmética y la media armónica de números positivos aparecen en muchas aplica-
ciones cient́ıficas que van desde la estad́ıstica hasta el análisis numérico. La media armónica
tiene la propiedad de penalizar los valores grandes, dando lugar, por esta razón, a varias
aplicaciones interesantes. Además, cuando los argumentos no difieren mucho entre śı, ambas
medias se mantienen cercanas, lo que constituye otra propiedad crucial para ciertas aplica-
ciones.

Este caṕıtulo tiene por objetivo el presentar algunos ingredientes necesarios para extender
el operador de reconstrucción PPH a varias dimensiones. Más concretamente, se necesita
disponer de una media apropiada en varias variables que satisfaga las propiedades básicas
mencionadas anteriormente, como lo hace la media armónica. De hecho, la media armónica
ponderada de varios valores cumple el objetivo. Este estudio se acompaña de una inter-
pretación gráfica de la media armónica ponderada de varios valores, que ayuda a comprender
rápidamente los resultados teóricos.

El caṕıtulo se inicia con las medias aritmética y armónica ponderadas de dos números posi-
tivos, demostrando los dos resultados esenciales sobre estas medias que nos permitirán definir
operadores de reconstrucción adaptados. Estos resultados vienen acompañados de una in-
terpretación gráfica intuitiva en 2D según un resultado teórico correspondiente que también
se prueba. Se sigue un camino similar para el caso de 3D, que implica trabajar con me-
dias ponderadas y armónicas de tres números positivos. A continuación, se aborda el caso
general, considerando las medias aritmética y armónica ponderadas de n números positivos
para cualquier valor entero n ≥ 2. Se termina el caṕıtulo esbozando algunas aplicaciones de
estos resultados para permitir la definición de reconstrucciones adaptadas en varias dimen-
siones, y se define expĺıcitamente una nueva reconstrucción en 2D sobre mallados triangulares
adaptada a las discontinuidades, es decir, una especie de método de reconstrucción PPH sobre
triángulos.

Caṕıtulo 9 Se termina este documento con algunas perspectivas y propuestas de trabajos futuros que han
ido apareciendo durante la realización de esta tesis, y cuya idea principal surge directamente
en relación con los resultados contenidos en los caṕıtulos anteriores.
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Chapter 1

Introduction

Subdivision and multiresolution schemes have been used in the last few decades in many ap-
plications that require from geometrical design. These applications are numerous in industry, for
example for car and ship manufacturing, and also in the film industry in order to generate different
shapes as much in 2D as in 3D. Subdivision schemes are based on a process of successive refine-
ment of a given initial discrete data set. A new denser set of data is generated according to some
specific rules. In turn, this new set will be further refined. A bunch of important mathematical
questions arise at this point, and range from ensuring the convergence of the schemes, studying the
smoothness of the limit function, the stability of the subdivision schemes and the order of approxi-
mation and the necessary requirements for their applicability in real life problems. In particular, it
is important the analysis of the preservation capabilities of the schemes for some crucial properties
which might be present in the initial set of data such as it could be the convexity.

Subdivision schemes generate fast algorithms to the easy construction of curves and surfaces
[26], [29]. All these qualities make them an interesting tool for several industrial applications. Also,
their close relation to multiresolution schemes opens the door to more applications in the fields of
data and signal processing. Compression and denoising processes are easy to implement by using
multiresolution schemes and they have been tested to be quite efficient. See for example [35], [5],
[2].

A chief issue in choosing an adequate subdivision scheme is the property of convexity preser-
vation, because many application require it. Many efforts have been done in this sense, see for
example [27], [32], [33], [37].

Stability is also a main issue in real life applications, since the final designs are generated through
the refinement of an initial set of points which usually is affected by some error. Therefore, keeping
track of the error and maintaining it under a prescribed tolerance is essential. Some recommended
references about stability of subdivision and multiresolution schemes can be consulted in [24], [9],
[11], [1], [3], [15].

Harten derived a theory which closely connects reconstruction operators with subdivision and
multiresolution schemes [35], [5]. Nonlinear reconstructions appear as a good option to minimize
the adverse effects of potential singularities and to improve the adaptation to the given data. This
theory is not as easy to study as for the linear case. Nonlinear reconstruction operators give rise to
nonlinear subdivision and multiresolution schemes. In order to let clear the kind of difficulties to be
encountered, we mention for example the case of stability analysis. In what stability issues regards,
all linear subdivision and multiresolution schemes are proved to be stable, while a particular analysis
is needed for each particular nonlinear scheme.
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Multiresolution schemes are deeply connected with subdivision schemes and they inherit many
of their properties. For more information about these useful schemes one can consult [5] as a first
reference.

In [6] a nonlinear reconstruction called PPH was introduced, and the associated subdivision
scheme was studied. This reconstruction was built in order to get adapted to the presence of
potential singularities. It consist on a witty modification of the centered fourth order piecewise
Lagrange interpolation. In order to implement the adaptation, the reconstruction is built also
locally using a stencil of four centered data, but keeping in mind two main concerns. The first
concern is that the modification in an area where the underlying function is smooth must be done
in such a way that the modified quantities are not significatively changed, so that the modification
remains O(h4), where h stands for the grid size. The second concern is that in the intervals adjacent
to a singularity, but not containing it, the reconstruction retains some order of approximation, in
fact O(h2), on the contrary to what happens with its linear counterpart that loses completely the
approximation order.

This thesis is mainly devoted to the study of the PPH nonlinear reconstruction operator over
nonuniform grids. In some cases, and in order to prove particular theoretical results we will make
use of σ quasi uniform grids, that are nothing else but a kind of nonuniform grid that appears
almost in all practical applications. The exact definition is given later.

This memoir is organized with the following structure. Notice that all chapters have been
written in order to allow its reading without too many previous requirements, making them as
self-contained as possible. In fact, each chapter has given rise to a whole research article submitted
for publication to different mathematical journals. In some cases, the articles have been already
published and the exact reference is included both at the beginning of the chapter and in the
bibliography.

Chapter 2 In [11], the stability issues of the PPH subdivision scheme in uniform grids were considered
through the use of certain contractivity properties of second order divided differences. In
this chapter we propose a parallel study using first order divided differences instead, giving
rise to better stability bounds, more fitted to reality. The study is carried out for convex
initial data coming from smooth functions. Since the considered PPH subdivision scheme
is convexity preserving [37], [10], the convexity property of the initial data is ensured at all
refinement scales. Along this chapter we introduce the PPH subdivision scheme, we give
the resulting scheme for the first differences, and the result ensuring the convergence of the
scheme. We also study the contractivity of the scheme for the differences, and we prove
the announced stability result improving the stability constant in [11] and in [33] for strictly
convex initial data satisfying a certain restriction. Finally, we give a numerical example to
show the potential applications of the presented theory and some conclusions.

Chapter 3 We give a definition of the PPH reconstruction operator for data over nonuniform grids,
and we study some properties of this operator in greater depth. In particular, we focus on
the smoothness of the reconstruction and the convexity-preserving properties of the initial
data. We show that PPH reconstruction gives a C∞ function, except for the knots where
the function remains C0 and the differences between the first, second, and third one-sided
derivatives are of the third, second, and first order, respectively (see Definition 7).

In [10], the authors proved that the related subdivision scheme in uniform meshes preserves
the convexity of the control points. In this chapter, we attempt to determine if this result
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about preserving convexity can be extended for the reconstruction operator and not only in
uniform meshes, but also in σ quasi-uniform meshes with σ ≤ 4.

The chapter deals with the definition of the PPH reconstruction operator over nonuniform
grids. For this purpose, we will use the weighted harmonic mean with appropriate weights.
Then, we show that the new reconstruction operator amounts to the original PPH recon-
struction operator when we restrict to uniform grids. The definition is given for general
nonuniform meshes, although in order to establish some theoretical results, we consider σ
quasi-uniform meshes. Then, we study some basic properties of PPH reconstruction, such
as the reproduction of polynomials of the second degree, approximation order, smoothness,
boundedness of the operator, Lipschitz continuity, and convexity preservation. We also ana-
lyze the reconstruction when dealing with strictly convex (or concave) initial data. Finally,
we present some numerical tests and some conclusions are included.

Chapter 4 In this chapter, we analyze the behavior of the PPH reconstruction operator in presence of
jump discontinuities. We prove adaptation to the presence of a jump discontinuity in the
sense that some order of approximation is maintained in the area close to the discontinuity,
on the contrary to what happens with linear operators that lose completely the approximation
order. We also prove, as much theoretically as in numerical experiments, the absence of any
Gibss phenomena.

Chapter 5 The original harmonic mean presents two undesirable characteristics for our purposes. The
first one is the possible division by zero at the denominator, and the second one the need
of the hypothesis x = O(1), and y = O(1), together with |x − y| = O(h) in order to be
able to ensure that the harmonic mean will stay close, O(h2), to the arithmetic mean. In
the reconstruction operator the arguments of x and y of the harmonic mean are taken by
second order differences, and then it is not a surprise that the mentioned problems arise either
close to inflection points or close to singularities of the underlying function. In order to solve
both problems, in this chapter we introduce a general definition of what we call a translation
operator. Then, we make use of this operator to modify the weighted harmonic mean in such
a way that we obtain a new adapted mean which retains similar properties as the original
one, what is of chief importance in order to be employed into the construction of the adapted
PPH reconstruction operator. We study several possible options to work in combination
with the PPH reconstruction operator. In particular we define a way of choosing a good
option depending on the specific data to which it is going to be applied with the purpose of
both adapting in presence of discontinuities and maintaining the reconstruction order around
inflexion points.

The new results contained in the chapter start with a proper definition and study of the
translation operator. Then, we analyze the behavior of the improved PPH reconstruction
operator with respect to the approximation order. Later, we present some specific translation
operators, and we give a way of selecting an adequate translation parameter depending on the
data. Some numerical tests are presented in order to confirm the theoretical results. Finally,
some conclusions are given.

Chapter 6 We dedicate this chapter to connect the PPH reconstruction operator with smoothing splines
in a given interval [a, b]. Smoothing splines are built through polynomial reconstruction pieces
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that are linked in a smooth way at the control knots and satisfy the minimization problem

min
p ∈ Πn

J(p) := min
p ∈ Πn

∫ b

a
p′′(x)2 dx+

∑
j

µj(p(xj)− fj)2, (1.1)

where Πn stands for the polynomials of degree less or equal to n. The considered functional
implies a balance, dominated by the weights µj , between a low curvature term and a small
value of the accumulated distance to the initial set of data (xj , fj).

We specifically remark two main properties which are going to be crucial for our purposes.
The convexity preservation when dealing with initial discrete set of convex data and a low
curvature term. This last property about the curvature is part of what is going to be proven
along the chapter. More precisely we study the term of curvature of the functional for the
Lagrange and PPH reconstructions, in the uniform and the nonuniform case. Due to these
suitable properties, we think that connecting the PPH reconstruction with smoothing splines
could result in very interesting applications.

Chapter 7 Nonlinear subdivision schemes have emerged as good candidates to adapt to the specific
data in use. Nonlinearity means data dependent subdivision schemes which may also involve
nonlinear operations in their definition. Then, by definition, they are designed to overcome
certain drawbacks that appear when dealing with their linear counterparts, such as bad behav-
ior in presence of isolated discontinuities for instance. An example of these kind of operators
was defined in [6] and was named as PPH (Piecewise Polynomial Harmonic). This scheme
basically consists on a witty modification of the classical four points Lagrange subdivision
scheme. Several studies have been carried out about their properties and performance in
different applications, see for example [6], [10], [32]. Two main purposes of this subdivision
scheme are related to dealing with data containing isolated discontinuities, reducing the unde-
sirable effects, and preserving the convexity of the initial data, while maintaining a centered
support based on four points.

In chapter 3 we extend the definition of the PPH reconstruction operator to nonuniform grids.
In turn, this fact allows us to extend the PPH subdivision scheme to nonuniform grids, and
carry out a parallel study in this new setting. In order to overcome some technical difficulties
in the theoretical proofs, we have restricted to σ quasi-uniform grids for some results. The
resultant scheme is quite interesting in terms of applications due to the almost C1 smoothness
of the limit function, allowing to approximate accurately continuous functions with corners,
and also due to appropriate properties regarding convexity preservation of the initial data.

Along the chapter we remind the PPH reconstruction operator over nonuniform grids. We
present a short review about Harten’s interpolatory multiresolution setting, which is closely
connected to interpolatory subdivision schemes. Then, we define an associated subdivision
scheme. This definition is given for general nonuniform meshes, although in order to es-
tablish some theoretical results we consider σ quasi-uniform meshes. We analyze the main
issues about subdivision schemes. In particular, we prove some results about convergence,
smoothness of the limit function, and convexity preservation. In addition, we carry out some
numerical tests to check the theoretical smoothness of the limit function, and the performance
of the nonlinear subdivision scheme.

Chapter 8 The arithmetic and the harmonic mean of positive numbers appear in many scientific appli-
cations ranging from statistics to numerical analysis. The harmonic mean has the property of
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penalizing large values, giving rise, because of this reason, to several interesting applications.
Moreover, when the arguments do not differ much from each other, both means remain close,
which is another crucial property in applications.

In this chapter our aim is to introduce some necessary ingredients to extend in turn this last
reconstruction operator to several dimensions. More specifically speaking, we need to dispose
of an appropriate mean in several dimensions which satisfies the required basic properties,
the two mentioned above, as the harmonic mean does. We carry out this study accompanied
by a graphical interpretation of the weighted harmonic mean of several values, which helps
to quickly understand the theoretical results.

We begin the chapter with the weighted arithmetic and harmonic means of two positive num-
bers, proving two essential results about these means which will allow us to define adapted
reconstruction operators. These results come accompanied with an intuitive graphical in-
terpretation in 2D according to a corresponding theoretical result that will be also proven.
A similar path will be followed for the 3D case, which involves working with weighted and
harmonic means of three positive numbers. After this, we deal with the general case of consid-
ering the weighted arithmetic and harmonic mean of n positive numbers for whatever integer
value n ≥ 2. Some applications of these results are outlined in order to allow the definition of
adapted reconstructions in several dimensions, and we explicitly define a new reconstruction
in 2D over triangular meshes adapted to discontinuities, that is, a kind of PPH reconstruction
method on triangles.

Chapter 9 We finish this thesis document with some perspectives and future works that we have in mind,
whose main idea emerge directly in relation to the results contained in previous chapters.
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Chapter 2

Improving the stability bound for the
PPH nonlinear subdivision scheme for
data coming from strictly convex
functions

The contents of this chapter are the result of collaboration with other colleagues from the
Universidad Politécnica de Cartagena (UPCT) and Universidad de Valencia (UV). This chapter
corresponds with the first submission to the journal. Later, it was published under the following
reference [36]

• Jiménez, I.; Ortiz, P.; Ruiz, J.; Trillo, J. C.; Yáñez, D. F. Improving the stability bound
for the PPH nonlinear subdivision scheme for data coming from strictly convex functions.
Applied Mathematics and Computations. 2021, https://doi.org/10.1016/j.amc.2021.126042

2.1 Introduction

Subdivision schemes give rise to fast algorithms to generate curves and surfaces [26], [29].
Therefore they are used in car and ship manufacturing and in the design of cartoons for films
among a variety of applications. They conform also the heart of multiresolution schemes, and
therefore more applications are found such as signal and image compression and denoising [35], [5],
[2].

A crucial issue in the selection of an appropriate subdivision scheme is the preservation of the
convexity property of initial data, since many components and parts of the body in cars and other
engineering manufactures precise of this requirement. Many studies in this direction have been
carried out in the last decades, see for example some interesting works [27], [32], [33], [37].

Stability is also crucial in applications since the different curves and surfaces are generated
through the refinement of an initial set of points which in most cases is affected of some error.
Therefore maintaining the error under control and getting valid output data is of utmost impor-
tance. Some nice references about stability of subdivision schemes can be found in [24], [9], [11],
[1], [3], [15].

Nonlinear reconstruction and subdivision schemes [35] appear as good candidates to avoid
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potential singularities and to improve the adaptation to the given data. Theory is in general not so
well studied as for linear stationary schemes. In what stability issues regards, all linear subdivision
schemes are proved to be stable, while a particular analysis is needed for each particular nonlinear
scheme.

Multiresolution schemes are deeply connected with subdivision schemes and they inherit many
of their properties. For more information about these useful schemes one can consult [5] as a first
reference.

In [6] a nonlinear reconstruction called PPH was introduced, and the associated subdivision
scheme was studied. The stability issues were considered in [11] through the use of certain con-
tractivity properties of second order divided differences. In this work we propose a parallel study
using first order divided differences instead, giving rise to better stability bounds, more fitted to
reality. The study is carried out for convex initial data coming from smooth functions. Since the
considered PPH subdivision scheme is convexity preserving [37], [10], the convexity property of the
initial data is ensured at all refinement scales.

This chapter is organized as follows: in Section 2.2 we introduce the PPH subdivision scheme,
in Section 2.3 we give the scheme for the differences, and the result ensuring the convergence of the
scheme, in Section 2.4 we study the contractivity of the scheme for the differences, in Section 2.5 we
prove the announced stability result improving the stability constant in [11] and in [33] for strictly
convex initial data satisfying a certain restriction. Finally in Section 2.6 we give some conclusions.

2.2 PPH subdivision scheme

Let us consider a set of nested grids in R:

Xk = {xkj }j∈Z, xkj = jhk, hk = 2−k.

The PPH subdivision scheme is described in detail [6], and we refer the interested reader to
this paper for more specific details. We would like to remark that it had been already studied
following different approaches by F. Kuijt and R. van Damme in [37], and independently by M.S.
Floater and C.A. Michelli in [32]. In both of these papers, and opposed to the development in
[6] the subdivision scheme is compeltely defined outside of the environement provided by Harten’s
framework for multiresolution.

In this section, we introduce the scheme given in [6] and express it as follows

(Sfk)2j = fkj , (2.1)

(Sfk)2j+1 =


fkj+1+fkj

2 − 1
4

∆jf
k∆j+1f

k

∆jfk+∆j+1fk
if ∆jf

k∆j+1f
k > 0,

fkj+1+fkj
2 else,

(2.2)

where ∆jf = fj−1 − 2fj + fj+1.
This scheme is proven to be uniformly convergent, to attained fourth order accuracy in smooth

convex regions, and to maintain convexity in the following sense.

Definition 1. An univariate data set {fj} is said to be strictly convex if and only if ∆fj > 0 ∀j.

Definition 2. An interpolatory subdivision scheme is said to be convexity preserving for a set of
sequences A if and only if the data set {fkj } = Skf0 is strictly convex for any strictly convex initial

data f0 ∈ A for all subdivision levels. The subdivision scheme is said convexity preserving if the
requirement is satisfied for all strictly convex initial data.
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A general proof for convexity preserving schemes through the use of associated reconstruction
operators can be found in [10].

2.3 Scheme for the differences. Convergence

In [6] a nonlinear scheme S1 for the first order differences δjf
k := fkj − fkj−1 was defined, and

we can express it in the following way

(S1δf
k)2j+1 = (2.3){

(1
2 −

1
4

∆j+1f
k

∆jfk+∆j+1fk
)δj+1f

k + 1
4(

∆j+1f
k

∆jfk+∆j+1fk
)δjf

k if ∆jf
k∆j+1f

k > 0,

δj+1f
k

2 else.

And similarly for the even indexes,

(S1δf
k)2j ={

(1
2 −

1
4

∆j−1f
k

∆j−1fk+∆jfk
)δjf

k + 1
4(

∆j−1f
k

∆j−1fk+∆jfk
)δj+1f

k if ∆jf
k∆j+1f

k > 0,

δjf
k

2 else.

The following two results were proof in [6], which proof that the operator S1 is contractive in
l∞(Z) and that the PPH subdivision scheme is uniformly convergent.

Proposition 1. Associated to the PPH nonlinear reconstruction, there exists a nonlinear subdivi-
sion scheme S1 for the differences that satisfies

||S1δf
k||l∞(Z) ≤

1

2
||δfk||l∞(Z) ∀fk ∈ l∞(Z),

where δjf
k := fkj − fkj−1.

Proposition 2. The nonlinear subdivision scheme associated to the PPH reconstruction is uni-
formly convergent. Moreover, for any f ∈ l∞(Z) the limit function S∞(f) satisfies

∃C such that ∀ x, y ∈ R, |S∞(f)(x)− S∞(f)(y)| ≤ C|x− y|.

2.4 Lipchitz condition for the scheme S1 for a class of strictly
convex initial data

For the rest of the chapter we are going to work with strictly convex initial data satisfying

|∆jf
k −∆j+1f

k| ≤ 1

2n
|∆jf

k + ∆j+1f
k|, ∀ j, n = − log2(

1√
2
− 1

2
), (2.4)

∃ a > 0 : min
j
{∆jf

k} ≥ a > 0 (∃ a > 0 : max
j
{∆jf

k} < −a < 0). (2.5)

Notice that conditions (2.4) and (2.5) are true for initial data coming from the point value
discretization of smooth strictly convex functions with compact support for a sufficiently small
step of discretization. This kind of functions are the most common in practical cases.
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The first result that we need to prove is that after one step of subdivision the data still satisfy
the conditions (2.4) and (2.5).

Lemma 1. Let x, y, and z be any positive real numbers and let us define the functions H(x, y) =
2xy
x+y , and Z(x, y, z) = x

2 −
1
8(H(x, y) + H(x, z)). If |x − y| ≤ 1

2n (x + y), |x − z| ≤ 1
2n (x + z) with

n = − log2( 1√
2
− 1

2), then

|1
4
H(x, y)− Z(x, y, z)| ≤ 1

2n
(
1

4
H(x, y) + Z(x, y, z)). (2.6)

Proof. In first place we see that (2.6) is equivalent to

x

8
|4− 6y

x+ y
− 2z

x+ z
| ≤ x

2n+2
(2 +

y

x+ y
− z

x+ z
). (2.7)

Case 1: |4− 6y
x+y −

2z
x+z | =

6y
x+y + 2z

x+z − 4.
Inequality (2.7) will be true if and only if

(3 · 2n − 1)
y

x+ y
+ (2n + 1)

z

x+ z
≤ 2 + 2n+1.

Now using condition (2.4) we get that y
x+y ≤

2n+1
2n+1 , and z

x+z ≤
2n+1
2n+1 . Thus

(3 · 2n − 1)
y

x+ y
+ (2n + 1)

z

x+ z
≤ (3 · 2n − 1)

2n + 1

2n+1
+ (2n + 1)

2n + 1

2n+1

= 2 + 2n+1,

and Case 1 is proven.

Case 2: |4− 6y
x+y −

2z
x+z | = 4− 6y

x+y −
2z
x+z .

Inequality (2.7) will be true if and only if

(3 · 2n + 1)
y

x+ y
+ (2n − 1)

z

x+ z
≤ 2n+1 − 2. (2.8)

Using again condition (2.4) we get that y
x+y ≥

2n−1
2n+1 , and z

x+z ≥
2n−1
2n+1 . Thus

(3 · 2n + 1)
y

x+ y
+ (2n − 1)

z

x+ z
≥ (3 · 2n + 1)

2n − 1

2n+1
+ (2n − 1)

2n − 1

2n+1

= 2n+1 − 2.

Proposition 3. If the data fk satisfy conditions (2.4) and (2.5) at a given level of subdivision k
then the data fk+1 = Sfk after one level of PPH subdivision satisfy also the same conditions.

Proof. Let us suppose without lost of generalization that ∆jf
k > 0, ∀j. Computing ∆2jf

k+1 and
∆2j+1f

k+1 we get

∆2jf
k+1 = Z(∆jf

k,∆j+1f
k,∆j−1f

k), ∆2j+1f
k+1 =

1

4
H(∆jf

k,∆j+1f
k).
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Condition (2.4) is now directly obtained just by using Lemma 1. Condition (2.5) is immediate
taking into account that

|1
8

(H(∆jf
k,∆j+1f

k) +H(∆jf
k,∆j−1f

k))| ≤ ∆jf
k

2
,

and

∆2j+1f
k+1 =

1

4
H(∆jf

k,∆j+1f
k) ≥ 1

4
min{∆jf

k,∆j+1f
k} > 0.

We proof now a proposition of practical importance in applications, since the subdivision scheme
is always run with initial data affected of some small errors.

Proposition 4. If the initial data f0 satisfy conditions (2.4) and (2.5) and ε > 0 is such that
for all j ∈ Z |∆jf

0 − ∆j+1f
0| ≤ a−4ε

2n−1 − 8ε > 0, with a = min
j
{|∆jf

0|}, then any sequence g0

satisfying ||f0 − g0||∞ ≤ ε satisfies also conditions (2.4) and (2.5).

Proof. Condition (2.5) comes from

|∆jg
0| ≥ |∆jf

0| − 4ε ≥ a− 4ε > 0,

due to the chose of ε. The following chain of inequalities proves the condition (2.4),

|∆jg
0 −∆j+1g

0| ≤ 8ε+ |∆jf
0 −∆j+1f

0|

≤ a− 4ε

2n−1
=

(a− 4ε) + (a− 4ε)

2n

≤ 1

2n
(∆jg

0 + ∆j+1g
0).

Now we are going to prove the Lipchitz property addressing separately two cases, convex-concave
and convex-convex, in two respective propositions.

Proposition 5. (convex-concave) If the data fk, gk ∈ l∞(Z) satisfy conditions (2.4) and (2.5) at
a given level of subdivision k and ∆jf

k∆j+1f
k > 0, ∆jg

k∆j+1g
k > 0, with ∆jf

k∆jg
k < 0, then

1. |δ2j+1f
k+1 − δ2j+1g

k+1| ≤ 1
2 ||δf

k − δgk||∞ ∀ ∈ Z,

2. |δ2jf
k+1 − δ2jg

k+1| ≤ 1
2 ||δf

k − δgk||∞ ∀ ∈ Z.

Proof. We are going to prove the first point. Second point is derived in the same way. From (2.3)
we get

δ2j+1f
k+1 = (

1

2
− 1

4

∆j+1f
k

∆jfk + ∆j+1fk
)δj+1f

k +
1

4
(

∆j+1f
k

∆jfk + ∆j+1fk
)δjf

k,

δ2j+1g
k+1 = (

1

2
− 1

4

∆j+1g
k

∆jgk + ∆j+1gk
)δj+1g

k +
1

4
(

∆j+1g
k

∆jgk + ∆j+1gk
)δjg

k.
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Operating algebraically we arrive to

δ2j+1f
k+1 − δ2j+1g

k+1 =
1

2
(δj+1f

k − δj+1g
k)

+
1

4

∆j+1g
k

∆jgk + ∆j+1gk
((δj+1g

k − δj+1f
k) + (δjf

k − δjgk))

+
1

4
(

∆j+1g
k

∆jgk + ∆j+1gk
− ∆j+1f

k

∆jfk + ∆j+1fk
)∆jf

k.

Let us suppose ∆jf
k > 0, and ∆jg

k < 0. Otherwise we change the roles of fk and gk. We
differentiate two main cases,

Case 1: If |δ2j+1f
k+1 − δ2j+1g

k+1| = δ2j+1f
k+1 − δ2j+1g

k+1,

– If
∆j+1g

k

∆jgk+∆j+1gk
≤ ∆j+1f

k

∆jfk+∆j+1fk
,

|δ2j+1f
k+1 − δ2j+1f

k+1| ≤ (
1

2
− 1

4

∆j+1g
k

∆jgk + ∆j+1gk
)(δj+1f

k − δj+1g
k)

+
1

4

∆j+1g
k

∆jgk + ∆j+1gk
(δjf

k − δjgk),

and therefore |δ2j+1f
k+1 − δ2j+1f

k+1| ≤ 1
2 ||δf

k − δgk||∞.

– If
∆j+1g

k

∆jgk+∆j+1gk
>

∆j+1f
k

∆jfk+∆j+1fk
,

|δ2j+1f
k+1 − δ2j+1f

k+1| ≤ 1

2
(δj+1f

k − δj+1g
k)

+
1

4

∆j+1g
k

∆jgk + ∆j+1gk
((δj+1g

k − δj+1f
k) + (δjf

k − δjgk))

+
1

4
(

∆j+1g
k

∆jgk + ∆j+1gk
− ∆j+1f

k

∆jfk + ∆j+1fk
)(∆jf

k −∆jg
k)

= (
1

2
− 1

4

∆j+1f
k

∆jfk + ∆j+1fk
)(δj+1f

k − δj+1g
k)

+
1

4

∆j+1f
k

∆jfk + ∆j+1fk
(δjf

k − δjgk),

and we easily get |δ2j+1f
k+1 − δ2j+1f

k+1| ≤ 1
2 ||δf

k − δgk||∞.

Case 2: If |δ2j+1f
k+1 − δ2j+1g

k+1| = δ2j+1g
k+1 − δ2j+1f

k+1,

– If
∆j+1g

k

∆jgk+∆j+1gk
≤ ∆j+1f

k

∆jfk+∆j+1fk
,

|δ2j+1f
k+1 − δ2j+1f

k+1| ≤ (
1

2
− 1

4

∆j+1f
k

∆jfk + ∆j+1fk
)(δj+1g

k − δj+1f
k)

+
1

4

∆j+1f
k

∆jfk + ∆j+1fk
(δjg

k − δjfk),
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and therefore |δ2j+1f
k+1 − δ2j+1f

k+1| ≤ 1
2 ||δf

k − δgk||∞.

– If
∆j+1g

k

∆jgk+∆j+1gk
>

∆j+1f
k

∆jfk+∆j+1fk
,

|δ2j+1f
k+1 − δ2j+1f

k+1| ≤ 1

2
(δj+1g

k − δj+1f
k)

+
1

4

∆j+1f
k

∆jfk + ∆j+1fk
((δj+1f

k − δj+1g
k) + (δjg

k − δjfk))

+
1

4
(

∆j+1g
k

∆jgk + ∆j+1gk
− ∆j+1f

k

∆jfk + ∆j+1fk
)(∆jf

k −∆jg
k)

= (
1

2
− 1

4

∆j+1g
k

∆jgk + ∆j+1gk
)(δj+1g

k − δj+1f
k)

+
1

4

∆j+1g
k

∆jgk + ∆j+1gk
(δjg

k − δjfk),

and we easily get |δ2j+1f
k+1 − δ2j+1f

k+1| ≤ 1
2 ||δf

k − δgk||∞.

Before giving the convex-convex proposition, we introduce some previous lemmas and defini-
tions.

Lemma 2. The following equality holds

∆jf
k∆j+1g

k −∆jg
k∆j+1f

k = Nj+1(∆jf
k −∆jg

k) +Nj(∆j+1g
k −∆j+1f

k),

with

Nj :=
∆jf

k + ∆jg
k

2
, Nj+1 :=

∆j+1f
k + ∆j+1g

k

2
.

Proof. Applying the mean value theorem to the function F (x, y) = xy we have that

F (x, y)− F (x̃, ỹ) = Fx(θ)(x− x̃) + Fy(θ)(y − ỹ),

with θ = t(x̃, ỹ) + (1 − t)(x, y), for some t ∈ (0, 1). Since ∇F = (Fx, Fy) = (y, x), taking
(x, y) = (∆jf

k,∆j+1g
k), (x̃, ỹ) = (∆jg

k,∆j+1f
k), we get the result after realizing that t = 1

2
works.

We now introduce the following definitions for ∆jf
k > 0, ∆j+1f

k > 0, ∆jg
k > 0, ∆j+1g

k > 0,

Afg =
1

4

∆j+1g
k

∆jgk + ∆j+1gk
, Cfg =

1

4

Nj+1∆jf
k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)
, (2.9)

Dfg =
1

4

Nj∆jf
k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)
,
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Efg =
1

4

∆jg
k

∆jgk + ∆j+1gk
, Ffg =

1

4

Nj∆j+1f
k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)
, (2.10)

Gfg =
1

4

Nj+1∆j+1f
k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)
.

And the corresponding to Agf , Cgf ,, Dgf , Egf , Fgf , and Ggf . With all these definitions we can
proof the next lemmas.

Lemma 3. Let us consider Afg, Cfg, and Dfg. If the condition 0 < ∆jf
k ≤ min{∆j+1f

k,∆jg
k,∆j+1g

k}
hold, then

1. 0 < Afg ≤ 1
8 if ∆j+1g

k ≤ ∆jg
k, and 0 < Afg <

1
4 if ∆j+1g

k > ∆jg
k.

2. 0 < Cfg <
1
8 ,

3. 0 < Dfg <
1
8 ,

4. Afg − Cfg > 0,

5. |Afg − Cfg −Dfg| < 1
4 .

Proof. 1. Since ∆jg
k > 0, ∆j+1g

k > 0, it is trivial. 2. Since ∆jf
k > 0, ∆j+1f

k > 0, ∆jg
k > 0,

∆j+1g
k > 0, it is trivial that Cfg > 0. Let us suppose now that max{∆j+1f

k,∆j+1g
k} = ∆j+1g

k.
The other cases are similar. Then

Cfg ≤
1

4

∆jf
k

(∆jfk + ∆j+1fk)

∆j+1g
k

(∆jgk + ∆j+1gk)
<

1

4
· 1

2
=

1

8
.

3. From max{∆jf
k,∆jg

k} = ∆jg
k, we have

Dfg ≤
1

4

∆jf
k

(∆jfk + ∆j+1fk)

∆jg
k

(∆jgk + ∆j+1gk)
<

1

4
· 1

2
=

1

8
.

4. In order to prove point 4 we use the following sequence of inequalities,

Afg − Cfg =
1

4

∆j+1g
k

∆jgk + ∆j+1gk
(1− 1

2

∆jf
k

(∆jfk + ∆j+1fk)
)

− 1

8

∆j+1f
k∆jf

k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)

≥ 1

4

∆j+1f
k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)
(∆j+1g

k − 1

2
∆jf

k) > 0.

5. It follows from |Afg − Cfg −Dfg| ≤ max{Afg, Cfg +Dfg} < 1
4 .

Lemma 4. Let us consider Efg, Ffg, and Gfg. If the condition 0 < ∆j+1f
k ≤ min{∆jf

k,∆jg
k,∆j+1g

k}
hold, then
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1. 0 < Efg ≤ 1
8 if ∆jg

k ≤ ∆j+1g
k, and 0 < Efg <

1
4 if ∆jg

k > ∆j+1g
k.

2. 0 < Ffg <
1
8 ,

3. 0 < Gfg <
1
8 ,

4. Efg − Ffg > 0,

5. |Efg − Ffg −Gfg| < 1
4 .

Proof. It can be done with the same track as in Lemma 3.

Lemma 5. Let us consider data fk, gk satisfying conditions (2.4) and (2.5), and for a given j ∈ Z
let us define

cj = Afg − Cfg, cj+1 = Cfg +Dfg −Afg, cj+2 = −Dfg,

c̃j = Agf − Cgf , c̃j+1 = Cgf +Dgf −Agf , c̃j+2 = −Dgf ,

dj = Gfg, dj+1 = Efg − Ffg −Gfg, dj+2 = −Efg + Ffg,

d̃j = Ggf , d̃j+1 = Egf − Fgf −Ggf , d̃j+2 = −Egf + Fgf .

Then one of the quantities |cj | + |cj+1| + |cj+2|, |c̃j | + |c̃j+1| + |c̃j+2|, |dj | + |dj+1| + |dj+2|, or
|d̃j |+ |d̃j+1|+ |d̃j+2| is strictly lower than 1

4 .

Proof. • If 0 < ∆jf
k is lower or equal than ∆j+1f

k, ∆jg
k, ∆j+1g

k,
Then using Lemma 3 we have Afg − Cfg > 0.

– If cj+1 ≥ 0, then

|cj |+ |cj+1|+ |cj+2| = 2Dfg <
1

4
.

– If cj+1 < 0, then

|cj | + |cj+1|+ |cj+2| = 2(Afg − Cfg),

Afg − Cfg ≤
1

4

∆j+1g
k

∆jgk + ∆j+1gk
− 1

4
(
2n − 1

2n+1
)

Nj+1

∆jgk + ∆j+1gk

<
1

4
(1− 2n − 1

2n+2
)

∆j+1g
k

∆jgk + ∆j+1gk
≤ 1

4
(
3 · 2n + 1

2n+2
)(

2n + 1

2n+1
)

=
1

8

6
√

2 + 7

16
<

1

8
.

• If 0 < ∆jg
k is lower or equal than ∆j+1g

k, ∆jf
k, ∆j+1f

k,
then following the same steps as in the previous supposition

|c̃j |+ |c̃j+1|+ |c̃j+2| <
1

4
.

• If 0 < ∆j+1f
k is lower or equal than ∆jf

k, ∆jg
k, ∆j+1g

k,
we consider several subcases:
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– If dj+1 < 0,

|dj |+ |dj+1|+ |dj+2| = 2Gfg <
1

4
.

– If dj+1 ≥ 0,

∗ If ∆j+1g
k > ∆jg

k,
then using Lemma 4 we have that

|dj |+ |dj+1|+ |dj+2| = 2(Efg − Ffg) ≤ 2 max{Efg, Ffg} <
1

4
.

∗ If ∆jg
k ≥ ∆j+1g

k ≥ ∆jf
k ≥ ∆j+1f

k,
then ∆j+1g

k − 1
2∆jf

k ≥ 0, and according to the proof of point 4 of Lemma 3
Afg − Cfg ≥ 0. In this case either |cj | + |cj+1| + |cj+2| = 2(Afg − Cfg) <

1
4 , or

|cj |+ |cj+1|+ |cj+2| = 2Dfg <
1
4 , since

Afg =
1

4

∆j+1g
k

∆jgk + ∆j+1gk
<

1

8
,

Cfg =
1

8

∆jf
k

∆jfk + ∆j+1fk
∆j+1g

k

∆jgk + ∆j+1gk

+
1

8

∆jf
k

∆jfk + ∆j+1fk
∆j+1f

k

∆jgk + ∆j+1gk
<

1

8
,

Dfg =
1

4

Nj∆jf
k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)
<

1

8

∆jf
k

∆jfk + ∆j+1fk
<

1

8
.

∗ If ∆jf
k ≥ ∆jg

k ≥ ∆j+1g
k ≥ ∆j+1f

k,

Efg − Ffg =
1

4

∆jg
k

∆jgk + ∆j+1gk
(1− 1

2

∆j+1f
k

∆jfk + ∆j+1fk
)

− 1

8

∆j+1f
k∆jf

k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)

≤ 1

4

∆jg
k

∆jgk + ∆j+1gk
(1− ∆j+1f

k

∆jfk + ∆j+1fk
)

=
1

4

∆jg
k

∆jgk + ∆j+1gk
∆jf

k

∆jfk + ∆j+1fk

<
1

4
(

1

2n+1
+

1

2
)2 <

1

8
,

and therefore |dj |+ |dj+1|+ |dj+2| = 2(Efg − Ffg) < 1
4 .

∗ If ∆jg
k ≥ ∆jf

k ≥ ∆j+1g
k ≥ ∆j+1f

k,
then ∆jf

k− 1
2∆j+1g

k ≥ 0, and therefore Egf −Fgf ≥ 0. Now again we separate two
cases,

· If d̃j+1 < 0,

|d̃j |+ |d̃j+1|+ |d̃j+2| = 2Ggf ≤
1

2

∆j+1g
k

∆jgk + ∆j+1gk
∆j+1f

k

∆jfk + ∆j+1fk
<

1

4
.
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· If d̃j+1 ≥ 0, then |d̃j |+ |d̃j+1|+ |d̃j+2| = 2(Egf − Fgf ) < 1
4 , since

Egf − Fgf =
1

4

∆jf
k

∆jfk + ∆j+1fk
(1− 1

2

∆j+1g
k

∆jgk + ∆j+1gk
)

− 1

8

∆j+1g
k∆jg

k

(∆jfk + ∆j+1fk)(∆jgk + ∆j+1gk)

≤ 1

4

∆jf
k

∆jfk + ∆j+1fk
(1− ∆j+1g

k

∆jgk + ∆j+1gk
)

=
1

4

∆jf
k

∆jfk + ∆j+1fk
∆jg

k

∆jgk + ∆j+1gk

<
1

4
(

1

2n+1
+

1

2
)2 <

1

8
.

• If 0 < ∆j+1g
k is lower or equal than ∆jf

k, ∆j+1f
k, ∆jg

k,
then the case is symmetrical to the previous one.

And since we have considered all posible cases the proof is finished.

Now we are ready to prove the convex-convex proposition.

Proposition 6. (convex-convex) If the data fk, gk ∈ l∞(Z) satisfy conditions (2.4) and (2.5) at
a given level of subdivision k and ∆jf

k∆j+1f
k > 0, ∆jg

k∆j+1g
k > 0, with ∆jf

k∆jg
k > 0, for

 ∈ Z, then

1. |δ2j+1f
k+1 − δ2j+1g

k+1| ≤ 3
4 ||δf

k − δgk||∞,

2. |δ2jf
k+1 − δ2jg

k+1| ≤ 3
4 ||δf

k − δgk||∞.

Proof. We are going to prove the first point. Second point is derived in the same way. From (2.3)
we get the four expressions,

δ2j+1f
k+1 − δ2j+1g

k+1 =
1

2
(δj+1f

k − δj+1g
k) (2.11)

+
1

4

∆j+1g
k

∆jgk + ∆j+1gk
((δj+1g

k − δj+1f
k) + (δjf

k − δjgk))

+
1

4
(

∆j+1g
k

∆jgk + ∆j+1gk
− ∆j+1f

k

∆jfk + ∆j+1fk
)∆jf

k,

δ2j+1f
k+1 − δ2j+1g

k+1 =
1

2
(δj+1f

k − δj+1g
k) (2.12)

+
1

4

∆jg
k

∆jgk + ∆j+1gk
((δj+1f

k − δj+1g
k)− (δj+2f

k − δj+2g
k))

− 1

4
(

∆j+1g
k

∆jgk + ∆j+1gk
− ∆j+1f

k

∆jfk + ∆j+1fk
)∆j+1f

k,
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δ2j+1g
k+1 − δ2j+1f

k+1 =
1

2
(δj+1g

k − δj+1f
k) (2.13)

+
1

4

∆j+1f
k

∆jfk + ∆j+1fk
((δj+1f

k − δj+1g
k) + (δjg

k − δjfk))

+
1

4
(

∆j+1f
k

∆jfk + ∆j+1fk
− ∆j+1g

k

∆jgk + ∆j+1gk
)∆jg

k,

δ2j+1g
k+1 − δ2j+1f

k+1 =
1

2
(δj+1g

k − δj+1f
k) (2.14)

+
1

4

∆jf
k

∆jfk + ∆j+1fk
((δj+1g

k − δj+1f
k)− (δj+2g

k − δj+2f
k))

− 1

4
(

∆j+1f
k

∆jfk + ∆j+1fk
− ∆j+1g

k

∆jgk + ∆j+1gk
)∆j+1g

k.

Now taking absolute values, that is computing |δ2j+1f
k+1 − δ2j+1g

k+1|, we can use Lemma 2
and regroup terms to rewrite expressions (2.11), (2.12), (2.13), and (2.14) in the form,

|δ2j+1f
k+1 − δ2j+1g

k+1| = |cj(δjfk − δjgk) + (
1

2
+ cj+1)(δj+1f

k − δj+1g
k) (2.15)

+ cj+2(δj+2f
k − δj+2g

k)|,

|δ2j+1f
k+1 − δ2j+1g

k+1| = |c̃j(δjfk − δjgk) + (
1

2
+ c̃j+1)(δj+1f

k − δj+1g
k)

+ c̃j+2(δj+2f
k − δj+2g

k)|,

|δ2j+1f
k+1 − δ2j+1g

k+1| = |dj(δjfk − δjgk) + (
1

2
+ dj+1)(δj+1f

k − δj+1g
k)

+ dj+2(δj+2f
k − δj+2g

k)|,

|δ2j+1f
k+1 − δ2j+1g

k+1| = |d̃j(δjfk − δjgk) + (
1

2
+ d̃j+1)(δj+1f

k − δj+1g
k)

+ d̃j+2(δj+2f
k − δj+2g

k)|.

According to Lemma 5 either |cj |+ (1
2 + |cj+1|) + |cj+2|, |c̃j |+ (1

2 + |c̃j+1|) + |c̃j+2|, |dj |+ (1
2 +

|dj+1|) + |dj+2|, or |d̃j | + (1
2 + |d̃j+1|) + |d̃j+2| is strictly lower than 3

4 . Let us suppose then that
|cj |+ (1

2 + |cj+1|) + |cj+2| < 3
4 . Now applying the triangular inequality we get

|δ2j+1f
k+1 − δ2j+1g

k+1| ≤ |cj ||δjfk − δjgk|+ (
1

2
+ |cj+1|)|δj+1f

k − δj+1g
k| (2.16)

+ |cj+2||δj+2f
k − δj+2g

k|

≤ (|cj |+ (
1

2
+ |cj+1|) + |cj+2|)||δfk − δgk||∞

<
3

4
||δfk − δgk||∞.

Operating with the even indexes in the same way we also get

|δ2jf
k+1 − δ2jg

k+1| ≤ 3

4
||δfk − δgk||∞. (2.17)
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Finally from (2.16) and (2.17) we get

||δfk+1 − δgk+1||∞ ≤
3

4
||δfk − δgk||∞.

Theorem 1. If the initial data f0, g0 ∈ l∞(Z) satisfy conditions (2.4) and (2.5) then ||δfk+1 −
δgk+1||∞ ≤ 3

4 ||δf
k − δgk||∞, ∀ k ∈ N.

Proof. Since the data satisfy conditions (2.4) and (2.5) at the inicial scale, applying Proposition 3
the same will be true for all succesive scales with k ≥ 0. At a given scale k, for any j ∈ Z the
data will satisfy the hypothesis of either Proposition 5 or Proposition 6 and from here it follows
immediately the thesis given in the theorem.

2.5 Stability result for a set of strictly convex initial data

In this section we proof the main result of the chapter ensuring stability with respect to slight
perturbations in the initial data.

Theorem 2. Let f0, g0 ∈ l∞(Z) initial data satisfying conditions (2.4) and (2.5) then

||Skf0 − Skg0||∞ ≤ 3||f0 − g0||∞. (2.18)

Proof. Again we are going to deal with odd and even indexes of |Skf0 − Skg0| separately. Let us
denote fk = Skf0, and gk = Skg0. From the expression of the PPH scheme in (2.1) and (2.2) we
get

fk2j = fk−1
j ,

gk2j = gk−1
j ,

fk2j+1 =
fk−1
j + fk−1

j+1

2
− 1

4

∆jf
k−1

∆jfk−1 + ∆j+1fk−1
(δj+2f

k−1 − δj+1f
k−1),

gk2j+1 =
gk−1
j + gk−1

j+1

2
− 1

4

∆jg
k−1

∆jgk−1 + ∆j+1gk−1
(δj+2g

k−1 − δj+1g
k−1),

and therefore

|fk2j − gk2j | = |fk−1
j − gk−1

j | ≤ ||fk−1 − gk−1||∞, (2.19)

and for the odd indexes using Lemma 5 and supposing without lost of generalization |cj |+ |cj+1|+
|cj+2| < 1

4 , we get

32



|fk2j+1 − gk2j+1| ≤
|fk−1
j − gk−1

j |
2

+
|fk−1
j+1 − g

k−1
j+1 |

2
(2.20)

+
1

4
| ∆jf

k−1

∆jfk−1 + ∆j+1fk−1
(δj+2f

k−1 − δj+1f
k−1)− ∆jg

k−1

∆jgk−1 + ∆j+1gk−1
(δj+2g

k−1 − δj+1g
k−1)|

≤ ||fk−1 − gk−1||∞ + |δ2j+1f
k − δ2j+1g

k − 1

2
(δj+1f

k−1 − δj+1g
k−1)|

= ||fk−1 − gk−1||∞ + |cj(δjfk−1 − δjgk−1) + cj+1(δj+1f
k−1 − δj+1g

k−1)|
+ cj+2(δj+2f

k−1 − δj+2g
k−1)|,

< ||fk−1 − gk−1||∞ +
1

4
||δfk−1 − δgk−1||∞.

Joining (2.19) and (2.20) we get

||fk − gk||∞ ≤ ||fk−1 − gk−1||∞ +
1

4
||δfk−1 − δgk−1||∞. (2.21)

Now from expression (2.21) using the Lipchitz property proven in Theorem 1

||fk − gk||∞ ≤ ||fk−1 − gk−1||∞ +
1

4
(
3

4
)k−1||δf0 − δg0||∞

≤ ||fk−2 − gk−2||∞ +
1

4
((

3

4
)k−2 + (

3

4
)k−1)||δf0 − δg0||∞

≤ ||f0 − g0||∞ +
1

4
(1 +

3

4
+ . . .+ (

3

4
)k−1)||δf0 − δg0||∞

≤ (1 +
1

4
· 2 · 4)||f0 − g0||∞ = 3||f0 − g0||∞.

2.6 Conclusions

We have improved the stability bound in [11] for initial data coming from strictly convex
smooth functions, obtaining a value of the constant C = 3 instead of 9. The stability result has
been obtained by analyzing the scheme of the first order differences, while in [11] was done with
second order differences.
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Chapter 3

On the convexity preservation of a
quasi C3 nonlinear interpolatory
reconstruction operator on σ
quasi-uniform grids

The contents of this chapter are wholly included in the already published paper [42]

• Ortiz, P.; Trillo, J.C. On the Convexity Preservation of a Quasi C3 Nonlinear Interpola-
tory Reconstruction Operator on σ Quasi-Uniform Grids. Mathematics. 2021, 9(4), 310.
https://doi.org/10.3390/math9040310

3.1 Introduction

Reconstruction operators are widely used in computer-aided geometric design. For simplicity,
the functions that are typically used as operators are polynomials. In order to avoid undesirable
phenomena generated by high-degree polynomials, reconstructions are usually built piecewise. Due
to the bad behavior of linear operators in the presence of discontinuities, it has become necessary to
design nonlinear operators to overcome this drawback. One of these operators was defined in [6] and
was called the piecewise polynomial harmonic (PPH). This operator essentially consists of a clever
modification of the classical four-point piecewise Lagrange interpolation. The initial purpose of
this definition was to deal with discontinuities, reducing the undesirable effects to only one interval
instead of the three intervals affected in a reconstruction built with a four-point stencil. In addition
to that, as we will see throughout this chapter, the reconstruction may also play an important role
in design purposes, since it keeps the convexity properties of the given starting data.

For the sake of simplicity, as much in the theoretical analysis as in the practical implementation
and computational time, studies usually start with data given in uniform grids. Nevertheless, some
applications require dealing with data over nonuniform grids. At times, it is not trivial to adapt
operators defined over uniform grids to the nonuniform case. The above-mentioned PPH operator
was defined over a uniform grid and some of its properties were studied in [6]. These reconstruction
operators are the basis for the definition of associated subdivision and multi-resolution schemes. In
this chapter, we use the definition that we made of the PPH reconstruction operator for data over
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nonuniform grids in [41], and we study some properties of this operator in greater depth. In par-
ticular, we focus on the smoothness of the reconstruction and the convexity-preserving properties
of the initial data. We show that PPH reconstruction gives a C∞ function, except for the knots
where the function remains C0 and the differences between the first, second, and third one-sided
derivatives are of the third, second, and first order, respectively (see Definition 7).

In [10], the authors proved that the related subdivision scheme in uniform meshes preserves
the convexity of the control points. In this chapter, we attempt to determine if this result about
preserving convexity can be extended for the reconstruction operator and not only in uniform
meshes, but also in σ quasi-uniform meshes with σ ≤ 4.

The chapter is organized as follows: Section 3.2 is devoted to defining the PPH reconstruction
operator over nonuniform grids. For this purpose, we will use the weighted harmonic mean with
appropriate weights. Then, we show that the new reconstruction operator amounts to the original
PPH reconstruction operator when we restrict to uniform grids. The definition is given for general
nonuniform meshes, although in order to establish some theoretical results, we consider σ quasi-
uniform meshes. In Section 3.3, we study some basic properties of PPH reconstruction, such as the
reproduction of polynomials of the second degree, approximation order, smoothness, boundedness
of the operator, Lipschitz continuity, and convexity preservation. In Section 3.4, we analyze the
reconstruction when dealing with strictly convex (or concave) initial data. In Section 3.5, we
present some numerical tests. Finally, some conclusions are included in Section 3.6.

3.2 A nonlinear PPH interpolation procedure on nonuniform grids

Let us define the nonuniform grid X = (xi)i ∈ Z. Let us also denote the nonuniform spacing
between abscissae as hi := xi − xi−1. We will work with continuous piecewise reconstructions of
a given underlying continuous function f(x) with, at most, a finite set of isolated corner or jump
discontinuities, that is

R(x) = Rj(x), x ∈ [xj , xj+1], (3.1)

where Rj(x) is a third-degree polynomial satisfying

Rj(xj) = f(xj), (3.2)

Rj(xj+1) = f(xj+1).

From now on, we will use the notation fi := f(xi).
Taking (3.1) into account, this implies that we are interested in building the appropriate poly-

nomial piece Rj(x) in the interval [xj , xj+1]. Let us consider the set of values {fj−1, fj , fj+1, fj+2} for
some j ∈ Z corresponding to subsequent ordinates of a function f(x) at the abscissae {xj−1, xj , xj+1, xj+2}
of a nonuniform grid X, and PLj(x) is the Lagrange interpolatory polynomial built with the points
(xi, fi), i = j − 1, j, j + 1, j + 2, that is, the unique polynomial of degree less or equal 3 satisfying

PLj(xi) = fi j − 1 ≤ i ≤ j + 2. (3.3)

The polynomial PLj(x) can be expressed as

PLj(x) = aj,0 + aj,1

(
x− xj+ 1

2

)
+ aj,2

(
x− xj+ 1

2

)2
+ aj,3

(
x− xj+ 1

2

)3
, (3.4)

where xj+ 1
2

=
xj + xj+1

2
.
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It is well known that from conditions (3.3), one obtains the following linear system of equa-
tions, where the coefficient matrix is a Vandermonde matrix with different nodes and is, therefore,
invertible:

1

(
−hj −

hj+1

2

) (
−hj −

hj+1

2

)2 (
−hj −

hj+1

2

)3

1 −hj+1

2

h2
j+1

4
−
h3
j+1

8

1
hj+1

2

h2
j+1

4

h3
j+1

8

1

(
hj+1

2
+ hj+2

) (
hj+1

2
+ hj+2

)2 (
hj+1

2
+ hj+2

)3




aj,0
aj,1
aj,2
aj,3

 =


fj−1

fj
fj+1

fj+2

 . (3.5)

In order to express the solution of system (3.5) in a form that is convenient for our purposes,
we introduce the definition of the second-order divided differences

Dj := f [xj−1, xj , xj+1] =
fj−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)
,

Dj+1 := f [xj , xj+1, xj+2] =
fj

hj+1(hj+1 + hj+2)
− fj+1

hj+1hj+2
+

fj+2

hj+2(hj+1 + hj+2)
,

(3.6)

and a weighted arithmetic mean of Dj and Dj+1, defined as

Mj = wj,0Dj + wj,1Dj+1, (3.7)

with the weights

wj,0 =
hj+1 + 2hj+2

2(hj + hj+1 + hj+2)
,

wj,1 =
hj+1 + 2hj

2(hj + hj+1 + hj+2)
= 1− wj,0.

(3.8)

With these definitions, after solving the system (3.5), we get the following expressions for the
coefficients of the polynomial (3.4):

aj,0 =
fj + fj+1

2
−
h2
j+1

4
Mj ,

aj,1 =
−fj + fj+1

hj+1
+

h2
j+1

2(2hj + hj+1)
(Dj −Mj),

aj,2 = Mj ,

aj,3 = − 2

2hj + hj+1
(Dj −Mj),

(3.9)
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which can also be expressed as

aj,0 =
fj + fj+1

2
−
h2
j+1

4
Mj ,

aj,1 =
−fj + fj+1

hj+1
+

h2
j+1

2(2hj+2 + hj+1)
(−Dj+1 +Mj),

aj,2 = Mj ,

aj,3 = − 2

2hj+2 + hj+1
(−Dj+1 +Mj).

(3.10)

At this point, we give some more definitions and lemmas that we will need later.

Lemma 6. Let us consider the set of ordinates {fj−1, fj , fj+1, fj+2} for some j ∈ Z at the abscissae
{xj−1, xj , xj+1, xj+2} of a nonuniform grid X = (xi)i ∈ Z. Then, the values fj−1 and fj+2 at the
extremes can be expressed as

fj−1 =
−1

γj,−1
(γj,0fj + γj,1fj+1 + γj,2fj+2) +

Mj

γj,−1
, (3.11a)

fj+2 =
−1

γj,2
(γj,−1fj−1 + γj,0fj + γj,1fj+1) +

Mj

γj,2
, (3.11b)

with the constants γj,i, i = −1, 0, 1, 2 given by

γj,−1 =
hj+1 + 2hj+2

2hj(hj+1 + hj)(hj + hj+1 + hj+2)
,

γj,0 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj
hj+1 + hj+2

− hj+1 + 2hj+2

hj

)
,

γj,1 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj+2

hj+1 + hj
− hj+1 + 2hj

hj+2

)
,

γj,2 =
hj+1 + 2hj

2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)
.

(3.12)

Proof. This proof is an immediate calculation just by expanding the expression of the weighted
arithmetic mean in (3.7) in terms of fi, i = j − 1, j, j + 1, j + 2, that is

Mj = γj,−1fj−1 + γj,0fj + γj,1fj+1 + γj,2fj+2. (3.13)

Definition 3. A nonuniform mesh X = (xi)i∈Z is said to be a σ quasi-uniform mesh if there exist
hmin = min

i∈Z
hi, hmax = max

i∈Z
hi, and a finite constant σ such that hmax

hmin
≤ σ.

In the presence of isolated singularities, predictions made using Lagrange reconstruction oper-
ators lose their accuracy in the vicinity of the discontinuity; in fact, three intervals are expected to
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be affected, since we are considering a stencil of four points. In order to reduce the affected inter-
vals to only one, the one containing the singularity, we introduce a weighted harmonic mean over
nonuniform grids, which will be used in the general definition of the PPH reconstruction operator.
Notice that it is not possible to recover the exact position of a jump discontinuity inside an interval
by using point value discretization of an underlying function. For the case of a corner discontinuity,
a strategy such as the subcell resolution technique [34] could be used to detect its position. This
harmonic mean is built as the inverse of the weighted arithmetic mean of the inverses of the given
values. We define the following function.

Definition 4. Given x, y ∈ R, and wx, wy ∈ R such that wx > 0, wy > 0, and wx + wy = 1, we

denote as Ṽ the function

Ṽ (x, y) =


xy

wxy + wyx
if xy > 0,

0 otherwise.
(3.14)

Lemma 7. If x > 0 and y > 0, the harmonic mean is bounded as follows

Ṽ (x, y) < min

{
1

wx
x,

1

wy
y

}
. (3.15)

Before giving another important lemma for our purposes, we will introduce a definition about
a basic concept that will be used throughout the rest of the chapter.

Definition 5. The expression e(h) = O(hr) means that there exist h0 > 0 and M > 0 such that
∀ 0 < h ≤ h0,

|e(h)|
hr

≤M.

Lemma 8. Let a > 0 be a fixed positive real number and let x ≥ a, y ≥ a. If |x− y| = O(h), then
the weighted harmonic mean is also close to the weighted arithmetic mean M(x, y) = wxx+ wyy,

|M(x, y)− Ṽ (x, y)| = wxwy
wxy + wyx

(x− y)2 = O(h2). (3.16)

Remark 1. The smaller the value of a > 0 in Lemma 8, the smaller the h0 in Definition 5 required
to attain the expected theoretical order.

It is well known that the divided differences (3.6) work as smoothness indicators [5, 7, 11, 26, 29,
27, 32, 35, 37, 50]. If a potential singularity appears at the interval [xj+1, xj+2], we propose that the
data (xj+2, fj+2) are not interpolated, and that the ordinate fj+2 is exchanged for another value that
is more convenient for what happens in the target interval [xj , xj+1], where we want to implement
the local polynomial piece according to (3.1). In the same manner, if a potential singularity lies in
the interval [xj−1, xj ], a symmetrical modification is carried out. According to these observations,
we can give the following definition for the PPH reconstruction on nonuniform meshes.

Definition 6 (PPH reconstruction). Let X = (xi)i∈Z be a nonuniform mesh. Let f = (fi)i∈Z be
a sequence in l∞(Z). Let Dj and Dj+1 be the second-order divided differences, and for each j ∈ Z,

let us consider the modified values {f̃j−1, f̃j , f̃j+1, f̃j+2} built according to the following rule:
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• Case 1: If |Dj | ≤ |Dj+1|,
f̃i = fi, j − 1 ≤ i ≤ j + 1,

f̃j+2 = −1
γj,2

(γj,−1fj−1 + γj,0fj + γj,1fj+1) +
Ṽj
γj,2

.
(3.17)

• Case 2: If |Dj | > |Dj+1| f̃j−1 = −1
γj,−1

(γj,0fj + γj,1fj+1 + γj,2fj+2) +
Ṽj
γj,−1

,

f̃i = fi, j ≤ i ≤ j + 2,

(3.18)

where γj,i, i = −1, 0, 1, 2 are given in (3.12) and Ṽj = Ṽ (Dj , Dj+1), where Ṽ is the weighted
harmonic mean defined in (3.14) with the weights wj,0 and wj,1 in (3.8). We define the PPH
nonlinear reconstruction operator as

PPH(x) = PPHj(x), x ∈ [xj , xj+1], (3.19)

where PPHj(x) is the unique interpolation polynomial that satisfies

PPHj(xi) = f̃i, j − 1 ≤ i ≤ j + 2. (3.20)

According to Definition 6, and establishing a parallelism with expression (3.4), we can write
the PPH reconstruction as

PPHj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (3.21)

where the the coefficients ãj,i, i = 0, . . . , 3 are calculated by imposing conditions (3.20). Depending
on the local case, Case 1 or Case 2, the coefficients will have different expressions.

Case 1: |Dj | ≤ |Dj+1|, i.e., the possible singularity lies in [xj+1, xj+2].The replacement of fj+2

with f̃j+2 by exchanging the weighted arithmetic mean in Equation (3.11b) for its corresponding
weighted harmonic mean has been proposed. It is also important to point out that Equation (3.17)
shows that f̃j+2 is not significantly affected by a potential singularity at the interval [xj+1, xj+2] ,

since, by property (3.15) in Lemma 7, |Ṽj | ≤
1

wj,0
|Dj |, and in turn, Dj is not affected by this

discontinuity. Therefore, the influence of fj+2 on the values of the reconstruction in the interval
[xj , xj+1] will be limited. In this case, the coefficients of the new polynomial (3.21) come from
solving the linear system

1

(
−hj −

hj+1

2

) (
−hj −

hj+1

2

)2 (
−hj −

hj+1

2

)3

1 −hj+1

2

h2
j+1

4
−
h3
j+1

8

1
hj+1

2

h2
j+1

4

h3
j+1

8

1

(
hj+1

2
+ hj+2

) (
hj+1

2
+ hj+2

)2 (
hj+1

2
+ hj+2

)3




ãj,0
ãj,1
ãj,2
ãj,3

 =


f̃j−1

f̃j
f̃j+1

f̃j+2

 . (3.22)
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Thus, the coefficients ãj,i, i = 0, . . . , 3 take the form

ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

4hj + 2hj+1
(Dj − Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

2hj + hj+1
(Dj − Ṽj).

(3.23)

Case 2: |Dj | > |Dj+1|, i.e., the possible singularity lies in [xj−1, xj ]. In this case, in Definition 6,

the value fj−1 is replaced with f̃j−1 by using expression (3.18). The net effect is again the exchange
of the weighted arithmetic mean in Equation (3.11a) for the corresponding weighted harmonic
mean. On this occasion, we get an adaptation of the reconstruction to a potential singularity in
[xj−1, xj ], since the effect of the value fj−1 is largely reduced. In fact, by property (3.15) in Lemma

7, |Ṽj | ≤
1

wj,1
|Dj+1|, and Dj+1 is not affected by any discontinuity.

By solving the system (3.22), we obtain the following coefficients for the polynomial (3.21):

ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

2hj+1 + 4hj+2
(−Dj+1 + Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

hj+1 + 2hj+2
(−Dj+1 + Ṽj).

(3.24)

Remark 2. The replacement of the weighted arithmetic mean for the corresponding harmonic mean
in Definition 6 does not only guarantee adaptation near singularities, but also enlarges the region
where the reconstruction preserves convexity according to expressions (3.40) and (3.43), as we will
see in the next section.

Remark 3. In both cases, the value of the PPH reconstruction at the midpoint xj+ 1
2

of xj , xj+1

gets the value PPHj(xj+ 1
2
) = ãj,0. This expression directly defines an associated subdivision scheme

and, consequently, also an associated multi-resolution scheme in nonuniform meshes. The interested
reader is referred to [5, 6] for more details in the context of uniform meshes.

Remark 4. Notice that, considering uniform meshes, i.e., hi = h ∀i, all the given expressions
reduce to the equivalent expressions in [6], which are valid only for the uniform case.

Remark 5. Notice that Definition 6 of the PPH reconstruction operator has been given for general
nonuniform meshes. From now on, one needs to take into account that some results are true for
general grids, while others need the restriction to σ quasi-uniform meshes.
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3.3 Main properties of the PPH reconstruction operator in nonuni-
form meshes

In this section, we study some interesting properties of the new reconstruction operator. More
precisely, we study the reproduction of polynomials, accuracy of the reconstruction, smoothness,
boundedness, Lipschitz continuity, and convexity preservation. We start with the reproduction of
polynomials up to degree 2.

3.3.1 Reproduction of polynomials up to degree 2

If the underlying function f(x) is a polynomial of degree 2, then Dj = Dj+1 = D is constant
and DjDj+1 = D2 ≥ 0. Using Equations (3.7), (3.10), (3.14), (3.23), and (3.24), we get

Mj = wj,0D + (1− wj,0)D = D,

Ṽj =
D2

wj,0D + (1− wj,0)D
= D,

ãj,i = aj,i ∀i = 0, 1, 2, 3.

So, PPHj(x) = PLj(x), i.e., PPHj(x), reproduces polynomials of a degree less than or equal
2, since PLj(x) does this.

3.3.2 Approximation order for strictly convex (concave) functions

We will prove full-order accuracy, that is, fourth order, for a reconstruction that locally uses four
centered points to get the approximation at a given interval [xj , xj+1] for any j ∈ Z. In particular,
we can enunciate the following proposition.

Proposition 7. Let f(x) be a strictly convex (concave) function of class C4(R) and let a ∈ R, a > 0
be such that f ′′(x) ≥ a > 0, ∀x ∈ R (let a ∈ R, a < 0 be such that f ′′(x) ≤ a < 0, ∀x ∈ R). Let
X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1, ∀i ∈ Z, and f = (fi)i∈Z, the
sequence of point values of the function f(x), fi = f(xi). Then, the reconstruction PPH(x) satisfies

|f(x)− PPH(x)| = O(h4), ∀x ∈ R, (3.25)

where h = max
i∈Z
{hi}.

Proof. Given x ∈ R, there exist j ∈ Z such that x ∈ [xj , xj+1]. This implies that PPH(x) =
PPHj(x).

Now, let us suppose that the initial data f = (fi)i∈Z come from a strictly convex function (for
a concave function, the arguments remain the same) satisfying the given hypothesis f ′′(x) ≥ a >
0, ∀x ∈ R for some a > 0. Then, DjDj+1 > 0, since second-order divided differences amount to
second derivatives at an intermediate point divided by two, i.e.,

Dj =
f ′′(µ1)

2!
≥ a

2
, Dj+1 =

f ′′(µ2)

2!
≥ a

2
,

with µ1 ∈ (xj−1, xj+1) and µ2 ∈ (xj , xj+2). Moreover, we have

|Dj+1 −Dj | ≤Mh = O(h),
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where M is a bound of the third derivative of f(x) in the compact interval [xj−1, xj+2].

Since from Equations (3.7) and (3.14), we can write

Mj − Ṽj =
wj,0wj,1(Dj+1 −Dj)

2

wj,0Dj+1 + wj,1Dj
,

we get from Lemma 8 that

|Mj − Ṽj | = O(h2). (3.26)

Putting this information into (3.9) and (3.23), if |Dj | ≤ |Dj+1|, or into (3.10) and (3.24), if
|Dj | > |Dj+1|, we get that

|ãj,i − aj,i| = O(h4−i) ∀i = 0, 1, 2, 3. (3.27)

Thus

|PPHj(x)− PLj(x)| ≤
3∑
i=0

|ãj,i − aj,i|
∣∣∣∣(x− xj+ 1

2

)i∣∣∣∣ = O(h4),

where PLj(x) is the Lagrange interpolatory polynomial. Taking the triangular inequality into
account again

|f(x)− PPHj(x)| ≤ |f(x)− PLj(x)|+ |PLj(x)− PPHj(x)| = O(h4),

and using that Lagrange interpolation also attains fourth-order accuracy.

3.3.3 Smoothness

In this part, we study the smoothness of the resulting reconstruction, and for this purpose, we
give the following definition.

Definition 7 (Quasi Cs function). A function f : R→ R is said to be quasi Cs(R) if it satisfies:

(a) f(x) belongs to class Cs(R) except for a numerable set of points X = (xi)i∈Z with h =
max
i∈Z
{hi} <∞, where hi = xi − xi−1.

(b) There exist one-sided derivatives until order s, f (m)(x+
i ) and f (m)(x−i ), m = 0, . . . , s, and

these satisfy |f (m)(x+
i )− f (m)(x−i )| = O(hs+1−m), m = 0, . . . , s.

Before giving the main result regarding smoothness, we will prove an auxiliary lemma that
we need.

Lemma 9. Let f : [a, b] → R be a derivable function in (a, b), and let us suppose that there exist
h0,M > 0 and r ≥ 1 such that ∀ 0 < h < h0:

|f(x)|
hr

≤M, ∀x ∈ (a, b),

then, there exists K > 0 such that ∀ 0 < h < h0

|f ′(x)|
hr−1

≤ K, ∀x ∈ (a, b).
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Proof. From the fact that f is derivable in (a, b), we have that given x ∈ (a, b) for all ε > 0, there
exists hε > 0 such that, ∀ h̃ : 0 < h̃ < hε,∣∣∣∣∣f ′(x)− f(x+ h̃)− f(x)

h̃

∣∣∣∣∣ < ε.

Let h ∈ (0, h0); then, we take εh := hr−1, and there exists hεh > 0 such that, ∀ h̃ : 0 < h̃ < hεh ,∣∣∣∣∣f(x+ h̃)− f(x)

h̃
− f ′(x)

∣∣∣∣∣ < εh = hr−1.

We now define h1 = min{h, hεh}. Then, for all h̃ with h̃ ∈ (0, h1), we get:

|f ′(x)|
hr−1

≤ 1

hr−1

∣∣∣∣∣f ′(x)− f(x+ h̃)− f(x)

h̃

∣∣∣∣∣+
1

hr−1

∣∣∣∣∣f(x+ h̃)− f(x)

h̃

∣∣∣∣∣
<
hr−1

hr−1
+

1

hr−1

∣∣∣∣∣f(x+ h̃)− f(x)

h̃

∣∣∣∣∣
≤ 1 +

|f(x+ h̃)|
h̃r

+
|f(x)|
h̃r

= 1 + 2M =: K.

We are now ready to present the following proposition with respect to the PPH reconstruction
given in Definition 6.

Proposition 8. Let f(x) be a strictly convex (concave) function of class C4(R) and a ∈ R, a > 0
such that f ′′(x) ≥ a > 0, ∀x ∈ R (a ∈ R, a < 0 such that f ′′(x) ≤ a < 0, ∀x ∈ R). Let X = (xi)i∈Z
be a σ quasi-uniform mesh in R, with hi = xi−xi−1, ∀i ∈ Z, and f = (fi)i∈Z, the sequence of point
values of the function f(x), fi = f(xi). Then, the reconstruction PPH(x) is quasi C3(R).

Proof. By construction, the PPH reconstruction is C∞((xi, xi+1)) for all i ∈ Z, since it is nothing
else but a piecewise polynomial. Let us study the situation at a grid point xj where two polynomial
pieces join. Again, by construction, PPHj−1(xj) = PPHj(xj), and therefore, the reconstruction
is a continuous function. Using the proof of Proposition 7, we know that

gj−1(x) := f(x)− PPHj−1(x) = O(h4), ∀x ∈ [xj−2, xj+1], (3.28)

gj(x) := f(x)− PPHj(x) = O(h4), ∀x ∈ [xj−1, xj+2].

From (3.28), we get that

PPHj(x)− PPHj−1(x) = gj−1(x)− gj(x) = O(h4),∀x ∈ [xj−1, xj+1]. (3.29)

Thus, from Lemma 9, we get that

PPH
(m)
j (x)− PPH(m)

j−1(x) = O(h4−m), m = 1, 2, 3. (3.30)

In particular, Equations (3.29) and (3.30) are true for the abscissa xj , which proves the property
of quasi C3 at the grid points.
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3.3.4 Boundedness and Lipschitz continuity

We start by giving the exact definitions of the concepts treated in this section.

Definition 8. A nonlinear reconstruction operator R : l∞(Z) → C(R) is called bounded if there
exists a constant C > 0 such that

||R(f)||∞ ≤ C||f ||∞ ∀f ∈ l∞(Z).

Definition 9. A nonlinear reconstruction operator R : l∞(Z)→ C(R) is called Lipschitz continuous
if there exists a constant C > 0 such that ∀ x, y ∈ R, it is verified that

|R(f)(x)−R(f)(y)| ≤ C|x− y|.

Before addressing these properties, we need to prove some lemmas.

Lemma 10. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and let
Lm(x) m = −1, 0, 1, 2 be the Lagrange basis for a four-point stencil {xj−1, xj , xj+1, xj+2}. Then

|Lm(x)| ≤ σ ∀x ∈ [xj , xj+1], m = −1, 0, 1, 2.

Proof. As is well known, the Lagrange bases are given by

Lm(x) =
2∏

s=−1
s 6=m

x− xj+s
xj+m − xj+s

, m = −1, 0, 1, 2. (3.31)

Denoting α = x− xj , we have

|L−1(x)| =
∣∣∣∣ αhj hj+1 − α

hj+1 + hj

hj+2 + hj+1 − α
hj+2 + hj+1 + hj

∣∣∣∣ < ∣∣∣∣ αhj
∣∣∣∣ ≤ σ,

|L0(x)| =
∣∣∣∣(hj + α)(hj+1 − α)

hjhj+1

hj+2 + hj+1 − α
hj+2 + hj+1

∣∣∣∣ ≤
∣∣∣∣∣(max{hj , hj+1})2 − α2

hjhj+1

∣∣∣∣∣ ≤ σ,
|L1(x)| =

∣∣∣∣ hj + α

hj + hj+1

α

hj+1

hj+2 + hj+1 − α
hj+2

∣∣∣∣ .
In order to obtain the bound for L1(x), we distinguish two cases.

1. If hj+2 ≥ hj+1, α ≤ hj+2 − (hj+1 − α),

|L1(x)| ≤
∣∣∣∣ hj + α

hj + hj+1

hj+2 − (hj+1 − α)

hj+1

hj+2 + (hj+1 − α)

hj+2

∣∣∣∣ ≤ ∣∣∣∣(hj+2)2 − (hj+1 − α)2

hj+1hj+2

∣∣∣∣
≤

∣∣∣∣∣(max{hj+1, hj+2})2

hj+1hj+2

∣∣∣∣∣ ≤ σ.
2. If hj+1 > hj+2, α < hj+1 − (hj+2 − α), working in a similar way, we also get |L1(x)| ≤ σ.
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Finally,

|L2(x)| ≤
∣∣∣∣ hj + α

hj + hj+1 + hj+2

α

hj+1 + hj+2

hj+1 − α
hj+2

∣∣∣∣ ≤ ∣∣∣∣hj+1 − α
hj+2

∣∣∣∣ ≤ σ.

Lemma 11. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and let

us consider the expressions
∣∣∣f̃j+2

∣∣∣ in (3.17) and
∣∣∣f̃j−1

∣∣∣ in (3.18). Then, we have the following

bounds: ∣∣∣f̃j+2

∣∣∣ ≤ (5 + 16σ)σ3 ‖f‖l∞(Z) ,
∣∣∣f̃j−1

∣∣∣ ≤ (5 + 16σ)σ3 ‖f‖l∞(Z) .

Proof. From Equations (3.12), we get∣∣∣∣γj,−1

γj,2

∣∣∣∣ =

∣∣∣∣hj+2

hj

hj+1 + hj+2

hj+1 + hj

hj+1 + 2hj+2

hj+1 + 2hj

∣∣∣∣ ≤ σ3,∣∣∣∣γj,0γj,2

∣∣∣∣ =

∣∣∣∣hj+2

hj+1

hj+1 + hj+2

hj+1 + 2hj

(
hj+1 + 2hj
hj+1 + hj+2

− hj+1 + 2hj+2

hj

)∣∣∣∣ ≤ 2σ3,∣∣∣∣γj,1γj,2

∣∣∣∣ =

∣∣∣∣hj+2

hj+1

hj+1 + hj+2

hj+1 + 2hj

(
hj+1 + 2hj+2

hj+1 + hj
− hj+1 + 2hj

hj+2

)∣∣∣∣ ≤ 2σ3.

(3.32)

According to property (3.15) of the harmonic mean |Ṽj | ≤
|Dj |
wj,0

, , we also get

∣∣∣∣∣ Ṽjγj,2
∣∣∣∣∣ ≤

∣∣∣∣ Dj

wj,0 · γj,2

∣∣∣∣ =
4hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)2

(hj+1 + 2hj+2)(hj+1 + 2hj)
(3.33)∣∣∣∣ fj−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)

∣∣∣∣ ≤ 16σ4
∥∥∥fk∥∥∥

l∞(Z)
.

Plugging (3.32) and (3.33) into (3.17), we obtain∣∣∣f̃j+2

∣∣∣ ≤ (5 + 16σ)σ3
∥∥∥fk∥∥∥

l∞(Z)
.

Following a similar path for
∣∣∣f̃j−1

∣∣∣,∣∣∣∣ γj,0γj,−1

∣∣∣∣ =

∣∣∣∣ hjhj+1

hj+1 + hj
hj+1 + 2hj+2

(
hj+1 + 2hj
hj+1 + hj+2

− hj+1 + 2hj+2

hj

)∣∣∣∣ ≤ 2σ3,∣∣∣∣ γj,1γj,−1

∣∣∣∣ =

∣∣∣∣ hjhj+1

hj+1 + hj
hj+1 + 2hj+2

(
hj+1 + 2hj+2

hj+1 + hj
− hj+1 + 2hj

hj+2

)∣∣∣∣ ≤ 2σ3,∣∣∣∣ γj,2γj,−1

∣∣∣∣ =

∣∣∣∣ hjhj+2

hj+1 + hj
hj+1 + hj+2

hj+1 + 2hj
hj+1 + 2hj+2

∣∣∣∣ ≤ σ3.

Using the property (3.15) of the harmonic mean |Ṽj | ≤
|Dj+1|
wj,1

, we get
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∣∣∣∣∣ Ṽjγj,−1

∣∣∣∣∣ ≤
∣∣∣∣ Dj+1

wj,1 · γj,−1

∣∣∣∣ =
4hj(hj+1 + hj)(hj + hj+1 + hj+2)2

(hj+1 + 2hj+2)(hj+1 + 2hj)∣∣∣∣ fj
hj+2(hj+2 + hj+1)

− fj+1

hj+2hj+1
+

fj+2

hj+1(hj+2 + hj+1)

∣∣∣∣ ≤ 16σ4
∥∥∥fk∥∥∥

l∞(Z)
,

which leads us to ∣∣∣f̃j−1

∣∣∣ ≤ (5 + 16σ)σ3
∥∥∥fk∥∥∥

l∞(Z)
.

Proposition 9. The nonlinear PPH reconstruction operator is a bounded operator over σ quasi-
uniform meshes.

Proof. Let x ∈ R and j ∈ Z such that x ∈ [xj , xj+1]. Depending on the relative size of Dj and

Dj+1, the PPH reconstruction operator replaces the value fj+2 with f̃j+2 or fj−1 by f̃j−1 as
follows:

PPHj(x) =


B−1fj−1 +B0fj +B1fj+1 +B2f̃j+2 if |Dj | ≤ |Dj+1|,

B−1f̃j−1 +B0fj +B1fj+1 +B2fj+2 if |Dj | > |Dj+1|,

where Bm = Lm(x), m = −1, 0, 1, 2, stand for the Lagrange polynomials. Applying the triangular
inequality for each case, we get

|PPHj(x)| ≤


(|B−1|+ |B0|+ |B1|) ‖f‖l∞(Z) + |B2||f̃j+2| if |Dj | ≤ |Dj+1|,

|B−1||f̃j−1|+ (|B0|+ |B1|+ |B2|) ‖f‖l∞(Z) if |Dj | > |Dj+1|.

According to Lemmas 10 and 11, we obtain the following bound for both cases

|PPHj(x)| ≤ σ(3 + 5σ3 + 16σ4) ‖f‖l∞(Z) .

The following lemma will be used for proving the Lipschitz continuity.

Lemma 12. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and
let f = (fi)i∈Z be a sequence in l∞(Z). Then, the nonlinear reconstruction operator defined in (6)
satisfies that ∀j ∈ Z,

|PPH ′j(x)| ≤ C||f ||l∞(Z) ∀x ∈ (xj , xj+1).

Proof. Since f ∈ l∞(Z), there exists M ∈ R, M ≥ 0 such that |fi| ≤M ∀i ∈ Z.
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The reconstruction PPHj(x) and its derivative read

PPHj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (3.34)

PPH ′j(x) = ãj,1 + 2ãj,2

(
x− xj+ 1

2

)
+ 3ãj,3

(
x− xj+ 1

2

)2
. (3.35)

Without lost of generalization, we will suppose that |Dj | ≤ |Dj+1|. The case |Dj | > |Dj+1| can
be carried out similarly. First, we prove the following inequalities:

|Dj | =

∣∣∣∣ fj−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)

∣∣∣∣ (3.36)

≤
∣∣∣∣hj+1 + (hj + hj+1) + hj

hjhj+1(hj + hj+1)

∣∣∣∣ ‖f‖l∞(Z) =
2

hjhj+1
‖f‖l∞(Z) ≤

2

(hmin)2
‖f‖l∞(Z) ,

|Ṽj | ≤
2

(hmin)2
‖f‖l∞(Z) ,

|Dj − Ṽj | ≤ max{|Dj |, |Ṽj |} ≤
2

(hmin)2
‖f‖l∞(Z) ,

where hmin = min
i∈Z

hi depends on the particular σ quasi-uniform mesh.

Using the expressions (3.23) for the coefficients of the polynomial derivative in (3.35), we have

|ãj,1| ≤
∣∣∣∣fj+1 − fj

hj+1

∣∣∣∣+

∣∣∣∣ (hj+1)2

4hj + 2hj+1

∣∣∣∣ |Dj − Ṽj |

≤ 2

hmin
‖f‖l∞(Z) +

(hmax)2

6hmin

2

(hmin)2
‖f‖l∞(Z)

≤ 2

hmin

(
1 +

σ2

6

)
‖f‖l∞(Z) ,

|ãj,2| = |Ṽj | ≤
2

(hmin)2
‖f‖l∞(Z) ,

|ãj,3| ≤
∣∣∣∣ 2

2hj + hj+1

∣∣∣∣ |Dj − Ṽj | ≤
2

3hmin

2

(hmin)2
‖f‖l∞(Z)

=
4

3(hmin)3
‖f‖l∞(Z) .

Thus ∣∣PPH ′j(x)
∣∣ =

∣∣∣∣ãj,1 + 2ãj,2

(
x− xj+ 1

2

)
+ 3ãj,3

(
x− xj+ 1

2

)2
∣∣∣∣

≤
(

2

hmin

(
1 +

σ2

6

)
+ 2

2

(hmin)2

hmax
2

+ 3
4

3(hmin)3

(hmax)2

4

)
‖f‖l∞(Z)

=
1

hmin

(
2 + 2σ +

4

3
σ2

)
‖f‖l∞(Z) = C ‖f‖l∞(Z) ∀x ∈ (xj , xj+1),

where C =
1

hmin

(
2 + 2σ +

4

3
σ2

)
depends on the σ quasi-uniform mesh.
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Proposition 10. The nonlinear PPH reconstruction operator is Lipschitz continuous over σ quasi-
uniform meshes.

Proof. Let us suppose first that there exists j ∈ Z such that x, y ∈ [xj , xj+1]. Using the Lagrange
mean value theorem, ∃ θ ∈ (xj , xj+1), such as

|PPHj(x)− PPHj(y)| = |PPH ′j(θ)(x− y)|.

Thus, using Lemma 12 now, we get

|PPHj(x)− PPHj(y)| ≤ C|x− y|.

In the general case, we can suppose that x < y, x ∈ [xj1 , xj1+1], y ∈ [xj2 , xj2+1] with
j1 ≤ j2. If j1 = j2,, we have already proved the result. For j1 < j2,

|PPH(x)− PPH(y)| = |PPHj1(x)− PPHj2(y)| ≤ |PPHj1(x)− PPHj1(xj1+1)|

+

j2−1∑
j=j1+1

|PPHj(xj)− PPHj(xj+1)|+ |PPHj2(xj2)− PPHj2(y)|

≤ C|x− xj1+1|+
j2−1∑
j=j1+1

C|xj − xj+1|+ C|xj2 − y| = C|x− y|.

3.3.5 Convexity preservation

We first introduce a definition concerning what we call strictly convex data and a strictly
convexity-preserving reconstruction operator.

Definition 10. Let X = (xi)i∈Z be a nonuniform mesh in R, with hi = xi − xi−1 ∀i ∈ Z, and let
f = (fi)i∈Z be a sequence in l∞(Z). We say that the data are strictly convex (concave) if, for all
i ∈ Z, it is satisfied that Di > 0 (Di < 0), where Di stands for the second-order divided differences.

Definition 11. Let X = (xi)i∈Z be a nonuniform mesh in R with hi = xi − xi−1 ∀i ∈ Z, and
let f = (fi)i∈Z be a strictly convex (concave) sequence. We say that an operator R : l∞(Z) →
C(R) is strictly convexity preserving in the interval (a, b) if there exists R(f)′′(x) and R(f)′′(x) >
0 (R(f)′′(x) < 0) ∀x ∈ (a, b).

Next, we give a proposition that introduces sufficient conditions on the grid for convexity
preservation of the proposed reconstruction.

Proposition 11. Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, hi = xi − xi−1, ∀i ∈ Z, and
σ ≤ 4. Let f = (fi)i∈Z be a sequence of strictly convex data. Then, the reconstruction PPH(x) is
strictly convexity preserving in each (xj , xj+1), that is, it is a piecewise convex function satisfying

PPH ′′j (x) > 0 ∀x ∈ (xj , xj+1), ∀ j ∈ Z. (3.37)
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Proof. Let x ∈ R and j ∈ Z such that x ∈ (xj , xj+1). Let us also consider that Di > 0∀i ∈ Z. The
case Di < 0∀i ∈ Z is proved in the same way.

Computing derivatives in Equation (3.21), we get

PPH
′′
j (x) = 2ãj,2 + 6ãj,3

(
x− xj+ 1

2

)
. (3.38)

In order to analyze the sign of PPH
′′
j (x) we need to consider two cases due to the fact that

the expression of PPHj(x) is different for |Dj | ≤ |Dj+1| than for |Dj | > |Dj+1|.

Case 1: |Dj | ≤ |Dj+1|.

Replacing coefficients ãj,2, ãj,3 coming from Equation (3.23) in expression (3.38) results in

PPH
′′
j (x) = 2Ṽj −

12

2hj + hj+1
(Dj − Ṽj)

(
x− xj+ 1

2

)
. (3.39)

Taking into account that Ṽj −Dj ≥ 0, from (3.39), we get that proving PPH ′′(x) > 0 is trivial

if Ṽj = Dj . Otherwise, the inequality PPH ′′(x) > 0 reads

x > xj+ 1
2
− 2hj + hj+1

6

Ṽj

Ṽj −Dj

. (3.40)

Replacing Ṽj with its expression in Equation (3.14), we obtain

x > xj+ 1
2
− hj + hj+1 + hj+2

3

Dj+1

Dj+1 −Dj
. (3.41)

Evaluating the previous expression at xj , we obtain the condition for convexity preservation in
(xj , xj+1). This condition reads

(hj+1 − 2(hj + hj+2))Dj+1 < 3hj+1Dj . (3.42)

Since X is a σ quasi-uniform mesh with σ ≤ 4, we have hj+1 ≤ 2(hj + hj+2) , and therefore,
the condition (3.42) is immediately satisfied. This proves the proposition in this case.

Case 2: |Dj | > |Dj+1|.

This time, by replacing the coefficients ãj,2, ãj,3 coming from Equation (3.24) in expression (3.38)
and following a similar track to that in Case 1, we obtain expressions similar to (3.40) and (3.41)
for the abscissae verifying PPH

′′
j (x) > 0:

x < xj+ 1
2

+
hj+1 + 2hj+2

6

Ṽj

Ṽj −Dj+1

, (3.43)

x < xj+ 1
2

+
hj + hj+1 + hj+2

3

Dj

Dj −Dj+1
. (3.44)

Now, evaluating at xj+1, we get

(hj+1 − 2(hj + hj+2))Dj < 3hj+1Dj+1. (3.45)

Thus, since X is a σ quasi-uniform mesh with σ ≤ 4, we get the result.
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Remark 6. As can be observed in expressions (3.41) and (3.44), the conditions that assure the
strictly convexity-preserving property depend on the second-order divided differences of the initial
data. The hypotheses of Proposition 11 are only sufficient conditions, but not necessary conditions.

Remark 7. Working in a similar way with the Lagrange reconstruction operator PLj(x), we obtain
the following expression that is analogue to (3.41) for the abscissa-fulfilling condition PL

′′
j (x) > 0:

x > xj+ 1
2
− 2hj + hj+1

6
− hj + hj+1 + hj+2

3

Dj

Dj+1 −Dj
. (3.46)

Then, if we are under the supposition that Dj < Dj+1, calling xPPH and xPL to the second
members of inequalities (3.41) and (3.46), respectively, we get

xPL − xPPH =
hj+1 + 2hj+2

6
> 0, (3.47)

i.e., PPH reconstruction operator preserves the strict convexity in a wider interval than the La-
grange reconstruction operator does. A similar conclusion can be reached under the supposition that
Dj > Dj+1.

3.4 PPH reconstruction operator over σ quasi-uniform meshes for
strictly convex (concave) initial data

In this section, we gather the most important properties of the presented PPH reconstruction
for strictly convex (concave) starting input data, and we give them in a unifying theorem. We want
to emphasize the potential practical importance of the studied technique for designing processes.

Theorem 3. Let f(x) be a strictly convex (concave) function of class C4(R) and let a ∈ R, a > 0
such that f ′′(x) ≥ a > 0, ∀x ∈ R (a ∈ R, a < 0 such that f ′′(x) ≤ a < 0, ∀x ∈ R). Let X = (xi)i∈Z
be a σ quasi-uniform mesh in R with hi = xi− xi−1, ∀i ∈ Z, and let f = (fi)i∈Z be the sequence of
point values of the function f(x), fi = f(xi). Then, the reconstruction PPH(x) satisfies

1. Reproduction of polynomials up to the second degree.

2. Fourth-order accuracy.

3. It presents a quasi C3 smoothness.

4. It is bounded and Lipschitz continuous.

5. It is strictly convexity preserving in each (xj , xj+1).

Proof. Taking the previous results into account, the proof of this theorem is now immediate. In fact,
the first affirmation is proven in Section 3.3.1, and the rest of the affirmations are proven in
Propositions 7–11, respectively.
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3.5 Numerical experiments

In this section, we present three simple numerical experiments. The first one is dedicated
to comparing the convexity preservation between the Lagrange and PPH reconstructions. Let us
consider the initial convex set of points, (0, 10), (8, 9), (25, 12), and (30, 30) , that is, Dj > 0, Dj+1 >
0 . In Figure 3.1, we have depicted the reconstruction operators corresponding to Lagrange and
PPH, and we have marked with triangles the inflection points for each reconstruction (5.66 and

10.16, respectively). We observe that PPH preserves convexity in a wider range
hj+1 + 2hj+2

6
= 4.5

than the Lagrange reconstruction does (see expression (3.47)). In fact, according to Theorem 3,
PPH reconstruction is strictly convexity preserving for the abscissae corresponding with the central
interval (8, 25), while Lagrange reconstruction is not.

0 5 10 15 20 25 30

5

10

15

20

25

30

Figure 3.1: Solid line: Lagrange polynomial; dashed line: piecewise polynomial harmonic (PPH)
polynomial. Circles stand for Lagrange values at the nodes, asterisks stand for PPH values at the
nodes, and triangles stand for inflection points.

The next experiment computes the numerical approximation order of the considered reconstruc-
tion operator.

Let X be a nonuniform grid:

X =

(
22

551
,

28

337
,

28

267
,

79

656
,
149

924
,

47

234
,

67

245
,

92

275
,

98

241
,
113

254
,
185

396
,
251

490
,
141

257
,
134

205
,
469

221
,
316

369
,
1189

1259

)
π,

and let f(x) = sin(x) be a smooth test function. Let us consider the set of initial points given
by (xi, f(xi)), i = 1, ..., 17. In this experiment, we will measure the approximation errors and
the numerical order of approximation of the presented PPH reconstruction. The numerical order
of approximation p is calculated in an iterative way, just by considering at each new iteration
k, k = 1, 2, 3, 4, 5, 6, 7 a nonuniform grid Xk built from the previous one by introducing a new node
in the middle of each two consecutive existing nodes. The error Ek for the PPH reconstruction at
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each iteration k is calculated as a discrete approximation to ‖f(x)− PPH(x)‖∞ , thus evaluating
a much denser set of points. Both the errors and the approximation orders p for each iteration are
shown in Table 3.1, where we can see that PPH reconstruction tends to fourth-order accuracy with
this smooth concave function, as is expected according to Proposition 7.

Defining h := max
i=1,...,16

{hi}, we use the following formulae to compute the numerical order of

approximation p:

Ek−1 ≈ C

(
h

2k−1

)p
,

Ek ≈ C

(
h

2k

)p
.

Thus
Ek−1

Ek
≈ 2p → p ≈ log2

Ek−1

Ek
, k = 1, 2, 3, 4, 5, 6, 7.

The appropriate behavior of the reconstruction can be checked in Figure 3.2, where the preser-
vation of the concavity and the accuracy of the approximation can be observed.

k Ek p k Ek p

0 4.6114× 10−4 - 4 1.4165× 10−8 3.8226

1 3.3727× 10−5 3.7732 5 9.4710× 10−10 3.9027

2 2.6009× 10−6 3.6968 6 6.1330× 10−11 3.9488

3 2.0042× 10−7 3.6979 7 3.9035× 10−12 3.9737

Table 3.1: Approximation errors Ek in l∞ norm and corresponding approximation orders p obtained
after k iterations for the PPH reconstruction with f(x) = sin(x), k = 0, 1, .., 7.

3.6 Conclusions

We have defined and studied the PPH reconstruction operator over nonuniform grids, paying
special attention to the case of σ quasi-uniform grids and initial data coming from strictly convex
(concave) underlying functions.

We have theoretically proven some very interesting properties of the new reconstruction oper-
ator from the point of view of a potential use in graphical design applications. These properties
include the reproduction of polynomials up to the second degree, approximation order, smoothness,
boundedness of the operator, Lipschitz continuity, and convexity preservation. In particular, we
would like to emphasize the quasi C3 smoothness of the operator and the preservation of strict
convexity according to the result contained in Theorem 3.

In the section on the numerical experiments, we checked that the behavior corresponded to the
developed theory, in particular, the reconstruction attained fourth-order accuracy and preserved
the convexity of the initial data. The results clearly show that the reconstruction introduces im-
provements in comparison with the Lagrange reconstruction. Therefore, the numerical experiments
that we carried out reinforce the theoretical results.
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Figure 3.2: Solid line: function f(x) = sin(x); dashed line: PPH reconstruction obtained with the
finest considered nonlinear grid. (a): Original function and PPH reconstruction. (b): Zoom of a
part of the signal.
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Chapter 4

PPH nonlinear interpolatory
reconstruction operator on
nonuniform grids: Adaptation around
jump discontinuities and elimination
of Gibbs phenomenon

The contents of this chapter are wholly included in the already published paper [43]

• Ortiz, P.; Trillo, J.C. A Piecewise Polynomial Harmonic Nonlinear Interpolatory Reconstruc-
tion Operator on Non Uniform Grids–Adaptation around Jump Discontinuities and Elimina-
tion of Gibbs Phenomenon. Mathematics. 2021, 9, 335. https://doi.org/10.3390/math9040335.

4.1 Introduction

Due to the extended use of reconstruction operators in many fields of application, ranging
from hyperbolic conservation laws to computer aided geometric design, it is of great importance to
dispose of efficient methods to build them for different situations. In general, and for the sake of
simplicity, the considered functions are polynomials. High degree polynomials are, however, usually
avoided because they are known to generate oscillations and undesirable effects.

Linear operators behave improperly in presence of jump discontinuities, so that different nonlin-
ear operators have emerged to deal with this problematic. Recent approaches to deal with similar
problems of functions affected by discontinuities can be found for example in [19, 13, 14, 8, 34].
And these nonlinear methods also give rise to interesting applications. To mention some of them
one can refer to [16, 31, 25, 40, 26, 27].

In this chapter we pay attention to one of these operators that was defined in [6] under the
name PPH (Piecewise Polynomial Harmonic). This operator can be seen as a nonlinear counterpart
of the classical four points piecewise Lagrange interpolation. The theoretical analysis as much as
the practical applications were developed in uniform grids in previous articles (see, for example,
[6, 10, 50, 7, 11, 32, 37]). In turn these reconstruction operators are the heart of the definition of
associated subdivision and multiresolution schemes [29, 5, 34, 35].
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In this chapter, we extend the definition of the PPH reconstruction operator to data over
nonuniform grids and we study some properties of this operator. In particular, we analyze the
behavior of the operator in presence of jump discontinuities. We prove adaptation to the jump
discontinuity in the sense that some order of approximation is maintained in the area close to
the discontinuity, on the contrary to what happens with linear operators that lose completely the
approximation order. We also prove, as much theoretically as in numerical experiments, the absence
of any Gibss phenomena.

The chapter is organized as follows: In Section 4.2 we remind the nonlinear PPH reconstruction
operator [42] on nonuniform grids. Section 4.3 is dedicated to study the adaptation of the operator
to the presence of jump discontinuities, making some emphasis in the order of approximation.
In Section 4.4 we analyze the behavior of the operator with respect to the Gibbs phenomena.
In Section 4.5 we present some numerical tests. Finally, some conclusions are given in Section 4.6.

4.2 A nonlinear PPH reconstruction operator on nonuniform grids

In this section we recall the definition of the nonlinear PPH reconstruction operator on nonuni-
form grids, see [42]. We include the necessary elements for the rest of the chapter. In [42] the
reconstruction operator is designed to deal with strictly convex functions, albeit it is also of inter-
est in the case of working with piecewise smooth functions affected by isolated jump discontinuities.
This will be our case of interest in this section and in the rest of the chapter.

Let us define a nonuniform grid X = (xi)i ∈ Z in R. Let us also denote hi := xi − xi−1, the
nonuniform spacing between abscissae. We consider underlying piecewise continuous functions f(x)
with at most a finite set of isolated corner or jump discontinuities, and let us call fi := f(xi) the
ordinates corresponding to the point values of the function at the given abscissae. We also introduce
the following notations. In first place, the second order divided differences

Dj := f [xj−1, xj , xj+1] =
fj−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)
,

Dj+1 := f [xj , xj+1, xj+2] =
fj

hj+1(hj+1 + hj+2)
− fj+1

hj+1hj+2
+

fj+2

hj+2(hj+1 + hj+2)
,

(4.1)

in second place a weighted arithmetic mean of Dj and Dj+1 defined as

Mj = wj,0Dj + wj,1Dj+1, (4.2)

with the weights

wj,0 =
hj+1 + 2hj+2

2(hj + hj+1 + hj+2)
,

wj,1 =
hj+1 + 2hj

2(hj + hj+1 + hj+2)
= 1− wj,0.

(4.3)

Given these ingredients in [42] we can find the following definitions, and results that we will
use later.

Lemma 13. Let us consider the set of ordinates {fj−1, fj , fj+1, fj+2} for some j ∈ Z at the
abscissae {xj−1, xj , xj+1, xj+2} of a nonuniform grid X = (xi)i ∈ Z. Then, the values fj−1 and
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fj+2 at the extremes can be expressed as

fj−1 =
−1

γj,−1
(γj,0fj + γj,1fj+1 + γj,2fj+2) +

Mj

γj,−1
, (4.4a)

fj+2 =
−1

γj,2
(γj,−1fj−1 + γj,0fj + γj,1fj+1) +

Mj

γj,2
, (4.4b)

with the constants γj,i, i = −1, 0, 1, 2 given by

γj,−1 =
hj+1 + 2hj+2

2hj(hj+1 + hj)(hj + hj+1 + hj+2)
,

γj,0 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj
hj+1 + hj+2

− hj+1 + 2hj+2

hj

)
,

γj,1 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj+2

hj+1 + hj
− hj+1 + 2hj

hj+2

)
,

γj,2 =
hj+1 + 2hj

2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)
.

(4.5)

Definition 12. Given x, y ∈ R, and wx, wy ∈ R such that wx > 0, wy > 0, and wx + wy = 1, we

denote as Ṽ the function

Ṽ (x, y) =


xy

wxy + wyx
if xy > 0,

0 otherwise.

(4.6)

Lemma 14. If x ≥ 0 and y ≥ 0, the harmonic mean is bounded as follows

Ṽ (x, y) < min

{
1

wx
x,

1

wy
y

}
≤ 1

wx
x. (4.7)

Next definition, which is commonly used in numerical analysis, is going to be essential through
the rest of the chapter.

Definition 13. An expression e(h) = O(hr), r ∈ Z means that there exist h0 > 0 and M > 0 such
that ∀ 0 < h ≤ h0

|e(h)|
hr

≤M.

Lemma 15. Let a > 0 a fixed positive real number, and let x ≥ a and y ≥ a. If |x − y| = O(h),
and xy > 0, then, the weighted harmonic mean is also close to the weighted arithmetic mean
M(x, y) = wxx+ wyy,

|M(x, y)− Ṽ (x, y)| = wxwy
wxy + wyx

(x− y)2 = O(h2). (4.8)

Definition 14 (PPH reconstruction). Let X = (xi)i∈Z be a nonuniform mesh. Let f = (fi)i∈Z a
sequence in l∞(Z). Let Dj and Dj+1 be the second order divided differences, and for each j ∈ Z let

us consider the modified values {f̃j−1, f̃j , f̃j+1, f̃j+2} built according to the following rule
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• Case 1: If |Dj | ≤ |Dj+1|
f̃i = fi, j − 1 ≤ i ≤ j + 1,

f̃j+2 = −1
γj,2

(γj,−1fj−1 + γj,0fj + γj,1fj+1) +
Ṽj
γj,2

,
(4.9)

• Case 2: If |Dj | > |Dj+1| f̃j−1 = −1
γj,−1

(γj,0fj + γj,1fj+1 + γj,2fj+2) +
Ṽj
γj,−1

,

f̃i = fi, j ≤ i ≤ j + 2,

(4.10)

where γj,i, i = −1, 0, 1, 2 are given in (4.5) and Ṽj = Ṽ (Dj , Dj+1), with Ṽ the weighted harmonic
mean defined in (4.6) with the weights wj,0 and wj,1 in (4.3). We define the PPH nonlinear
reconstruction operator as

PPH(x) = PPHj(x), x ∈ [xj , xj+1], (4.11)

where PPHj(x) is the unique interpolation polynomial which satisfies

PPHj(xi) = f̃i, j − 1 ≤ i ≤ j + 2. (4.12)

According to Definition 14, it is possible to establish a parallelism with Lagrange interpolation,
in fact we can write the PPH reconstruction as

PPHj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (4.13)

where the the coefficients ãj,i, i = 0, 1, 2, 3 are calculated by imposing conditions (4.12). We
explain each one of the two possible local cases, Case 1 or Case 2. The coefficients will have
symmetrical expressions.
Case 1. |Dj | ≤ |Dj+1|, which means that a potential singularity may lay in [xj+1, xj+2]. It has

been proposed to replace fj+2 with f̃j+2 in Equation (4.9) by changing the weighted arithmetic
mean in Equation (4.4b) for its corresponding weighted harmonic mean. This replacement has been
performed to carry out a witty modification of the value f̃j+2 in such a way that its difference with
respect to the original fj+2 is large in presence of a discontinuity, but remains sufficiently small in
smooth areas maintaining the approximation order. Lemma 14 is crucial for the adaptation in case
of dealing with the presence of a jump discontinuity, while Lemma 15 plays a fundamental part in
proving fourth approximation order for smooth areas of an underlying function.

In this case the coefficients ãj,i, i = 0, 1, 2, 3 of the PPH polynomial read

ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

4hj + 2hj+1
(Dj − Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

2hj + hj+1
(Dj − Ṽj).

(4.14)
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For our purposes, in the next sections we need to examine deeper the relation with Lagrange
interpolation. In particular we get that

|f̃j+2 − fj+2| =
2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)

2hj + hj+1
|Mj − Ṽj |, (4.15)

and considering the Lagrange interpolation polynomial written in the same form as in (4.13), that
is

PLj(x) = aj,0 + aj,1

(
x− xj+ 1

2

)
+ aj,2

(
x− xj+ 1

2

)2
+ aj,3

(
x− xj+ 1

2

)3
, (4.16)

we get that the difference of these coefficients with the ones of PPHj(x) is given by

ãj,0 − aj,0 =
h2
j+1

4

(
Mj − Ṽj

)
,

ãj,1 − aj,1 =
h2
j+1

4hj + 2hj+1
(Mj − Ṽj),

ãj,2 − aj,2 = −(Mj − Ṽj),

ãj,3 − aj,3 = − 2

2hj + hj+1
(Mj − Ṽj).

(4.17)

Case 2. |Dj | > |Dj+1|, which means that a possible singularity lies in [xj−1, xj ]. In this case,

in Definition 14, the value fj−1 is replaced with f̃j−1 by using expression (4.10). Similar comments
apply in this case due to symmetry considerations. The coefficients for the polynomial (4.13) now
read

ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

2hj+1 + 4hj+2
(−Dj+1 + Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

hj+1 + 2hj+2
(−Dj+1 + Ṽj).

(4.18)

The expressions relating the coefficients of the PPH polynomial with the Lagrange interpolation
polynomial now write

|f̃j−1 − fj−1| =
2hj(hj+1 + hj)(hj + hj+1 + hj+2)

2hj+2 + hj+1
|Mj − Ṽj |. (4.19)
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ãj,0 − aj,0 =
h2
j+1

4

(
Mj − Ṽj

)
,

ãj,1 − aj,1 = −
h2
j+1

2hj+1 + 4hj+2
(Mj − Ṽj),

ãj,2 − aj,2 = −(Mj − Ṽj),

ãj,3 − aj,3 =
2

2hj+2 + hj+1
(Mj − Ṽj).

(4.20)

In next section, we will study the approximation order of the PPH reconstruction operator in
presence of isolated jump discontinuities.

4.3 Approximation order around jump discontinuities

We are going to study the approximation order of the given reconstruction for functions of class
C4(R) with an isolated jump discontinuity at a given point µ. We consider only the case of working
with σ quasi-uniform grids, according with the following definition.

Definition 15. A nonuniform mesh X = (xi)i∈Z is said to be a σ quasi-uniform mesh if there
exist hmin = min

i∈Z
hi, hmax = max

i∈Z
hi, and a finite constant σ such that hmax

hmin
≤ σ.

In what follows we give a proposition proving full order accuracy for convex regions of the
function, that is fourth order accuracy, and observing that the approximation order is reduced to
second order close to the singularities and to third order close to inflection points. We would like
to focuss especial attention to the intervals around the discontinuity where the order is reduced,
but not completely lost.

Theorem 4. Let f(x) be a function of class C4(R\{µ}), with a jump discontinuity at the point µ.
Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1, ∀i ∈ Z, and f = (fi)i∈Z,
the sequence of point values of the function f(x), fi = f(xi). Let us consider j ∈ Z such that
µ ∈ [xj , xj+1], a > 0, a fixed positive real number, Ω the set of all inflexion points of f(x), and
d(x,Ω) the distance function defined by

d(x,Ω) :=

{
min{|x− ω| : ω ∈ Ω} Ω 6= ∅,

+∞ Ω = ∅.

Then, the reconstruction PPH(x) satisfies

1. In x ∈ [xi, xi+1], i 6= j − 1, j, j + 1, if DiDi+1 > 0, and d(xi−1,Ω) ≥ a, d(xi+2,Ω) ≥ a, then

max
x∈[xi,xi+1]

|f(x)− PPH(x)| = O(h4),

2. In x ∈ [xi, xi+1], i 6= j − 1, j, j + 1, if DiDi+1 > 0, and d(xi−1,Ω) < a, or d(xi+2,Ω) < a,
then

max
x∈[xi,xi+1]

|f(x)− PPH(x)| = O(h4−p),with 0 ≤ p < 1.
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3. In x ∈ [xi, xi+1], i 6= j − 1, j, j + 1, if DiDi+1 ≤ 0,

max
x∈[xi,xi+1]

|f(x)− PPH(x)| = O(h3),

4. In x ∈ [xj−1, xj ] ∪ [xj+1, xj+2],

max
x∈[xj−1,xj ]∪[xj+1,xj+2]

|f(x)− PPH(x)| = O(h2),

where h = max
i∈Z
{hi}.

Proof. We do the proof point by point.
1. Given x ∈ [xi, xi+1], the reconstruction operator is built as PPH(x) = PPHi(x).

From Equations (4.2) and (4.6) we can write

Mi − Ṽi =


wi,0wi,1(Di+1 −Di)

2

wi,0Di+1 + wi,1Di
if DiDi+1 > 0,

Mi otherwise.

(4.21)

From hypothesis we have that the initial data are strictly convex in the considered area
[xi−1, xi+2] (for a concave function the arguments remain the same) and therefore they satisfy
f ′′(x) ≥ b > 0, ∀x ∈ [xi−1, xi+2], for some b > 0. Since second order divided differences amount to
second derivatives at an intermediate point divided by two, i.e

Di =
f ′′(µ1)

2!
, Di+1 =

f ′′(µ2)

2!
,

with µ1 ∈ (xi−1, xi+1) and µ2 ∈ (xi, xi+2). Therefore, we have

Di = O(1), Di+1 = O(1) and Di+1 −Di = O(h),

and from (4.21) we get that

|Mi − Ṽi| = O(h2). (4.22)

Plugging this information into (4.17) if |Di| ≤ |Di+1|, or into (4.20) if |Di| > |Di+1|, we get
that

|ãi,s − ai,s| = O(h4−s), s = 0, 1, 2, 3. (4.23)

Thus

|PPHi(x)− PLi(x)| ≤
3∑
s=0

|ãi,s − ai,s|
∣∣∣(x− xi+ 1

2

)s∣∣∣ = O(h4),

where PLi(x) is the Lagrange interpolatory polynomial. Taking into account again the triangular
inequality

|f(x)− PPHi(x)| ≤ |f(x)− PLi(x)|+ |PLi(x)− PPHi(x)| = O(h4),

using that Lagrange interpolation also attains fourth order accuracy.
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2. We now prove Point 2. Since d(xi−1,Ω) < a, or d(xi+2,Ω) < a, and depending on the exact
distance to the inflection point we encounter Di = O(hp), Di+1 = O(hp), with 0 ≤ p < 1. Then,
from Equation (4.21), we directly get |Mi− Ṽi| = O(h2−p), and the rest of the proof follows exactly
the same track as in Point 1, giving the enunciated result.
3. For proving Point 3, we observe that in this case |Mi − Ṽi| = |Mi| = O(h), and again following
the same track as in previous points we get

|ãi,s − ai,s| = O(h3−s), s = 0, 1, 2, 3,

|PPHi(x)− PLi(x)| ≤
3∑
s=0

|ãi,s − ai,s|
∣∣∣(x− xi+ 1

2

)s∣∣∣ = O(h3),

|f(x)− PPHi(x)| ≤ |f(x)− PLi(x)|+ |PLi(x)− PPHi(x)| = O(h3),

and therefore in this case the accuracy is reduced to third order.
4. In order to prove Point 4, let us suppose without lost of generalization that x ∈ [xj−1, xj ]. The
other case it is proven analogously. Since by hypothesis the function f(x) is smooth in [xj−2, xj ] ,
and it presents a jump discontinuity at the interval [xj , xj+1] we have Dj−1 = O(1) and Dj =
O(1/h2). Therefore |Dj−1| ≤ |Dj | .
Let PL2j−1(x) be the second degree Lagrange interpolatory polynomial built using the three pairs
of values (xj−2, fj−2), (xj−1, fj−1), (xj , fj).

PL2j−1(x) = âj−1,0 + âj−1,1

(
x− xj− 1

2

)
+ âj−1,2

(
x− xj− 1

2

)2
,

where

âj−1,0 =
fj−1 + fj

2
−
h2
j

4
Dj−1,

âj−1,1 =
−fj−1 + fj

hj
,

âj−1,2 = Dj−1.

(4.24)

The difference between these coefficients and the ones of PPHj−1(x) shown in Equation (4.14)
is given by

ãj−1,0 − âj−1,0 =
h2
j

4

(
Dj−1 − Ṽj−1

)
,

ãj−1,1 − âj−1,1 =
h2
j

4hj−1 + 2hj
(Dj−1 − Ṽj−1),

ãj−1,2 − âj−1,2 = −(Dj−1 − Ṽj−1),

ãj−1,3 = − 2

2hj−1 + hj
(Dj−1 − Ṽj−1).

(4.25)

At this stage we distinguish two cases:
4.1. Dj−1Dj > 0.
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Taking into account Equations (4.6), (4.7) and (4.25) and the triangular inequality we obtain

|Ṽ (Dj−1, Dj)| ≤
1

wj−1,0
|Dj−1|,

|Dj−1 − Ṽj−1| ≤ |Dj−1|+
1

wj−1,0
|Dj−1| =

1 + wj−1,0

wj−1,0
|Dj−1| = O(1),

|ãj−1,s − âj−1,s| = O(h2−s), s = 0, 1, 2, 3,

|PPHj−1(x)− PL2j−1(x)| ≤
3∑
s=0

|ãj−1,s − âj−1,s|
∣∣∣(x− xj− 1

2

)s∣∣∣ = O(h2),

|f(x)− PPHj−1(x)| ≤ |f(x)− PL2j−1(x)|+ |PL2j−1(x)− PPHj−1(x)| = O(h2).

4.2. Dj−1Dj ≤ 0.

Equations (4.6) and (4.25) and the triangular inequality lead us to

Ṽj−1 = 0,

|Dj−1 − Ṽj−1| = O(1),

|ãj−1,s − âj−1,s| = O(h2−s), s = 0, 1, 2, 3,

|PPHj−1(x)− PL2j−1(x)| ≤
3∑
s=0

|ãj−1,s − âj−1,s|
∣∣∣(x− xj− 1

2

)s∣∣∣ = O(h2),

|f(x)− PPHj−1(x)| ≤ |f(x)− PL2j−1(x)|+ |PL2j−1(x)− PPHj−1(x)| = O(h2).

And these last chains of equations finish the proof.

We observe that close to the jump discontinuity, that is, in the intervals [xj−1, xj ] and [xj+1, xj+2],
we do not lose all accuracy, but we maintain at least second order accuracy. Unfortunately, in the
central interval [xj , xj+1] containing the singularity this approach does not allow us to obtain any
gain with respect to other reconstruction operators.

Remark 8. Notice that linear reconstruction operators based on an stencil of four points typically
lose the approximation order in three intervals around discontinuities, while the introduced nonlinear
reconstruction operator only loses completely the aproximation order in the interval containing the
jump discontinuity and maintains at least second order accuracy, that is, O(h2), in the adjacent
intervals. In the interval containing the jump discontinuity the approximation order is lost also
in the nonlinear reconstruction strategy, since with point values of the function it is impossible to
detect the exact position of the jump discontinuity.

Remark 9. The order reduction due to inflection points can be tackled using a translation strategy
in the definition of the Harmonic mean, to avoid arguments of different signs. This strategy com-
plicates the definition of the operator, but it has been satisfactorily introduced on various occasions
[6], [20]. In practice the translation is needed not only at the interval containing the inflection
point, but also in adjacent intervals.
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4.4 Analysis of Gibbs phenomena around jump discontinuities

In this section we are going to give a result analyzing the behavior of the proposed nonlinear
reconstruction with respect to the generation of possible Gibbs effects due to the presence of jump
discontinuities in the underlying function. In particular we prove the following proposition.

Before enunciating the theorem we introduce some definitions.

Definition 16. Given X0 = {xi}i∈Z a σ quasi-uniform grid in R, we define, for k ∈ N (the larger
the k the larger the resolution), the set of nested grids given by Xk = {xki }i∈Z, where xk2i = xk−1

i

and xk2i+1 =
xk−1
i +xk−1

i+1

2 .

Let us also denote [f ] the size of a jump discontinuity, rkj (x) the straight line joining the points

(xkj , f
k
j ) and (xkj+1, f

k
j+1), dki (x), i = j − 1, j, j + 1 the vertical distance from the reconstruction

PPHk
j (x) to the horizontal line passing through the middle point of (xkj , f

k
j ) and (xkj+1, f

k
j+1).

The respective expressions come given by
[f ] = fkj+1 − fkj ,

rkj (x) =
fkj + fkj+1

2
+
fkj+1 − fkj
hkj+1

(x− xk
j+ 1

2

),

dki (x) = PPHk
i (x)−

fki + fki+1

2
.

We will also use rkmax as the maximum distance between PPHk
j (x) and rkj (x) measured perpen-

dicularly to rkj (x).

Theorem 5. Let Xk = {xki }i∈Z, k ∈ N ∪ {0} be a set of nested σ quasi-uniform grids in R
with σ < 3+

√
17

2 . Let f ∈ C4(R) be a function with four continuous derivatives in all the real line
with an isolated jump discontinuity at the abscissa µ located at a certain [xkj , x

k
j+1] for each k,

where j depends on k. Then, ∃k0 : ∀k ≥ k0 the reconstruction PPHk(x) associated to the data
fk := (f(xki ))i∈Z does not generate Gibbs phenomena. In particular, the following statements hold:

1. ||PPHk(x)− f(x)||L∞ = O((hk)4) in (−∞, xkj−1] ∪ [xkj+2,∞),

2.
∣∣∣dkj−1(x)

∣∣∣ = O(hk),

3.
∣∣∣dkj+1(x)

∣∣∣ = O(hk),

4. PPHk
j (x) lies inside the rectangle [xkj , x

k
j+1]× [fkj , f

k
j+1],

5. rkmax = O(hk),

where hk := max
i∈Z
{hki }.

Proof. Let us consider k large enough, k ≥ k0, such that∣∣∣∣∣ [f ]

hkj+1

∣∣∣∣∣ >
∣∣∣∣∣fkj − fkj−1

hkj

∣∣∣∣∣ , (4.26)∣∣∣∣∣ [f ]

hkj+1

∣∣∣∣∣ >
∣∣∣∣∣fkj+2 − fkj+1

hkj+2

∣∣∣∣∣ . (4.27)
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Then

Dk
j−1 = O(1),

Dk
j =

fkj+1 − fkj
hkj+1

−
fkj − fkj−1

hkj

hkj + hkj+1

= O

(
[f ]

(hk)2

)
, (4.28)

Dk
j+1 =

fkj+2 − fkj+1

hkj+2

−
fkj+1 − fkj
hkj+1

hkj+1 + hkj+2

= −O
(

[f ]

(hk)2

)
, (4.29)

Dk
j+2 = O(1).

and from (4.28), (4.29) and (4.6) we get

sgn(Dk
j ) = sgn ([f ]) 6= sgn(Dk

j+1), (4.30)

Ṽ k
j = 0.

We carry out the rest of the proof addressing point after point.
1. Since only three intervals are affected by the jump discontinuity for construction, then, ∀k

||PPHk(x)− f(x)||L∞ = O((hk)4) in (−∞, xkj−1] ∪ [xkj+2,∞).

2. We are going to show now that the oscillations due to the presence of the discontinuity diminish
at the interval [xkj−1, x

k
j ] with k increasing.

In [xkj−1, x
k
j ] the PPH reconstruction amounts to

PPHk
j−1(x) = ãkj−1,0 + ãkj−1,1

(
x− xk

j− 1
2

)
+ ãkj−1,2

(
x− xk

j− 1
2

)2
+ ãkj−1,3

(
x− xk

j− 1
2

)3
. (4.31)

As |Dk
j−1| ≤ |Dk

j |, the coefficients are given by (4.14) adapted to the interval j − 1

ãkj−1,0 =
fkj−1 + fkj

2
−

(hkj )
2

4
Ṽ k
j−1,

ãkj−1,1 =
−fkj−1 + fkj

hkj
+

(hkj )
2

4hkj−1 + 2hkj
(Dk

j−1 − Ṽ k
j−1),

ãkj−1,2 = Ṽ k
j−1,

ãkj−1,3 = − 2

2hkj−1 + hkj
(Dk

j−1 − Ṽ k
j−1).

(4.32)
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Taking into account property (4.7) of the harmonic mean, we can write

|Ṽ k
j−1| = |Ṽ k

j−1(Dk
j−1, D

k
j )| ≤ min

{
1

wkj−1,0

|Dk
j−1|,

1

wkj−1,1

|Dk
j |

}
≤ 1

wkj−1,0

|Dk
j−1| ≤ 2σ|Dk

j−1|.

Considering (4.31), the distance dkj−1(x) can be bounded by

∣∣∣dkj−1(x)
∣∣∣ =

∣∣∣∣∣PPHk
j−1(x)−

fkj−1 + fkj
2

∣∣∣∣∣ =

∣∣∣∣∣−(hkj )
2

4
Ṽ k
j−1 + ãkj−1,1

(
x− xk

j− 1
2

)
+ ãkj−1,2

(
x− xk

j− 1
2

)2
+ ãkj−1,3

(
x− xk

j− 1
2

)3
∣∣∣∣ = O(hk),

where hk := max
i∈Z
{hki }.

3. In [xkj+1, x
k
j+2], applying arguments based on symmetry and taking into account that |Dk

j+1| ≥
|Dk

j+2| we also get that
∣∣∣dkj+1(x)

∣∣∣ = O(hk).

4. In [xkj , x
k
j+1], as Ṽ k

j = 0 due to (4.30), the expression of PPHk
j (x) according to (4.13),

(4.14), (4.18) will be

PPHk
j (x) =

fkj + fkj+1

2
+ ãkj,1

(
x− xk

j+ 1
2

)
+ ãkj,3

(
x− xk

j+ 1
2

)3
. (4.33)

At this point we consider two subcases depending on |Dk
j | and |Dk

j+1|

4.1 |Dk
j | ≤ |Dk

j+1|
We can write

dkj (x) = ãkj,1

(
x− xk

j+ 1
2

)
+ ãkj,3

(
x− xk

j+ 1
2

)3
=
(
x− xk

j+ 1
2

)
Ekj (x), (4.34)

where

Ekj (x) =
fkj+1 − fkj
hkj+1

+
Dk
j

4hkj + 2hkj+1

(
(hkj+1)2 − 4(x− xk

j+ 1
2

)2
)
.

The maximum value of the function dkj (x) in the interval [xkj , x
k
j+1] is either at the extremes

of the interval or among any possible critical point xc verifying (dkj )
′(xc) = 0. At the extremes

of the interval we have
∣∣∣dkj (xkj )∣∣∣ =

∣∣∣dkj (xkj+1)
∣∣∣ = 1

2

∣∣∣fkj+1 − fkj
∣∣∣ , and the condition is satisfied.

We are going to prove that the local reconstruction PPHk
j (x) lies inside the rectangle

[xkj , x
k
j+1] × [fkj , f

k
j+1] since any critical point xc of the function dkj (x) falls outside the

interval [xkj , x
k
j+1]. For this purpose, we shall prove that (PPHk

j )′(x) 6= 0 ∀x ∈ [xkj , x
k
j+1].
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We start computing (PPHk
j )′(x) and (PPHk

j )′′(x),

(PPHk
j )′(x) =

fkj+1 − fkj
hkj+1

+
Dk
j

4hkj + 2hkj+1

(
(hkj+1)2 − 12(x− xk

j+ 1
2

)2
)
, (4.35)

(PPHk
j )′′(x) = −24

Dk
j

4hkj + 2hkj+1

(x− xk
j+ 1

2

).

Last equations show that (PPHk
j )′(x) is symmetric respect to the vertical axis passing

through x = xk
j+ 1

2

where it reaches a local maximum since (PPHk
j )′′(xk

j+ 1
2

) = 0.

Evaluating (4.35) at xkj , x
k
j+ 1

2

and xkj+1 we obtain

(PPHk
j )′(xj) = (PPHk

j )′(xj+1) =
fkj+1 − fkj
hkj+1

−
Dk
j (hkj+1)2

2hkj + hkj+1

, (4.36)

(PPHk
j )′(xk

j+ 1
2

) =
fkj+1 − fkj
hkj+1

+
Dk
j (hkj+1)2

2(2hkj + hkj+1)
. (4.37)

From (4.37) and (4.30) we get

sgn
(

(PPHk
j )′(xk

j+ 1
2

)
)

= sgn([f ]). (4.38)

To analyze the sign of (PPHk
j )′(xj) we replace in (4.36) Dk

j by its expression (4.28)

(PPHk
j )′(xj) =

fkj+1 − fkj
hkj+1

−
(hkj+1)2

(hkj+1)2 + 3hkjh
k
j+1 + 2(hkj )

2

[
fkj+1 − fkj
hkj+1

−
fkj − fkj−1

hkj

]
,

and we consider two subcases depending on the sign of [f ],

4.1.1 sgn[f ] > 0. From (4.26),
[f ]

hkj+1

> −
fkj − fkj−1

hkj
, and we get

(PPHk
j )′(xj) >

fkj+1 − fkj
hkj+1

−
(hkj+1)2

(hkj+1)2 + 3hkjh
k
j+1 + 2(hkj )

2
2
fkj+1 − fkj
hkj+1

=
fkj+1 − fkj
hkj+1

[
1−

2(hkj+1)2

(hkj+1)2 + 3hkjh
k
j+1 + 2(hkj )

2

]
> 0,

since
2(hkj+1)2

(hkj+1)2 + 3hkjh
k
j+1 + 2(hkj )

2
< 1,

for σ < 3+
√

17
2 .
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4.1.2 sgn[f ] < 0. Again from (4.26),
[f ]

hkj+1

< −
fkj − fkj−1

hkj
, and we get

(PPHk
j )′(xj) <

fkj+1 − fkj
hkj+1

−
(hkj+1)2

(hkj+1)2 + 3hkjh
k
j+1 + 2(hkj )

2
2
fkj+1 − fkj
hkj+1

=
fkj+1 − fkj
hkj+1

[
1−

2(hkj+1)2

(hkj+1)2 + 3hkjh
k
j+1 + 2(hkj )

2

]
< 0,

for σ < 3+
√

17
2 .

In both subcases, sgn
(

(PPHk
j )′(xkj )

)
= sgn

(
(PPHk

j )′(xkj+1)
)

= sgn([f ]), which together

with expression (4.38) allow us to write sgn
(

(PPHk
j )′(x)

)
= sgn ([f ]) ∀x ∈ [xkj , x

k
j+1], and

therefore (PPHk
j )′(x) 6= 0 ∀x ∈ [xkj , x

k
j+1], what amounts to say that there is not local

maximum value of PPHk
j (x) inside the interval.

4.2 |Dk
j | > |Dk

j+1|

In this case

Ekj (x) =
fkj+1 − fkj
hkj+1

−
Dk
j+1

4hkj+2 + 2hkj+1

(
(hkj+1)2 − 4(x− xk

j+ 1
2

)2
)
,

(PPHk
j )′(x) =

fkj+1 − fkj
hkj+1

−
Dk
j+1

4hkj+2 + 2hkj+1

(
(hkj+1)2 − 12(x− xk

j+ 1
2

)2
)
,

(PPHk
j )′′(x) = 24

Dk
j+1

4hkj+2 + 2hkj+1

(x− xk
j+ 1

2

).

Following a similar path to case 4.1 we arrive to

|dkj (x)| =

∣∣∣∣∣PPHk
j (x)−

fkj + fkj+1

2

∣∣∣∣∣ ≤ 1

2

∣∣∣fkj+1 − fkj
∣∣∣ ∀x ∈ [xkj , x

k
j+1],

(PPHk
j )′(x) 6= 0 ∀x ∈ [xj , xj+1],

and therefore PPHk
j (x) remains inside the rectangle [xkj , x

k
j+1]× [fkj , f

k
j+1].

5. We start computing the points where the slope of the tangent of PPHk
j (x) equals to the

slope of the straight line rkj (x). We consider two subcases,
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5.1 |Dk
j | ≤ |Dk

j+1|
In this case, the above mentioned points where the tangent of pkj (x) is parallel to rkj (x)
are given by:

P1 ≡

(
xk
j+ 1

2

+

√
3

3

hkj+1

2
,

fkj+1 + fkj
2

+

√
3

3

fkj+1 − fkj
2

+

√
3

9

Dk
j (hkj+1)3

2(2hkj + hkj+1)

)
,

P2 ≡

(
xk
j+ 1

2

−
√

3

3

hkj+1

2
,

fkj+1 + fkj
2

−
√

3

3

fkj+1 − fkj
2

−
√

3

9

Dk
j (hkj+1)3

2(2hkj + hkj+1)

)
.

The largest distance from these points to rkj (x) is the maximum distance between

PPHk
j (x) and rkj (x) measured perpendicularly to rkj (x).

For both points this distance coincides with

rkmax =

√
3

9

|Dk
j |√

(fkj+1 − fkj )2 + (hkj+1)2

(hkj+1)4

2(2hkj + hkj+1)
= O(hk).

5.2 |Dk
j | > |Dk

j+1|.

The required points P1 and P2 in this case take the form:

P1 ≡

(
xk
j+ 1

2

+

√
3

3

hkj+1

2
,

fkj+1 + fkj
2

+

√
3

3

fkj+1 − fkj
2

−
√

3

9

Dk
j+1(hkj+1)3

2(2hkj+2 + hkj+1)

)
,

P2 ≡

(
xk
j+ 1

2

−
√

3

3

hkj+1

2
,

fkj+1 + fkj
2

−
√

3

3

fkj+1 − fkj
2

+

√
3

9

Dk
j+1(hkj+1)3

2(2hkj+2 + hkj+1)

)
,

and rkmax is given by

rkmax =

√
3

9

|Dk
j+1|√

(fkj+1 − fkj )2 + (hkj+1)2

(hkj+1)4

2(2hkj+2 + hkj+1)
= O(hk).

Remark 10. The hypothesis in Theorem 5 concerning the use of a nested set of σ quasi-uniform
grids amounts in practice to build the reconstruction with a small enough maximum grid size.

In the next section we carry out some numerical experiments to check that the practical obser-
vations coincide with the theoretical results.

4.5 Numerical experiment

In this section we present a simple numerical test to validate the theoretical results. Our
experiment computes the approximation order of the considered reconstruction in several areas
corresponding with the different points in Theorem 4. In particular we measure the approximation
order in the following areas, identified with the given acronyms:
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A0: In the subinterval containing the discontinuity.

A1: In a region where the function is smooth without inflexion points.

A2: In a region where the function is smooth but contains a inflexion point.

A3: In a region close to the inflexion point without containing it.

A4: In the subinterval just to the right of the one containing the singularity.

LetX0 = (0, 3, 8, 11, 17, 23, 25, 27, 31, 32, 36, 37.5, 38, 39.3, 40)
π

20
be a nonuniform grid in [0, 2π]

and f(x) the following smooth function with a jump discontinuity at x = 1.2π, and an inflexion
point at x = 3π

2 ,

f(x) :=

{
sinx x < 1.2π,

cosx+ 10 x ≥ 1.2π.

Given the initial abscissas xi, i ∈ I = {0, . . . , 14}, we consider the set of nested grids Xk =

{xki }i∈Ik , where xk2i = xk−1
i , xk2i+1 =

xk−1
i +xk−1

i+1

2 , and Ik = {xk0, . . . , xknk}, with nk = 2nk−1 − 1,
n0 = 14, k = 0, 1, . . . , 7. For each level of resolution k we build the PPH reconstruction using the
data (xki , f(xki )), i ∈ Ik computing the approximation errors in infinity norm with respect to the
original function using a denser set of abscissas, that is, we compute a numerical approximation of

Ek := ||f(x)− PPHk(x)||∞.

Then, we compute the numerical approximation order as

p = log2

Ek−1

Ek
, k = 0, 1, ..., 7.

Notice that due to Theorem 4 we can assume that for fine enough grids

Ek ≈ C
(
hk
)p
, with hk := max

i∈Ik\{0}
hki , h

k
i := xki − xki−1, h

k =
hk−1

2
.

In Tables 4.1 and 4.2 we present the errors committed by Lagrange and PPH reconstructions
respectively when using as initial nodes the defined nested grids Xk. The errors appear separately
for each kind of region A0, A1, A2, A3 and A4. The largest error comes near the jump discontinuity
for Lagrange reconstruction, as it can be observed in the column corresponding with A0.
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k
Lagrange

A0 A1 A2 A3 A4

k = 0 5.6495 3.7038 7.5463× 10−1 6.3455× 10−4 7.5463× 10−1

k = 1 9.4448 7.3685× 10−4 4.2214× 10−5 9.0640× 10−5 6.1204× 10−1

k = 2 9.3578 6.2735× 10−5 3.4996× 10−6 9.2479× 10−6 6.1887× 10−1

k = 3 9.3587 4.0575× 10−6 3.0851× 10−7 6.5454× 10−7 6.2234× 10−1

k = 4 9.3591 2.5733× 10−7 2.2334× 10−8 4.3080× 10−8 6.2409× 10−1

k = 5 9.3593 1.5978× 10−8 1.4894× 10−9 2.7567× 10−9 6.2496× 10−1

k = 6 9.3594 1.0021× 10−9 9.5977× 10−11 1.7424× 10−1 6.2540× 10−1

k = 7 9.3595 6.2737× 10−11 6.0880× 10−12 1.0951× 10−11 6.2562× 10−1

Table 4.1: Approximation errors obtained at iteration k, k = 1, .., 7 for the considered cases A0,
A1,A2,A3 and A4 using the Lagrange reconstruction.

k
PPH

A0 A1 A2 A3 A4

k = 0 5.0072 1.9182× 10−2 8.3447× 10−3 2.2239× 10−3 7.3017× 10−3

k = 1 9.3051 6.5968× 10−3 7.8190× 10−4 2.9306× 10−4 2.3996× 10−3

k = 2 9.3588 8.3401× 10−4 2.4763× 10−4 3.4429× 10−5 6.1993× 10−4

k = 3 9.3591 3.4729× 10−5 3.0993× 10−5 2.7653× 10−6 1.5738× 10−4

k = 4 9.3593 2.6086× 10−6 3.8754× 10−6 2.0098× 10−7 3.9636× 10−5

k = 5 9.3594 1.8126× 10−7 4.8446× 10−7 4.3976× 10−8 9.9451× 10−6

k = 6 9.3595 1.0730× 10−8 6.0559× 10−8 4.6559× 10−9 2.4908× 10−6

k = 7 9.3595 6.5331× 10−10 7.5699× 10−9 5.0457× 10−10 6.2325× 10−7

Table 4.2: Approximation errors obtained at iteration k, k = 1, .., 7 for the considered cases A0,
A1,A2,A3 and A4 using the PPH reconstruction.

In Table 4.3 we present the obtained approximation orders for the studied PPH reconstruction
and just for the sake of comparison we also add the approximation orders for the classical four
points piecewise Lagrange polynomial interpolation. We have computed the approximation order
in the specified different regions A0, A1, A2, A3 and A4. More in concrete, in the case of region
A1 we use the interval [2, 3] for the x variable, in the case of region A2 the interval [4, 5], and in
the case of region A3 the intervals [xdk+k, 2π], where k indicates the resolution level and the index
dk is such that the inflexion point falls into the interval [xdk−1, xdk ] for each k. We can observe
that in the region A0 both reconstructions are affected by the jump discontinuity and they lose the
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approximation order due mainly to the subinterval containing the discontinuity. In the region of
type A1 both reconstructions attain fourth order accuracy as expected. In the case A2 the PPH
reconstruction reduces the approximation order to third order due to the presence of the inflexion
point. Similarly in the vicinity of the inflexion point, region A3, the PPH reconstruction stays
between p = 3 and p = 4. In the adjacent intervals to the singularity, case A4 we clearly observe an
improvement with respect to Lagrange interpolation, since we obtain order p = 2 while Lagrange
completely loses the approximation order. Notice that the order reduction produced in the regions
A2 and A3 occurs in very limited areas and it can be corrected using a translation strategy (see
[6],[20]) that we have not implemented in this experiment with the aim of studying the original
reconstruction operator.

k
Lagrange PPH

A0 A1 A2 A3 A4 A0 A1 A2 A3 A4

k = 1 −0.7414 12.2953 14.1257 2.8075 0.3021 −0.8940 1.5399 3.4158 2.9238 1.6054

k = 2 0.0133 3.5540 3.5925 3.2929 −0.0160 −0.0083 2.9836 1.6588 3.0895 1.9526

k = 3 −0.0001 3.9506 3.5038 3.8206 −0.0081 −5.4× 10−5 4.5859 2.9982 3.6381 1.9779

k = 4 6.5× 10−5 3.9789 3.7880 3.9254 −0.0040 −2.9× 10−5 3.7348 2.9995 3.7823 1.9893

k = 5 3.3× 10−5 4.0094 3.9064 3.9660 −0.0020 −1.5× 10−5 3.8472 2.9999 2.1923 1.9948

k = 6 1.6× 10−5 3.9950 3.9559 3.9838 −0.0010 −7.4× 10−6 4.0784 3.0000 3.2396 1.9974

k = 7 8.1× 10−6 3.9976 3.9787 3.9919 −0.0005 −3.7× 10−6 4.0377 3.0000 3.2059 1.9987

Table 4.3: Approximation orders obtained at iteration k, k = 1, .., 7 for the considered cases A0,
A1,A2,A3 and A4 using the PPH and Lagrange reconstructions.

In Figure 4.1 we plot the function f(x) and the Lagrange and PPH reconstructions obtained
from the initial grids Xk, k = 0, 1, 2. We can see that around the singularity, Lagrange recon-
struction looses the approximation order and the Gibss phenomena appears. In this zone, PPH
reconstruction performs in a more proper way, avoiding any Gibbs effects. We can see that no
oscillations appear in the PPH reconstruction even for the coarsest grid. These observations can
be seen more clearly in Figure 4.2 where we have plotted a zoom of this region for k = 3 for both
reconstruction operators Lagrange and PPH. We also point out that the oscillations due to the
jump discontinuity in Lagrange reconstruction do not diminish to zero with the subdivision level.
In fact, from k = 2 we have check out that the reconstruction values at the local maxima and
minima of the oscillations remain almost constant.

In the jump interval the distance rkmax decreases as k increases, since rkmax = O(hk). In
Table 4.4 the values for k = 0, 1, . . . , 7 are shown. We can see that at a certain subdivision level
the given values are approximately decreasing with the ratio 1

2 . Therefore, PPH reconstruction
approaches to the straight line rkj (x) as k increases.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

rkmax 1.1126× 10−3 5.4822× 10−4 1.2527× 10−3 6.2825× 10−4 3.1452× 10−4 1.5735× 10−4 7.8700× 10−5 3.9356× 10−5

Table 4.4: Distances rkmax obtained at subdivision level k, k = 0, 1, 2, 3, 4, 5, 6, 7.
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4.6 Conclusions

We have studied the behavior of the PPH reconstruction operator in presence of jump discon-
tinuities for the case of working with σ quasi-uniform grids. For this purpose, the arithmetic and
harmonic means used in the uniform case are changed for weighted means with concrete weights,
so that the main properties that allow for maintaining order of approximation in smooth areas and
adaptation near singularities continue being true.

A explicit result concerning the approximation order, Theorem 4, has been proved, showing at
least second order of approximation for the adjacent intervals to the one containing the jump dis-
continuity, and ensuring fourth order of approximation in convex (concave) parts of the function far
from inflexion points. At a interval containing a inflexion point we get third order of approximation
and in the vicinity the order grows progressively till fourth order.

A main result of this chapter is Theorem 5 in Section 4 proving that the presented reconstruction
operator does not generate any Gibbs phenomena in the concrete sense indicated in the enunciate
for σ quasi-uniform grids where the maximum space between nodes of the grid is small enough.

Finally we have carried out some numerical experiments to reinforce the theoretical results
proven as much in Proposition 1 as in Theorem 1.
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Figure 4.1: In black solid line: function f(x), in green solid line the straight line joining the extreme
points of the jump interval [xkj , x

k
j+1], in blue dotted line: Lagrange reconstruction, in red dotted

line: PPH reconstruction. Void circles stand for initial nodes, filled circles for nodes at the k
subdivision level and asterisks for points P1 and P2 . (a): Lagrange k = 0, (b): PPH k = 0,
(c): Lagrange k = 1, (d): PPH k = 1, (e): Lagrange k = 2, (f): PPH k = 2.
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Figure 4.2: Zoom of the region around the jump discontinuity for subdivision grid level k = 3. (a):
Lagrange, (b): PPH.
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Chapter 5

Improving the approximation order
around inflection points of the PPH
nonlinear interpolatory reconstruction
operator on nonuniform grids.

This chapter is the result of a fruitful collaboration, which has given rise to a fully written paper
which is now submitted [17]

• Amat, S.; Ortiz, P.; Ruiz, J.; Trillo, J. C.; Yáñez, D. F. Improving the approximation or-
der around inflection points of the PPH nonlinear interpolatory reconstruction operator on
nonuniform grids. Submitted.

5.1 Introduction

A high quantity of reconstruction operators have emerged in the last decades to attend the
demands of diverse applications in applied mathematics and industry [1, 2, 26, 25]. Normally,
polynomials are considered because of their simplicity and fast computation, and more specifically
piecewise polynomials in order to avoid using high degree polynomials. High order polynomials
involve larger stencils to build the reconstructions, what makes them more vulnerable to be affected
by the presence of potential discontinuities in the data, apart of being well known for producing
spurious maxima and minima known as Runge phenomena.

Nonlinear reconstructions allow adaptation to the available data and they also permit to pre-
serve certain properties inherent to the initial data. One of such properties is convexity, which
is intimately related to curve and surface design. In this context some nonlinear operators have
appeared in the literature in the past few years [6, 7, 10, 20, 4, 27]. In particular we pay attention
to the Piecewise Polynomial Harmonic (PPH) reconstruction [6, 11, 32, 37, 42, 50], which was
defined in nonuniform grids to preserve the convexity of the initial data under certain restrictions
[42]. This reconstruction works well with data coming from strictly convex functions, but it fails
to guarantee the approximation order in the vicinity of inflection points. This drawback comes
directly from the heart of the definition itself of the PPH reconstruction operator, that is, the use
of the weighted harmonic mean of two positive quantities. However, the problem can be solved by
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using a modified mean with a translation strategy.
In this chapter we introduce the definition of what we call a translation operator. Then, we apply

this operator to the weighted harmonic mean obtaining a new adapted mean which retains similar
properties as the original one, what is a crucial issue in order to be inserted into the construction of
the improved PPH reconstruction operator. Our main concern about improving the approximation
order around inflection points is to generate a tool that retains the approximation order in the whole
domain for smooth functions and maintains local convexity in the convex areas. This convexity
preservation property in smooth areas was proven in [42] under certain constrains. Also in [42] is
made evident that the PPH reconstruction, both in uniform and in nonuniform grids, is relevant
not only as an adapted reconstruction for smooth function with isolated jump discontinuities (see
[6, 43]), but as a reconstruction that preserves convexity of the initial data.

We study several possible options to work in combination with the PPH reconstruction operator.
In particular we define a way of choosing the best option depending on the specific data to which
it is going to be applied. Part of this work has been inspired by the ideas given in [20].

The chapter is organized as follows: In Section 5.2 we remind the nonlinear PPH reconstruction
operator [42] on nonuniform grids and its application for data coming from strictly convex functions.
Section 5.3 is dedicated to definition and study of the translation operator. In Section 5.4 we analyze
the behavior of the improved PPH reconstruction operator with respect to the approximation order.
In Section 5.5 we give a way of selecting the translation parameter depending on the data. In
Section 5.6 we present some numerical tests in order to confirm the theoretical results. Finally,
some conclusions are provided in Section 5.7.

5.2 A nonlinear PPH reconstruction operator on nonuniform grids

In this section we recall the definition of the nonlinear PPH reconstruction operator on nonuni-
form grids, see [42]. We include the necessary elements for the rest of the chapter. In [42] the
reconstruction operator is designed to deal with strictly convex functions, albeit it is also of inter-
est in the case of working with piecewise smooth functions affected by isolated jump discontinuities.
This will be our case of interest in this section and in the rest of the chapter.

Let us define a nonuniform grid X = (xi)i ∈ Z in R. Let us also denote hi := xi − xi−1, the
nonuniform spacing between abscissae. We consider underlying piecewise continuous functions f(x)
with at most a finite set of isolated jump discontinuities, and let us call fi := f(xi) the ordinates
corresponding to the point values of the function at the given abscissae. We also introduce the
following notations. In first place, the second order divided differences

Dj := f [xj−1, xj , xj+1] =
fj−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)
,

Dj+1 := f [xj , xj+1, xj+2] =
fj

hj+1(hj+1 + hj+2)
− fj+1

hj+1hj+2
+

fj+2

hj+2(hj+1 + hj+2)
,

(5.1)

in second place a weighted arithmetic mean of Dj and Dj+1 defined as

Mj = wj,0Dj + wj,1Dj+1, (5.2)
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with the weights

wj,0 =
hj+1 + 2hj+2

2(hj + hj+1 + hj+2)
,

wj,1 =
hj+1 + 2hj

2(hj + hj+1 + hj+2)
= 1− wj,0.

(5.3)

These weights will allow us to express the third order Lagrange interpolation polynomial based
on the stencil {xj−1, xj , xj+1, xj+2} in terms of Dj and Dj+1 and their weighted arithmetic mean.
Given these ingredients in [42] we can find the following definitions, and results that we will use
later.

Lemma 16. Let us consider the set of ordinates {fj−1, fj , fj+1, fj+2} for some j ∈ Z at the
abscissae {xj−1, xj , xj+1, xj+2} of a nonuniform grid X = (xi)i ∈ Z. Then, the values fj−1 and
fj+2 at the extremes can be expressed as

fj−1 =
−1

γj,−1
(γj,0fj + γj,1fj+1 + γj,2fj+2) +

Mj

γj,−1
, (5.4a)

fj+2 =
−1

γj,2
(γj,−1fj−1 + γj,0fj + γj,1fj+1) +

Mj

γj,2
, (5.4b)

with the constants γj,i, i = −1, 0, 1, 2 given by

γj,−1 =
hj+1 + 2hj+2

2hj(hj+1 + hj)(hj + hj+1 + hj+2)
,

γj,0 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj
hj+1 + hj+2

− hj+1 + 2hj+2

hj

)
,

γj,1 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj+2

hj+1 + hj
− hj+1 + 2hj

hj+2

)
,

γj,2 =
hj+1 + 2hj

2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)
.

(5.5)

Definition 17. Given x, y ∈ R, and wx, wy ∈ R such that wx > 0, wy > 0, and wx + wy = 1, we

denote as Ṽ the following extension of the weighted harmonic mean given by the function

Ṽ (x, y) =


xy

wxy + wyx
if xy > 0,

0 otherwise.

(5.6)

Lemma 17. If x ≥ 0 and y ≥ 0, the harmonic mean in (5.6) is bounded as follows

Ṽ (x, y) < min

{
1

wx
x,

1

wy
y

}
≤ 1

wx
x. (5.7)

We also include the definition of the approximation order such as it is commonly introduced in
numerical analysis. We are going to use it through the remaining part of the chapter.
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Definition 18. An expression e(h) = O(hr), r ∈ Z means that there exist h0 > 0 and M > 0 such
that ∀ 0 < h ≤ h0

|e(h)|
hr

≤M.

Lemma 18. Let a > 0 be a fixed positive real number, and let |x| ≥ a and |y| ≥ a. If |x−y| = O(h),
and xy > 0, then the previously defined weighted harmonic mean is also close to the weighted
arithmetic mean M(x, y) = wxx+ wyy,

|M(x, y)− Ṽ (x, y)| = wxwy
wxy + wyx

(x− y)2 = O(h2). (5.8)

Definition 19 (PPH reconstruction). Let X = (xi)i∈Z be a nonuniform mesh. Let f = (fi)i∈Z be
a sequence in l∞(Z). Let Dj and Dj+1 be the second order divided differences, and for each j ∈ Z
let us consider the modified values {f̃j−1, f̃j , f̃j+1, f̃j+2} built according to the following rule

• Case 1: If |Dj | ≤ |Dj+1|
f̃i = fi, j − 1 ≤ i ≤ j + 1,

f̃j+2 = −1
γj,2

(γj,−1fj−1 + γj,0fj + γj,1fj+1) +
Ṽj
γj,2

,
(5.9)

• Case 2: If |Dj | > |Dj+1| f̃j−1 = −1
γj,−1

(γj,0fj + γj,1fj+1 + γj,2fj+2) +
Ṽj
γj,−1

,

f̃i = fi, j ≤ i ≤ j + 2,

(5.10)

where γj,i, i = −1, 0, 1, 2 are given in (5.5) and Ṽj = Ṽ (Dj , Dj+1), with Ṽ the weighted harmonic
mean defined in (5.6) with the weights wj,0 and wj,1 in (5.3). We define the PPH nonlinear
reconstruction operator as

PPH(x) = PPHj(x), x ∈ [xj , xj+1], (5.11)

where PPHj(x) is the unique interpolation polynomial which satisfies

PPHj(xi) = f̃i, j − 1 ≤ i ≤ j + 2. (5.12)

According to Definition 19, it is possible to establish a parallelism with Lagrange interpolation,
in fact we can write the PPH reconstruction as

PPHj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (5.13)

where the the coefficients ãj,i, i = 0, 1, 2, 3 are calculated by imposing conditions (5.12). We explain
each one of the two possible local cases, Case 1 or Case 2. The coefficients will have symmetrical
expressions.
Case 1. |Dj | ≤ |Dj+1|, which means that a potential singularity may lay in [xj+1, xj+2]. It has

been proposed to replace fj+2 with f̃j+2 in equation (5.9) by changing the weighted arithmetic
mean in equation (5.4b) for its corresponding weighted harmonic mean. This replacement has been
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performed to carry out a witty modification of the value f̃j+2 in such a way that its difference with
respect to the original fj+2 is large in presence of a discontinuity, but remains sufficiently small in
smooth areas maintaining the approximation order. Lemma 17 is crucial for the adaptation in case
of dealing with the presence of a jump discontinuity, while Lemma 18 plays a fundamental part in
proving fourth approximation order for smooth areas of an underlying function.

In this case the coefficients ãj,i, i = 0, 1, 2, 3 of the PPH polynomial read

ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

4hj + 2hj+1
(Dj − Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

2hj + hj+1
(Dj − Ṽj).

(5.14)

For our purposes in the next sections, we need to go deeper and examine the relation with
Lagrange interpolation. In particular we get that

|f̃j+2 − fj+2| =
2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)

2hj + hj+1
|Mj − Ṽj |, (5.15)

and considering the Lagrange interpolation polynomial written in the same form as in (5.13), that
is

PLj(x) = aj,0 + aj,1

(
x− xj+ 1

2

)
+ aj,2

(
x− xj+ 1

2

)2
+ aj,3

(
x− xj+ 1

2

)3
, (5.16)

we get that the difference of these coefficients with the ones of PPHj(x) is given by

ãj,0 − aj,0 =
h2
j+1

4

(
Mj − Ṽj

)
,

ãj,1 − aj,1 =
h2
j+1

4hj + 2hj+1
(Mj − Ṽj),

ãj,2 − aj,2 = −(Mj − Ṽj),

ãj,3 − aj,3 = − 2

2hj + hj+1
(Mj − Ṽj).

(5.17)

Case 2. |Dj | > |Dj+1|, which means that a possible singularity lies in [xj−1, xj ]. In this case,

in Definition 19, the value fj−1 is replaced with f̃j−1 by using expression (5.10). Similar comments
apply in this case due to symmetry considerations. The coefficients for the polynomial (5.13) now
read
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ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

2hj+1 + 4hj+2
(−Dj+1 + Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

hj+1 + 2hj+2
(−Dj+1 + Ṽj).

(5.18)

The expressions relating the coefficients of the PPH polynomial with the Lagrange interpolation
polynomial now write

|f̃j−1 − fj−1| =
2hj(hj+1 + hj)(hj + hj+1 + hj+2)

2hj+2 + hj+1
|Mj − Ṽj |, (5.19)

ãj,0 − aj,0 =
h2
j+1

4

(
Mj − Ṽj

)
,

ãj,1 − aj,1 = −
h2
j+1

2hj+1 + 4hj+2
(Mj − Ṽj),

ãj,2 − aj,2 = −(Mj − Ṽj),

ãj,3 − aj,3 =
2

2hj+2 + hj+1
(Mj − Ṽj).

(5.20)

In next section we introduce the definition of a translation operator, which is meant to solve
the lost of approximation order close to the inflection points of the underlying function due to the
implementation of the weighted harmonic mean 17 in the case of having arguments with different
signs.

5.3 The translation operator

In [42] it was proven that if the data come from a piecewise smooth function with an isolated
jump discontinuity which verify DjDj+1 ≤ 0 at some interval away from the discontinuity, then
the PPH reconstruction operator gives an approximation of order O(h3) lower than O(h4) ob-
tained just by using the piecewise Lagrange interpolation polynomial. This fact is produced by
the presence of an inflection point in the function. Also, even if DjDj+1 > 0, when we are near
an inflection point it happens a reduction of order towards third order due to the definition of the
extended weighted harmonic mean (5.6). And a similar drawback would be observed in the two
adjacent intervals to the interval that potentially contains a jump discontinuity. In these intervals
the approximation order decreases to second order. Therefore, we observe three situations that
may require a modification in the definition of the reconstruction operator in order to attain the
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expected fourth order of approximation at the time that none of their positive qualities about adap-
tation to discontinuities and behavior with strictly convex functions is affected. The first and third
of these situations occur due to the fact that the weighted harmonic mean used in the definition
of the PPH reconstruction operator is defined with value 0 whenever the sign of the two involved
arguments Dj and Dj+1 is different or one of them is zero. The second situation has also to do
with the definition of the weighted harmonic mean and more specifically with Lemma 18, since the
hypothesis of this lemma are not satisfied if either or both Dj and Dj+1 are of order O(hr) for
some r > 0.

In order to solve this problematic behavior we introduce a new adapted version of the weighted
harmonic mean. We first give the definition of a translation operator T, [20].

Definition 20. Given h > 0, a translation operator T is any function T : R2 → R satisfying

1. T (0, 0) = 0,

2. T (x, y) = T (y, x),

3. T (−x,−y) = −T (x, y),

4. sign(x+ T (x, y))sign(y + T (x, y)) > 0, ∀ (x, y) 6= (0, 0),

5. if (x, y) 6= (0, 0), with |x| ≤ |y|,

a) if |x| = |y|, sign(x) 6= sign(y), then sign(x+ T (x, y)) > 0, sign(y + T (x, y)) > 0,

b) otherwise, sign(x+ T (x, y))sign(y) > 0, sign(y + T (x, y))sign(y) > 0,

6. min{|x+ T (x, y)|, |y + T (x, y)|} = O(1), ∀ (x, y) 6= (0, 0), with |x| = O(hα), |y| = O(hα), for
some α ≥ 0.

Property 4 of Definition 20 avoids the division by zero in Definition 17, eliminating the case in
which the sign of the arguments does not coincide. This solves the inconveniences that generates
reducing the mean to zero in expression (5.6). Property 5 guarantees that the translation is done
towards the largest of the arguments in absolute value. Finally, property 6 will be needed to prove
similar lemmas to Lemma 17 and Lemma 18, what in turn will allow to prove adaptation in case
of discontinuities and fourth order accuracy in the reconstruction respectively.

With the above definition of a translation operator T, we are now ready to present the adapted
weighted harmonic mean.

Definition 21. We define the translated weighted harmonic mean as

J(x, y) = Ṽ (x+ T (x, y), y + T (x, y))− T (x, y), (5.21)

where T is an appropriate translation operator.

From now on, we will drop the arguments of the translation operator T for the sake of simplicity.
They are easily inferred by the context.
For this new mean we can give the following technical lemmas.

Lemma 19. For all (x, y) ∈ R2, the J(x, y) mean satisfies J(−x,−y) = −J(x, y).
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Proof.

J(−x,−y) = Ṽ (−x+ T (−x,−y),−y + T (−x,−y))− T (−x,−y)

= Ṽ (−(x+ T (x, y)),−(y + T (x, y))) + T (x, y)

= −Ṽ (x+ T (x, y), y + T (x, y)) + T (x, y) = −J(x, y).

Lemma 20. For all (x, y) ∈ R2, the translated weighted harmonic mean is bounded as follows

|J(x, y)| ≤ max

{
|x+ T |
wx

, |T |
}
. (5.22)

Proof. Since Ṽ (x+ T, y + T ) and T have the same sign, then applying Lemma 17 we get

|J(x, y)| ≤ max
{
|Ṽ (x+ T, y + T )|, |T |

}
≤ max

{
|x+ T |
wx

, |T |
}
.

Lemma 21. Let a > 0 be a fixed positive real number, T be a translation operator, and let (x, y) ∈
R2 be such that |x+T | ≥ a and |y+T | ≥ a. If |x−y| = O(h), then the translated weighted harmonic
mean is a second order approximation to the weighted arithmetic mean M(x, y) = wxx+wyy, i.e.,

|M(x, y)− J(x, y)| = wxwy(x− y)2

wxy + wyx+ T
= O(h2). (5.23)

Proof. Using the definition of J(x, y) we get

|M(x, y)− J(x, y)| = |M(x, y)− Ṽ (x+ T, y + T ) + T | = |M(x+ T, y + T )− Ṽ (x+ T, y + T )|,

and applying Lemma 18 we have that

|M(x+ T, y + T )− Ṽ (x+ T, y + T )| =
wxwy(x− y)2

wxy + wyx+ T
= O(h2).

Notice that Lemma 20 and Lemma 21 correspond to an extension of previous Lemma 17 and
Lemma 18.

Remark 11. The bound obtained in Lemma 20 can be improved for particular choices of the
translation T, due to the fact that in the general case, one applies the triangular inequality in the
proof to reach the result, and this step can be refined for a given T. See for example the definition
of the translation T̃ in (5.24) and its corresponding Lemma 22.
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One possible definition of translation T fulfilling previous Definition 20 is obtained by

T̃ (x, y) =

{
s ε if xy > 0,

s (min {|x|, |y|}+ ε) otherwise,
(5.24)

where ε = O(1) is a constant and s is defined using the sign function as

s =

{
sign(y) if |x| ≤ |y|,

sign(x) otherwise.

The proposed new mean is then given by

J̃(x, y) = Ṽ (x+ T̃ , y + T̃ )− T̃ , (5.25)

and verifies the following specific lemma which improves the bound in Lemma 20.

Lemma 22. For all (x, y) ∈ R2, the translated weighted harmonic mean J̃ is bounded as follows

|J̃(x, y)| ≤


|x|
wx

+
wy
wx

ε if |x| ≤ |y|,

|y|
wy

+
wx
wy
ε otherwise.

Proof. Let us suppose without loss of generality that |x| ≤ |y|. We consider four possible different
cases, and we prove the result separately for each case.

Case A. x ≤ 0, y > 0. In this case T̃ = −x+ ε > 0.

J̃(x, y) = Ṽ (ε, y − x+ ε) + x− ε.

Now, we observe that

Ṽ (ε, y − x+ ε) ≥ ε,

Ṽ (ε, y − x+ ε) <
1

wx
ε.

If Ṽ (ε, y − x+ ε) + x− ε ≥ 0,

|J̃(x, y)| < |x|+ wy
wx

ε.

If Ṽ (ε, y − x+ ε) + x− ε < 0,

|J̃(x, y)| = ε− x− Ṽ (ε, y − x+ ε) ≤ |x|.

Case B. x ≥ 0, y < 0. In this case T̃ = −x− ε < 0.

J̃(x, y) = Ṽ (−ε, y − x− ε) + x+ ε.
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Observing that

Ṽ (−ε, y − x− ε) ≤ −ε,

Ṽ (−ε, y − x− ε) > − 1

wx
ε.

If Ṽ (−ε, y − x− ε) + x+ ε ≥ 0,

|J̃(x, y)| = Ṽ (−ε, y − x− ε) + x+ ε ≤ |x|.

If Ṽ (−ε, y − x− ε) + x+ ε < 0,

|J̃(x, y)| ≤ |x|+ wy
wx

ε.

Case C. x > 0, y > 0. In this case T̃ = ε > 0.

J̃(x, y) = Ṽ (x+ ε, y + ε)− ε.

We are going to use that in this case

Ṽ (x+ ε, y + ε) ≥ x+ ε,

Ṽ (x+ ε, y + ε) <
1

wx
(x+ ε).

Since in this case Ṽ (x+ ε, y + ε)− ε ≥ 0, then

|J̃(x, y)| < |x|
wx

+
wy
wx

ε.

Case D. x < 0, y < 0. In this case T̃ = −ε < 0.

J̃(x, y) = Ṽ (x− ε, y − ε) + ε.

In this case using that

Ṽ (x− ε, y − ε) ≤ x− ε,

Ṽ (x− ε, y − ε) > 1

wx
(x− ε),

and observing that Ṽ (x− ε, y − ε) + ε < 0, we get

|J̃(x, y)| < |x|
wx

+
wy
wx

ε.
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5.4 Improved PPH reconstruction operator

In this section we introduce the modified mean defined in previous section into the definition
of the PPH reconstruction operator, giving rise to the following definition.

Definition 22 (Translated PPH reconstruction). Let X = (xi)i∈Z be a nonuniform mesh. Let
f = (fi)i∈Z be a sequence in l∞(Z). Let Dj and Dj+1 be the second order divided differences in

(5.1), and for each j ∈ Z let us consider the modified values {f̃j−1, f̃j , f̃j+1, f̃j+2} built according to
the following rule

• Case 1: If |Dj | ≤ |Dj+1| f̃i = fi, j − 1 ≤ i ≤ j + 1,

f̃j+2 = −1
γj,2

(γj,−1fj−1 + γj,0fj + γj,1fj+1) +
Jj
γj,2

.
(5.26)

• Case 2: If |Dj | > |Dj+1| f̃j−1 = −1
γj,−1

(γj,0fj + γj,1fj+1 + γj,2fj+2) +
Jj
γj,−1

,

f̃i = fi, j ≤ i ≤ j + 2.
(5.27)

where γj,i, i = −1, 0, 1, 2 are given in (5.5) and Jj = J(Dj , Dj+1), with J the translated weighted
harmonic mean defined in (5.21) or in (5.25) with the weights wj,0 and wj,1 in (5.3). We define
the translated PPH nonlinear reconstruction operator as

PPHT (x) = PPHTj(x), x ∈ [xj , xj+1], (5.28)

where PPHTj(x) is the unique third degree interpolation polynomial which satisfies

PPHTj(xi) = f̃i, j − 1 ≤ i ≤ j + 2. (5.29)

The coefficients for this new reconstruction operator match exactly with the expressions in
(5.14) and (5.18) respectively depending on the case, except for the substitution of Ṽj for Jj .

We can prove now the following result about the order of approximation attained by the recons-
truction. We want to point out that the order improves in the vicinity of inflection points due to
the considered translation, which is an improvement with respect to the original reconstruction
procedure, see Theorem 1 in [43].

We are going to study the approximation order of the given reconstruction for functions of class
C4(R) with an isolated jump discontinuity at a given point µ. We consider only the case of working
with σ quasi-uniform grids, according with the following definition.

Definition 23. A nonuniform mesh X = (xi)i∈Z is said to be a σ quasi-uniform mesh if there
exist hmin = min

i∈Z
hi, hmax = max

i∈Z
hi, and a finite constant σ such that hmax

hmin
≤ σ.

The next theorem proves full order of accuracy, that is fourth order of accuracy, in all intervals
except the interval containing the singularity and the two adjacent intervals. We observe that the
approximation order is reduced to third order close in the two adjacent intervals, but it is not
completely lost.
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Theorem 6. Let f(x) be a function of class C4(R\{µ}), with a jump discontinuity at the point µ.
Let X = (xi)i∈Z be a σ quasi-uniform mesh in R, with hi = xi − xi−1, ∀i ∈ Z, and f = (fi)i∈Z,
the sequence of point values of the function f(x), fi = f(xi). Let us consider j ∈ Z such that
µ ∈ [xj , xj+1]. Then, the reconstruction PPHT (x) satisfies

1. In [xi, xi+1], i 6= j − 1, j, j + 1, then

max
x∈[xi,xi+1]

|f(x)− PPHT (x)| = O(h4).

2. In [xj−1, xj ] ∪ [xj+1, xj+2],

max
x∈[xj−1,xj ]∪[xj+1,xj+2]

|f(x)− PPHT (x)| = O(h2),

where h = max
i∈Z
{hi}.

Proof. We do the proof point by point.
1. Given x ∈ [xi, xi+1], the reconstruction operator is built as PPHT (x) = PPHTi(x).

We recall that second order divided differences amount to second order derivatives at an inter-
mediate point divided by two, i.e

Di =
f ′′(µ1)

2!
, Di+1 =

f ′′(µ2)

2!
,

with µ1 ∈ (xi−1, xi+1) and µ2 ∈ (xi, xi+2). Due to the properties of the translation T in Definition
20, we have that

Di + T̃ = O(1), Di+1 + T̃ = O(1) and Di+1 −Di = O(h),

and from Lemma 21 we get that

Mi − J̃i =
wi,0wi,1(Di+1 −Di)

2

wi,0Di+1 + wi,1Di + T̃
= O(h2). (5.30)

Plugging this information into (5.17) if |Di| ≤ |Di+1|, or into (5.20) if |Di| > |Di+1|, we get that

|ãi,s − ai,s| = O(h4−s), s = 0, 1, 2, 3. (5.31)

Thus

|PPHTi(x)− PLi(x)| ≤
3∑
s=0

|ãi,s − ai,s|
∣∣∣(x− xi+ 1

2

)s∣∣∣ = O(h4),

where PLi(x) is the Lagrange interpolatory polynomial. Taking into account again the triangular
inequality

|f(x)− PPHTi(x)| ≤ |f(x)− PLi(x)|+ |PLi(x)− PPHTi(x)| = O(h4),

using that Lagrange interpolation also attains fourth order of accuracy.
2. In order to prove Point 2, let us suppose without lost of generalization, that x ∈ [xj−1, xj ]. The
other case is proven analogously. Since, by hypothesis, the function f(x) is smooth in [xj−2, xj ] and
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it presents a jump discontinuity in the interval [xj , xj+1], we have Dj−1 = O(1) and Dj = O(1/h2).
Therefore |Dj−1| ≤ |Dj | .
Let PL2j−1(x) be the second degree Lagrange interpolatory polynomial built using the three pairs
of values (xj−2, fj−2), (xj−1, fj−1), (xj , fj).

PL2j−1(x) = âj−1,0 + âj−1,1

(
x− xj− 1

2

)
+ âj−1,2

(
x− xj− 1

2

)2
,

where

âj−1,0 =
fj−1 + fj

2
−
h2
j

4
Dj−1,

âj−1,1 =
−fj−1 + fj

hj
,

âj−1,2 = Dj−1.

(5.32)

The difference between these coefficients and the ones of PPHTj−1(x) shown in Equation (5.14)

with J instead of Ṽ is given by

ãj−1,0 − âj−1,0 =
h2
j

4
(Dj−1 − Jj−1) ,

ãj−1,1 − âj−1,1 =
h2
j

4hj−1 + 2hj
(Dj−1 − Jj−1),

ãj−1,2 − âj−1,2 = −(Dj−1 − Jj−1),

ãj−1,3 = − 2

2hj−1 + hj
(Dj−1 − Jj−1).

(5.33)

Taking into account Equations (5.33), Lemma 20 and the triangular inequality we obtain

|Jj−1(Dj−1, Dj)| ≤ max{ 1

wj−1,0
|Dj−1 + T |, |T |},

|Dj−1 − Jj−1| ≤ |Dj−1|+ max{ 1

wj−1,0
|Dj−1 + T |, |T |} = O(1),

|ãj−1,s − âj−1,s| = O(h2−s), s = 0, 1, 2, 3,

|PPHTj−1(x)− PL2j−1(x)| ≤
3∑
s=0

|ãj−1,s − âj−1,s|
∣∣∣(x− xj− 1

2

)s∣∣∣ = O(h2),

|f(x)− PPHTj−1(x)| ≤ |f(x)− PL2j−1(x)|+ |PL2j−1(x)− PPHTj−1(x)| = O(h2).

Remark 12. If one pays attention to the proof of point 2 in Theorem 6, and considers the defi-
nition of the particular translation proposed in (5.24) and Lemma 22, then it is easy to reach the
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conclusion that the smaller the ε, the better accuracy obtained in the two intervals adjacent to the
jump discontinuity. However, in order for the proof of point 1 to work, ε must still be O(1), so
that it is possible to avoid the reduction of order close to inflection points where the second order
divided differences could be O(h) and, therefore, Lemma 21 would not be applicable. A nonlinear
choice of the value of ε seems then appropriate.

Remark 13. In the intervals adjacent to the jump discontinuity, one can get third order of accuracy
in the cases where there is a change of sign between the two consecutive second divided differences
involved in either [xj−1, xj ] or [xj+1, xj+2], just by considering a translation of the type T̃ in (5.24)
with an adapted value of ε, small enough in those intervals, at least ε = O(h). In this cases we will
have

max
x∈[xj−1,xj ]∪[xj+1,xj+2]

|f(x)− PPHT (x)| = O(h3).

The reason for this fact comes from the expression of the adapted mean J̃ in these cases, Case A
and Case B of Lemma 22, combined with the proof of the second point of Theorem 6 by estimating
now the difference |Dj−1 − Jj−1| = O(h).

5.5 Nonlinear choice of the parameter ε in the translation operator

It turns out that it is better to take a small ε near a potential jump discontinuity, but it must
remain O(1) at zones where there is the possibility of having second order divided differences Di

of order O(h), just as it happens close to of inflection points. This assessment is also observed in
the numerical experiments.
This is the reason why we propose a strategy to choose ε automatically depending on the data.
Inspired by the smoothness indicators proposed in [47],[20], see Remark 14, we propose an ε with
the following expression,

εj :=
hαj

|Dj |+ |Dj+1|+ ξ
, (5.34)

where α := [β(|Dj | + |Dj+1|)] is the integer part of ISj := β(|Dj | + |Dj+1|), which stands as a
kind of smoothness indicator. The parameter ξ = h4 is included to avoid divisions by zero. The
parameter β is taken into account to make the ε smaller as we get apart from the inflection points.
This fact will result in obtaining a reconstruction almost equal to the original PPH reconstruction
in smooth areas without inflection points, allowing the preservation of convexity (see [42]). We have
considered β = 1 in our numerical experiments. The parameter α is large when a jump discontinuity
affects the stencil used to obtain it and, in turn, this situation will result in a very small value of
εj in that area. On the other hand, this indicator provides α = 0 near an inflection point for
sufficiently small grid sizes and, therefore, εj = O(h−r), for some r > 0. Thus, ε is guaranteed to
be large in this region.

Remark 14. In [47] Jiang and Shu propose to obtain smoothness indicators using something
similar to the total variation, but based in the L2 norm, so that the result is smoother than the total
variation. The proposed formula is just a sum of the L2 norms of the derivatives of the interpolation
polynomials in the cell-averages over the interval (xj−1/2, xj+1/2). Those indicators are more related
with the localization of critical points instead of inflection points. Moreover, for our case expression
(5.34) is cheaper computationally since Dj and Dj+1 are already computed.
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5.6 Numerical experiments

In this section we present a simple numerical test to validate the theoretical results. Our
experiment computes the approximation order of the considered reconstructions in several areas
corresponding with the different points in Theorem 6. In particular we measure the approximation
order in the following areas, identified with the given symbols:

A0: In the interval containing the jump discontinuity.

A1: In a region where the function is smooth without inflection points and far away from them.

A2: In a region where the function is smooth but contains an inflection point.

A3: In a region close to the inflection point without containing it.

A4: In the subinterval just to the right of the one containing the singularity.

We deal with the following piecewise polynomial reconstruction operators of third degree:

• Lagrange: piecewise centered Lagrange interpolation polynomial.

• PPH: nonlinear reconstruction operator given in Definition 19.

• PPHT, ε = 0.5: translated version of the PPH reconstruction operator given in Definition 22.

• PPHT, ε = 0.05: translated version of the PPH reconstruction operator given in Definition
22.

• PPHT, εj : translated version of the PPH reconstruction operator given in Definition 22 using
an adaptive value of the parameter ε according to expression (5.34).

LetX0 = (0, 3, 8, 11, 17, 23, 25, 27, 31, 32, 36, 37.5, 38, 39.3, 40)
π

20
be a nonuniform grid in [0, 2π]

and f(x) the following smooth function with a jump discontinuity at x = 1.2π, and an inflection
point at x = 3π

2 ,

f(x) :=

{
sinx x < 1.2π,

cosx+ 10 x ≥ 1.2π.

This function has also inflection points at x = 0, π, but we will be dealing with the indicated
regions, letting aside those inflection points. The results for those cases give similar conclusions
and they have not been reported. In fact, the numerical tests that have been carried out with
different functions presenting well separated inflection points and isolated jump discontinuities give
similar results as the one shown in this article. For example, if the jump size is smaller, then the
approximation errors are in turn smaller, but the approximation orders present exactly the same
behavior (maybe with the need of smaller grid sizes).
In our experiment we have taken for the grid X0 the following regions A0

0 = [0, 2π], A0
1 = [2, 3],

A0
2 = [4, 5], A0

3 = [31π
20 , 6.2], A0

4 = [25π
20 , 4]. Notice that this intervals correspond to the initial grid X0

and they need to vary appropriately among the scales k to satisfy the requirements of the definition
of the associated region.
Given the initial abscissas x0

i , i ∈ I0 = {0, . . . , 14}, we consider the set of nested grids Xk =

{xki }i∈Ik , where xk2i = xk−1
i , xk2i+1 =

xk−1
i +xk−1

i+1

2 , and Ik = {xk0, . . . , xknk}, k = 0, 1, . . . , 7, with
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nk = 2nk−1 − 1, n0 = 14. For each level of resolution k, we build the corresponding reconstruction
Rk(x) using the data (xki , f(xki )), i ∈ Ik computing the approximation errors in the infinity norm
with respect to the original function using a denser set of abscissas, i.e., we compute a numerical
approximation of

Ek := ||f(x)−Rk(x)||∞.
Then, we compute the numerical approximation order as

p = log2

Ek−1

Ek
, k = 1, ..., 7.

Notice that due to Theorem 6 we can assume that for fine enough grids

Ek ≈ C
(
hk
)p
, with hk := max

i∈Ik\{0}
hki , h

k
i := xki − xki−1, h

k =
hk−1

2
.

In Tables 5.1, 5.3, 5.5, 5.7, 5.9 we present the errors committed by the considered reconstruction
operators by using as initial nodes the defined nested grids Xk. The errors appear separately for
each kind of region A0,A1,A2,A3 and A4. In Tables 5.2, 5.4, 5.6, 5.8, 5.10 appear the corresponding
approximation orders.

In Tables 5.1, 5.2 we can see that neither of these methods is designed to adapt in the interval
containing the jump discontinuity since it is impossible to localize exactly the discontinuity just
working with the point values of the function. The largest error comes near the jump discontinuity
for Lagrange reconstruction, as it can be observed in the column corresponding to this reconstruc-
tion. In the region A1 all the reconstruction operators attain fourth order of accuracy, p = 4, as it
can be seen in Tables 5.3, 5.4. Regions A2 and A3 correspond to the vicinity of an inflection point,
where the nonlinear PPH reconstruction operator reduces the approximation order to third order.
We can observe in Tables 5.5, 5.6, 5.7, 5.8 how all the translated versions get closer to fourth order
in these two regions, A2 and A3. Albeit, the version with larger ε and adapted εj perform in a better
way than with smaller ε in these cases. Finally in Tables 5.9, 5.10 we can see how the nonlinear
reconstruction operators reach second order of accuracy in the intervals to the right and to the left
of the interval containing the jump discontinuity, while the linear Lagrange reconstruction operator
completely loses the order of approximation. In the case of the adapted translated version, we get
third order due to the observation given in Remark 13.

In Figure 5.1 we plot the function f(x) and the Lagrange, and PPHT (with εj adapted) recons-
tructions obtained from the initial grids Xk, k = 0, 1, 2. We can see that around the singularity,
Lagrange reconstruction looses the approximation order and the Gibss phenomena appears. In
this zone, PPHT reconstruction performs in a more proper way, avoiding any Gibbs effects. We
can see that no oscillations appear in the PPHT reconstruction even for the coarsest grid. These
observations can be seen more clearly in Figure 5.2 where we have plotted a zoom of this region for
k = 3 for both operators Lagrange and PPHT. We also point out that the oscillations due to the
jump discontinuity in Lagrange reconstruction do not diminish to zero with the subdivision level.

In Figure 5.3 we analyze the numerical behavior of the truncation parameter ε and the effect of
the parameter β introduced in its definition. As we can see the large values of ε correspond with
the areas around the inflection points of the function and the parameter takes values very close
to ε = 0 in the three intervals around the jump discontinuity. The effect of β is more noticeable
as we increase its value from β = 1 to β = 100, setting the value of the parameter ε closer to
zero for the smooth areas without inflection points. This fact makes the translated version of this
reconstruction similar to the original PPH reconstruction operator in smooth convex areas.
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Remark 15. The numerical experiment has been carried out using a finite interval, that in princi-
ple, falls out from the scope of Theorem 6. However, the results are also true for the finite case away
from the boundaries, and the proof remains exactly the same. Notice that any finite discretization
of a finite interval is a σ quasi-uniform grid according to Definition 23. The boundaries have been
treated by using non-centered third degree Lagrange polynomials, so that if we take into account that
the discontinuity and the inflection point are placed far from the boundaries, they do not affect to
the attained numerical approximation order.

5.7 Conclusions

Using the general definition of a translation operator given in [20], and previously mentioned
in [6], we have considered several specific cases. In particular, we have studied a way of choosing
a translation adaptively depending on the specific data to which it is going to be applied. In
turn, this translation operator has been used to extend the definition of the already existing PPH
reconstruction operator on nonuniform grids [42, 43] to work appropriately with functions which are
not necessarily strictly convex. We give a corresponding theorem ensuring the pursued objective
of getting fourth order of approximation at the smooth parts of the function, independently of the
presence or not of inflection points. Finally we have performed some numerical experiments to
check the behavior of the proposed adaptation.

k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 0 5.6495 5.0072 4.8870 4.9125 4.9153

k = 1 9.4448 9.3051 9.1754 9.1740 9.1738

k = 2 9.3578 9.3588 9.5194 9.5194 9.5195

k = 3 9.3587 9.3591 9.5207 9.5208 9.5208

k = 4 9.3591 9.3593 9.5214 9.5214 9.5214

k = 5 9.3593 9.3594 9.5217 9.5217 9.5217

k = 6 9.3594 9.3595 9.5219 9.5219 9.5219

k = 7 9.3595 9.3595 9.5220 9.5220 9.5220

Table 5.1: Approximation errors Ek in the infinity norm obtained at iteration k, k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A0.
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k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 1 −7.4× 10−1 −8.9× 10−1 −9.1× 10−1 −9.0× 10−1 −9.0× 10−1

k = 2 1.3× 10−2 −8.3× 10−3 −5.3× 10−2 −5.3× 10−2 −5.3× 10−2

k = 3 −1.3× 10−4 −5.4× 10−5 −2.1× 10−4 −2.0× 10−4 −2.0× 10−4

k = 4 6.5× 10−5 −2.9× 10−5 −1.0× 10−4 −9.9× 10−5 −9.9× 10−5

k = 5 3.3× 10−5 −1.5× 10−5 −5.0× 10−5 −5.0× 10−5 −4.9× 10−5

k = 6 1.6× 10−5 −7.4× 10−6 −2.4× 10−5 −2.5× 10−5 −2.4× 10−5

k = 7 8.1× 10−6 −3.7× 10−6 −1.2× 10−5 −1.2× 10−5 −1.2× 10−5

Table 5.2: Approximation orders p in the infinity norm obtained at iteration k, k = 1, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A0.

k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 0 3.7038 1.9182× 10−2 1.4586× 10−1 2.7869× 10−2 4.4601× 10−2

k = 1 7.3685× 10−4 6.5968× 10−3 1.4201× 10−3 4.6348× 10−3 9.5688× 10−4

k = 2 6.2735× 10−5 8.3401× 10−4 9.4378× 10−5 4.5210× 10−4 6.9863× 10−5

k = 3 4.0575× 10−6 3.4729× 10−5 5.8493× 10−6 2.2392× 10−5 4.4229× 10−6

k = 4 2.5733× 10−7 2.6086× 10−6 3.6925× 10−7 1.5670× 10−6 2.7765× 10−7

k = 5 1.5978× 10−8 1.8126× 10−7 2.3181× 10−8 1.0414× 10−7 1.7329× 10−8

k = 6 1.0021× 10−9 1.0730× 10−8 1.4459× 10−9 6.3099× 10−9 1.0840× 10−9

k = 7 6.2737× 10−11 6.5331× 10−10 9.0272× 10−11 3.8843× 10−10 6.7782× 10−11

Table 5.3: Approximation errors Ek in the infinity norm obtained at iteration k, k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A1.
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k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 1 12.2953 1.5399 6.6824 2.5881 5.5426

k = 2 3.5540 2.9836 3.9114 3.3578 3.7757

k = 3 3.9506 4.5859 4.0121 4.3356 3.9815

k = 4 3.9789 3.7348 3.9856 3.8369 3.9937

k = 5 4.0094 3.8472 3.9935 3.9115 4.0019

k = 6 3.9950 4.0784 4.0030 4.0447 3.9987

k = 7 3.9976 4.0377 4.0015 4.0219 3.9994

Table 5.4: Approximation orders p in the infinity norm obtained at iteration k, k = 1, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A1.

k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 0 7.5463× 10−1 8.3447× 10−3 2.3123× 10−2 5.6651× 10−3 2.9178× 10−3

k = 1 4.2214× 10−5 7.8190× 10−4 1.9193× 10−4 6.4427× 10−4 6.7164× 10−5

k = 2 3.4996× 10−6 2.4763× 10−4 1.8960× 10−5 1.0918× 10−4 5.3926× 10−6

k = 3 3.0851× 10−7 3.0993× 10−5 1.2028× 10−6 8.7545× 10−6 4.8008× 10−7

k = 4 2.2334× 10−8 3.8754× 10−6 7.5666× 10−8 6.3675× 10−7 3.3935× 10−8

k = 5 1.4894× 10−9 4.8446× 10−7 4.7431× 10−9 4.3337× 10−8 2.2339× 10−9

k = 6 9.5977× 10−11 6.0559× 10−8 2.9687× 10−10 2.8345× 10−9 1.4299× 10−10

k = 7 6.0880× 10−12 7.5699× 10−9 1.8566× 10−11 1.8137× 10−10 9.040× 10−12

Table 5.5: Approximation errors Ek in the infinity norm obtained at iteration k, k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A2.
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k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 1 14.1257 3.4158 6.9126 3.1364 5.4411

k = 2 3.5925 1.6588 3.3395 2.5609 3.6386

k = 3 3.5038 2.9982 3.9784 3.6406 3.4896

k = 4 3.7880 2.9995 3.9907 3.7812 3.8224

k = 5 3.9064 2.9999 3.9957 3.8770 3.9251

k = 6 3.9559 3.0000 3.9980 3.9344 3.9655

k = 7 3.9787 3.0000 3.9990 3.9661 3.9835

Table 5.6: Approximation orders p in the infinity norm obtained at iteration k, k = 1, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A2.

k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 0 6.3455× 10−4 2.2239× 10−3 1.2150× 10−3 1.9915× 10−3 8.6245× 10−4

k = 1 9.0640× 10−5 2.9306× 10−4 1.4797× 10−4 2.5484× 10−4 1.1640× 10−4

k = 2 9.2479× 10−6 3.4429× 10−5 1.6629× 10−5 3.0064× 10−5 1.2170× 10−5

k = 3 6.5454× 10−7 2.7653× 10−6 1.0760× 10−6 2.3029× 10−6 8.1262× 10−7

k = 4 4.3080× 10−8 2.0098× 10−7 6.8410× 10−8 1.6202× 10−7 5.1976× 10−8

k = 5 2.7567× 10−9 4.3976× 10−8 4.6111× 10−9 2.2983× 10−8 3.2797× 10−9

k = 6 1.7424× 10−10 4.6559× 10−9 2.9178× 10−10 1.8210× 10−9 2.0587× 10−10

k = 7 1.0951× 10−11 5.0457× 10−10 1.8375× 10−11 1.3610× 10−10 1.2895× 10−11

Table 5.7: Approximation errors Ek in the infinity norm obtained at iteration k, k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A3.
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k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 1 2.8075 2.9238 3.0376 2.9662 2.8893

k = 2 3.2929 3.0895 3.1535 3.0835 3.2577

k = 3 3.8206 3.6381 3.9500 3.7065 3.9046

k = 4 3.9254 3.7823 3.9753 3.8291 3.9667

k = 5 3.9660 2.1923 3.8910 2.8176 3.9862

k = 6 3.9838 3.2396 3.9821 3.6578 3.9937

k = 7 3.9919 3.2059 3.9891 3.7420 3.9969

Table 5.8: Approximation orders p in the infinity norm obtained at iteration k, k = 1, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A3.

k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 0 7.5463× 10−1 7.3017× 10−3 2.3122× 10−2 4.9884× 10−3 2.9178× 10−3

k = 1 6.1204× 10−1 2.3996× 10−3 3.3130× 10−3 4.8664× 10−4 1.7116× 10−4

k = 2 6.1887× 10−1 6.1993× 10−4 8.0841× 10−4 9.8797× 10−5 1.9854× 10−5

k = 3 6.2234× 10−1 1.5738× 10−4 1.9971× 10−4 2.2119× 10−5 2.3812× 10−6

k = 4 6.2409× 10−1 3.9636× 10−5 4.9635× 10−5 5.2260× 10−6 2.9126× 10−7

k = 5 6.2496× 10−1 9.9451× 10−6 1.2372× 10−5 1.2697× 10−6 3.6003× 10−8

k = 6 6.2540× 10−1 2.4908× 10−6 3.0887× 10−6 3.1290× 10−7 4.4750× 10−9

k = 7 6.2562× 10−1 6.2325× 10−7 7.7161× 10−7 7.7664× 10−8 5.5778× 10−10

Table 5.9: Approximation errors Ek in the infinity norm obtained at iteration k, k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A4.
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k Lagrange PPH PPHT, ε = 0.5 PPHT, ε = 0.05 PPHT, εj

k = 1 0.3021 1.6054 2.8031 3.3577 4.0914

k = 2 −0.0160 1.9526 2.0350 2.3003 3.1078

k = 3 −0.0081 1.9779 2.0172 2.1591 3.0597

k = 4 −0.0040 1.9893 2.0085 2.0815 3.0314

k = 5 −0.0020 1.9948 2.0042 2.0412 3.0161

k = 6 −0.0010 1.9974 2.0021 2.0207 3.0082

k = 7 −0.0005 1.9987 2.0010 2.0104 3.0041

Table 5.10: Approximation orders p in the infinity norm obtained at iteration k, k = 1, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ε = 0.5, PPHT with ε = 0.05,
and PPHT with adapted εj in the region A4.
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Figure 5.1: In black solid line: function f(x). In green solid line the straight line joining the extreme
points of the jump interval [xkj , x

k
j+1]. In blue dotted line: Lagrange reconstruction. In red dotted

line: PPHT reconstruction with adapted εj . Void circles stand for initial nodes, filled circles for
nodes at the k subdivision level. (a): Lagrange k = 0, (b): PPHT k = 0, (c): Lagrange k = 1,
(d): PPHT k = 1, (e): Lagrange k = 2, (f): PPHT k = 2.
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Figure 5.2: Zoom of the region around the jump discontinuity for subdivision grid level k = 3. (a):
Lagrange, (b): PPHT with adapted εj .
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(a) (b)

(c) (d)

Figure 5.3: Values of the ε parameter in (5.34) along different intervals for the x variable. (a): for
β = 1 in the interval [0, 2π], (b): for β = 1 in the interval [3.7, 3.8], (c): for β = 100 in the interval
[0, 2π], (d): for β = 100 in the interval [3.7, 3.8].
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Chapter 6

On certain inequalities associated to
curvature properties of the nonlinear
PPH reconstruction operator

The contents of this chapter are wholly included in the already published paper [44]

• Ortiz, P.; Trillo, J.C. On certain inequalities associated to curvature properties of the non-
linear PPH reconstruction operator. Journal of Inequalities and Applications. 2019, Paper
No. 8, 13 pp, https://doi.org/10.1186/s13660-019-1959-0

6.1 Introduction

Reconstruction and subdivision operators have been studied, analyzed and implemented in
computer aided geometric design giving rise to interesting applications in different fields of science.
Subdivision schemes provide easy and fast algorithms for the generation of curves and surfaces
from a coarse initial set of control points.They are closely related to reconstruction operators.

Starting from a given set of data, the target of the reconstruction operators is to obtain a
piecewise function p(x) which interpolates or approximates the data preserving certain properties
which are of interest because of some geometrical or physical reasons. One particular case is given
by smoothing splines (see [23], [46]) in a given interval [a, b]. They are built through polynomial
reconstruction pieces that are connected in a smooth way at the control knots and that satisfy the
minimization problem

min
p ∈ Πn

J(p) := min
p ∈ Πn

∫ b

a
p′′(x)2 dx+

∑
j

µj(p(xj)− fj)2, (6.1)

where Πn stands for the polynomials of degree less or equal to n. The considered functional implies
a balance, dominated by the weights µj , between a low curvature term and a small value of the
accumulated distance to the initial set of data (xj , fj).

PPH reconstruction was firstly defined in [6], although as subdivision scheme was already in-
troduced in [32]. Later the PPH reconstruction operator was extended to allow for the use of
nonuniform meshes [41], issue that is needed to link this reconstruction with general splines. This

100



reconstruction is inherently a nonlinear interpolatory technique that has some remarkable charac-
teristics. We mention those that are attractive for our purposes. In particular: a fixed centered
stencil is used to build each polynomial piece, fourth order accuracy is reached in smooth convex
regions, reduction to second order occurs at the vicinity of singularities but the approximation
order is not completely lost as it happens in the linear case, and Gibb’s effect is avoided. Also we
specially remark two more properties which are going to be crucial for this reconstruction. The
convexity preservation when dealing with initial discrete set of convex data [41] and a low curva-
ture term. This last property about the curvature is part of what is going to be proven in next
sections. More precisely we study the term of curvature of the functional (6.1) for the Lagrange
and PPH reconstructions, in the uniform and the nonuniform case. Then, due to these suitable
properties, we think that connecting the PPH reconstruction with smoothing splines could result
in very interesting applications.

The chapter is organized as follows: In Section 6.2 we analyze the curvature term for the
Lagrange and the PPH reconstruction on uniform meshes. In Section 6.3 we study the case of
nonuniform meshes. Finally, in Section 6.4 we present some conclusions and future perspectives.

6.2 Study of the curvature term in uniform meshes

Let us consider the set of values fj−1, fj , fj+1, fj+2 corresponding to subsequent ordinates at
the abscissas xj−1, xj , xj+1, xj+2 of a regular grid X with fix grid spacing h = xj+1 − xj . The set
of polynomials p(x) which pass through the central points (xj , fj) and (xj+1, fj+1) can be written
in terms of two free variables A and B as follows

p(x) := −1

6
(x− xj)(xj+1 − x)

[
A(1 +

xj+1 − x
h

) +B(1 +
x− xj
h

)

]
+
xj+1 − x

h
fj +

x− xj
h

fj+1.

(6.2)

From now on, we will use the following definition of the local curvature term.

Definition 24. Given a polynomial p(x) in an interval [xj , xj+1] we define the local curvature term
as

C(p) :=

∫ xj+1

xj

p′′(x)2 dx. (6.3)

In order to compute the local curvature term in Definition 24 for the set of polynomials given
by (6.2) we proceed as follows. The difference between the evaluation of polynomial (6.2) and the
corresponding initial data at the abscissas xj−1, xj+2 is given by

p(xj−1)− fj−1 = h2(A− 2Dj), p(xj+2)− fj+2 = h2(B − 2Dj+1), (6.4)

where Dj and Dj+1 are the second order divided differences

Dj =
fj−1 − 2fj + fj+1

2h2
, Dj+1 =

fj − 2fj+1 + fj+2

2h2
. (6.5)

Computing the second derivative of the polynomial p(x) in (6.2) and introducing this compu-
tation in the local curvature term of expression (6.1) we get
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C(p) :=

∫ xj+1

xj

p′′(x)2 dx =
h

3
(A2 +AB +B2). (6.6)

6.2.1 Curvature term for the Lagrange reconstruction

Let pL(x) be the third degree Lagrange polynomial which interpolates the data (xj+s, fj+s),
s = −1, 0, 1, 2. In order to write pL(x) in the form of polynomial (6.2) we look for the appropriate
values of the parameters A and B which allow for the remaining interpolation conditions to be
satisfied

pL(xj−1) = fj−1, pL(xj+2) = fj+2. (6.7)

Solving the last two equations we get

AL = 2Dj , BL = 2Dj+1.

Thus, the defined curvature term (6.6) takes the form

CL := C(pL) =
4h

3
(D2

j +DjDj+1 +D2
j+1). (6.8)

6.2.2 Curvature term for the PPH reconstruction

Let now pH(x) be the PPH polynomial (see [6]). This fourth order reconstruction based also on
the data (xj+s, fj+s), s = −1, 0, 1, 2, basically proceeds as follows: firstly a modification of either
fj−1 or fj+2 is carried out in order to avoid the bad influence of a potential singularity at [xj−1, xj ]
or [xj+1, xj+2] respectively, secondly a third order Lagrange interpolation is applied to the modified
data. Then, due to this intrinsically nonlinear nature we need to consider two different cases to
carry out the curvature study for pH(x). This is done in the following theorem.

Theorem 7. The curvature term associated to the PPH polynomial pH(x) in a uniform mesh with
grid spacing h is given by

CH =



4hD2
j (D2

j − 2DjDj+1 + 13D2
j+1)

3(Dj +Dj+1)2
if |Dj | ≤ |Dj+1| & DjDj+1 > 0,

4hD2
j

3
if |Dj | ≤ |Dj+1| & DjDj+1 ≤ 0,

4hD2
j+1(13D2

j − 2DjDj+1 +D2
j+1)

3(Dj +Dj+1)2
if |Dj | > |Dj+1| & DjDj+1 > 0,

4hD2
j+1

3
if |Dj | > |Dj+1| & DjDj+1 ≤ 0,

(6.9)

where Dj and Dj+1 are the second order divided differences defined as,

Dj =
fj−1 − 2fj + fj+1

2h2
, Dj+1 =

fj − 2fj+1 + fj+2

2h2
.

Moreover, for all cases CH satisfies CL − CH ≥ 0.
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Proof. Depending on the absolute values of the second order divided differences Dj and Dj+1 in
(6.5) we analyze the following two cases:

Case 1. |Dj | ≤ |Dj+1|, i.e, a potential singularity lies at [xj+1, xj+2].
In this case in order to build the pH(x) in the form of polynomial (6.2) we need to impose the

following two conditions

pH(xj−1) = fj−1, pH(xj+2) = f̃j+2, (6.10)

where f̃j+2 represents the modified value at xj+2, and it is computed by (see [6] for more details)

f̃j+2 = fj+2 − 4h2

(
Dj +Dj+1

2
− Ṽj

)
, (6.11)

where Ṽj stands for the extended Harmonic mean defined by

Ṽj =

{
2DjDj+1

Dj+Dj+1
if DjDj+1 > 0,

0 else.
(6.12)

Solving equations (6.10) for the free parameters results in

AH = 2Dj , BH = 4Ṽj − 2Dj .

Depending on the sign of the product DjDj+1, the parameter BH takes a different expression,
and therefore the same happens for the curvature term CH defined by CH := C(pH), according to
expression (6.6). We consider now the following new two cases,

Case 1.1. DjDj+1 > 0.
In this case the term BH reads

BH =
2Dj(3Dj+1 −Dj)

Dj +Dj+1
,

and thus

CH =
4hD2

j (D
2
j − 2DjDj+1 + 13D2

j+1)

3(Dj +Dj+1)2
.

It is now interesting and in fact part of our objective with this computation to compare the
obtained curvature with the previous result (6.8) for the usual third order Lagrange polynomial.
Performing this comparison we reach to

CL − CH =
4hDj+1(Dj+1 −Dj)

2(5Dj +Dj+1)

3(Dj +Dj+1)2
≥ 0, (6.13)

which shows clearly that the curvature term CH for the PPH reconstruction is always lower than
the corresponding curvature CL for the Lagrange polynomial. This could be an interesting property
in practical applications related with manufacturing and graphical design.
We study now the other case.
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Case 1.2. DjDj+1 ≤ 0.
In this case the terms BH and CH read

BH = −2Dj , CH =
4hD2

j

3
.

Therefore the difference CL − CH is now

CL − CH =
4hDj+1(Dj +Dj+1)

3
≥ 0. (6.14)

Again we see that also in this case the curvature term CH for the PPH reconstruction is lower
than the corresponding curvature CL for the Lagrange polynomial.

Case 2. |Dj | > |Dj+1|, i.e, the potential singularity lies at [xj−1, xj ]. In this second case
in order to build the polynomial pH(x) in the form (6.2) we need to impose the following two
conditions

pH(xj−1) = f̃j−1, pH(xj+2) = fj+2. (6.15)

where f̃j−1 is the modified value at xj−1. Its expression is given by (see [6] for more details)

f̃j−1 = fj−1 − 4h2

(
Dj +Dj+1

2
− Ṽj

)
, (6.16)

Working in a similar way to case 1 we obtain

AH = 4Ṽj − 2Dj+1, BH = 2Dj+1.

and depending on the sign of the product DjDj+1 we consider two subcases.

Case 2.1. DjDj+1 > 0.

Replacing Ṽj by (6.12) in the expression of AH we get

AH =
2Dj+1(3Dj −Dj+1)

Dj +Dj+1
,

and therefore from (6.6) we have

CH =
4hD2

j+1(13D2
j − 2DjDj+1 +D2

j+1)

3(Dj +Dj+1)2
.

Computing the difference between the curvature terms CL and CH we obtain

CL − CH =
4hDj(Dj −Dj+1)2(Dj + 5Dj+1)

3(Dj +Dj+1)2
≥ 0. (6.17)

Case 2.2. DjDj+1 ≤ 0. Replacing Ṽj by (6.12) in the expression of AH we get now

AH = −2Dj+1,
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and therefore from (6.6) this time we have

CH =
4hD2

j+1

3
.

Finally, the difference between both curvature terms writes

CL − CH =
4hDj(Dj +Dj+1)

3
≥ 0. (6.18)

We have just seen that for data in uniform grids, the curvature term in equation (6.1) associated
to PPH reconstruction operator remains below the value of the curvature associated to Lagrange
operator.

6.3 Study of the curvature term in nonuniform meshes

Let us consider the set of points fj−1, fj , fj+1, fj+2 corresponding to subsequent ordinates at
the abscissas xj−1, xj , xj+1, xj+2 of a nonuniform mesh X. Let be hj = xj − xj−1, hj+1 = xj+1 −
xj , hj+2 = xj+2 − xj+1 . Similarly to the uniform case, the set of polynomials p(x) which pass
through the central points (xj , fj) and (xj+1, fj+1) writes

p(x) := −1

6
(x− xj)(xj+1 − x)

[
A(1 +

xj+1 − x
hj+1

) +B(1 +
x− xj
hj+1

)

]
+
xj+1 − x
hj+1

fj +
x− xj
hj+1

fj+1.

(6.19)

At the boundary points xj−1, xj+2 of the interval, the distance of the polynomial to the initial
data is

p(xj−1)− fj−1 =
hj(hj + hj+1)

6hj+1
(A(hj + 2hj+1) +B(hj+1 − hj)− 6Djhj+1),

p(xj+2)− fj+2 =
hj+2(hj+1 + hj+2)

6hj+1
(A(hj+1 − hj+2) +B(2hj+1 + hj+2)

− 6Dj+1hj+1), (6.20)

where Dj and Dj+1 are the general divided differences defined by

Dj =
fj−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)
,

Dj+1 =
fj

hj+1(hj+1 + hj+2)
− fj+1

hj+1hj+2
+

fj+2

hj+2(hj+1 + hj+2)
. (6.21)

Introducing the second derivative of (6.19) in the curvature term of (6.1) we get

C(p) =

∫ xj+1

xj

p′′(x)2dx =
hj+1

3
(A2 +AB +B2) =

hj+1

3
((A+B)2 −AB). (6.22)
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6.3.1 Curvature term for the Lagrange reconstruction in nonuniform meshes

When p(x) is the Lagrange polynomial pL(x), it verifies

pL(xj−1) = fj−1, pL(xj+2) = fj+2. (6.23)

From previous conditions and equations (6.20) it results the following linear system for A and B

AL(hj + 2hj+1) +BL(hj+1 − hj) = 6Djhj+1,
AL(hj+1 − hj+2) +BL(2hj+1 + hj+2) = 6Dj+1hj+1.

(6.24)

Solving this system, we obtain the parameters A and B for the Lagrange polynomial

AL =
2[Dj(2hj+1 + hj+2) +Dj+1(hj − hj+1)]

hj + hj+1 + hj+2
,

BL =
2[Dj(hj+2 − hj+1) +Dj+1(hj + 2hj+1)]

hj + hj+1 + hj+2
.

(6.25)

It is convenient to observe that

AL +BL = 4Mj ,

AL −BL =
6hj+1(Dj −Dj+1)

hj + hj+1 + hj+2
.

(6.26)

where Mj is the weighted arithmetic of Dj and Dj+1, that is

Mj = wj,0Dj + wj,1Dj+1, (6.27)

and the weights wj,0, wj,1 are defined by

wj,0 =
hj+1 + 2hj+2

2(hj + hj+1 + hj+2)
,

wj,1 =
hj+1 + 2hj

2(hj + hj+1 + hj+2)
= 1− wj,0.

(6.28)

Plugging these values into expression (6.22) we get the curvature term CL = C(pL) for the Lagrange
reconstruction.

6.3.2 Curvature term for the PPH reconstruction in nonuniform meshes

The PPH reconstruction in nonuniform meshes is defined in the interval [xj , xj+1] by using the
data fj−1, fj , fj+1, fj+2 at the abscissas xj−1, xj , xj+1, xj+2 in the following way: depending on

the relative size of |Dj | an |Dj+1|, we substitute either fj−1 for f̃j−1 or fj+2 for f̃j+2. After this
replacement Lagrange reconstruction is applied to the new set of data. We remark that the initial
substitution is made in order to adapt to the presence of potential singularities at the same time
that we maintain the fourth order accuracy of Lagrange reconstruction in smooth convex areas.

In what follows we present some expressions that we will need to derive the curvature term.
For more information about these expressions see [41]. The mentioned substitutions, depending on
the relative size of |Dj | and |Dj+1|, take the form

f̃j−1 = fj−1 −
hj(hj + hj+1)

wj,0

(
Mj − Ṽj

)
, (6.29a)

f̃j+2 = fj+2 −
hj+2(hj+1 + hj+2)

wj,1

(
Mj − Ṽj

)
, (6.29b)
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where Ṽj is the harmonic means of Dj and Dj+1, that is

Ṽj =


DjDj+1

wj,0Dj+1 + wj,1Dj
if DjDj+1 > 0,

0 otherwise,
(6.30)

From equations (6.27) and (6.30) we obtain

Mj − Ṽj =

{
wj,0wj,1(Dj+1−Dj)2
wj,0Dj+1+wj,1Dj

if DjDj+1 > 0,

Mj otherwise.
(6.31)

This expression will be used later.
The divided differences D̃j and D̃j+1 calculated with the PPH ordinates f̃j−1 and f̃j+2 are now

given by

D̃j =
f̃j−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)
,

D̃j+1 =
fj

hj+1(hj+1 + hj+2)
− fj+1

hj+1hj+2
+

f̃j+2

hj+2(hj+1 + hj+2)
.

(6.32)

and their difference with (6.21) becomes

Dj − D̃j =
fj−1 − f̃j−1

hj(hj + hj+1)
=
Mj − Ṽj
wj,0

, (6.33)

Dj+1 − D̃j+1 =
fj+2 − f̃j+2

hj+2(hj+1 + hj+2)
=
Mj − Ṽj
wj,1

.

We are now ready to compute the curvature term associated to PPH reconstruction p(x) = pH(x).

Theorem 8. The curvature term associated to the PPH polynomial pH(x) in a nonuniform mesh
satisfies

1.1) If |Dj | ≤ |Dj+1| & DjDj+1 > 0,

CL − CH =
12h3j+1wj,0w

2
j,1

(2hj + hj+1)2

(
wj,0Dj+1 + wj,1Dj +Dj

(wj,0Dj+1 + wj,1Dj)2

)
(Dj+1 −Dj)

3

+ 4hj+1(M2
j − Ṽ 2

j ).

CL − CH ≥ 0.

1.2) If |Dj | ≤ |Dj+1| & DjDj+1 ≤ 0,

CL − CH =
8Mjhj+1

(2hj + hj+1)2
(2(h2j + hjhj+1 + h2j+1)Mj − 3h2j+1Dj),

CL − CH ≥ 0, under one of these natural conditions:

1.2.1) If Mj and Dj have different sign.

1.2.2) If Mj and Dj have the same sign and

Mj

Dj
>

3h2
j+1

2(h2
j + hjhj+1 + h2

j+1)
.
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2.1) If |Dj | > |Dj+1| & DjDj+1 > 0,

CL − CH =
12h3j+1w

2
j,0wj,1

(hj+1 + 2hj+2)2
(
wj,0Dj+1 + wj,1Dj +Dj+1

(wj,0Dj+1 + wj,1Dj)2
)(Dj −Dj+1)3

+ 4hj+1(M2
j − Ṽ 2

j ),

CL − CH ≥ 0.

2.2) If |Dj | > |Dj+1| & DjDj+1 ≤ 0,

CL − CH =
8Mjhj+1

(hj+1 + 2hj+2)2
(2(h2j+1 + hj+1hj+2 + h2j+2)Mj − 3h2j+1Dj+1),

CL − CH ≥ 0, under one of these natural conditions:

2.2.1) If Mj and Dj+1 have different sign.

2.2.2) If Mj and Dj+1 have the same sign and

Mj

Dj+1
>

3h2
j+1

2(h2
j+1 + hj+1hj+2 + h2

j+2)
.

Proof. We need to consider two main cases.

Case 1. |Dj | ≤ |Dj+1|, i.e, the possible singularity is at [xj+1, xj+2]

pH(xj−1) = fj−1, pH(xj+2) = f̃j+2. (6.34)

From previous conditions and equations (6.20) and (6.29b) we get the following linear system in A
and B

AH(hj + 2hj+1) +BH(hj+1 − hj) = 6Djhj+1,

AH(hj+1 − hj+2) +BH(2hj+1 + hj+2) = 6D̃j+1hj+1.
(6.35)

We observe that this system has the same form as the system for the Lagrange case (6.24), except
for D̃j+1. Its solution is

AH =
2[Dj(2hj+1 + hj+2) + D̃j+1(hj − hj+1)]

hj + hj+1 + hj+2
,

BH =
2[Dj(hj+2 − hj+1) + D̃j+1(hj + 2hj+1)]

hj + hj+1 + hj+2
,

which can also be expressed as

AH =
6Djhj+1 + 4(hj − hj+1)Ṽj

2hj + hj+1
,

BH =
−6Djhj+1 + 4(hj + 2hj+1)Ṽj

2hj + hj+1
.

(6.36)

From (6.36) we can easily see that

AH +BH = 4Ṽj . (6.37)
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We also point out that parameters AL, BL and AH , BH are related by

AH = AL −
(

2− 6hj+1

2hj + hj+1

)
(Mj − Ṽj),

BH = BL −
(

2 +
6hj+1

2hj + hj+1

)
(Mj − Ṽj).

(6.38)

Taking into account equations (6.22), (6.26), (6.37) and (6.38), we obtain the difference CL − CH ,
between Lagrange and PPH curvature terms.

CL − CH =
12h3

j+1(Mj − Ṽj)
(2hj + hj+1)2

(2wj,1(Dj+1 −Dj)− (Mj − Ṽj)) (6.39)

+ 4hj+1(M2
j − Ṽ 2

j ).

Introducing the expression (6.31) of the difference Mj − Ṽj in previous equation, the following
subcases appear:

Case 1.1. DjDj+1 > 0.

CL − CH =
12h3

j+1wj,0w
2
j,1

(2hj + hj+1)2

(
wj,0Dj+1 + wj,1Dj +Dj

(wj,0Dj+1 + wj,1Dj)2

)
(Dj+1 −Dj)

3

+ 4hj+1(M2
j − Ṽ 2

j ). (6.40)

On one side, as the sign of Dj equals to the sign of Dj+1 then M2
j ≥ Ṽ 2

j .
On the other side, since we are in the case |Dj | ≤ |Dj+1|, this implies that

(wj,0Dj+1 + wj,1Dj +Dj)(Dj+1 −Dj)
3 ≥ 0.

Thus, CL − CH ≥ 0.

Case 1.2. DjDj+1 ≤ 0.

CL − CH =
8Mjhj+1

(2hj + hj+1)2
(2(h2

j + hjhj+1 + h2
j+1)Mj − 3h2

j+1Dj). (6.41)

CL −CH will be positive if Mj and 2(h2
j + hjhj+1 + h2

j+1)Mj − 3h2
j+1Dj have the same sign.

This happens in the following cases

1.2.1. Mj and Dj (the lower divided difference in absolute value) have different sign.

1.2.2. Mj and Dj have the same sign and
Mj

Dj
>

3h2
j+1

2(h2
j + hjhj+1 + h2

j+1)
.

The last conditions are not always satisfied. However we can solve this situation by paying
proper attention to the following facts:
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• Case 1.2 will only take place around inflection points on the underlying function. Therefore,
if we work with data corresponding to strictly convex or concave functions this case will never
happen.

• Case 1.2.2 will not occur around discontinuities except for extremely nonuniform grids where
wj,0 ≈ 1, since Mj and Dj have the same sign if and only if |Dj+1

Dj
| < wj,0

wj,1
.

• In the supposition that for the given data condition in Case 1.2.1 is not satisfied, although
this is a rare situation, then we can consider the replacement at this concrete interval of the
original data fj−1 by f̃j−1 according to (6.29a) instead of fj+2 by f̃j+2 in order to attain
CL ≥ CH . This observation is easily proven because we go directly to Case 2.2.1. Thus,
we give priority to the minimization of the curvature instead to the adaptation to possible
singularities. Notice that as mentioned in the previous point, there should not be a singularity
at the considered interval but for exceptional cases.

Case 2. |Dj | > |Dj+1|, i.e, the possible singularity is at [xj−1, xj ]

pH(xj−1) = f̃j−1, pH(xj+2) = fj+2. (6.42)

Previous conditions together with equations (6.20) and (6.29a) give the following linear system for
A and B

AH(hj + 2hj+1) +BH(hj+1 − hj) = 6D̃jhj+1,
AH(hj+1 − hj+2) +BH(2hj+1 + hj+2) = 6Dj+1hj+1.

(6.43)

Its solution is

AH =
2[D̃j(2hj+1 + hj+2) +Dj+1(hj − hj+1)]

hj + hj+1 + hj+2
,

BH =
2[D̃j(hj+2 − hj+1) +Dj+1(hj + 2hj+1)]

hj + hj+1 + hj+2
,

(6.44)

which can also be expressed as

AH =
−6Dj+1hj+1 + 4(2hj+1 + hj+2)Ṽj

hj+1 + 2hj+2
,

BH =
6Dj+1hj+1 + 4(hj+2 − hj+1)Ṽj

hj+1 + 2hj+2
,

(6.45)

where we see that, as in Case 1,

AH +BH = 4Ṽj .

We also point out that parameters AL, BL and AH , BH are related by

AH = AL −
(

2 +
6hj+1

hj+1 + 2hj+2

)
(Mj − Ṽj),

BH = BL −
(

2− 6hj+1

hj+1 + 2hj+2

)
(Mj − Ṽj).

(6.46)
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Taking into account equations (6.22), (6.26), (6.37) and (6.46), we also reach in this case to the
expression for the difference CL − CH , between Lagrange and PPH curvature terms

CL − CH =
12h3

j+1(Mj − Ṽj)
(hj+1 + 2hj+2)2

(2wj,0(Dj −Dj+1)− (Mj − Ṽj)) (6.47)

+ 4hj+1(M2
j − Ṽ 2

j ).

Using expression (6.31) of the difference Mj − Ṽj in previous equation, we get the subcases

Case 2.1. DjDj+1 > 0.

CL − CH =
12h3

j+1w
2
j,0wj,1

(hj+1 + 2hj+2)2

(
wj,0Dj+1 + wj,1Dj +Dj+1

(wj,0Dj+1 + wj,1Dj)2

)
(Dj −Dj+1)3.

+ 4hj+1(M2
j − Ṽ 2

j ). (6.48)

On one side, DjDj+1 > 0 implies M2
j ≥ Ṽ 2

j .
On the other side, since |Dj | > |Dj+1|, then

(wjDj+1 + wj,1Dj +Dj+1)(Dj −Dj+1)3 ≥ 0.

Thus, CL − CH ≥ 0.

Case 2.2. DjDj+1 ≤ 0.

CL − CH =
8Mjhj+1

(hj+1 + 2hj+2)2
(2(h2j+1 + hj+1hj+2 + h2j+2)Mj − 3h2j+1Dj+1). (6.49)

CL −CH will be positive if 2(h2
j+1 + hj+1hj+2 + h2

j+2)Mj − 3h2
j+1Dj+1 have the same sign as Mj .

This occurs when

2.2.1. Mj and Dj+1 (the lower divided difference in absolute value) have different sign.

2.2.2. Mj and Dj+1 have the same sign and
Mj

Dj+1
>

3h2j+1

2(h2j+1 + hj+1hj+2 + h2j+2)
.

At this point, the same observations as in Case 1.2 can be done. That is, the last conditions
are not always satisfied. However, we can solve this situation by paying proper attention to the
following facts:

• Case 2.2 will only appear around inflection points. Therefore the case is avoided if we consider
only data corresponding to strictly convex or concave functions.

• Case 2.2.2 will not occur around discontinuities except for extremely nonuniform grids where
wj,1 ≈ 1, since Mj and Dj+1 have the same sign if and only if | DjDj+1 | <

wj,1
wj,0

.

• In the supposition that for the given data condition in Case 2.2.1 is not satisfied, albeat
this is not a common situation, we can give priority, as it happened in Case 1.2.2, to the
minimization of the curvature instead to the adaptation to possible singularities. Then, we
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consider in this case the replacement at this particular interval of the original data fj+2 by
f̃j+2 according to (6.29b) instead of fj−1 by f̃j−1 in order to attain CL ≥ CH . Again, this
observation is trivial to prove.

6.4 Conclusions and perspectives

We have obtained some inequalities which demonstrate that PPH reconstruction operator be-
haves better than usual linear Lagrange reconstruction operator regarding to curvature issues. This
study complements other previous results [6], [10], [41] where it was proven that PPH reconstruc-
tion preserves also the convexity properties of the initial data. This property is also inherited by
the associated subdivision scheme [37], [50].

This opens up a potential future work connecting PPH reconstruction with smoothing splines
in order to obtain a PPH-type reconstruction of class C2 in the whole interval with interesting
convexity preserving properties and low curvature term. Notice that piecewise PPH reconstruction
is only continuous at the joint nodes.
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Chapter 7

Analysis of PPH interpolatory
subdivision scheme on σ
quasi-uniform grids.

The contents of this chapter are wholly included in the already published paper [45]

• Ortiz, P.; Trillo, J.C. Analysis of a New Nonlinear Interpolatory subdivision scheme on σ
quasi-uniform grids. Mathematics. 2021, 9, 1320. https://doi.org/10.3390/math9121320

7.1 Introduction

Subdivision schemes are closely related to reconstruction operators. They have been used in
the last few decades in many applications ranging from the numerical solution of partial differential
equations to image processing and computer aided geometric design. Subdivision schemes give
simple and fast algorithms to approximate the limit function from a set of initial data at a coarse
resolution level. There is an immediate way of generating subdivision schemes from reconstruc-
tion operators, and more in concrete from prediction operators [5], [35]. Due to this connection,
subdivision schemes inherit many of the properties of their associated reconstruction operators. In
particular, the subdivision scheme will be nonlinear if the reconstruction operator is nonlinear, and
it is said interpolatory if it comes from a reconstruction operator which is an interpolation.

Nonlinear subdivision schemes have emerged as good candidates to adapt to the concrete data
in use. The research in this field counts with new contributions each year and receives the attention
of many researchers, see for example [22], [28], [30], [38], [39]. Nonlinearity means data dependent
subdivision schemes which may also involve nonlinear operations in their definition. Then, by
definition, they are designed to overcome certain drawbacks that appear when dealing with their
linear counterparts, such as bad behavior in presence of isolated discontinuities for instance. An
example of these kind of operators was defined in [6] and was named as PPH (Piecewise Polynomial
Harmonic). This scheme basically consists on a clever modification of the classical four points
Lagrange subdivision scheme. Several studies have been carried out about their properties and
performance in different applications, see for example [6], [10], [32]. Two main purposes of this
subdivision scheme are related to dealing with data containing isolated discontinuities, reducing the
undesirable effects, and preserving the convexity of the initial data, while maintaining a centered
support based on four points.
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In [42] the authors extend the definition of the PPH reconstruction operator to nonuniform
grids. In turn, this fact allows us to extend the PPH subdivision scheme to nonuniform grids, and
carry out a parallel study in this new scenario. In order to overcome some technical difficulties in
the theoretical proofs, we have restricted to σ quasi-uniform grids for some results. The resultant
scheme is quite interesting in terms of applications due to the almost C1 smoothness of the limit
function, allowing to approximate accurately continuous functions with corners, and also due to
appropriate properties regarding convexity preservation of the initial data, see [10]. In this chapter
we focus on proving the convergence of the scheme towards an almost C1 limit function, and also
we address numerically the issue of stability, which is a central issue in order to be useful for
applications.

The chapter is organized as follows: Section 7.2 is devoted to remind the PPH reconstruction
operator over nonuniform grids. Section 7.3 presents a short review about Harten’s interpolatory
multiresolution setting, which is closely connected to interpolatory subdivision schemes. In Section
7.4 we define the associated subdivision scheme, which we show that it amounts to the PPH
subdivision scheme when we restrict to uniform grids. The definition is given for general nonuniform
meshes, although in order to establish some theoretical results we consider σ quasi-uniform meshes.
In section 7.5 we analyze the main issues about subdivision schemes. In particular, we prove some
results about convergence, smoothness of the limit function, and convexity preservation. In section
7.6 we carry out some numerical tests to check the theoretical smoothness of the limit function, and
the performance of the nonlinear subdivision scheme. Finally, we give some conclusions in section
7.7.

7.2 A nonlinear PPH reconstruction operator on nonuniform grids

In this section we remind the definition of the nonlinear reconstruction that will give rise
to the nonlinear subdivision scheme under study in this chapter. More information about this
reconstruction operator can be found in [6], [42], [43].

Let us define a nonuniform grid X = (xi)i ∈ Z. Let us also denote hi := xi−xi−1, the nonuniform
spacing between abscissae. Let us consider the set of values {fj−1, fj , fj+1, fj+2} for some j ∈ Z
corresponding to the abscissae {xj−1, xj , xj+1, xj+2} of the nonuniform grid X.

We need to introduce the definition of the second order divided differences

Dj := f [xj−1, xj , xj+1] =
fj−1

hj(hj + hj+1)
− fj
hjhj+1

+
fj+1

hj+1(hj + hj+1)
,

Dj+1 := f [xj , xj+1, xj+2] =
fj

hj+1(hj+1 + hj+2)
− fj+1

hj+1hj+2
+

fj+2

hj+2(hj+1 + hj+2)
,

(7.1)

and the weighted arithmetic mean of Dj and Dj+1 defined as

Mj = wj,0Dj + wj,1Dj+1, (7.2)

with the weights

wj,0 =
hj+1 + 2hj+2

2(hj + hj+1 + hj+2)
,

wj,1 =
hj+1 + 2hj

2(hj + hj+1 + hj+2)
= 1− wj,0.

(7.3)
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We require also some definitions and lemmas that appear in [42].

Definition 25. Given x, y ∈ R, and wx, wy ∈ R such that wx > 0, wy > 0, and wx + wy = 1, we

denote as Ṽ the function

Ṽ (x, y) =


xy

wxy + wyx
if xy > 0,

0 otherwise.
(7.4)

Lemma 23. If x ≥ 0 and y ≥ 0, the harmonic mean is bounded as follows

Ṽ (x, y) < min

{
1

wx
x,

1

wy
y

}
≤ 1

wx
x. (7.5)

Lemma 24. Let a > 0 a fixed positive real number, and let x ≥ a and y ≥ a. If |x−y| = O(h), and
xy > 0, then the weighted harmonic mean is also close to the weighted arithmetic mean M(x, y) =
wxx+ wyy,

|M(x, y)− Ṽ (x, y)| = wxwy
wxy + wyx

(x− y)2 = O(h2). (7.6)

We remind the following definition for the PPH reconstruction on nonuniform meshes. The
details and main properties of this reconstruction operator can be found in [42], [43].

Definition 26 (PPH reconstruction). Let X = (xi)i∈Z be a nonuniform mesh. Let f = (fi)i∈Z a
sequence in l∞(Z). Let Dj and Dj+1 be the second order divided differences, and for each j ∈ Z let

us consider the modified values {f̃j−1, f̃j , f̃j+1, f̃j+2} built according to the following rule

• Case 1: If |Dj | ≤ |Dj+1|
f̃i = fi, j − 1 ≤ i ≤ j + 1,

f̃j+2 = −1
γj,2

(γj,−1fj−1 + γj,0fj + γj,1fj+1) +
Ṽj
γj,2

,
(7.7)

• Case 2: If |Dj | > |Dj+1| f̃j−1 = −1
γj,−1

(γj,0fj + γj,1fj+1 + γj,2fj+2) +
Ṽj
γj,−1

,

f̃i = fi, j ≤ i ≤ j + 2,

(7.8)

where γj,i, i = −1, 0, 1, 2 are given by

γj,−1 =
hj+1 + 2hj+2

2hj(hj+1 + hj)(hj + hj+1 + hj+2)
,

γj,0 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj
hj+1 + hj+2

− hj+1 + 2hj+2

hj

)
,

γj,1 =
1

2hj+1(hj + hj+1 + hj+2)

(
hj+1 + 2hj+2

hj+1 + hj
− hj+1 + 2hj

hj+2

)
,

γj,2 =
hj+1 + 2hj

2hj+2(hj+1 + hj+2)(hj + hj+1 + hj+2)
,

(7.9)
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and Ṽj = Ṽ (Dj , Dj+1), with Ṽ the weighted harmonic mean defined in (7.4) with the weights wj,0
and wj,1 in (7.3). We define R(x) as the PPH nonlinear reconstruction operator given by

R(x) = Rj(x), x ∈ [xj , xj+1], (7.10)

where Rj(x) is the unique interpolation polynomial which satisfies

Rj(xi) = f̃i, j − 1 ≤ i ≤ j + 2. (7.11)

We can write the PPH reconstruction by using the middle point xj+ 1
2

=
xj+xj+1

2 as

Rj(x) = ãj,0 + ãj,1

(
x− xj+ 1

2

)
+ ãj,2

(
x− xj+ 1

2

)2
+ ãj,3

(
x− xj+ 1

2

)3
, (7.12)

where the the coefficients ãj,i, i = 0, . . . , 3 are calculated by imposing conditions (7.11). Depending
on the local case, Case 1 or Case 2, the coefficients will have different expressions.
Case 1. |Dj | ≤ |Dj+1|, In this case, the coefficients of the polynomial (7.12) take the form

ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

4hj + 2hj+1
(Dj − Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

2hj + hj+1
(Dj − Ṽj).

(7.13)

Case 2. |Dj | > |Dj+1|, In this case, we obtain the following coefficients for the polynomial
(7.12)

ãj,0 =
fj + fj+1

2
−
h2
j+1

4
Ṽj ,

ãj,1 =
−fj + fj+1

hj+1
+

h2
j+1

2hj+1 + 4hj+2
(−Dj+1 + Ṽj),

ãj,2 = Ṽj ,

ãj,3 = − 2

hj+1 + 2hj+2
(−Dj+1 + Ṽj).

(7.14)

With the previous definitions and lemmas we are now ready to introduce the PPH subdivision
scheme. But before doing it, we will also remind some basic concepts of Harten’s interpolatory
multiresolution setting and its connection with subdivision schemes.
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7.3 Harten’s interpolatory multiresolution setting

Let us consider a set of nested grids in R,

Xk = {xki }i∈Z,

and the point-value discretization

Dk : CB(R)→ V k

f 7→ fk = (fki )i∈Z = (f(xki ))i∈Z, (7.15)

where V k is the space of real sequences related to the resolution of Xk and CB(R) the set of
bounded continuous functions on R.
A reconstruction operator Rk associated to this discretization is any right inverse of Dk, which
means that for all fk ∈ V k, Rkfk ∈ CB(R), and DkRk = I, that is

Rk : V k → CB(R)

fk 7→ Rkfk, (7.16)

(Rkfk)(xki ) = (fki )i∈Z = (f(xki ))i∈Z.

The sequences {Dk}k∈N and {Rk}k∈N define a multiresolution transform [5]. The prediction
operator, i.e, Dk+1Rk : V k → V k+1, defines a subdivision scheme. Relation (7.16) implies that
the subdivision scheme is interpolatory. If Rk is a nonlinear reconstruction operator, then the
corresponding subdivision scheme S := Dk+1Rk becomes also nonlinear.

7.4 A nonlinear PPH subdivision scheme on nonuniform grids

Let us consider a particular set of nonuniform nested grids Xk = (xki )i∈Z, k ≥ 0, generated from
an initial grid X0.

Definition 27. Given X0 = {xi}i∈Z a nonuniform grid in R, we define, for k ∈ N (the larger the
k the larger the resolution), the set of nested grids given by Xk = {xki }i∈Z, where xk2i = xk−1

i and

xk2i+1 =
xk−1
i +xk−1

i+1

2 .

Let us also consider hki = xki − xki−1, the nonuniform spacing between abscissae. Given a set of
control points fk = (fki )i∈Z, we define the nonlinear PPH subdivision scheme as

fk+1
2i = (Sfk)2i = fki ,

fk+1
2i+1 = (Sfk)2i+1 =

fki + fki+1

2
−

(hki+1)2

4
Ṽ k
i ,

(7.17)

where Ṽ k
i = Ṽ k

i (Dk
i , D

k
i+1) is given in (7.4) and it is computed with the weights (wki,0)i∈Z, and

(wki,1)i∈Z given in (7.3), and the second order divided differences Dk
i and Dk

i+1 are defined in (7.1).
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Notice that the expression of the subdivision scheme at odd indexes coincides with the coeffi-
cient ã0 of the PPH reconstruction operator in (7.13) or (7.14), due to the fact that the defined
subdivision scheme satisfies S = Dk+1Rk. This means that the expression of the subdivision scheme
is symmetric, even if the modification of the data has been carried out to the left (7.14) or to the
right (7.13) for the concrete piece of the underlying reconstruction operator.

Supposing that the initial data come from a convex smooth function, then by the process of
definition through its associated reconstruction operator, we get a fourth order accurate subdivision
scheme. In case of having data coming from an underlying smooth function with inflexion points,
the order would be reduced around these inflexion points [43]. The use of the weighted harmonic
mean in Definition 7.17 guarantees certain adaptation near jump discontinuities. In presence of an
isolated singularity we have two adjacent intervals where Di = O(1) and Di+1 = O(1/(hk)2), or
Di = O(1/(hk)2) and Di+1 = O(1), with hk := max

j∈Z
hkj . For these cases, the harmonic mean remains

of order Ṽi = O(1). If both Di and Di+1 are affected by the discontinuity, then no adaptation is
taking place. But this situation happens only in the prediction of one value per scale and per
discontinuity.

It is also interesting to remark that for uniform meshes, i.e., hi = h ∀i, then all the given
expressions reduce to equivalent expressions in [6] valid only for the uniform case.

Notice that Definition 7.17 of the PPH subdivision schemes has been introduced for general
nonuniform meshes. From now on, one needs to take into account that some results are true for
general grids, while others require the restriction to a particular type of nonuniform meshes, that
by the way, are the most common in practice.

In next section we study some main issues about the defined subdivision scheme. In particular
we prove convergence, almost C1 smoothness in the limit function, and we give a result concerning
convexity preservation.

7.5 Main properties of the PPH subdivision scheme in nonuniform
meshes

We start the section with some definitions taken from [6] that will be used in the rest of the
chapter.

Definition 28. A nonlinear subdivision scheme is called uniformly convergent, if for every set of
initial data f0 ∈ l∞(Z), there exists a continuous function S∞f0 ∈ C(R), such that

lim
k→∞

||Sfk − S∞f0(2−(k+1)·)||l∞(Z) = 0.

Definition 29. A convergent nonlinear subdivision scheme is called stable, if there exists a constant
C such that for every pair of initial data f0, f̃0 ∈ l∞(Z),

||S∞f0 − S∞f̃0||L∞ ≤ C||f0 − f̃0||l∞(Z).

Definition 30. Let N ≥ 0 be a fixed integer. A nonlinear interpolatory subdivision scheme has the
property of polynomial reproduction of order N , if for all P ∈ ΠN , where ΠN stands for the vector
space of polynomials of degree less or equal to N, we have Sp = p̃, where p and p̃ are defined by
pk = P (2−k·) and p̃k = P (2−(k+1)·).
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Definition 31. A nonlinear subdivision scheme is called bounded, if there exists a constant C > 0
such that

||Sf ||l∞(Z) ≤ C||f ||l∞(Z) ∀f ∈ l∞(Z).

Definition 32. A nonlinear subdivision scheme is called Lipschitz continuous if there exists a
constant C > 0 such that for every f, g ∈ l∞(Z) it is verified

||Sf − Sg||l∞(Z) ≤ C||f − g||l∞(Z). (7.18)

We can now give some basic results before addressing the convergence of the scheme. In order
to prove the coming theoretical results we are going to work with σ quasi-uniform grids, according
to the following definition

Definition 33. A nonuniform mesh X = (xi)i∈Z is said to be a σ quasi-uniform mesh if there
exist hmin = min

i∈Z
hi, hmax = max

i∈Z
hi, and a finite constant σ such that hmax

hmin
≤ σ.

Proposition 12. The nonlinear subdivision scheme associated to the PPH reconstruction
1) reproduces polynomials of degree N ≤ 2,
2) is bounded,
3) is Lipschitz continuous.

Proof. 1) If f is a polynomial of degree less or equal to 2,

Dj = Dj+1 = Ṽj ,

therefore the proposed scheme reproduces polynomials of degree 2.
2) By definition of the PPH subdivision scheme for a given j ∈ Z we have that

(Sf)2j = fj ,

(Sf)2j+1 =


fj+fj+1

2 − (hj+1)2

4 Ṽj if DjDj+1 > 0,

fj+fj+1

2 otherwise.

Using that |Dj | ≤
4||f ||l∞(Z)

2h2min
, |Dj+1| ≤

4||f ||l∞(Z)
2h2min

, we get that

|(hj+1)2

4
Ṽj | ≤

(hj+1)2

4
max{|Dj+1|, |Dj |} ≤

σ2

2
||f ||l∞(Z).

Thus,

||Sf ||l∞(Z) ≤ (1 +
σ2

2
)||f ||l∞(Z),

and therefore the nonlinear subdivision scheme is bounded.
3) Let us consider {f}, {g} ∈ l∞(Z).
Clearly

|(Sf)2j − (Sg)2j | = |fj − gj | ≤ ||f − g||l∞(Z).

Since

|fj + fj+1

2
− gj + gj+1

2
| ≤ ||f − g||l∞(Z),

119



to estimate the odd components |(Sf)2j+1 − (Sg)2j+1| we simply need to estimate the terms

(hj+1)2

4
Ṽj(f),

(hj+1)2

4
Ṽj(g),

or
(hj+1)2

4
Ṽj(f)− (hj+1)2

4
Ṽj(g),

according to the sign of Dj(f)Dj+1(f) and Dj(g)Dj+1(g).
a) Suppose Dj(f)Dj+1(f) > 0 and Dj(g)Dj+1(g) ≤ 0. In particular, Dj+1(f)Dj+1(g) ≤ 0 or

Dj(f)Dj(g) ≤ 0. In the first case, we write

|(hj+1)2

4
Ṽj(f)| ≤ (hmax)2

4

|Dj+1(f)|
wj,1

≤ (hmax)2

4

|Dj+1(f)−Dj+1(g)|
wj,1

≤ (hmax)2

4

4

2(hmin)2
2σ||f − g||l∞(Z)

≤ σ3||f − g||l∞(Z),

and in the second case we get similarly

|(hj+1)2

4
Ṽj(f)| ≤ (hmax)2

4

|Dj(f)|
wj,0

≤ (hmax)2

4

|Dj(f)−Dj(g)|
wj,0

≤ (hmax)2

4

4

2(hmin)2
2σ||f − g||l∞(Z)

≤ σ3||f − g||l∞(Z).

b) Suppose now that Dj(f)Dj+1(f) > 0 and Dj(g)Dj+1(g) > 0. If Dj(f)Dj(g) ≤ 0, then using
the same arguments as in case a) we obtain

|(hj+1)2

4
Ṽj(f)− (hj+1)2

4
Ṽj(g)| = |(hj+1)2

4
Ṽj(f)|+ |(hj+1)2

4
Ṽj(g)| ≤ 2σ3||f − g||l∞(Z).

If Dj(f)Dj+1(f) < 0, we consider the function Z(x, y) = xy
wj,0y+wj,1x

defined for all xy > 0. It

is easy to check that the Jacobian of the function Z verifies

||JZ(x, y)||∞ ≤ 2σ.

Thus, the mean value theorem easily leads to

|(hj+1)2

4
Ṽj(f)− (hj+1)2

4
Ṽj(g)| ≤ (hj+1)2

4
2σ||(Dj(f)−Dj(g), Dj+1(f)−Dj+1(g))||∞

≤ (hj+1)2

h2
min

σ||f − g||l∞(Z) ≤ σ3||f − g||l∞(Z).

Clearly, C = 1 + 2σ3 is a convenient constant that completes the proof.
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Next lemma and proposition allow to prove the existence of a contractive scheme S1 for the
differences δi := fi − fi−1.

Lemma 25. Let D be the set defined by D := {j ∈ Z : DjDj+1 > 0} and let the expressions
E1j , E2j and M be defined as follows

E1j =

hj+1

4

(hj+1 + hj+2)(wj,1 + wj,0
Dj+1

Dj
)

, E2j =

hj+1

4

(hj+1 + hj)(wj,0 + wj,1
Dj

Dj+1
)

,

M = sup
j∈D
{|E1j |, |E2j |}.

Then,the following inequalities are satisfied

1) E1j > 0, E2j > 0, ∀j ∈ D,
2) E1j ≤M, E2j ≤M, ∀j ∈ D,
3) M ≤ 1

2 .

Proof. 1) and 2) are trivial. Let us see 3). Given j ∈ D, we have

E1j <
hj+1

4

1

wj,1(hj+1 + hj+2)
<

1

2
,

since
hj+1 < 2wj,1(hj+1 + hj+2)⇔ 0 < hjhj+1 + 2hj+1hj+2.

Analogously, we can see that E2j <
1
2 .

Thus

M = sup
j∈D
{|E1j |, |E2j |} ≤

1

2
.

Proposition 13. Associated to the PPH nonlinear reconstruction, on non-uniform grids there
exists a nonlinear subdivision scheme S1 for the differences. If the grid is σ-quasy uniform, then
S1 is bounded, i.e. satisfies

||S1δ
k||l∞(Z) ≤ λ1||δk||l∞(Z) ∀fk ∈ l∞(Z),

where δkj := fkj − fkj−1, and λ1 = 1
2 + (σ − 1)M.

Moreover, if σ < 1 +
1

2M
, then λ1 < 1 and S1 is contractive.

Proof. a) Existence of S1.

S1δ
k has the following expressions for even and odd indexes.
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a.1) Even indexes

δk+1
2j+2 = fk+1

2j+2 − f
k+1
2j+1 =

δkj+1

2
+

(hkj+1)2

4
Ṽ k
j ,

and depending on the value of Ṽj we differentiate two cases,
a.1.1) If Dk

jD
k
j+1 > 0,

(hkj+1)2

4
Ṽ k
j =

(hkj+1)2

4

δkj+1

hkj+1

−
δkj

hkj

hkj + hkj+1

δkj+2

hkj+2

−
δkj+1

hkj+1

hkj+1 + hkj+2

wj,0

δkj+2

hkj+2

−
δkj+1

hkj+1

hkj+1 + hkj+2

+ wj,1

δkj+1

hkj+1

−
δkj

hkj

hkj + hkj+1

=
hkj+1

4

1

wj,0(hkj + hkj+1)

δkj+2

hkj+2

−
δkj+1

hkj+1

δkj+1

hkj+1

−
δkj

hkj

+ wj,1(hkj+1 + hkj+2)

(
hkj+1

hkj+2

δkj+2 − δkj+1

)

= Ek1j

(
hkj+1

hkj+2

δkj+2 − δkj+1

)
.

Then

δk+1
2j+2 =

δkj+1

2
+ Ek1j

(
hkj+1

hkj+2

δkj+2 − δkj+1

)
. (7.19)

a.1.2) If Dk
jD

k
j+1 ≤ 0,

δk+1
2j+2 =

δkj+1

2
. (7.20)

a.2) Odd indexes

δk+1
2j+1 = fk+1

2j+1 − f
k+1
2j =

δkj+1

2
−

(hkj+1)2

4
Ṽ k
j ,

and again by proceeding in a similar way we get for the two different cases,

a.2.1) If Dk
j+1D

k
j > 0,

δk+1
2j+1 =

δkj+1

2
− Ek2j

(
hkj+1

hkj
δkj − δkj+1

)
. (7.21)

a.2.2) If Dk
jD

k
j+1 ≤ 0,

δk+1
2j+1 =

δkj+1

2
. (7.22)
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b) S1 is bounded.
We consider again even and odd indexes.

b.1) Even indexes

b.1.1) If Dk
jD

k
j+1 > 0, from equation (7.19) it follows

|δk+1
2j+2| =

∣∣∣∣∣(1

2
− Ek1j)δkj+1 +

(
hkj+1

hkj+2

Ek1j

)
δkj+2

∣∣∣∣∣ ≤
∣∣∣∣∣12 + Ek1j

(
hkj+1

hkj+2

− 1

)∣∣∣∣∣ ||δk||l∞(Z)

≤
∣∣∣∣12 + (σ − 1)M

∣∣∣∣ ||δk||l∞(Z),

b.1.2) If Dk
jD

k
j+1 ≤ 0,

|δk+1
2j+2| =

1

2
|δkj+1| ≤

1

2
||δk||l∞(Z).

b.2) Odd indexes

b.2.1) If Dk
jD

k
j+1 > 0, from equation (7.21) it follows

|δk+1
2j+1| ≤

∣∣∣∣∣12 + Ek2j

(
hkj+1

hkj
− 1

)∣∣∣∣∣ ||δk||l∞(Z) ≤
∣∣∣∣12 + (σ − 1)M

∣∣∣∣ ||δk||l∞(Z),

b.2.2) If Dk
jD

k
j+1 ≤ 0,

|δk+1
2j+1| =

1

2
|δkj+1| ≤

1

2
||δk||l∞(Z).

Thus

sup
j∈Z

{∣∣∣δk+1
2j+2

∣∣∣ , ∣∣∣δk+1
2j+1

∣∣∣} ≤ (1

2
+ (σ − 1)M

)
||δk||l∞(Z),

i.e.
||δk+1||l∞(Z) ≤ λ1||δk||l∞(Z),

with λ1 = 1
2 + (σ − 1)M.

c) Contraction property.

The subdivision scheme S1 will be contractive if

1

2
+M(σ − 1) < 1 ⇔ σ < 1 +

1

2M
.

Corollary 1. For σ-quasy uniform grids where σ < 2, the scheme S1 is contractive, since M <
1

2
.
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We give now a simple and technical lemma to support the proof of next lemma.

Lemma 26.

∣∣∣∣∣ Ṽ k
j

γkj,2

∣∣∣∣∣ and

∣∣∣∣∣ Ṽ k
j

γkj,−1

∣∣∣∣∣ are bounded by 4σ2(1 + σ)
∥∥δk∥∥

l∞(Z)
.

Proof. By definition of γj,2 in (7.9) together with property (7.5) of the harmonic mean |Ṽ k
j | ≤

|Dk
j+1|
wkj,1

, and the expression of Dk
j+1

Dk
j+1 =

δkj+2

hkj+2

−
δkj+1

hkj+1

hkj+1 + hkj+2

,

we can write∣∣∣∣∣ Ṽ k
j

γkj,2

∣∣∣∣∣ ≤
∣∣∣∣∣ Dk

j+1

wkj,1γ
k
j,2

∣∣∣∣∣ = 4hkj+2

(hkj + hkj+1 + hkj+2)2

(hkj+1 + 2hkj )
2

∣∣∣∣∣ δkj+2

hkj+2

−
δkj+1

hkj+1

∣∣∣∣∣ ≤ 4σ2(1 + σ)
∥∥∥δk∥∥∥

l∞(Z)
. (7.23)

The case of γj,−1 can be derived analogously.

We need two more lemmas that will be used in the proof of Theorem 9.

Lemma 27. Let {Rk} be the sequence of nonlinear PPH reconstruction operators associated to a
sequence of nested σ quasi-uniform grids {Xk} satisfying Definition 27 and S the PPH interpolatory
subdivision scheme. There exists C ∈ R such that, if fk+1 = Sfk, then ∀k,

||Rk+1(fk+1)−Rk(fk)||L∞ ≤ C||δk||l∞(Z). (7.24)

Proof. Let fk ∈ l∞(Z), and x ∈ R. Let j be such that x ∈ [xkj , x
k
j+1], and assume that x ∈

[xk+1
2j , xk+1

2j+1]. The case x ∈ [xk+1
2j+1, x

k+1
2j+2] is similar.

We can write

|Rk+1(fk+1)(x)−Rk(fk)(x)| ≤ |Rk+1(fk+1)(x)−RLk+1(fk+1)(x)|
+ |RLk+1(fk+1)(x)−RLk (fk)(x)|
+ |RLk (fk)(x)−Rk(fk)(x)|,

where RLk stands for the centered Lagrange reconstruction operators of the same order.

1) We prove first the bound for the second term on the right hand side.

Since x ∈ [xk+1
2j , xk+1

2j+1] ⊂ [xkj , x
k
j+1] we can write

RLk+1(fk+1)(x) =
2∑

m=−1

Am(x)fk+1
2j+m,

RLk (fk)(x) =

2∑
m=−1

Bm(x)fkj+m,
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where

Am(x) =
2∏

s=−1
s 6=m

x− xk+1
2j+s

xk+1
2j+m − x

k+1
2j+s

, m = −1, 0, 1, 2,

Bm(x) =

2∏
s=−1
s 6=m

x− xkj+s
xkj+m − xkj+s

, m = −1, 0, 1, 2.

According to Lemma 5 in [42]

|Am(x)| ≤ σ, |Bm(x)| ≤ σ, m = −1, 0, 1, 2. (7.25)

Here, we remind that the Lagrange polynomial bases sum to one

2∑
m=−1

Am(x) =
2∑

m=−1

Bm(x) = 1. (7.26)

From now on, we drop the explicit dependence on x for the sake of clarity and write simply
Am, Bm when referring to these quantities.

Since fk+1 = Sfk, and S is interpolatory we have

|RLk+1(fk+1)(x)−RLk (fk)(x)| = |A−1f
k+1
2j−1 −B−1f

k
j−1 + (A0 −B0)fkj

+ A1f
k+1
2j+1 + (A2 −B1)fkj+1 −B2f

k
j+2|,

where

fk+1
2j−1 =

fkj−1 + fkj
2

−
(hkj )

2

4
Ṽ k
j−1.

Taking into account property (7.5) of the harmonic mean |Ṽ k
j−1| ≤

|Dk
j |

wkj−1,1

we can write

∣∣∣∣∣(hkj )2

4
Ṽ k
j−1

∣∣∣∣∣ ≤ (hkj )
2

2

hkj−1 + hkj + hkj+1

hkj + 2hkj−1

∣∣∣∣∣∣∣∣∣∣
δkj+1

hkj+1

−
δkj

hkj

hkj + hkj+1

∣∣∣∣∣∣∣∣∣∣
(7.27)

≤ 1

2

hkj

hkj + hkj+1

hkj−1 + hkj + hkj+1

hkj + 2hkj−1

(
hkj

hkj+1

∣∣∣δkj+1

∣∣∣+
∣∣∣δkj ∣∣∣

)
≤ 1

4
σ2(σ + 1)||δk||l∞(Z),

and similarly for the term in fk+1
2j+1

fk+1
2j+1 =

fkj + fkj+1

2
−

(hkj+1)2

4
Ṽ k
j .
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Taking again into account the property (7.5) of the harmonic mean we have |Ṽ k
j | ≤

|Dk
j |

wkj,0
and we can write

∣∣∣∣∣(hkj+1)2

4
Ṽ k
j

∣∣∣∣∣ ≤ (hkj+1)2

2

hkj + hkj+1 + hkj+2

hkj+1 + 2hkj+2

∣∣∣∣∣∣∣∣∣∣
δkj+1

hkj+1

−
δkj

hkj

hkj + hkj+1

∣∣∣∣∣∣∣∣∣∣
(7.28)

≤ 1

2

hkj+1

hkj + hkj+1

hkj + hkj+1 + hkj+2

hkj+1 + 2hkj+2

(∣∣∣δkj+1

∣∣∣+
hkj+1

hkj

∣∣∣δkj ∣∣∣
)
≤ 1

4
σ2(1 + σ)||δk||l∞(Z).

Using (7.27) and (7.28) we get

|RLk+1(fk+1)(x)−RLk (fk)(x)| ≤ |A−1

fkj−1 + fkj
2

−B−1f
k
j−1

+ (A0 −B0)fkj +A1

fkj+1 + fkj
2

+ (A2 −B1)fkj+1 −B2f
k
j+2|

+ (|A−1|+ |A1|)
1

4
σ2(1 + σ)||δk||l∞(Z).

The modulus of the first term at the right hand side can be rewritten as∣∣∣∣(A−1

2
−B−1

)
(fkj−1 − fkj ) +

(
A−1 −B−1 +A0 −B0 +

A1

2

)
(fkj − fkj+1)

+ B2

(
fkj+1 − fkj+2

)
+ ((A−1 +A0 +A1 +A2)− (B−1 +B0 +B1 +B2)) fkj+1

∣∣∣ .
Then, using (7.25) and (7.26)

|RLk+1(fk+1)(x)−RLk (fk)(x)| ≤ C1||δk||l∞(Z). (7.29)

2) Let us estimate now |RLk (fk)(x)−Rk(fk)(x)|.

Rk(fk)(x) =

{
B−1f

k
j−1 +B0f

k
j +B1f

k
j+1 +B2f̃

k
j+2, if |Dk

j | ≤ |Dk
j+1|,

B−1f̃
k
j−1 +B0f

k
j +B1f

k
j+1 +B2f

k
j+2, if |Dk

j | > |Dk
j+1|.

Let us suppose, without loss of generality, that we are in the first case, i.e. |Djk| ≤ |Dk
j+1| .

|RLk (fk)(x)−Rk(fk)(x)| = |B2(fkj+2 − f̃kj+2)|. (7.30)

Using Definition (26) and applying the triangular inequality we get
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|fkj+2 − f̃kj+2| ≤

∣∣∣∣∣fkj+2 +
1

γkj,2
(γkj,−1f

k
j−1 + γkj,0f

k
j + γkj,1f

k
j+1)

∣∣∣∣∣+

∣∣∣∣∣ Ṽ k
j

γkj,2

∣∣∣∣∣ . (7.31)

Taking now into account that
∑2

s=−1 γj,s = 0, we can rewrite the first term and we can
bound it as follows

|fkj+2 − fkj+1 +

(
γkj,1 + γkj,2

γkj,2

)
(fkj+1 − fkj ) +

(
γkj,0 + γkj,1 + γkj,2

γkj,2

)
(fkj − fkj−1)| (7.32)

≤ |δkj+2|+

∣∣∣∣∣γkj,1 + γkj,2

γkj,2

∣∣∣∣∣ |δkj+1|+

∣∣∣∣∣γkj,−1

γkj,2

∣∣∣∣∣ |δkj | ≤ (2 + 3σ3
)
||δk||l∞(Z).

The second term at the right hand side of (7.31) can be bounded using Lemma 26.

Considering (7.30), (7.32) and Lemma 26 we have,

|RLk (fk)(x)−Rk(fk)(x)| ≤ σ(2 + 4σ2 + 7σ3)||δk||l∞(Z) = C2||δk||l∞(Z). (7.33)

For the other case, |Dk
j | > |Dk

j+1| using the same ideas we also get the same bound.

3) Let us study now |Rk+1(fk+1)(x)−RLk+1(fk+1)(x)|.
Inequality (7.33) allows us to write

|Rk+1(fk+1)(x)−RLk+1(fk+1)(x)| ≤ C2||δk+1||l∞(Z),

Since by Proposition 13 the operator S1 is bounded by σ
2 we get that

|Rk+1(fk+1)(x)−RLk+1(fk+1)(x)| ≤ C2||S1δ
k||l∞(Z) ≤ C3||δk||l∞(Z), (7.34)

with C3 = σ
2C2.

Finally, joining the results in (7.29), (7.33), and (7.34) we obtain

|Rk+1(fk+1)(x)−Rk(fk)(x)| ≤ (C1 + C2 + C3)||δk||l∞(Z),

which completes the proof.

The following theorem uses standard arguments and previous lemmas to prove the convergence
of the nonlinear PPH subdivision scheme.

Theorem 9 (Convergence). Let {Rk} be the sequence of nonlinear PPH reconstruction operators
associated to a sequence of nested σ quasi-uniform grids {Xk} with σ < 1+ 1

2M satisfying Definition
27. Then, the associated PPH interpolatory subdivision scheme S is uniformly convergent.

127



Proof. The basis of the proof is to observe that {Rk(fk)}k∈N is a Cauchy sequence in CB(R), the
space of continuous and bounded functions in R.

Let be f0 = f ∈ l∞(Z).

From Lemma 27 ∃C1 ∈ R such that, if fk+1 = Sfk, then ∀k,

||Rk+1(fk+1)−Rk(fk)||L∞ ≤ C1||δk||l∞(Z).

and from Proposition 13 ∃C2 ∈ R such that

||S1δ
k||l∞(Z) ≤ C2||δk||l∞(Z) ∀fk ∈ l∞(Z),

So
||Rk+1(fk+1)−Rk(fk)||L∞ ≤ C1C2||δk−1||l∞(Z) ≤ C1(C2)k||δ0||l∞(Z).

As σ < 1 + 1
2M ,S1 is contractive, which means (C2 < 1) and lim

k→∞
(C2)k = 0.

Thus, given

ε

C1||δ0||l∞(Z)
> 0, ∃ k0 ∈ N such that ∀ k ≥ k0,

∣∣∣Ck2 ∣∣∣ < ε

C1||δ0||l∞(Z)
,

i.e. given ε > 0, ∃ k0 ∈ N such that ∀ k ≥ k0

||Rk+1(fk+1)−Rk(fk)||L∞ < C1
ε

C1||δ0||l∞(Z)
||δ0||l∞(Z) = ε.

which proves that {Rk(fk)}k∈N is a Cauchy sequence in CB(R).
Since CB(R) equipped with the L∞ norm is a Banach space, there exist S∞(f) = lim

k→∞
Rk(fk).

In order to continue addressing the study of the degree of smoothness of the limit function, we
need one more lemma.

Lemma 28. Let {Rk} be the sequence of nonlinear PPH reconstruction operators associated to a
sequence of nested σ quasi-uniform grids {Xk} satisfying Definition 27. The interpolatory PPH
reconstruction operators Rk have the following properties:

1) ||Rkfk||L∞ ≤ C||fk||l∞(Z) ∀k.

2) For each level k ≥ 1, for all x, y such that |x− y| < λk−1
1 h0

min, with λ1 = 1
2 + (σ − 1)M < 1,

the contractivity constant of the scheme S1 of the differences and h0
min = min

j∈Z
hkj , there exist

a constant C such that

|Rk(fk)(x)−Rk(fk)(y)| ≤ C||δk||l∞(Z). (7.35)

Proof. 1) The proof of this point can be found in Proposition 3 in [42].
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2) We prove property 2). We write

|Rk(fk)(x)−Rk(fk)(y)| ≤ |Rk(fk)(x)−RLk (fk)(x)|
+ |RLk (fk)(x)−RLk (fk)(y)|
+ |RLk (fk)(y)−Rk(fk)(y)|.

According to expression (7.33) inside the proof of Lemma 27 we have that

|RLk (fk)(x)−Rk(fk)(x)| ≤ C1||δk||l∞(Z) ∀x ∈ R. (7.36)

Then, we focus now in the second term. Let us suppose x ∈ [xkj , x
k
j+1], and let us see that

y ∈ [xks , x
k
s+1] with |s− j| ≤ 4.

Let us take the integer number k1 = [1− (k− 1) ln(λ1)
ln(2) ], such that λk−1

1 ≤ (1
2)k1−1, and notice

that k1 ≥ 1. Then, we have that

|x− y| ≤ 2(
1

2
)k1h0

min =
2 · 2k

2k1
h0
min

2k
≤ 2 · 21−k1 ln(2)

ln(λ1)

2k1
h0
min

2k
= 4 · 2k1(− ln(2)

ln(λ1)
−1)h0

min

2k
< 4

h0
min

2k
,

which implies |s− j| ≤ 4. We now write

RLk (fk)(x) = B−1f
k
j−1 +B0f

k
j +B1f

k
j+1 +B2f

k
j+2,

RLk (fk)(y) = D−1f
k
s−1 +D0f

k
s +D1f

k
s+1 +D2f

k
s+2.

Then

|RLk (fk)(x)−RLk (fk)(y)| = |B−1f
k
j−1 +B0f

k
j +B1f

k
j+1 +B2f

k
j+2

− D−1f
k
s−1 −D0f

k
s −D1f

k
s+1 −D2f

k
s+2|.

Regrouping terms

|RLk (fk)(x)−RLk (fk)(y)| = |B−1(fkj−1 − fks−1) +B0(fkj − fks )

+ B1(fkj+1 − fks+1) +B2(fkj+2 − fks+2)

+ (B−1 −D−1)fks−1 + (B0 −D0)fks

+ (B1 −D1)fks+1 + (B2 −D2)fks+2|.

Since B−1 + B0 + B1 + B2 = D−1 + D0 + D1 + D2 = 1, we can plug fks into the previous
formula as follows

|RLk (fk)(x)−RLk (fk)(y)| ≤ |B−1(fkj−1 − fks−1) +B0(fkj − fks )

+ B1(fkj+1 − fks+1) +B2(fkj+2 − fks+2)

+ |(B−1 −D−1)(fks−1 − fks )

+ (B1 −D1)(fks+1 − fks )

+ (B2 −D2)(fks+2 − fks )|.
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Now taking into account that |Bi| ≤ σ, |Di| ≤ σ, i = −1, 0, 1, 2 according to Lemma 4 in [42],
and that |s− j| ≤ 4, we get

|RLk (fk)(x)−RLk (fk)(y)| ≤ (4σ|s− j|+ |B−1 −D−1|+ |B1 −D1|
+ 2|B2 −D2|)||δk||l∞(Z) ≤ 24σ||δk||l∞(Z).

what finishes the proof.

With all these requisites, the limit function turns out to be Hölder continuous with α = 1.

Theorem 10 (Smoothness). Let {Rk} be the sequence of nonlinear PPH reconstruction operators
associated to a sequence of nested σ quasi-uniform grids {Xk} with σ < 1 + 1

2M satisfying
Definition 27. Then, the associated PPH interpolatory subdivision scheme S is Hölder continuous
with α = 1.

Proof. In order to prove a Lipschitz condition for the limit function we have that

|S∞(f)(x)−Rk(fk)(x)| ≤
∑
l≥k
|Rl+1(f l+1)(x)−Rl(f l)(x)|.

By using Lemma 27 and Proposition 13 we get

|S∞(f)(x)−Rk(fk)(x)| ≤ C1||δk||l∞(Z). (7.37)

If |x−y| ≥ h0
min, then, using the boundedness of the limit function S∞(f) derived from Theorem

9, we get

|S∞(f)(x)− S∞(f)(y)| ≤ 2C2||f ||l∞(Z) =
2C2||f ||l∞(Z)

h0
min

h0
min ≤

2C2||f ||l∞(Z)

h0
min

|x− y|. (7.38)

If |x− y| < h0
min, then there exists k ∈ N such that λk1h

0
min < |x− y| < λk−1

1 h0
min. Thus, from

point 2 of Lemma 28 we obtain

|Rk(fk)(x)−Rk(fk)(y)| ≤ C3||δk||l∞(Z), (7.39)

and therefore
|S∞(f)(x)− S∞(f)(y)| ≤ (2C1 + C3)||δk||l∞(Z).

Then, from Proposition 13,

|S∞(f)(x)− S∞(f)(y)| ≤ (2C1 + C3)λk1||δ0||l∞(Z) ≤
(2C1 + C3)||δ0||l∞(Z)

h0
min

|x− y|. (7.40)

Finally, from (7.38) and (7.40) we deduce

|S∞(f)(x)− S∞(f)(y)| ≤ C|x− y|,

with C = max{2C2||f ||l∞(Z)
h0min

,
(2C1+C3)||δ0||l∞(Z)

h0min
}, that is, the limit function S∞(f) satisfies a Lipschitz

condition, which completes the proof.
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We complete our theoretical study with the important issue of preservation of convexity of the
initial data. In order to address this question, we introduce two definitions.

Definition 34. A univariate data set {(xi, fi)} is said to be strictly convex if and only if Di > 0 ∀i,
where Di = fi−1

hi(hi+hi+1) −
fi

hihi+1
+ fi+1

hi+1(hi+hi+1) , and hi = xi − xi−1.

Definition 35. An interpolatory subdivision scheme is said to be convexity preserving if and only
if the data set {(xki , fki )} is strictly convex for all level k of subdivision.

Using these definitions we can give the following theorem.

Theorem 11 (Convexity). Let {Rk} be the sequence of nonlinear PPH reconstruction operators
associated to a sequence of nested σ quasi-uniform grids {Xk} with σ < 1+ 1

2M satisfying Definition
27. Then, the associated PPH interpolatory subdivision scheme S is convexity preserving if and
only if

2Dk
i+1 −

hki
hki + hki+1

Ṽ k
i −

hki+1

hki + hki+1

Ṽ k
i+1 > 0, ∀i ∈ Z,∀k ∈ N.

Proof. The proof is based on the fact that if Dk
i > 0, ∀i ∈ Z, at a given scale k ∈ N, then we

have that the interpolatory subdivision scheme will be convexity preserving if Dk+1
2i+1 > 0, and

Dk+1
2i+2 > 0,∀i ∈ Z.

We start computing Dk+1
2i+1 > 0,

Dk+1
2i+1 =

fk+1
2i

hk+1
2i+1(hk+1

2i+1 + hk+1
2i+2)

−
fk+1

2i+1

hk+1
2i+1h

k+1
2i+2

+
fk+1

2i+2

hk+1
2i+2(hk+1

2i+1 + hk+1
2i+2)

.

Having into account the relations between the scales k and k + 1 we get

Dk+1
2i+1 =

2fki
(hki+1)2

−
4fk+1

2i+1

(hki+1)2
+

2fki+1

(hki+1)2
. (7.41)

Using that the odd points at the scale k + 1 are predicted by (7.17) we obtain

Dk+1
2i+1 = Ṽ k

i > 0, (7.42)

due to the fact that Dk
i > 0 and Dk

i+1 > 0.

Computing Dk+1
2i+2 > 0,

Dk+1
2i+2 =

fk+1
2i+1

hk+1
2i+2(hk+1

2i+2 + hk+1
2i+3)

−
fk+1

2i+2

hk+1
2i+2h

k+1
2i+3

+
fk+1

2i+3

hk+1
2i+3(hk+1

2i+2 + hk+1
2i+3)

.

Plugging now the corresponding values for fk+1
2i+1 and fk+1

2i+3 according to (7.17) into last expres-
sion we arrive to

Dk+1
2i+2 =

fki + fki+1

2
−

(hki+1)2

4
Ṽ k
i

hki+1

2 (
hki+1

2 +
hki+2

2 )
−

fk+1
2i+2

hki+1

2

hki+2

2

+

fki+1 + fki+2

2
−

(hki+2)2

4
Ṽ k
i+1

hki+2

2 (
hki+1

2 +
hki+2

2 )
.
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After simple algebraical manipulations we reach to

Dk+1
2i+2 = 2Dk

i+1 −
hki

hki + hki+1

Ṽ k
i −

hki+1

hki + hki+1

Ṽ k
i+1.

Considering that we have already proven Dk+1
2i+1 > 0 in (7.42), in order for the interpolatory

subdivision scheme to be convexity preserving it remains only to ask for Dk+1
2i+2 > 0, that is

2Dk
i+1 −

hki
hki + hki+1

Ṽ k
i −

hki+1

hki + hki+1

Ṽ k
i+1 > 0,

what concludes the proof.

Corollary 2. Let {Rk} be the sequence of nonlinear PPH reconstruction operators associated to
a sequence of nested σ quasi-uniform grids {Xk} with σ < 1 + 1

2M satisfying Definition 27. If

|Ṽ k
i | < 2 min{Dk

i , D
k
i+1}, ∀i ∈ Z,∀k ∈ N, then the associated PPH interpolatory subdivision scheme

S is convexity preserving.

Proof. Let us consider Dk
i > 0, ∀i ∈ Z, at a given scale k ∈ N. We get the following chain of

inequalities

2Dk
i+1 −

hki
hki + hki+1

Ṽ k
i −

hki+1

hki + hki+1

Ṽ k
i+1 > 2Dk

i+1 −
hki

hki + hki+1

2 min{Dk
i , D

k
i+1}

−
hki+1

hki + hki+1

2 min{Dk
i+1, D

k
i+2}

≥ 2Dk
i+1 −

hki
hki + hki+1

2Dk
i+1 −

hki+1

hki + hki+1

2Dk
i+1 = 0,

what proves the property of convexity preservation by applying Theorem 11.

Corollary 3. Let {Rk} be the sequence of nonlinear PPH reconstruction operators associated to
a sequence of nested σ quasi-uniform grids {Xk} with σ < 1 + 1

2M satisfying Definition 27. If

max{ Dki
Dki+1

,
Dki+1

Dki
} < 2,∀i ∈ Z,∀k ∈ N, then the associated PPH interpolatory subdivision scheme S

is convexity preserving.

Proof. Let us consider Dk
i > 0,∀i ∈ Z, at a given scale k ∈ N. Taking into account that Ṽ k

i is a
mean we have

|Ṽ k
i | ≤ max{Dk

i , D
k
i+1} < 2 min{Dk

i , D
k
i+1},

and therefore we can apply Corollary 2.

Remark 16. If the initial data f0
i , i ∈ Z come from a smooth function, we would have the hypothesis

of Corollary 3 satisfied for h0 = max
i∈Z

h0
i sufficiently small since

Di+1

Di
=

f ′′(µ1)

f ′′(µ0)
=
f ′′(µ0) + f ′′′(c)(µ1 − µ0)

f ′′(µ0)

= 1 +
f ′′′(c)

f ′′(µ0)
(µ1 − µ0) < 2,

due to the fact that µ1−µ0 = O(h0), where µ0, µ1, c are intermediate points between xki−1 and xki+2.
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Remark 17. In the case of dealing with uniform grids, we have that Ṽ k
i coincides with the classical

harmonic mean, and therefore |Ṽ k
i | < 2 min{Dk

i , D
k
i+1}, and Corollary 2 applies. Thus, we have a

convexity preserving interpolatory subdivision scheme for any initial data.

Remark 18. If instead of the weighted harmonic mean Ṽ k
i we use the classical harmonic mean in

the definition of the subdivision scheme given in (7.17) we immediately get a convexity preserving
subdivision scheme because the hypothesis of Corollary 2 are met. However, we will reduce the
approximation order to second order in this case, while the original scheme comes from a recon-
struction which is fourth order accurate for strictly convex functions (see [42]).

7.6 Numerical experiments

In this section we carry out some numerical experiments to analyze the obtained outputs and
to compare them with the expected theoretical results. Our first experiment is focused on the
presented result about the smoothness of the limit function. We are going to estimate the exponent
α of the Hölder continuity of the limit function. In order to do it we have considered the following
functions f(x) and g(x) given by

f(x) :=


x(x+ 1)4, 0 ≤ x ≤ 0.3,

x(cos (2πx) + 1), 0.3 < x ≤ 0.7,

x4 + x, x > 0.7,

(7.43)

g(x) :=


−5 + 10x, 0 ≤ x ≤ 0.3,

cos (2πx)− 2− cos (0.6π), 0.3 < x ≤ 0.7,

x4 + 2, x > 0.7.

We also consider the point-value discretization f0 given by the function values at a nonuniform
grid X1 with 30 points in the interval [0, 1]. Then, we carry out an estimation of the quotient

C :=
|S∞f0(x)− S∞f0(y)|

|x− y|α
, x 6= y,

for different levels k of refinement, k = 10, k = 15 and k = 17, and for different values of α,
α = 0.75, α = 0.99, α = 1, α = 1.1 and α = 1.25.

In Figure 7.1 we show the considered original function in solid blue and the subdivision curve
after k = 5 subdivision levels in dash-dotted black. In Table 7.1 we can observe that the constant
C converges with the resolution levels to a fix value for α = 1. For smaller values of α than 1 the
estimated value of C decreases with the number of resolution levels k, what means that the Hölder
exponent of the subdivision scheme is higher. In turn, for larger values of α than 1 the estimated
value of C increases with the number of resolution levels k, what means that the Hölder exponent
of the subdivision scheme must be lower. Notice that the constant C in the definition of Hölder
continuity depends on f(x) but must get stable as we approach the limit function with larger and
larger k. We have also carried out the same experiment varying the number and position of the
grid points, and for both functions given in (7.43). We have used a nonuniform grid X2 with 20
non equally spaced abscissae. As it can be seen in Tables 7.2 and 7.3, the results are consistent
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with our previous observations, getting in all cases an estimation for the Hölder exponent α = 1.
However, we can appreciate that the value of the constant C depends not only on the function
from which the point-values are taken, but also on the starting grid, since the limit functions for
different grids are pretty similar, in the sense that they approximate the underlying function with
fourth order, but they are not the same.

k α = 0.75 α = 0.99 α = 1 α = 1.01 α = 1.25

10 2.7529 43.8798 49.2457 55.2677 880.9333

15 1.1575 42.3851 49.2457 57.2167 2095.2244

17 0.8574 41.8016 49.2457 58.0154 2963.0947

Table 7.1: Estimations of the C constant in the condition for Hölder continuity with exponent α
for approximations of the limit function with k levels of subdivision for initial data coming from
30 point-values of the function f(x) at the grid X1 of non equally spaced abscissas.

k α = 0.75 α = 0.99 α = 1 α = 1.01 α = 1.25

10 3.8460 55.9552 62.7977 70.4769 1123.3592

15 2.4247 54.0492 62.7977 72.9622 2671.8134

17 1.7569 53.7591 62.7977 73.9808 3778.5147

Table 7.2: Estimations of the C constant in the condition for Hölder continuity with exponent α
for approximations of the limit function with k levels of subdivision for initial data coming from
20 point-values of the function f(x) at the grid X2 of non equally spaced abscissas.

k α = 0.75 α = 0.99 α = 1 α = 1.01 α = 1.25

10 8.3078 83.2891 91.6855 100.9284 1011.8533

15 3.4930 80.4520 91.6855 104.4876 2406.6064

17 2.4699 79.3443 91.6855 105.9462 3403.4554

Table 7.3: Estimations of the C constant in the condition for Hölder continuity with exponent α
for approximations of the limit function with k levels of subdivision for initial data coming from
20 point-values of the function g(x) at the grid X2 of non equally spaced abscissas.

In our second experiment we just perform a comparison between the presented PPH subdivision
scheme and the classical linear scheme with 4 points based on Lagrange interpolation. We have
plotted in Figure 7.1 the subdivision curve obtained for both methods, PPH and Lagrange, after
k = 5 levels of subdivision and starting from the nonuniform grid X1 with 30 initial points used in
the first numerical experiment and the associated point-values of the function f(x). The original
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function is also provided to compare the approximation capabilities of both subdivision methods.
We see the original function in solid blue line, the Lagrange subdivision scheme in dashed red line
and the PPH subdivision scheme in dash-dotted black line. As it can be appreciated in Figure 7.1
the Gibbs effects and undesirable oscillations due to the presence of a jump discontinuity are highly
reduced with the PPH scheme in contrast with what happens with the linear scheme. Notice the
high oscillations that appear near the jump discontinuities when using the linear scheme, what is
known to happen when one implements whatever linear scheme. In Figure 7.1 to the right we have
shown a zoom of the area around the first jump discontinuity to observe more clearly the behavior
of the nonlinear scheme. In Figure 7.2, we also plot the results obtained with the nonuniform grid
X2 with 20 non equally spaced points considered in the previous experiment. We have considered
both functions f(x) and g(x). Again, the same type of Gibbs effects appear around the jump
discontinuity for the linear method. The corner is not so problematic.
In Table 7.4, we see the errors ||fk−Skf0||p, p = 1, 2,∞, committed by approximating the original
data fk, i.e., the right point-values of the function f(x) at the corresponding abscissas with Skf0

for k = 5 subdivision levels, where Skf0 stands for the iterative application k times of the analyzed
subdivision schemes, namely PPH and Lagrange, starting from the initial function point-values f0

at the given grid X1 with 30 abscissae. In Table 7.5, we give the corresponding results for the grid
X2 with 20 abscissae. In Table 7.6, we consider this time the errors ||gk −Skg0||p, p = 1, 2,∞, for
the function g(x) using the grid X2 with 20 abscissae.

(a) (b)

Figure 7.1: (a): Comparison of the subdivision curve after k = 5 subdivision levels for the Lagrange
subdivision scheme, in dashed red line, and the PPH subdivision scheme in dash-dotted black line.
The original function f(x) is also plotted in solid blue line. The initial control points, plotted with
red circles, come from one of the nonuniform grids X considered in our two experiments, the one
which consists on 30 abscissas in the interval [0, 1]. (b): Zoom of the area around the first jump
discontinuity.

7.7 Conclusions

We have defined and analyzed the PPH subdivision scheme on nonuniform grids, which is
derived from its associated reconstruction operator. We have paid special attention to the case of
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(a) (b)

Figure 7.2: Comparison of the subdivision curve after k = 5 subdivision levels for the Lagrange
subdivision scheme, in dashed red line, and the PPH subdivision scheme in dash-dotted black line.
The original function is also plotted in solid blue line. The initial control points, plotted with red
circles, come from one of the nonuniform grids X considered in our two experiments, the one which
consists on 20 abscissas in the interval [0, 1]. (a): Subdivision curve for data coming from f(x).
(b): Subdivision curve for data coming from g(x).

Method ||fk − Skf0||1 ||fk − Skf0||2 ||fk − Skf0||∞
PPH 0.0098 0.0454 0.4239

Lagrange 0.0388 0.1355 0.9767

Table 7.4: Subdivision errors ||fk −Skf0||p, p = 1, 2,∞, committed by approximating the original
data fk with Skf0 for k = 5 subdivision levels starting from the initial function point-values f0 at
the given grid X1 with 30 points.

Method ||fk − Skf0||1 ||fk − Skf0||2 ||fk − Skf0||∞
PPH 0.0163 0.0529 0.3412

Lagrange 0.0809 0.1849 0.8953

Table 7.5: Subdivision errors ||fk −Skf0||p, p = 1, 2,∞, committed by approximating the original
data fk with Skf0 for k = 5 subdivision levels starting from the initial function point-values f0 at
the given grid X2 with 20 abscissae.

σ quasi-uniform grids and initial data coming from strictly convex (concave) smooth functions.
We have theoretically proven some crucial issues when dealing with subdivision schemes, such

as existence of a contractive scheme for the first differences, convergence, smoothness of the limit
function, and preservation of the convexity properties of the initial data.
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Method ||fk − Skf0||1 ||fk − Skf0||2 ||fk − Skf0||∞
PPH 0.0580 0.2808 2.1087

Lagrange 0.2837 0.8468 4.6606

Table 7.6: Subdivision errors ||gk −Skg0||p, p = 1, 2,∞, committed by approximating the original
data gk with Skg0 for k = 5 subdivision levels starting from the initial function point-values g0 at
the given grid X2 with 20 abscissae.

In the numerical experiments section, we have carried out some experiments that reinforce
the theoretical results, in particular we have observed the Hölder continuity of the limit function,
giving a numerical estimation of the exponent α, which coincides with the result in Theorem 10.
We have also carried out another experiment to analyze the performance of the subdivision scheme
with initial data which contain a numerical jump discontinuity, observing that Gibbs effects and
oscillations are negligible. Finally a potential real application in 2D is given by making zoom of
some coarse data from geological areas corresponding with unaccessible seabeds.

137



Chapter 8

Graphical interpretation of the
weighted harmonic mean of n positive
values and applications.

This chapter has given rise to a fully written paper which is now submitted [18]

• Amat, S. ; Ortiz, P.; Ruiz, J.; Trillo, J.C. ; Yáñez, D.F. Graphical interpretation of the
weighted harmonic mean of n positive values and applications. Submitted.

8.1 Introduction

The arithmetic and the harmonic mean of positive numbers are present in many scientific
applications ranging from statistics to numerical analysis. The harmonic mean has the property
of penalizing large values, giving rise, because of this reason, to several interesting applications.
Moreover, when the arguments do not differ much from each other, both means remain close, which
is another crucial property in applications.

In our field of research both the arithmetic mean and the harmonic mean have been used
successfully in several occasions for different applications. See for instance [48, 49] for an example
in numerical conservation laws, [6, 7, 11, 50] for applications regarding signal processing and signal
compression, [12, 21] for their use in image denoising and compression, and [10, 20, 37] for the case
of generation of curves and subdivision.

In [42] a nonlinear reconstruction operator called PPH (Piecewise Polynomial Harmonic) was
extended to nonuniform grids by using a specific weighted harmonic mean instead of the standard
harmonic mean. In this chapter our aim is to introduce some necessary ingredients to extend in
turn this last reconstruction operator to several dimensions. More specifically speaking, we need to
dispose of an appropriate mean in several dimensions which satisfies the required basic properties,
the two mentioned above, as the harmonic mean does. We carry out this study accompanied by a
graphical interpretation of the weighted harmonic mean of several values, which helps to quickly
understand the theoretical results.

The chapter is organized as follows: In Section 8.2 we work with the weighted arithmetic and
harmonic means of two positive numbers, proving two essential results about these means which
will allow us to define adapted reconstruction operators in the numerical experiments section.

138



These properties come accompanied with an intuitive graphical interpretation in 2D according
to a corresponding theoretical result that will be also proven. In Section 8.3 a similar path will
be followed for the 3D case, which involves working with weighted and harmonic means of three
positive numbers. Section 8.4 deals with the general case of considering the weighted arithmetic
and harmonic mean of n positive numbers for whatever integer value n ≥ 2. In Section 8.5 we
outline some applications of these results in order to define adapted reconstructions in several
dimensions, and we explicitly define a new reconstruction in 2D over triangular meshes adapted
to discontinuities, that is, a kind of PPH reconstruction method (see [6]) on triangles. Finally, in
Section 8.6 we give some conclusions.

8.2 About specific results on the weighted harmonic mean of two
positive values

In this section we present an intuitive graphical interpretation of the weighted arithmetic and
harmonic means of two positive values together with two key results about the weighted harmonic
mean that justify their use in several fields of application. Among them we can mention image
processing, curve and surface generation, numerical approximation of the solution of hyperbolic
conservation laws apart from more traditional uses in statistics and physics. Perhaps the better
known problem where the weighted harmonic mean appears is in the computation of the average
speed of a vehicle that drives along a path divided into two parts of different lengths s1 and s2 at
constant speed v1 and v2 respectively, that is

va =
s1 + s2

t1 + t2
=
s1 + s2
s1
v1

+ s2
v2

=
1

w1
1
v1

+ w2
1
v2

,

with w1 = s1
s1+s2

, w2 = s2
s1+s2

.
The weighted harmonic mean Hw is given in the following definition.

Definition 36. Given a1 > 0, a2 > 0 two positive real numbers and two weights w1 > 0, w2 > 0
with w1 + w2 = 1, the weighted harmonic mean of a1 and a2 is defined by

Hw(a1, a2) =
a1a2

w1a2 + w2a1
.

We now present two particular properties, which have been already used in [43] in order to
work with a nonlinear reconstruction for nonuniform grids adapted to the potential presence of
jump discontinuities on the signal. The first property has to do with the adaptation in case of
jump discontinuities, while the second property is related to the order of approximation attained
by the nonlinear reconstruction operator, see [43] for more details.

Lemma 29. If a1 > 0 and a2 > 0, the weighted harmonic mean is bounded as follows

Hw(a1, a2) < min

{
1

w1
a1,

1

w2
a2

}
. (8.1)

Lemma 30. Let a > 0 a fixed positive real number, and let a1 ≥ a and a2 ≥ a. If |a1−a2| = O(h),
then the weighted harmonic mean is also close to the weighted arithmetic mean Mw(a1, a2) =
w1a1 + w2a2,

|Mw(a1, a2)−Hw(a1, a2)| = w1w2

w1a2 + w2a1
(a1 − a2)2 = O(h2). (8.2)
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A way of intuitively check these two properties graphically is by using the following interpreta-
tion. Given a1, a2 two positive numbers and considering Hw the weighted harmonic mean of these
values, we can build the following two parabolas

p1(x) =
a1xH − Hw

2

xH(1− xH)
x2 +

Hw
2 − a1xH

2

xH(1− xH)
x,

p2(x) =
Hw
2 + a2(xH − 1)

xH(xH − 1)
x2 −

Hw
2 + a2(xH − 1)(xH + 1)

xH(xH − 1)
x+ a2,

(8.3)

where xH is defined as the abscissa of the point where both parabolas intersect inside the trapezoid
delimited by the four vertices (0, 0), (1, 0), (1, a1), (0, a2). Its value is given by

xH =
w1a2

w1a2 + w2a1
. (8.4)

Remark 19. Geometrically, one can build the parabolas p1(x) and p2(x) as the unique polynomials
of degree less or equal to 2 such that they interpolate the points {(0, 0), (1

2 , (
1
4 + 1

8w1
)a1 + (1

4 −
1

8w2
)a2), (1, a1)}, and {(0, a2), (1

2 , (
1
4 −

1
8w1

)a1 + (1
4 + 1

8w2
)a2), (1, 0)} respectively.

In Figure 8.1 (a) we can see the representation of the trapezoid with the two parabolas inter-
secting at a point with abscissa xH , for similar values of a1 and a2 and for a value of the weights
w1 = 7

10 , w2 = 3
10 . In this case, it is appreciated a similar value of the weighted harmonic and

arithmetic means. This particular situation relates with Lemma 30. In Figure 8.1 (c) we can see
the case for quite different values of a1 and a2. Now, it can be observed that the weighted harmonic
mean remains much closer to the minimum value between a1 and a2 than the weighted arithmetic
mean. This situation has a close relation with Lemma 29. In Figure 8.1 (b) and (d) we consider the
case of having equal weights w1 = w2 = 1

2 , which gives rise to the usual arithmetic and harmonic
means. The observations are the same as in the weighted case, although it is interesting to notice
that the parabolas degenerate in the two diagonals of the trapezoid.

There are infinitely many ways of defining two parabolas which degenerate in the two diagonals
for w1 = w2 = 1

2 , and intersect at the abscissa xH where a2 + (a1 − a2)xH = Hw. In fact, for
each ordinate of the type yH = f(w1, w2)a1xH with f(w2, w1) = 1 for w1 = w2 = 1

2 , the parabolas
interpolating the points {(0, 0), (xH , yH), (1, a1)} and {(0, a2), (xH , yH), (1, 0)} satisfy both require-
ments. In particular, we remark three particular cases because of their symmetry or simplicity.

Case 1: f(w1, w2) =
w2

w1
.

In this case we have
yH =

w2

w1
a1xH =

w2a2a1

w1a2 + w2a1
, (8.5)

and the parabolas take the form

p1(x) =
a1

1− xH

[(
1− w2

w1

)
x2 −

(
xH −

w2

w1

)
x

]
,

p2(x) = a2 − a2x.
(8.6)

Case 2: f(w1, w2) = 1.
In this case we get

yH = a1xH , (8.7)
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(a) (b)

(c) (d)

Figure 8.1: Representation of the weighted harmonic and arithmetic means. (a): w1 = 0.7,
w2 = 0.3, a1 = 14, a2 = 10. (b): w1 = 0.5, w2 = 0.5, a1 = 14, a2 = 10. (c): w1 = 0.7, w2 = 0.3,
a1 = 14, a2 = 2. (d): w1 = 0.5, w2 = 0.5, a1 = 14, a2 = 2. In black the weighted harmonic mean, in
red the weighted arithmetic mean, in dashed magenta line the parabola p1(x) and in dashed green
line the parabola p2(x).

and the parabolas are given by

p1(x) = a1x,

p2(x) =

(
a1

xH − 1
+
a2

xH

)
x2 −

(
a1

xH − 1
+
a2(xH + 1)

xH

)
x+ a2.

(8.8)
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Case 3. f(w1, w2) =
1

2w1
.

In this case

yH =
1

2w1
a1xH , (8.9)

and the parabolas are given in (8.3).
Notice that in the first two cases one of the parabolas remains always equal to one of the diagonals
of the trapezoid for all values of w1. Since the first and second cases are symmetrical, we will
consider only first and third cases from now on. In the next section, we will present the geometrical
extension of the given results to the three variables case. The proofs will be omitted because they
appear later in the general n-dimensional case.

8.3 Geometrical interpretation of the weighted harmonic mean of
three positive values

In this section we give the corresponding results about the weighted harmonic mean for the case
of dealing with three positive values. These results can be generalized to n values with n a positive
integer number, and we will address this situation in the next section, where we will include the
proofs.

Definition 37. Given a1 > 0, a2 > 0, a3 > 0 three positive real numbers and the weights w1 > 0,
w2 > 0, w3 > 0 with w1 + w2 + w3 = 1, their weighted harmonic mean is defined by

Hw(a1, a2, a3) =
a1a2a3

w1a2a3 + w2a1a3 + w3a1a2
.

Lemma 31. If a1 > 0, a2 > 0, a3 > 0 the weighted harmonic mean is bounded as follows

Hw(a1, a2, a3) < min

{
1

w1
a1,

1

w2
a2,

1

w2
a2

}
. (8.10)

Lemma 32. Let a > 0 a fixed positive real number, and let a1 ≥ a, a2 ≥ a, a3 ≥ a. If |a1 − a2| =
O(h), |a1 − a3| = O(h), then the weighted harmonic mean is also close to the weighted arithmetic
mean Mw(a1, a2, a3) = w1a1 + w2a2 + w3a3,

|Mw(a1, a2, a3)−Hw(a1, a2, a3)| =
w1w2(a1 − a2)2a3 + w1w3(a1 − a3)2a2 + w2w3(a2 − a3)2a1

w1a2a3 + w2a1a3 + w3a1a2

= O(h2). (8.11)

The following two theorems are dedicated to write in a formal way the geometrical interpretation
of the weighted harmonic mean, generalizing the expressions for the two variables case given in (8.3),
and (8.6). The case of expressions (8.8) could be treated in a similar way, and we will not consider
it, since it is a symmetrical version of case (8.6). Let us first introduce the following notations for
the vertices of a straight prism with triangular base

B1 = (1, 0, 0), B2 = (0, 1, 0), B3 = (0, 0, 0),

P1 = (1, 0, a1), P2 = (0, 1, a2), P3 = (0, 0, a3),
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where Bi, i = 1, 2, 3, stand for the vertices of the base and the corresponding Pi for the vertices
located at the heights of the prism through the points Bi satisfying that the length of the segment
between Pi and Bi is ai. We will also use the barycenter of the points Bi

GMw := w1B1 + w2B2 + w3B3.

The first theorem amounts to the generalization of the expressions in (8.6) and can be written
as follows.

Theorem 12. Let us consider the plane Π which passes through the points P1, P2 and P3 given by
the equation

Π ≡ x1(a3 − a1) + x2(a3 − a2) + x3 − a3 = 0. (8.12)

Let us also consider the plane V3 which passes through the points B1, B2 and P3 given by the
equation

V3 ≡ x1 + x2 +
x3

a3
= 1, (8.13)

and the two paraboloids V1 and V2 given by the equations

V1 ≡ x3 = b1x1
2 + (a1 − b1)x1, which passes through P1, B2, B3, (8.14)

V2 ≡ x3 = b2x2
2 + (a2 − b2)x2, which passes through B1, P2, B3,

where the coefficients bi are given by

bi =
Hw

x̄i(x̄i − 1)
(w3 − wi), i = 1, 2. (8.15)

Then, the system of equations formed by (8.13) and (8.14) has a unique solution (x̄1, x̄2, x̄3) given
by

x̄1 = w1
Hw

a1
, x̄2 = w2

Hw

a2
, x̄3 = w3Hw. (8.16)

Moreover, the height of the prism through the point (x̄1, x̄2, 0) coincides with the weighted harmonic
mean Hw of a1, a2, a3 and the height of the prism through the barycenter of the triangular base
GMw = w1B1 + w2B2 + w3B3 coincides with the weighted arithmetic mean.

The second theorem deals with the generalization of expressions (8.3).

Theorem 13. Let us consider the plane Π which passes through the points P1, P2 and P3 given by
the equation

Π ≡ x1(a3 − a1) + x2(a3 − a2) + x3 − a3 = 0. (8.17)

Let us also consider the paraboloid V ∗3 passing through B1, B2, P3 given by

x3 = a3 + (c1x1(x1 − 1)− a3x1) + (c2x2(x2 − 1)− a3x2), (8.18)

where the coefficients ci are given by

ci =
Hw
3 + (x̄1 + x̄2 − 1)a3

2x̄i(x̄i − 1)
, i = 1, 2, (8.19)
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and the two paraboloids V1 and V2 given by the equations

V ∗1 ≡ x3 = b1x1
2 + (a1 − b1)x1, which passes through P1, B2, B3, (8.20)

V ∗2 ≡ x3 = b2x2
2 + (a2 − b2)x2, which passes through B1, P2, B3,

where the coefficients bi are given by

bi =
Hw

x̄i(x̄i − 1)
(
1

3
− wi), i = 1, 2. (8.21)

Then, the system of equations formed by (8.18) and (8.20) has a unique solution (x̄1, x̄2, x̄3) given
by

x̄1 = w1
Hw

a1
, x̄2 = w2

Hw

a2
, x̄3 =

Hw

3
. (8.22)

Moreover, the height of the prism through the point (x̄1, x̄2, 0) coincides with the weighted harmonic
mean Hw of a1, a2, a3 and the height of the prism through the barycenter of the triangular base
GMw = w1B1 + w2B2 + w3B3 coincides with the weighted arithmetic mean.

In Figures 8.2 and 8.3 we represent the situation given in Theorem 13, being the situation of
Theorem 12 similar. In Figure 8.2 (a,c,e), we show the paraboloids built with the values a1 = 3,
a2 = 4, a3 = 6, with the weights w1 = 0.2, w2 = 0.2, w3 = 0.6, and in (b,d,f), the planes obtained for
the case of dealing with equal weights w1 = w2 = w3 = 1

3 . These plots correspond to the situation
considered in Theorem 13. We observe how the paraboloids degenerate in planes generalizing the
case of the non-weighted harmonic mean.
In Figure 8.3, we show the intersection of the three paraboloids for the same values and weights.
It is interesting to compare the representation of the weighted harmonic mean Hw, which coincides
with the height of the prism through the point GHw (orthogonal projection onto the base of the
intersection point of the three paraboloids considered in Theorem 13), with the representation of
the weighted arithmetic mean Mw, which amounts to the height of the prism through the barycenter
GMw of the vertices of the triangular base affected by the corresponding weights.

8.4 Results on the weighted harmonic mean of n values

First, we introduce the definition of weighted harmonic mean Hw that we are going to be using

Definition 38. Given ai > 0, i = 1, . . . , n n positive real numbers and the weights wi > 0, i =
1, . . . , n with

∑n
i=1wi = 1, the weighted harmonic mean is defined by

Hw(a1, . . . , an) =
1

n∑
i=1

wi
ai

=

n∏
k=1

ak

n∑
i=1

wi
n∏
k=1
k 6=i

ak

,

and the weighted arithmetic mean is defined by

Mw(a1, . . . , an) =
n∑
i=1

wiai.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.2: Representation of the three paraboloids considered in Theorem 13 for the representation
of the harmonic mean of the values a1 = 3, a2 = 4, a3 = 6. (a, c, e): weights w1 = 0.2, w2 = 0.2,
w3 = 0.6. (b, d, f): weights w1 = w2 = w3 = 1

3 . (a, b): V ∗1 . (c, d): V ∗2 . (e, f): V ∗3 .

We now give the main two results which are crucial in applications in numerical analysis, such
as we will show in the section devoted to practical cases. The first lemma has to do with the
property of boundedness of the mean by the minimum of its arguments and it is used to define
adaptative methods.
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(a) (b)

(c) (d)

Figure 8.3: Representation of weighted harmonic mean of three positive values a1 = 3, a2 = 4,
a3 = 6 as the height of the prism through the intersection point of the three paraboloids considered
in Theorem 13. Comparison with the weighted arithmetic mean for the representation of the
harmonic mean of the values. (a, c): weights w1 = 0.2, w2 = 0.2, w3 = 0.6. (b, d): weights
w1 = w2 = w3 = 1

3 . (a, b): Intersection of the three paraboloids. (c, d): Comparison between
the weighted harmonic mean and the weighted arithmetic mean.

Lemma 33. Let ai > 0, i = 1, . . . , n be n positive real numbers and wi > 0, i = 1, . . . , n the
corresponding weights with

∑n
i=1wi = 1. Then, the weighted harmonic mean Hw is bounded as

follows

Hw <
ai0
wi0
≤ ai
wi
, i = 1, . . . , n,

where
ai0
wi0

= min{ a1

w1
, · · · , an

wn
}.
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Proof.

Hw =

n∏
k=1

ak

n∑
j=1

wj
n∏
k=1
k 6=j

ak

=
ai0
wi0

n∏
k=1
k 6=i0

ak

n∑
j=1

wj
wi0

n∏
k=1
k 6=j

ak

<
ai0
wi0
≤ ai
wi
, i = 1, . . . , n.

The second lemma deals with how close remains the weighted harmonic mean to the weighted
arithmetic mean when the arguments are also close among them. This property is essential to
define nonlinear methods which preserve the order of approximation of their linear counterparts
from which they are derived. We will also show this relation in the section dedicated to the practical
examples.

Lemma 34. Let ai > 0, i = 1, . . . , n be n positive real numbers and wi > 0, i = 1, . . . , n the
corresponding weights with

∑n
i=1wi = 1. If ai = O(1), ∀i = 1, · · · , n, and |a1 − ai| =

O(h), ∀i = 2, · · · , n, then, the weighted harmonic mean Hw and the weighted arithmetic mean
Mw :=

∑n
i=1wiai satisfy

|Mw −Hw| = O(h2).

Proof. Using the expressions of Hw and Mw we have

|Mw −Hw| =

∣∣∣∣∣∣∣∣∣∣∣
n∑
i=1

wiai −

n∏
k=1

ak

n∑
j=1

wj
n∏
k=1
k 6=j

ak

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

wiai
n∑
j=1

wj
n∏
k=1
k 6=j

ak −
n∏
k=1

ak

n∑
j=1

wj
n∏
k=1
k 6=j

ak

∣∣∣∣∣∣∣∣∣∣∣
. (8.23)

Now, paying attention to the fact that given two indices i0, j0 such that 1 ≤ i0 < j0 ≤ n we have

wi0ai0wj0

n∏
k=1
k 6=j0

ak = wi0a
2
i0wj0

n∏
k=1

k 6=i0,j0

ak, (8.24)

wj0aj0wi0

n∏
k=1
k 6=i0

ak = wi0a
2
j0wj0

n∏
k=1

k 6=i0,j0

ak, (8.25)

and just by summing up both terms in (8.24) and (8.25) we get

wi0ai0wj0

n∏
k=1
k 6=j0

ak + wj0aj0wi0

n∏
k=1
k 6=i0

ak = wi0wj0

n∏
k=1

k 6=i0,j0

ak(a
2
i0 + a2

j0). (8.26)

For the case i0 = j0 we get

wi0ai0wj0

n∏
k=1
k 6=j0

ak = w2
i0

n∏
k=1

ak. (8.27)
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Using the simplifications in (8.26) and (8.27) we can rewrite (8.23) as

|Mw−Hw| =

∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

wi
2

n∏
k=1

ak +
n∑

i,j=1
i<j

wiwj(a
2
i + a2

j )
n∏
k=1
k 6=i,j

ak

n∑
j=1

wj
n∏
k=1
k 6=j

ak

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

n∑
i,j=1
i<j

wiwj(ai − aj)2
n∏
k=1
k 6=i,j

ak

n∑
j=1

wj
n∏
k=1
k 6=j

ak

∣∣∣∣∣∣∣∣∣∣∣
= O(h2),

since by the triangular inequality we have that |ai − aj | ≤ |ai − a1|+ |a1 − aj | = O(h).

We introduce the following notation for the vertices of a prism in Rn.
Bi ≡ (0, · · · , 0, 1

i
, 0, · · · , 0) i = 1, · · · , n− 1,

Bn = (0, · · · , 0),

Pi ≡ (0, · · · , 0, 1
i
, 0, · · · , 0, ai) i = 1, · · · , n− 1,

Pn = (0, · · · , 0, an),

where the points Bi represent the vertices which lay on the base of the prism and the vertices Pi
are nothing more than the points located at the maximum height of the prism at the corresponding
points Bi in the base and in the parallel direction to the xn axis.

We are now ready to give the following two theorems for the weighted harmonic mean, which
generalize the geometrical representations using prisms.

Theorem 14. Let us consider the hyperplane Π which passes through the points Pi, i = 1, . . . , n
n ≥ 2, given by the equation

Π ≡ xn = an +

n−1∑
i=1

xi(ai − an). (8.28)

Let us also consider the hyperplane Vn which passes through the points Bi, i = 1, . . . , n− 1 and Pn
given by the equation

Vn ≡
n−1∑
i=1

xi +
xn
an

= 1. (8.29)

and the paraboloids Vi, i = 1, . . . , n− 1 given by the equations

Vi ≡ xn = bixi
2 + (ai − bi)xi, (8.30)

which pass through B1, . . . , Bi−1, Pi, Bi+1, . . . , Bn respectively, where the coefficients bi are given by

bi =
Hw

x̄i(x̄i − 1)
(wn − wi), i = 1, . . . , n− 1. (8.31)

Then, the system of equations formed by (8.29) and (8.30) has a unique solution (x̄1, . . . , x̄n) given
by

x̄i = wi
Hw

ai
, i = 1, . . . , n− 1, x̄n = wnHw. (8.32)

Moreover, the following two affirmations are true:
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a) The height of the prism through the point (x̄1, . . . , x̄n−1, 0) coincides with the weighted har-
monic mean Hw of ai, i = 1, . . . , n, that is, the point (x̄1, . . . , x̄n−1, Hw) belongs to the hyper-
plane Π.

b) The height of the prism through the barycenter of the base GMw =
n∑
i=1

wiBi coincides with

the weighted arithmetic mean.

Proof. It is immediate to check that the proposed solution satisfies (8.29) and (8.30). Let us prove
that the solution is unique. By reductio ad absurdum, let us suppose that there exists another
solution x′ = (x′1, · · · , x′n) with x′ 6= x̄. Then, denoting zi = x̄i − x′i, i = 1, · · · , n, the system of
equations formed by (8.29) and (8.30) can be easily transformed into

n−1∑
i=1

zi +
zn
an

= 0, (8.33a)

zn − bizi(x̄i + x′i)− (ai − bi)zi = 0, i = 1, · · · , n− 1, (8.33b)

what amounts to a homogeneous linear system of n equations with n unknowns. If we show that
this system has only the trivial solution z = 0, then we would have proven that x̄ = x′, what is
a contradiction with the starting supposition. Therefore, x̄ would be the unique solution. Let us
then prove that system (8.33) has z = 0 as the unique solution. Again by reductio ad absurdum,

let us suppose that the system has infinite solutions, that is, z =
s∑

k=1

λkv
k, where s = n− r, being

r the rank of the coefficient matrix of the linear system, λk ∈ R, and vk, k = 1, . . . , s, represent
a base of the kernel of the associated linear map. Let us consider the univariate set of solutions
z = λ1v

1, λ1 ∈ R. By the sake of simplicity, we will drop the superindex and we will write z = λv.
Thus, we obtain

x′ = x̄− z = x̄− λv,

whose coordinates are given by

x′i = x̄i − zi = x̄i − λvi. (8.34)

Plugging (8.34) into (8.33b) we get

λvn = biλvi(2x̄i − λvi) + (ai − bi)λvi, ∀i = 1, · · · , n− 1, (8.35)

and simplifying expression (8.35) we obtain

−λbiv2
i + 2bivix̄i + (ai − bi)vi − vn = 0, ∀i = 1, · · · , n− 1, λ 6= 0. (8.36)

Now, particularizing expression (8.36) for two different values of λ, λ1 6= λ2, and subtracting both
expressions, we reach to

(λ1 − λ2)biv
2
i = 0, ∀i = 1, · · · , n− 1. (8.37)

We are going to prove now that there exists i0 ∈ {1, · · · , n− 1} such that bi0 6= 0 and vi0 6= 0, and
therefore, from (8.37), this would imply that λ1 = λ2 what is a contradiction. Thus, z = 0 would
be the unique solution of the homogeneous linear system and x̄ would be the unique solution of
the system given by (8.29) and (8.30).
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Since v 6= 0, ∃vi 6= 0 for some i ∈ {1, · · · , n− 1} . Otherwise, if vi = 0, ∀i ∈ {1, · · · , n− 1},

from (8.33a) we get vn = −an
n−1∑
i=1

vi = 0 and v = 0, what is not possible. Let us denote I the set

of indices for which vi 6= 0. If we suppose that bi = 0, ∀i ∈ I, then from (8.36) we get aivi−vn = 0.

Thus, vi =
vn
ai
, ∀i ∈ I. Also, from (8.33a)

∑
i∈I

λvi + λ
vn
an

= 0. (8.38)

Now, using in (8.38) the fact that vi =
vn
ai
, ∀i ∈ I, we get vn = 0, and in turn, v = 0, what gives a

contradiction which comes from the supposition bi = 0, ∀i ∈ I. Therefore, ∃i0 ∈ I, such that bi0 6= 0.

In order to prove now point a) of the theorem, we consider the straight line parallel to the xn
axis passing through (x̄1, . . . , x̄n−1, 0), that is

rw ≡


x1 = x̄1,
...

xn−1 = x̄n−1.

(8.39)

Cutting this straight line with the hyperplane Π we get the point (x̄1, . . . , x̄n−1, Hw), which gives the
enunciated result. A similar argument proves point b), just by considering in this case the straight

line parallel to the xn axis passing through the barycenter GMw =
n∑
i=1

wiBi = (w1, . . . , wn−1, 0),

and verifying that its intersection point with the hyperplane Π is just the weighted arithmetic mean

Mw =
n∑
i=1

wiai.

Theorem 15. Let us consider the hyperplane Π which passes through the points Pi, i = 1, . . . , n,
n ≥ 2, given by the equation

Π ≡ xn = an +

n−1∑
i=1

xi(ai − an). (8.40)

Let us also consider the paraboloid given by Vn which passes through the points Bi, i = 1, . . . , n− 1
and Pn given by the equation

Vn ≡ xn = an +

n−1∑
i=1

(cix
2
i − (ci + an)xi), (8.41)

where the coefficients ci are given by

ci =

Hw
n + (

n−1∑
j=1

x̄j − 1)an

(n− 1)x̄i(x̄i − 1)
, i = 1, . . . , n− 1, (8.42)

and the paraboloids Vi, i = 1, . . . , n− 1 given by the equations

Vi ≡ xn = bixi
2 + (ai − bi)xi, (8.43)
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which pass through B1, . . . , Bi−1, Pi, Bi+1, . . . , Bn respectively, where the coefficients bi are given by

bi =
Hw

x̄i(x̄i − 1)
(
1

n
− wi), i = 1, . . . , n− 1. (8.44)

Then, the system of equations formed by (8.41) and (8.43) has a unique solution (x̄1, . . . , x̄n) given
by

x̄i = wi
Hw

ai
, i = 1, . . . , n− 1, x̄n =

Hw

n
. (8.45)

Moreover, the following two affirmations are true:

a) The height of the prism through the point (x̄1, . . . , x̄n−1, 0) coincides with the weighted har-
monic mean Hw of ai, i = 1, . . . , n, that is, the point (x̄1, . . . , x̄n−1, Hw) belongs to the hyper-
plane Π.

b) The height of the prism through the barycenter of the base GMw =
n∑
i=1

wiBi coincides with

the weighted arithmetic mean.

Proof. It is trivial to see that the proposed solution satisfies (8.41) and (8.43). Let us prove that
the solution is unique. Let us suppose that there exists another solution x′ = (x′1, · · · , x′n) with
x′ 6= x̄. Then, denoting zi = x̄i − x′i, i = 1, · · · , n, the system of equations formed by (8.41) and
(8.43) can be written as

n−1∑
i=1

[
cizi(x̄i + x′i)− (ci + an)zi

]
− zn = 0, (8.46a)

zn − bizi(x̄i + x′i)− (ai − bi)zi = 0, i = 1, · · · , n− 1, (8.46b)

what amounts to a homogeneous linear system of n equations with n unknowns. If we show that
this system has only the trivial solution z = 0, then we would have proven that x̄ = x′, what is
a contradiction with the starting supposition. Therefore, x̄ would be the unique solution. Let us
then prove that system (8.46) has z = 0 as the unique solution. By reductio ad absurdum, let us

suppose that the system has infinite solutions, that is, z =
s∑

k=1

λkv
k, where s = n− r, being r the

rank of the coefficient matrix of the linear system, λk ∈ R, and vk, k = 1, . . . , s, represent a base
of the Kernel of the associated linear map. Let us consider the univariate set of solutions z = λ1v

1,
λ1 ∈ R. By the sake of simplicity, we will drop the superindex and we will write z = λv. Thus, we
obtain

x′ = x̄− z = x̄− λv,

whose coordinates are given by

x′i = x̄i − zi = x̄i − λvi. (8.47)

Plugging (8.47) into (8.46b) we get

λvn = biλvi(2x̄i − λvi) + (ai − bi)λvi, ∀i = 1, · · · , n− 1, (8.48)
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and simplifying expression (8.48) we obtain

−λbiv2
i + 2bivix̄i + (ai − bi)vi − vn = 0, ∀i = 1, · · · , n− 1, λ 6= 0. (8.49)

Now, particularizing expression (8.49) for two different values of λ, λ1 6= λ2, and subtracting both
expressions, we reach to

(λ1 − λ2)biv
2
i = 0, ∀i = 1, · · · , n− 1. (8.50)

Before continuing with the main proof, we need to prove the following statement

s1) sign(ci) = sign(cj) ∀i, j ∈ {1, . . . , n− 1},

where sign(.) denotes the sign function,

sign(x) :=


1 x > 0,
−1 x < 0,
0 x = 0.

Statement s1) is proven just by isolating the term Hw in equation ci = 0, that is

ci = 0 ⇔ Hw

n
= an(1−

n−1∑
j=1

x̄j) = an −Hw(an

n−1∑
j=1

wj
aj

) (8.51)

⇔ Hw =
an

1
n + an

n−1∑
j=1

wj
aj

=

n∏
k=1

ak

1
na1 . . . an−1 +

n−1∑
j=1

wj
n∏
k=1
k 6=j

ak

.

Comparing expression (8.51) with the expression of Hw in Definition 38, we get that ci = 0 ⇔
wn = 1

n , ci > 0⇔ wn <
1
n , and ci < 0⇔ wn >

1
n .

We are ready to continue with the main proof. Since v 6= 0, the set of indices I such that vi 6=
0, i ∈ I, is not empty. Let us suppose that bi = 0, ∀i ∈ I. From (8.46), we get

vn = aivi, (8.52)

vn =
∑
i∈I

(−λcivi + 2cix̄i − (an + ci))vi. (8.53)

Plugging (8.52) into (8.53) and using that vi 6= 0, and in turn vn 6= 0, we get that∑
i∈I

(−λci
vi
ai

+ 2ci
x̄i
ai
− an + ci

ai
)− 1 = 0, ∀λ ∈ R. (8.54)

From equation (8.54), since it is true for all value of λ, taking two different values λ̄1, λ̄2 we get
that

−λ̄1vn(
∑
i∈I

ci
a2
i

) +
∑
i∈I

(2ci
x̄i
ai
− an + ci

ai
)− 1 = 0, (8.55)

−λ̄2vn(
∑
i∈I

ci
a2
i

) +
∑
i∈I

(2ci
x̄i
ai
− an + ci

ai
)− 1 = 0, (8.56)
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and subtracting (8.55) and (8.56) we get ∑
i∈I

ci
a2
i

= 0. (8.57)

Taking into account statement s1), since all ci have the same sign, it must be ci = 0, i ∈ I. In turn,
by using (8.53), this fact implies

−
∑
i∈I

anvn
ai

= vn ⇒ vn(1 +
∑
i∈I

an
ai

) = 0,

what is not viable as vn 6= 0, and we get a contradiction. Therefore, ∃i ∈ I, such that bi 6= 0.
From (8.50), this means that λ1 = λ2 what gives again a contradiction, this time with the initial
supposition. Thus, z = 0 is the unique solution of the homogeneous linear system and x̄ is the
unique solution of the system given by (8.41) and (8.43).

In order to prove now point a) of the theorem, we consider the straight line parallel to the xn
axis passing through (x̄1, . . . , x̄n−1, 0), that is

rw ≡


x1 = x̄1,
...

xn−1 = x̄n−1.

(8.58)

Cutting this straight line with the hyperplane Π we get the point (x̄1, . . . , x̄n−1, Hw), which gives the
enunciated result. A similar argument proves point b), just by considering in this case the straight

line parallel to the xn axis passing through the barycenter GMw =
n∑
i=1

wiBi = (w1, . . . , wn−1, 0),

and verifying that its intersection point with the hyperplane Π is just the weighted arithmetic mean

Mw =
n∑
i=1

wiai.

Remark 20. In the non-weighted case, that is, when all wi = 1
n , i = 1, . . . , n, all the paraboloids

degenerate in diagonal hyperplanes.

A simpler representation using only hyperplanes is also possible for the general case of dealing
with the weighted harmonic mean, as it comes out directly from Remark 20 and from the observation

H 1
n

(
a1

w1
, . . . ,

an
wn

) = nHw(a1, . . . , an), (8.59)

where H 1
n

stands for the harmonic mean with uniform weights wi = 1
n , i = 1, . . . , n.

More precisely, using the previous notations and defining also

a∗i = ai
wi
,

P ∗i ≡ (0, · · · , 0, 1
i
, 0, · · · , 0, a∗i ), i = 1, · · · , n− 1,

P ∗n = (0, · · · , 0, a∗n),

Hw = Hw(a1, . . . , an), w = (w1, . . . , wn),

H∗1
n

= Hw(a∗1, . . . , a
∗
n), w = ( 1

n , . . . ,
1
n),

Mw = Mw(a1, . . . , an), w = (w1, . . . , wn),

M∗1
n

= Mw(a∗1, . . . , a
∗
n), w = ( 1

n , . . . ,
1
n),
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we can give the following corollary.

Corollary 4. Let us consider the hyperplanes Π, Π∗ which pass through the points Pi, and P ∗i , i =
1, . . . , n, respectively, n ≥ 2. They are given by the equations

Π ≡ xn = an +

n−1∑
i=1

xi(ai − an), (8.60)

Π∗ ≡ xn =
an
wn

+
n−1∑
i=1

xi(
ai
wi
− an
wn

). (8.61)

Let us also consider the hyperplane V ∗n which passes through the points Bi, i = 1, . . . , n− 1 and P ∗n
given by the equation

V ∗n ≡
n−1∑
i=1

xi + wn
xn
an

= 1. (8.62)

and the hyperplanes V ∗i , i = 1, . . . , n− 1 given by the equations

V ∗i ≡ xn =
ai
wi
xi, which pass through B1, . . . , Bi−1, P

∗
i , Bi+1, . . . , Bn. (8.63)

Then, the system of equations formed by (8.62) and (8.63) has a unique solution (x̄1, . . . , x̄n) given
by

x̄i = wi
Hw

ai
, i = 1, . . . , n− 1, x̄n =

H∗1
n

n
= Hw. (8.64)

Moreover, the following two affirmations are true:

a) The height of the prism P ∗ (with vertices P ∗i ) through the point (x̄1, . . . , x̄n−1, 0) coincides
with the harmonic mean of a∗i , i = 1, . . . , n, that is, H∗1

n

, and the height of the prism P (with

vertices Pi) through the same point is 1
nH
∗
1
n

= Hw, that is, the point (x̄1, . . . , x̄n−1, Hw) belongs

to the hyperplane Π.

b) The height of the prism P ∗ through the barycenter of the triangular base GM 1
n

=
n∑
i=1

1
nBi

coincides with the arithmetic mean M∗1
n

, and the height of the prism P through the weighted

barycenter of the triangular base GMw =
n∑
i=1

wiBi coincides with the weighted arithmetic

mean Mw.

Proof. It is trivially derived either from Theorem 14 or from Theorem 15 just by applying the
relation (8.59) and observing the Remark 20.

In Figure 8.4 we see the representation of Corollary 4 in 2D and in 3D for a particular choice
of the arguments ai and the weights. In the upper part we see the case of two arguments. We
can appreciate the relation (8.59) between the harmonic mean of the modified arguments a∗i and
the weighted harmonic mean of the original arguments ai, which is placed at the half part of the
height of the trapezoid at the abscissa where both means take place. However, no clear relation
is observed between the arithmetic mean of the modified values M∗1

n

and the weighted arithmetic

mean Mw of the original ones. The same appreciation runs for the case of three arguments, where
the weighted harmonic mean of the original arguments locates at the third part of the height of
the prism through the corresponding abscissa.
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(a) (b)

(c) (d)

Figure 8.4: Representation of weighted harmonic mean according to Corollary 4. (a): Weighted
harmonic mean of the two positive values a1 = 3, a2 = 6, with weights w1 = 0.6, w2 = 0.4. (b):
Comparison among H∗1

n

, Hw, M
∗
1
n

, Mw, in the case of two arguments. (c): Weighted harmonic mean

of the three positive values a1 = 6, a2 = 7, a3 = 10 with weights w1 = 0.4, w2 = 0.3, w3 = 0.3.
(d): Comparison among H∗1

n

, Hw, M
∗
1
n

, Mw, in the case of three arguments. In blue the harmonic

mean, in red the weighted arithmetic mean of the original values, in yellow the arithmetic mean of
the modified values.

8.5 Examples of application

In this section our main purpose is to point out how to use the simple theoretical results
presented in previous sections to define a nonlinear reconstruction operator adapted to jump dis-
continuities. This application is just one possibility of use of the introduced concepts. It can be
applied in many other contexts in order to define a nonlinear method from an already existing
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linear method, just by writing the necessary expressions in terms of a weighted arithmetic mean of
some quantities, which satisfy certain requirements having to do with satisfying the hypothesis of
Lemma 34 in smooth areas of an hypothetical underlying function, acting as smoothness indicators,
being just one or a few of them potentially affected by a discontinuity (and very large because of
this reason), and not using these affected quantities in the rest of the expressions. Then, the fact
of substituting the arithmetic mean for a corresponding harmonic mean will allow the adaptation
thanks to Lemma 33, since the large values, due to the presence of a discontinuity, will be limited.

Some examples of already existing methods that use these ideas with the harmonic mean of two
values can be found in several applications. Let us mention for example:

• Point values reconstructions and the related field of subdivision and multiresolution schemes,
see [6, 42] and the references therein.

• The field of image processing, to define nonlinear compression methods into the cell averages
framework inside Harten’s multiresolution, see [12].

• Also in the field of image processing for denoising purposes, see [21].

• Generation of curves and surfaces, due to some remarkable properties of the harmonic mean
in relation with the definition of convexity preserving reconstruction methods, see for example
[37].

• In combination with spline reconstructions, see [20].

• In the solution of hyperbolic conservation laws, see [49, 48].

Up to our knowledge, there are no existing applications using these ideas, and involving har-
monic means of 3 or more values. In what follows, we are going to present a new nonlinear adapted
reconstruction method for approximating two variable functions using the point values of the func-
tion over triangular meshes. Since our aim with this definition is just to clarify the way of using the
presented theory, we are going to focus on the local definition of the reconstruction operator for a
given triangle of the mesh. Let us consider S ⊆ R2, the equilateral triangle with sides of length 2h,

with h > 0 any positive real number, defined by the vertices A(−h,
√

3
2 h), C(0,−

√
3

2 h), E(h,
√

3
2 h),

as shown in Figure 8.5. Let us also consider that the triangle is divided into 4 new smaller triangles:
SA of vertices ABF, SC of vertices CDB, SE of vertices EFD, and SR of vertices BDF , just by
considering the mid points of each side of the original triangle, see also Figure 8.5. We are going to
describe how to build a nonlinear reconstruction inside the triangle SR of an underlying function
f(x, y), from which we know its point values at the six mentioned points A,B,C,D,E, F. This
nonlinear reconstruction will attain third order of approximation in case the underlying function
f(x, y) is of class C3, and will be adapted to the presence of jump discontinuities that affect only
one of the three values A, C, or E.

Firstly, we are going to define the associated linear reconstruction, that it is going to be nothing
more than the second degree interpolating polynomial that goes through the six given initial points.

Let us write the polynomial around the barycenter of the triangle G(0,
√

3
6 h) in the form

p(x, y) = a00 + a10x+ a01(y −
√

3

6
) + a20x

2 + a11x(y −
√

3

6
) + a02(y −

√
3

6
)2. (8.65)
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Figure 8.5: Disposition of the considered domain to build the reconstruction inside the red triangle
SR with vertices BDF, using the point values of an underlying function f(x, y) at the six points
A,B,C,D,E, F.

Imposing the interpolation conditions p(Qi) = f(Qi), for Qi ∈ {A,B,C,D,E, F}, we get a linear
system of equations, which has unique solution given by

a00 =
4

9
(fB + fD + fF )− 1

9
(fA + fC + fE),

a10 =
−fA − 4fB + 4fD + fE

6h
,

a01 =

√
3

18h
(fA − 4fB − 2fC − 4fD + fE + 8fF ),

a20 =
fA − 2fF + fE

2h2
,

a11 = −
√

3

3h2
(fA − 2fB + 2fD − fE),

a02 =
fA − 4fB + 4fC − 4fD + fE + 2fF

6h2
,

where fQi denotes f(Qi). It is easy to prove, by using Taylor expansions, the following theorem
that ensures third order of approximation of the proposed linear reconstruction.

Theorem 16. Let f : Ω⇒ R be a function of class C3(Ω), with S ⊆ Ω. And let p(x, y) denote the
interpolating polynomial defined by (8.65) with the coefficients given by (8.66). Then, we have

|f(x, y)− p(x, y)| = O(h3), ∀ (x, y) ∈ SR.

We have then accomplished the first step in the definition of the nonlinear method, that is, we
have a ready to modify linear method. Secondly, we want to rewrite the coefficients of the linear
reconstruction by making appear arithmetic means. Let us define ∆A, ∆C , and ∆E as follows

∆A :=
fA − (fB + fF ) + fD

h
, (8.66)

∆C :=
fC − (fB + fD) + fF

h
,

∆E :=
fE − (fD + fF ) + fB

h
.
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Figure 8.6: Disposition of the considered domain affected by a jump discontinuity along the blue
curve.

It is immediate to prove, by using Taylor expansions, that in smooth areas of the function

∆A = O(h), ∆C = O(h), ∆E = O(h), (8.67)

∆A −∆C = O(h), ∆A −∆E = O(h), ∆C −∆E = O(h). (8.68)

Moreover, these values ∆A, ∆C , ∆E act as smoothness indicators, a kind of divided differences,
in the sense that if a jump discontinuity lies affecting one of the values A, C, or E, then the
corresponding divided difference will be O( 1

h), while the others will remain O(h). In Figure 8.5,
we see the case of having the vertex E affected by a jump discontinuity, which takes place along a
curve plotted in blue. The idea behind the method that we are going to explain is to substitute fE
for a more suitable value f̃E , that both maintains the approximation accuracy in case of dealing
with a smooth function and allows for adaptation in case of discontinuity.

The coefficients in (8.66) can be rewritten as follows

a00 =
1

3
(fB + fD + fF )− h

3

∆A + ∆C + ∆E

3
, (8.69)

a10 =
fD − fB

h
− 1

6
(2∆A + ∆C) +

1

2

∆A + ∆C + ∆E

3
,

a01 =

√
3

6
(∆C + 2

fF − fC
h

) +

√
3

6

∆A + ∆C + ∆E

3
,

a20 = − 3

2h
∆C +

3

2h

∆A + ∆C + ∆E

3
,

a11 = −2
√

3

h
∆A +

√
3

3h2
(fD − 2fF + fB) +

√
3

h

∆A + ∆C + ∆E

3
,

a02 = − 1

2h
∆C +

1

2h

∆A + ∆C + ∆E

3
.

It is important that the potentially affected value by a possible discontinuity fE , the one that makes
∆E be the largest in absolute value, appears only inside the term ∆E and in turn ∆E appears only
in the arithmetic mean.
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Thirdly, we are going to modify the expressions of the coefficients in (8.69) implementing the
substitution of the arithmetic means by adequate harmonic means. Since the values of the divided
differences could be positive, negative, or zero, and we are also going to need that these quantities
satisfy the hypothesis of Lemma 34, we require the redefinition of the weighted harmonic mean by
using a translation strategy. In order to do so, we introduce the concept of translation operator,
which will allow us to extend the definition of the weighted harmonic mean.

Definition 39. Given h > 0, a translation operator T is any function T : R3 → R satisfying

1. T (0, 0, 0) = 0,

2. T (x, y, z) = T (σ(x), σ(y), σ(z)), where σ is any permutation of three elements,

3. T (−x,−y,−z) = −T (x, y, z),

4. sign(x+ T (x, y, z)) = sign(y + T (x, y, z)) = sign(z + T (x, y, z)), ∀ (x, y, z) 6= (0, 0, 0),

5. if (x, y, z) 6= (0, 0, 0), with |s| = max{|x|, |y|, |z|},

a) if ∃ s1 : |s1| = |s|, sign(s1) 6= sign(s), then sign(x+ T (x, y, z)) > 0,
sign(y + T (x, y, z)) > 0, sign(z + T (x, y, z)) > 0,

b) if @ s1 : |s1| = |s|, sign(s1) 6= sign(s), then sign(x+ T (x, y, z))sign(s) > 0,
sign(y + T (x, y, z))sign(s) > 0, sign(z + T (x, y, z))sign(s) > 0,

6. min{|x+ T (x, y, z)|, |y + T (x, y, z), |z + T (x, y, z)|} = O(1), ∀ (x, y, z) 6= (0, 0, 0), with
|x| = O(hα), |y| = O(hα), |z| = O(hα), for some α ≥ 0.

Properties 1 to 4 are meant to apply the weighted harmonic mean in mind by using basically
the expression given for positive numbers. While the property 5 will play an important role to
guarantee the adaptation of the method in case one of the arguments is very large due to the
presence of a discontinuity. In turn, property 6 ensures that the new arguments that are going to
be considered in the new definition of the mean will satisfy the hypothesis of Lemma 34.

We are now ready to redefine the weighted harmonic mean

Jw(a1, a2, a3) =

{
Hw(a1 + T, a2 + T, a3 + T )− T, (a1, a2, a3) 6= (0, 0, 0),
0, (a1, a2, a3) = (0, 0, 0),

(8.70)

where T is any translation operator satisfying Definition 39. It it important to notice that the new
mean also satisfy similar lemmas, Lemma 33 and Lemma 34, as the weighted harmonic mean. In
fact, we can prove the following two lemmas.

Lemma 35. Let ai > 0, i = 1, 2, 3 be be real numbers and wi > 0, i = 1, 2, 3 the corresponding
weights with w1 + w2 + w3 = 1. Then, the translated weighted harmonic mean Jw is bounded as
follows

|Jw| ≤ max{|a1 + T |
w1

, |T |}.

Proof. Since Jw(a1 +T, a2 +T, a3 +T ) and T have the same sign, then applying Lemma 33 we get

|Jw(a1, a2, a3)| ≤ max {|Hw(a1 + T, a2 + T, a3 + T )|, |T |} ≤ max

{
|a1 + T |
w1

, |T |
}
.
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Lemma 36. Let ai > 0, i = 1, 2, 3 be real numbers and wi > 0, i = 1, 2, 3 the corresponding
weights with w1 +w2 +w3 = 1. If |a1 − ai| = O(h), i = 2, 3, then, the translated weighted harmonic
mean Jw and the weighted arithmetic mean Mw := w1a1 + w2a2 + w3a3 satisfy

|Mw − Jw| = O(h2).

Proof. The case of (a1, a2, a3) = (0, 0, 0) is trivial. If (a1, a2, a3) 6= (0, 0, 0), using the definition of
Jw we get

|Mw(a1, a2, a3)− Jw(a1, a2, a3)| = |Mw(a1, a2, a3)−Hw(a1 + T, a2 + T, a3 + T )− T |
= |Mw(a1 + T, a2 + T, a3 + T )−Hw(a1 + T, a2 + T, a3 + T )|,

and applying Lemma 34 we have that

|Mw(a1 + T, a2 + T, a3 + T )−Hw(a1 + T, a2 + T, a3 + T )| = O(h2).

Thanks to the new translated version of the weighted harmonic mean in (8.70) we can finally
define the modified coefficients

ã00 =
1

3
(fB + fD + fF )− h

3
J 1

3
(∆A,∆C ,∆E), (8.71)

ã10 =
fD − fB

h
− 1

6
(2∆A + ∆C) +

1

2
J 1

3
(∆A,∆C ,∆E),

ã01 =

√
3

6
(∆C + 2

fF − fC
h

) +

√
3

6
J 1

3
(∆A,∆C ,∆E),

ã20 = − 3

2h
∆C +

3

2h
J 1

3
(∆A,∆C ,∆E),

ã11 = −2
√

3

h
∆A +

√
3

3h2
(fD − 2fF + fB) +

√
3

h
J 1

3
(∆A,∆C ,∆E),

ã02 = − 1

2h
∆C +

1

2h
J 1

3
(∆A,∆C ,∆E).

The new nonlinear local reconstruction method writes then

p̃(x, y) = ã00 + ã10x+ ã01(y −
√

3

6
) + ã20x

2 + ã11x(y −
√

3

6
) + ã02(y −

√
3

6
)2, (8.72)

where the coefficients ã00, ã10, ã01, ã20, ã11, ã02 are given in (8.71). It is also interesting to notice
that this reconstruction amounts to modifying the value fE

fE = fB + fD + fF − (fA + fC) + 3hM 1
3
(∆A,∆C ,∆E),

in order to get

f̃E = fB + fD + fF − (fA + fC) + 3hJ 1
3
(∆A,∆C ,∆E),

and then considering the original interpolation problem with modified function values {fA, fB, fC , fD, f̃E}.
By definition, it is not difficult to prove a theorem about the adaptation of the proposed method
and the third order accuracy in smooth areas.
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Theorem 17. Let f : Ω⇒ R be a function of class C3(Ω), with S ⊆ Ω. And let p̃(x, y) denote the
interpolating polynomial defined by (8.72) with the coefficients given by (8.71). Then, we have

|f(x, y)− p̃(x, y)| = O(h3), ∀ (x, y) ∈ SR. (8.73)

Moreover, if f has a jump discontinuity along a curve letting S \ SE to one side and the vertex E
to the other side of the curve, then we have

|f(x, y)− p̃(x, y)| = O(h), ∀ (x, y) ∈ SR. (8.74)

Proof. Taking into account that |M 1
3
−J 1

3
| = O(h2) according to Lemma 36, from (8.69) and (8.71)

we get that
a00 − ã00 = O(h3),
a10 − ã10 = O(h2), a01 − ã01 = O(h2),
a20 − ã20 = O(h), a11 − ã11 = O(h), a02 − ã02 = O(h).

(8.75)

Now, from the expressions of the linear reconstruction p(x, y) in (8.65) and of the nonlinear recon-
struction p̃(x, y) in (8.72) we easily obtain by applying the triangular inequality that

|p(x, y)− p̃(x, y)| ≤ |a00 − ã00|+ |a10 − ã10||x|+ |a01 − ã01||y −
√

3

6
|+ |a20 − ã20||x|2

+ |a11 − ã11||x||y −
√

3

6
|+ |a02 − ã02||y −

√
3

6
|2. (8.76)

Thus, using (8.75) we reach to
|p(x, y)− p̃(x, y)| = O(h3). (8.77)

Applying Theorem 16 and (8.77) we have

|f(x, y)− p̃(x, y)| ≤ |f(x, y)− p(x, y)|+ |p(x, y)− p̃(x, y)| = O(h3),

which proves (8.73).
In order to prove (8.74) we start by pointing out that

|f(x, y)− p1(x, y)| = O(h2), ∀(x, y) ∈ SR, (8.78)

where p1(x, y) is given by,

p1(x, y) = a00 + a10x+ a01(y −
√

3

6
).

Now, taking into account that due to Lemma 35, |J 1
3
| = O(1), we have

|p1(x, y)− p̃(x, y)| ≤ |a00 − ã00|+ |a10 − ã10||x|+ |a01 − ã01||y −
√

3

6
|+ |ã20||x|2 (8.79)

+ |ã11||x||y −
√

3

6
|+ |ã02||y −

√
3

6
|2 = O(h) +O(1)O(h) +O(1)O(h) = O(h).

Thus

|f(x, y)− p̃(x, y)| ≤ |f(x, y)− p1(x, y)|+ |p1(x, y)− p̃(x, y)| = O(h2) +O(h) = O(h), ∀(x, y) ∈ SR,

which finishes the proof.
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Remark 21. We have defined the reconstruction in equilateral triangles using the harmonic mean
of three values, but the reconstruction can be extended to whatever triangle by defining adequate
weights depending on the specific form of the triangle, expressing the coefficients in terms of weighted
arithmetic means instead, and then following the same track as in the given example.

The ideas expressed in the presented new reconstruction operator can be extrapolated to higher
dimensions, and into other fields of numerical analysis, such as the previously mentioned in the list
at the beginning of this section. To finish this section, we present a simple numerical example that
reinforces the theoretical results. Given the following two functions of two variables f(x, y) and
g(x, y),

f(x, y) := sin (x+ y) + 20, g(x, y) :=

{
sin (x+ y) + 20, y < −

√
3(x− 5

8),

cos (x+ y) + 200, y ≥ −
√

3(x− 5
8),

defined in the triangle T of vertices A(−h,
√

3
2 h), C(0,−

√
3

2 h), E(h,
√

3
2 h), with h = 0.005, we con-

sider the linear reconstruction p(x, y) given by (8.65) and the nonlinear reconstruction p̃(x, y) given
by (8.72) inside the triangle SR represented in Figure 8.5, and also the same kind of reconstructions,
but in the triangles SY and SG with sides of length a half and a quarter of the length of the sides of
the original triangle SR. Then, we measure the errors and the approximation order of both linear
and associated nonlinear method in two scenarios, i.e., with the smooth function f(x, y) and with
the function g(x, y) which contains a jump discontinuity along the straight line y = −

√
3(x− 5

8). In
Figure 8.5, we see the domain of the considered functions and the representation of the reconstruc-
tions attained in the triangle SR by both methods. One can easily observe how the linear method
produces the expected Gibb phenomena around the jump discontinuity, while the nonlinear method
seems to avoid it. This fact can also be appreciated in the Table 8.1, where we have measured the
committed errors for the two reconstructions inside the triangle SG when building the reconstruc-
tions for the three triangles SR, SY , and SG respectively. We have also included the numerical
approximation order computed from these errors, i.e., we have approximated the numerical order
p by using

p ≈ log2

ESR
ESY

, and p ≈ log2

ESY
ESG

,

where ESR , ESY , and ESG stand for the approximation errors in infinity norm inside the triangle
SG, attained by the considered reconstruction operators, builded using the information relative to
the indicated triangle. In the case of dealing with a smooth function, we see that the nonlinear
method imitates the good behavior of its linear counterpart. This point can be appreciated as
much in Figure 8.5 as in Table 8.2. We would like to remark the fact that the obtained numerical
orders coincide with the expected according to Theorem 16 and Theorem 17. Also, it is remarkable
the fact that the linear method completely loses any approximation order in case of the jump
discontinuity and produces Gibbs effects, while these drawbacks are avoided with the proposed
nonlinear method, attaining at least a first order approximation.

8.6 Conclusions

In this chapter we have presented two relevant properties of the harmonic mean that allow for
new constructions of numerical methods, such as nonlinear reconstruction operators, subdivision
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(a) (b)

(c) (d)

Figure 8.7: (a): Disposition of the considered domain to build the linear and nonlinear reconstruc-
tions inside the triangles SR, SY , and SG. (b): Disposition of the considered domain affected by
a jump discontinuity along the blue curve for which we build the linear and nonlinear reconstruc-
tions inside the triangles SR, SY , and SG. (c): Obtained reconstructions, and comparison with the
original smooth function f(x, y) in the triangle SR. (d): Obtained reconstructions, and comparison
with the original discontinuous function g(x, y) in the triangle SR. With blue circles the original
function, with red asterisks the linear reconstruction and with black triangles the new nonlinear
reconstruction.
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p(x, y) p̃(x, y)

Triangle ||p(x, y)− f(x, y)||∞ p Triangle ||p(x, y)− f(x, y)||∞ p

SR 16.9679 − SR 7.0587× 10−7 −
SY 22.6243 −0.4151 SY 4.7168× 10−7 0.5816

SG 22.6245 −1.3679× 10−5 SG 2.3545× 10−7 1.0024

Table 8.1: Numerical approximation errors ||p(x, y)−g(x, y)||∞ and ||p̃(x, y)−g(x, y)||∞ in infinity
norm between the linear reconstruction and the original discontinuous function g(x, y) and between
the nonlinear reconstruction p̃(x, y) and the original discontinuous function g(x, y) in the triangle
SG for the cases of building the reconstructions inside the triangles SR, SY and SG of decreasing
side lengths. The approximation orders p are also offered.

p(x, y) p̃(x, y)

Triangle ||p(x, y)− f(x, y)||∞ p Triangle ||p(x, y)− f(x, y)||∞ p

SR 9.1721× 10−9 − SR 8.9912× 10−9 −
SY 1.6914× 10−9 2.4390 SY 1.6687× 10−9 2.4298

SG 2.1329× 10−10 2.9874 SG 2.1080× 10−10 2.9848

Table 8.2: Numerical approximation errors ||p(x, y)−f(x, y)||∞ and ||p̃(x, y)−f(x, y)||∞ in infinity
norm between the linear reconstruction and the original smooth function f(x, y) and between the
nonlinear reconstruction p̃(x, y) and the original smooth function f(x, y) in the triangle SG for the
cases of building the reconstructions inside the triangles SR, SY and SG of decreasing side lengths.
The approximation orders p are also offered.

and multiresolution schemes, and solvers of hyperbolic conservation laws. These properties have
been presented for any finite number of arguments, with the purpose of generating new algorithms in
problems involving N -dimensional spaces. We have given some geometrical representations of both
the weighted harmonic mean and the weighted arithmetic mean where the mentioned properties
can be appreciated in an intuitive way. In the last part of the chapter we offer a clear and simple
example on how to use these simple concepts to attain interesting and promising results in defining
new methods.
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Chapter 9

Future works and perspectives

This chapter is intended as a brief guide to continue and extend the work carried out through
the production of this thesis dissertation. Science and in particular the mathematics field is so
broad that many branches arise from the same stem, no matter the specific that it is. New ques-
tions always emerge as an opportunity to broad the human understanding of underlying ideas.

Here, we simply let written the thoughts that have appeared when dealing with each particular
chapter developed in this manuscript. In this way, we hope that anyone interested or maybe myself
together with perhaps my thesis advisor or other colleagues will find the time, motivation, and
appropriate circumstances to deepen in such items.

The remarkable points to be considered are separated in chapters as follows:

Chapter 2

P2.1 Extension of the general stability results of the subdivision scheme to σ quasi uniform
grids.

P2.2 Particularization for the more specific case of dealing with convex or concave initial data,
that is the generalization of Chapter 2 to σ quasi uniform grids.

P2.3 Study the possibility of imposing conditions for a local change of data in order to being
able to prove the stability of PPH-like subdivision schemes that consist on a local modifi-
cation of the data together with the application of an already known linear and therefore
stable scheme. This study can be done as much with uniform as with nonuniform grids.

Chapter 3

P3.1 Definition and analysis of PPH-type reconstructions of higher order in nonuniform grids.

P3.2 Definition of another kind of mean in such a way that following the same ideas as in this
chapter, we get a reconstruction that keeps third order accuracy O(h3) in the interval
[xj , xj+1] in the case that a jump singularity is located at the interval [xj+1, xj+2], instead
of O(h2).

P3.3 In combination with Chapter 7, calculation of the error bounds that appear in the pro-
cess of approximation of the limit function of the nonuniform PPH subdivision scheme
by firstly refining the initial data using some steps of PPH subdivision and then applying
the nonuniform PPH reconstruction operator.
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Chapter 4

P4.1 In combination with the definition of a translation operator in Chapter 5, analysis of
the behavior respect to Gibbs phenomena of the PPH reconstruction implemented with
the translation operator.

Chapter 5

P5.1 Analysis of the behavior respect to Gibbs phenomena of the PPH reconstruction imple-
mented with the translation operator.

Chapter 6

P6.1 Analysis in more detail of the connection between the PPH reconstruction operator with
smoothing splines in a given interval [a, b], giving not only a local relation between both
methods but a global one.

Chapter 7

P7.1 In combination with Chapter 3, calculation of the error bounds that appear in the process
of approximation of the limit function of the nonuniform PPH subdivision scheme by
firstly refining the initial data using some steps of PPH subdivision and then applying
the nonuniform PPH reconstruction operator.

P7.2 Analysis of the PPH subdivision scheme in nonuniform grids with respect to the elimi-
nation of the Gibbs phenomena.

P7.3 Implementation and study the PPH subdivision scheme implemented with a translation
operator.

P7.4 Theoretical and numerical analysis of the associated PPH multiresolution scheme in
nonuniform meshes. In particular such things as compression capabilities and stability
of the subdivision and multiresolution schemes.

P7.5 Definition and complete parallel developments for the case of extrapolating the ideas
of the PPH reconstruction, subdivision and multiresolution schemes to the cell average
setting.

Chapter 8

P8.1 Implementation of the proposed local reconstruction in equilateral triangles in a domain
that admits a previous tessellation with equilateral triangles.

P8.2 Extension of the PPH reconstruction on equilateral triangles to general triangles.

P8.3 Application of similar ideas to derive non separable reconstructions directly in 2D by
using polyominoes. It seems possible in this context to define methods such as ENO-
type, WENO-type and PPH-type methods.

P8.4 Generalization of the previous points to higher dimensions, 3D, etcetera.

P8.5 Potential application of these algorithms into Finite Element Methods (FEM).

We hope that at least some of all these points will be successfully carried out in a near future.
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