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Resumen

Los esquemas de subdivisién y multiresolucién se han utilizado en las iltimas décadas en muchas
aplicaciones que requieren del diseno geométrico. Estas aplicaciones son numerosas en la industria,
por ejemplo para la fabricacién de coches y barcos, y también en la industria cinematogréfica
para generar diferentes formas tanto en 2D como en 3D. Los esquemas de subdivisién se basan
en un proceso de refinamiento sucesivo de un conjunto inicial de datos discretos. Se genera un
nuevo conjunto de datos méas denso de acuerdo con algunas reglas especificas. A su vez, este nuevo
conjunto se refinard aiin més. En este punto surgen diversas cuestiones matemadticas importantes, y
que van desde asegurar la convergencia de los esquemas a estudiar la suavidad de la funcién limite,
la estabilidad de los esquemas de subdivisién, el orden de aproximacion y los requisitos necesarios
para su aplicabilidad en problemas de la vida real. En particular, es importante el analisis de las
capacidades de preservacion de los esquemas para algunas propiedades cruciales que podrian estar
presentes en el conjunto inicial de datos, tal como la convexidad.

Los esquemas de subdivision generan algoritmos rapidos para la facil construccion de curvas
y superficies [26], [29]. Todas estas cualidades los convierten en una herramienta interesante para
diversas aplicaciones industriales. Ademads, su estrecha relacién con esquemas de multirresolucién
abre la puerta a més aplicaciones en el campo del procesamiento de datos y sefiales. Los procesos
de compresion y eliminacion de ruido son faciles de implementar mediante el uso de esquemas de
multiresolucién y se ha comprobado que son bastante eficientes. Véase, por ejemplo [35], [5], [2].

Una cuestién principal a la hora de elegir un esquema de subdivisiéon adecuado es la propiedad
de conservacién de la convexidad, porque muchas aplicaciones la requieren. Se han hecho muchos
esfuerzos en este sentido, véase por ejemplo [27], [32], [33], [37].

La estabilidad es también un problema principal en las aplicaciones de la vida real, ya que los
disenos finales se generan mediante el refinamiento de un conjunto inicial de puntos que suele estar
afectado por algin error. Por lo tanto, es esencial hacer un seguimiento del error y mantenerlo por
debajo de una tolerancia prescrita. Algunas referencias recomendadas sobre la estabilidad de los
esquemas de subdivisién y multiresolucién pueden consultarse en [24], [9], [11], [1], [3], [15].

Harten derivé una teoria que conecta estrechamente los operadores de reconstruccién con los
esquemas de subdivisién y multiresolucién [35], [5]. Las reconstrucciones no lineales aparecen como
una buena opcién para minimizar los efectos adversos de las posibles singularidades y para mejorar
la adaptacion a los datos dados. Esta teoria no es tan ficil de estudiar como para el caso lineal. Los
operadores de reconstruccion no lineales dan lugar a esquemas de subdivision y multiresolucién no
lineales. Para dejar claro el tipo de dificultades que se pueden encontrar, mencionamos por ejemplo
el caso del andlisis de estabilidad. A este respecto, se ha demostrado que todos los esquemas de
subdivisiéon y multiresolucién lineales son estables, mientras que se necesita un andlisis particular
para cada esquema no lineal concreto.

Los esquemas de multiresolucion estan profundamente conectados con los esquemas de subdi-
visién y heredan muchas de sus propiedades. Para ma&s informacion sobre estas herramientas se
puede consultar [5] como primera referencia.

En [6] se introdujo una reconstruccién no lineal denominada PPH y se estudié el esquema
de subdivisién asociado. Esta reconstruccién se definié con el fin de adaptarse a la presencia de
potenciales singularidades. Consiste en una modificacién ingeniosa de la interpolacién centrada de
cuarto orden de Lagrange a trozos. Para implementar la adaptacién, la reconstruccion se realiza



localmente en un intervalo [z;,z;11] usando los valores disponibles de la funcién en las cuatro
abscisas centradas {«j_1,2;, 2 41,242}, y teniendo en cuenta dos aspectos principales. El primer
aspecto es que la modificacién en un area donde la funcién subyacente es suave debe hacerse de tal
manera que las cantidades alteradas no cambien significativamente, de modo que la modificacién
siga siendo O(h*), donde h representa el espaciado del mallado. El segundo aspecto es que en
los intervalos adyacentes a una singularidad, pero que no la contienen, la reconstruccién conserve
cierto orden de aproximacién, de hecho O(h?), al contrario de lo que ocurre con su homélogo lineal
que pierde completamente el orden de aproximacion.

Esta tesis se dedica principalmente al estudio del operador de reconstruccién no lineal PPH
en mallados no uniformes. En algunos casos y para demostrar determinados resultados tedricos
haremos uso de mallados o cuasi uniformes, que no son otra cosa que un tipo de mallados no
uniformes que aparecen en casi todas las aplicaciones practicas. La definicién exacta se da mas
adelante.

Esta memoria estd organizada con la estructura que a continuacion se detalla. Obsérvese que
todos los capitulos han sido redactados para permitir su lectura facil, haciéndolos lo mas auto-
contenidos posible. Cada capitulo ha dado lugar a un articulo de investigacion. Dichos articulos
han sido presentados para su publicacién en diferentes revistas matemaéaticas indexadas en el Jour-
nal Citations Report (JCR) dentro del primer cuartil de revistas en los dmbitos de Matematicas
o Matematicas Aplicadas. En algunos casos, los articulos ya han sido publicados y la referencia
exacta se incluye tanto al principio del capitulo como en la bibliografia.

Capitulo 2 En [11], se consider6 el problema de estabilidad del esquema de subdivisién PPH en mallados
uniformes mediante el uso de ciertas propiedades de contractividad de las diferencias dividi-
das de segundo orden. En este capitulo proponemos un estudio paralelo utilizando diferencias
divididas de primer orden en su lugar, obteniendo una menor constante de estabilidad, mas
ajustada a la realidad. EI estudio se realiza para datos iniciales convexos procedentes de
funciones suaves. Dado que el esquema de subdivision PPH considerado preserva la convexi-
dad [37], [10], la propiedad de convexidad de los datos iniciales estd garantizada en todas las
escalas de refinamiento. A lo largo de este capitulo introducimos el esquema de subdivision
PPH, damos el esquema resultante para las primeras diferencias, y el resultado que garantiza
la convergencia del esquema. También estudiamos la contractividad del esquema para las
diferencias, y probamos el resultado de estabilidad anunciado mejorando la constante de es-
tabilidad en [11] y en [33] para datos iniciales estrictamente convexos que satisfacen una cierta
restriccién. Finalmente, damos un ejemplo numérico para mostrar las potenciales aplicaciones
de la teoria presentada y algunas conclusiones.

Capitulo 3 Damos una definicién del operador de reconstruccién PPH para datos sobre mallados no
uniformes, y estudiamos algunas propiedades de este operador en mayor profundidad. En
particular, nos centramos en la suavidad de la reconstruccién y en la conservacién de la
convexidad de los datos iniciales. Demostramos que la reconstruccion PPH da una funcién
C>, excepto para los nodos en los que la funcién sigue siendo C° y donde las diferencias
entre la primera, segunda y tercera derivadas laterales son de tercer, segundo y primer orden
respectivamente (véase la definicién 7).

En [10], los autores demostraron que el esquema de subdivisién asociado en mallados uni-
formes preserva la convexidad de los puntos de control. En este articulo, intentamos deter-
minar si este resultado sobre preservar la convexidad puede extenderse para el operador de



Capitulo 4

Capitulo 5

Capitulo 6

reconstruccion y no solo en mallados uniformes, sino también en mallados ¢ cuasi-uniformes
con o < 4.

El capitulo comienza con la definicién del operador de reconstruccion PPH sobre mallados no
uniformes. Para ello, se hace uso de una media arménica ponderada con los pesos adecuados.
A continuacién, se muestra que el nuevo operador de reconstruccién equivale al operador de
reconstruccion PPH original cuando se restringe a mallados uniformes. La definiciéon se da
para mallados generales no uniformes, aunque para establecer algunos resultados teéricos,
se consideran mallados o cuasi-uniformes. A continuacion, se estudian algunas propiedades
basicas de la reconstruccion PPH, como la reproduccién de polinomios de segundo grado, el
orden de aproximacién, la suavidad, la acotacién del operador, la continuidad de Lipschitz y
la conservacion de la convexidad. También se analiza la reconstruccién cuando se trata de
datos iniciales estrictamente convexos (o céncavos). Por tltimo, se presentan algunas pruebas
numéricas y se incluyen algunas conclusiones.

En este capitulo, analizamos el comportamiento del operador de reconstruccion PPH en
presencia de discontinuidades de salto. Probamos la adaptacién a la presencia de una dis-
continuidad de salto en el sentido de que se mantiene algiin orden de aproximacion en la
zona cercana a la discontinuidad, al contrario de lo que ocurre con los operadores lineales que
pierden completamente el orden de aproximacién. También demostramos, tanto teéricamente
como en los experimentos numéricos, la ausencia de oscilaciones debidas al fenémeno de Gibbs.

La media armonica original presenta dos caracteristicas indeseables para nuestros fines. La
primera es la posible division por cero en el denominador, y la segunda la necesidad de
la hipétesis z = O(1), e y = O(1), junto con |z — y| = O(h) para poder asegurar que
la media arménica se mantendré cerca, O(h?), de la media aritmética. En el operador de
reconstruccion los argumentos z e y de la media armonica son diferencias divididas de segundo
orden, y entonces no es una sorpresa que los problemas mencionados surjan cerca de los
puntos de inflexién o cerca de las singularidades de la funcién subyacente. Para resolver
ambos problemas en este capitulo se presenta una definicién general de lo que se entiende
por un operador de traslaciéon. A continuacion, se hace uso de este operador para modificar
la media armonica ponderada de tal manera que se obtiene una nueva media adaptada que
conserva propiedades similares a la original, lo que es de vital importancia para ser empleada
en la definicién del operador de reconstruccion PPH adaptado. Se estudian varias opciones
posibles de expresiones concretas para el operador de traslacién para trabajar en combinacién
con el operador de reconstruccion PPH. En particular, se define una forma de elegir una buena
opcion en funcién de los datos especificos a los que se va a aplicar con el fin de adaptarse
en presencia de discontinuidades y mantener el orden de la reconstruccion alrededor de los
puntos de inflexién.

Los nuevos resultados contenidos en el capitulo parten de la mencionada definicién y estudio
del operador de traslacién. A continuacién, se analiza el comportamiento del operador de
reconstruccion PPH mejorado con respecto al orden de aproximacion. Posteriormente, se
presentan algunos operadores de traslacion especificos, y se da una forma de seleccionar
un parametro de traslacion adecuado en funcién de los datos. Se presentan algunas pruebas
numéricas para confirmar los resultados tedricos. Por dltimo, se ofrecen algunas conclusiones.

Dedicamos este capitulo a relacionar el operador de reconstruccién PPH con los splines
suavizantes en un intervalo dado [a,b]. Los splines suavizantes se construyen mediante tro-



Capitulo 7

zos de reconstruccién polindémicos que se enlazan de forma suave en los nodos de control y
satisfacen el problema de minimizacién

b
. o IRy _ N2
i Jp)= min [ @) o+ Y totas) = 1 1)
donde II,, representa el espacio vectorial de los polinomios de grado menor o igual a n. El
funcional considerado implica un compromiso, dominado por los pesos (i, entre un término
de baja curvatura y un valor pequeno de la distancia acumulada al conjunto inicial de datos
(5, f3)-

En concreto, se destacan dos propiedades principales que van a ser cruciales para los propositos
que se persiguen: La preservacién de la convexidad cuando se parte de un conjunto discreto
de datos convexos y un término de curvatura bajo. Esta tltima propiedad sobre la curvatura
es parte de lo que se va a estudiar a lo largo del capitulo. Més concretamente, se estudia el
término de curvatura del funcional para las reconstrucciones de Lagrange y PPH, tanto en el
caso uniforme como en el no uniforme. Los resultados del estudio realizado parecen indicar
que la conexién entre la reconstruccién PPH y los splines suavizantes podria dar lugar a
aplicaciones muy interesantes.

Los esquemas de subdivision no lineales han surgido como variacion de los esquemas lineales
para adaptarse a los datos especificos en uso. La no linealidad se refiere a los esquemas de
subdivisiéon dependientes de los datos que también pueden implicar operaciones no lineales
en su definicion. Entonces, inherentemente, estan disenados para superar ciertos inconve-
nientes que aparecen cuando se trata con sus homélogos lineales, como por ejemplo el mal
comportamiento en presencia de discontinuidades aisladas. Un caso particular de este tipo
de operadores se defini6 en [6] y se denominé PPH (Piecewise Polynomial Harmonic). Este
esquema consiste bdsicamente en una ingeniosa modificacién del clasico esquema de subdi-
vision de Lagrange con cuatro puntos. Se han realizado varios estudios sobre sus propiedades
y rendimiento en diferentes aplicaciones, véase por ejemplo [6], [10], [32]. Dos objetivos prin-
cipales de este esquema de subdivisién estdan relacionados con el tratamiento de datos que
contienen discontinuidades aisladas, reduciendo los efectos indeseables, y con la preservacién
de la convexidad de los datos iniciales, mientras se mantiene un soporte centrado basado en
cuatro puntos.

En el capitulo 3 se extendié la definicién del operador de reconstruccién PPH a mallados
no uniformes. A su vez, este hecho nos permite extender el esquema de subdivisién PPH
a este tipo de mallados no uniformes, y realizar un estudio paralelo en este nuevo entorno.
Para superar algunas dificultades técnicas en las pruebas tedricas, se ha considerado una
restriccién a mallados o cuasi-uniformes en algunos resultados. El esquema resultante es
bastante interesante en términos de aplicaciones debido a la suavidad casi C' de la funcién
limite, que permite aproximar con precision funciones continuas con esquinas, y también
debido a sus buenas propiedades en cuanto a la preservacion de la convexidad de los datos
iniciales.

A lo largo del capitulo se recuerda el operador de reconstruccion PPH sobre mallados no
uniformes. Se presenta una breve resena sobre el entorno de multirresolucién interpolatoria
de Harten, que estd estrechamente relacionado con los esquemas de subdivision interpolato-
ria. A continuacion, se define un esquema de subdivisién asociado. Esta definicién se da
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Capitulo 9

para mallados generales no uniformes, aunque para establecer algunos resultados tedricos se
consideran mallados ¢ cuasi-uniformes. A partir de este punto, se analizan las principales
cuestiones sobre los esquemas de subdivisién. En particular, se demuestran algunos resulta-
dos sobre la convergencia del esquema, la suavidad de la funcién limite y la preservacion de
la convexidad. Ademads, se realizan algunas pruebas numéricas para comprobar la suavidad
tedrica de la funcién limite y el comportamiento del esquema de subdivisién no lineal.

La media aritmética y la media armdnica de niimeros positivos aparecen en muchas aplica-
ciones cientificas que van desde la estadistica hasta el andlisis numérico. La media arménica
tiene la propiedad de penalizar los valores grandes, dando lugar, por esta razén, a varias
aplicaciones interesantes. Ademas, cuando los argumentos no difieren mucho entre si, ambas
medias se mantienen cercanas, lo que constituye otra propiedad crucial para ciertas aplica-
ciones.

Este capitulo tiene por objetivo el presentar algunos ingredientes necesarios para extender
el operador de reconstruccion PPH a varias dimensiones. Mads concretamente, se necesita
disponer de una media apropiada en varias variables que satisfaga las propiedades bésicas
mencionadas anteriormente, como lo hace la media arménica. De hecho, la media armdnica
ponderada de varios valores cumple el objetivo. Este estudio se acompana de una inter-
pretacién gréafica de la media armoénica ponderada de varios valores, que ayuda a comprender
rapidamente los resultados tedricos.

El capitulo se inicia con las medias aritmética y arménica ponderadas de dos niimeros posi-
tivos, demostrando los dos resultados esenciales sobre estas medias que nos permitirdn definir
operadores de reconstruccion adaptados. Estos resultados vienen acompanados de una in-
terpretacion gréafica intuitiva en 2D seguin un resultado tedrico correspondiente que también
se prueba. Se sigue un camino similar para el caso de 3D, que implica trabajar con me-
dias ponderadas y arménicas de tres nimeros positivos. A continuacién, se aborda el caso
general, considerando las medias aritmética y arménica ponderadas de n nimeros positivos
para cualquier valor entero n > 2. Se termina el capitulo esbozando algunas aplicaciones de
estos resultados para permitir la definiciéon de reconstrucciones adaptadas en varias dimen-
siones, y se define explicitamente una nueva reconstrucciéon en 2D sobre mallados triangulares
adaptada a las discontinuidades, es decir, una especie de método de reconstruccion PPH sobre
triangulos.

Se termina este documento con algunas perspectivas y propuestas de trabajos futuros que han
ido apareciendo durante la realizaciéon de esta tesis, y cuya idea principal surge directamente
en relacién con los resultados contenidos en los capitulos anteriores.
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Chapter 1

Introduction

Subdivision and multiresolution schemes have been used in the last few decades in many ap-
plications that require from geometrical design. These applications are numerous in industry, for
example for car and ship manufacturing, and also in the film industry in order to generate different
shapes as much in 2D as in 3D. Subdivision schemes are based on a process of successive refine-
ment of a given initial discrete data set. A new denser set of data is generated according to some
specific rules. In turn, this new set will be further refined. A bunch of important mathematical
questions arise at this point, and range from ensuring the convergence of the schemes, studying the
smoothness of the limit function, the stability of the subdivision schemes and the order of approxi-
mation and the necessary requirements for their applicability in real life problems. In particular, it
is important the analysis of the preservation capabilities of the schemes for some crucial properties
which might be present in the initial set of data such as it could be the convexity.

Subdivision schemes generate fast algorithms to the easy construction of curves and surfaces
[26], [29]. All these qualities make them an interesting tool for several industrial applications. Also,
their close relation to multiresolution schemes opens the door to more applications in the fields of
data and signal processing. Compression and denoising processes are easy to implement by using
multiresolution schemes and they have been tested to be quite efficient. See for example [35], [5],
[2].

A chief issue in choosing an adequate subdivision scheme is the property of convexity preser-
vation, because many application require it. Many efforts have been done in this sense, see for
example [27], [32], [33], [37].

Stability is also a main issue in real life applications, since the final designs are generated through
the refinement of an initial set of points which usually is affected by some error. Therefore, keeping
track of the error and maintaining it under a prescribed tolerance is essential. Some recommended
references about stability of subdivision and multiresolution schemes can be consulted in [24], [9],
11, [1], [3], [15].

Harten derived a theory which closely connects reconstruction operators with subdivision and
multiresolution schemes [35], [5]. Nonlinear reconstructions appear as a good option to minimize
the adverse effects of potential singularities and to improve the adaptation to the given data. This
theory is not as easy to study as for the linear case. Nonlinear reconstruction operators give rise to
nonlinear subdivision and multiresolution schemes. In order to let clear the kind of difficulties to be
encountered, we mention for example the case of stability analysis. In what stability issues regards,
all linear subdivision and multiresolution schemes are proved to be stable, while a particular analysis
is needed for each particular nonlinear scheme.
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Multiresolution schemes are deeply connected with subdivision schemes and they inherit many
of their properties. For more information about these useful schemes one can consult [5] as a first
reference.

In [6] a nonlinear reconstruction called PPH was introduced, and the associated subdivision
scheme was studied. This reconstruction was built in order to get adapted to the presence of
potential singularities. It consist on a witty modification of the centered fourth order piecewise
Lagrange interpolation. In order to implement the adaptation, the reconstruction is built also
locally using a stencil of four centered data, but keeping in mind two main concerns. The first
concern is that the modification in an area where the underlying function is smooth must be done
in such a way that the modified quantities are not significatively changed, so that the modification
remains O(h?*), where h stands for the grid size. The second concern is that in the intervals adjacent
to a singularity, but not containing it, the reconstruction retains some order of approximation, in
fact O(h?), on the contrary to what happens with its linear counterpart that loses completely the
approximation order.

This thesis is mainly devoted to the study of the PPH nonlinear reconstruction operator over
nonuniform grids. In some cases, and in order to prove particular theoretical results we will make
use of o quasi uniform grids, that are nothing else but a kind of nonuniform grid that appears
almost in all practical applications. The exact definition is given later.

This memoir is organized with the following structure. Notice that all chapters have been
written in order to allow its reading without too many previous requirements, making them as
self-contained as possible. In fact, each chapter has given rise to a whole research article submitted
for publication to different mathematical journals. In some cases, the articles have been already
published and the exact reference is included both at the beginning of the chapter and in the
bibliography.

Chapter 2 In [11], the stability issues of the PPH subdivision scheme in uniform grids were considered
through the use of certain contractivity properties of second order divided differences. In
this chapter we propose a parallel study using first order divided differences instead, giving
rise to better stability bounds, more fitted to reality. The study is carried out for convex
initial data coming from smooth functions. Since the considered PPH subdivision scheme
is convexity preserving [37], [10], the convexity property of the initial data is ensured at all
refinement scales. Along this chapter we introduce the PPH subdivision scheme, we give
the resulting scheme for the first differences, and the result ensuring the convergence of the
scheme. We also study the contractivity of the scheme for the differences, and we prove
the announced stability result improving the stability constant in [11] and in [33] for strictly
convex initial data satisfying a certain restriction. Finally, we give a numerical example to
show the potential applications of the presented theory and some conclusions.

Chapter 3 We give a definition of the PPH reconstruction operator for data over nonuniform grids,
and we study some properties of this operator in greater depth. In particular, we focus on
the smoothness of the reconstruction and the convexity-preserving properties of the initial
data. We show that PPH reconstruction gives a C'™° function, except for the knots where
the function remains C° and the differences between the first, second, and third one-sided
derivatives are of the third, second, and first order, respectively (see Definition 7).

In [10], the authors proved that the related subdivision scheme in uniform meshes preserves
the convexity of the control points. In this chapter, we attempt to determine if this result

16



Chapter 4

Chapter 5

Chapter 6

about preserving convexity can be extended for the reconstruction operator and not only in
uniform meshes, but also in ¢ quasi-uniform meshes with o < 4.

The chapter deals with the definition of the PPH reconstruction operator over nonuniform
grids. For this purpose, we will use the weighted harmonic mean with appropriate weights.
Then, we show that the new reconstruction operator amounts to the original PPH recon-
struction operator when we restrict to uniform grids. The definition is given for general
nonuniform meshes, although in order to establish some theoretical results, we consider o
quasi-uniform meshes. Then, we study some basic properties of PPH reconstruction, such
as the reproduction of polynomials of the second degree, approximation order, smoothness,
boundedness of the operator, Lipschitz continuity, and convexity preservation. We also ana-
lyze the reconstruction when dealing with strictly convex (or concave) initial data. Finally,
we present some numerical tests and some conclusions are included.

In this chapter, we analyze the behavior of the PPH reconstruction operator in presence of
jump discontinuities. We prove adaptation to the presence of a jump discontinuity in the
sense that some order of approximation is maintained in the area close to the discontinuity,
on the contrary to what happens with linear operators that lose completely the approximation
order. We also prove, as much theoretically as in numerical experiments, the absence of any
Gibss phenomena.

The original harmonic mean presents two undesirable characteristics for our purposes. The
first one is the possible division by zero at the denominator, and the second one the need
of the hypothesis x = O(1), and y = O(1), together with |z — y| = O(h) in order to be
able to ensure that the harmonic mean will stay close, O(h?), to the arithmetic mean. In
the reconstruction operator the arguments of z and y of the harmonic mean are taken by
second order differences, and then it is not a surprise that the mentioned problems arise either
close to inflection points or close to singularities of the underlying function. In order to solve
both problems, in this chapter we introduce a general definition of what we call a translation
operator. Then, we make use of this operator to modify the weighted harmonic mean in such
a way that we obtain a new adapted mean which retains similar properties as the original
one, what is of chief importance in order to be employed into the construction of the adapted
PPH reconstruction operator. We study several possible options to work in combination
with the PPH reconstruction operator. In particular we define a way of choosing a good
option depending on the specific data to which it is going to be applied with the purpose of
both adapting in presence of discontinuities and maintaining the reconstruction order around
inflexion points.

The new results contained in the chapter start with a proper definition and study of the
translation operator. Then, we analyze the behavior of the improved PPH reconstruction
operator with respect to the approximation order. Later, we present some specific translation
operators, and we give a way of selecting an adequate translation parameter depending on the
data. Some numerical tests are presented in order to confirm the theoretical results. Finally,
some conclusions are given.

We dedicate this chapter to connect the PPH reconstruction operator with smoothing splines
in a given interval [a, b]. Smoothing splines are built through polynomial reconstruction pieces
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Chapter 8

that are linked in a smooth way at the control knots and satisfy the minimization problem

b
min J(p) := min "(z)? dx + (p(zi) — f:)?, 1.1
Jmig J0) = min [ 4@ 3 otes) = 1) (1)
where I1,, stands for the polynomials of degree less or equal to n. The considered functional
implies a balance, dominated by the weights p;, between a low curvature term and a small
value of the accumulated distance to the initial set of data (z;, f;).

We specifically remark two main properties which are going to be crucial for our purposes.
The convexity preservation when dealing with initial discrete set of convex data and a low
curvature term. This last property about the curvature is part of what is going to be proven
along the chapter. More precisely we study the term of curvature of the functional for the
Lagrange and PPH reconstructions, in the uniform and the nonuniform case. Due to these
suitable properties, we think that connecting the PPH reconstruction with smoothing splines
could result in very interesting applications.

Nonlinear subdivision schemes have emerged as good candidates to adapt to the specific
data in use. Nonlinearity means data dependent subdivision schemes which may also involve
nonlinear operations in their definition. Then, by definition, they are designed to overcome
certain drawbacks that appear when dealing with their linear counterparts, such as bad behav-
ior in presence of isolated discontinuities for instance. An example of these kind of operators
was defined in [6] and was named as PPH (Piecewise Polynomial Harmonic). This scheme
basically consists on a witty modification of the classical four points Lagrange subdivision
scheme. Several studies have been carried out about their properties and performance in
different applications, see for example [6], [10], [32]. Two main purposes of this subdivision
scheme are related to dealing with data containing isolated discontinuities, reducing the unde-
sirable effects, and preserving the convexity of the initial data, while maintaining a centered
support based on four points.

In chapter 3 we extend the definition of the PPH reconstruction operator to nonuniform grids.
In turn, this fact allows us to extend the PPH subdivision scheme to nonuniform grids, and
carry out a parallel study in this new setting. In order to overcome some technical difficulties
in the theoretical proofs, we have restricted to o quasi-uniform grids for some results. The
resultant scheme is quite interesting in terms of applications due to the almost C'' smoothness
of the limit function, allowing to approximate accurately continuous functions with corners,
and also due to appropriate properties regarding convexity preservation of the initial data.

Along the chapter we remind the PPH reconstruction operator over nonuniform grids. We
present a short review about Harten’s interpolatory multiresolution setting, which is closely
connected to interpolatory subdivision schemes. Then, we define an associated subdivision
scheme. This definition is given for general nonuniform meshes, although in order to es-
tablish some theoretical results we consider ¢ quasi-uniform meshes. We analyze the main
issues about subdivision schemes. In particular, we prove some results about convergence,
smoothness of the limit function, and convexity preservation. In addition, we carry out some
numerical tests to check the theoretical smoothness of the limit function, and the performance
of the nonlinear subdivision scheme.

The arithmetic and the harmonic mean of positive numbers appear in many scientific appli-
cations ranging from statistics to numerical analysis. The harmonic mean has the property of
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Chapter 9

penalizing large values, giving rise, because of this reason, to several interesting applications.
Moreover, when the arguments do not differ much from each other, both means remain close,
which is another crucial property in applications.

In this chapter our aim is to introduce some necessary ingredients to extend in turn this last
reconstruction operator to several dimensions. More specifically speaking, we need to dispose
of an appropriate mean in several dimensions which satisfies the required basic properties,
the two mentioned above, as the harmonic mean does. We carry out this study accompanied
by a graphical interpretation of the weighted harmonic mean of several values, which helps
to quickly understand the theoretical results.

We begin the chapter with the weighted arithmetic and harmonic means of two positive num-
bers, proving two essential results about these means which will allow us to define adapted
reconstruction operators. These results come accompanied with an intuitive graphical in-
terpretation in 2D according to a corresponding theoretical result that will be also proven.
A similar path will be followed for the 3D case, which involves working with weighted and
harmonic means of three positive numbers. After this, we deal with the general case of consid-
ering the weighted arithmetic and harmonic mean of n positive numbers for whatever integer
value n > 2. Some applications of these results are outlined in order to allow the definition of
adapted reconstructions in several dimensions, and we explicitly define a new reconstruction
in 2D over triangular meshes adapted to discontinuities, that is, a kind of PPH reconstruction
method on triangles.

We finish this thesis document with some perspectives and future works that we have in mind,
whose main idea emerge directly in relation to the results contained in previous chapters.
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Chapter 2

Improving the stability bound for the
PPH nonlinear subdivision scheme for
data coming from strictly convex
functions

The contents of this chapter are the result of collaboration with other colleagues from the
Universidad Politécnica de Cartagena (UPCT) and Universidad de Valencia (UV). This chapter
corresponds with the first submission to the journal. Later, it was published under the following
reference [36]

e Jiménez, 1.; Ortiz, P.; Ruiz, J.; Trillo, J. C.; Yéanez, D. F. Improving the stability bound
for the PPH nonlinear subdivision scheme for data coming from strictly convex functions.
Applied Mathematics and Computations. 2021, https://doi.org/10.1016/j.amc.2021.126042

2.1 Introduction

Subdivision schemes give rise to fast algorithms to generate curves and surfaces [26], [29].
Therefore they are used in car and ship manufacturing and in the design of cartoons for films
among a variety of applications. They conform also the heart of multiresolution schemes, and
therefore more applications are found such as signal and image compression and denoising [35], [5],
[2].

A crucial issue in the selection of an appropriate subdivision scheme is the preservation of the
convexity property of initial data, since many components and parts of the body in cars and other
engineering manufactures precise of this requirement. Many studies in this direction have been
carried out in the last decades, see for example some interesting works [27], [32], [33], [37].

Stability is also crucial in applications since the different curves and surfaces are generated
through the refinement of an initial set of points which in most cases is affected of some error.
Therefore maintaining the error under control and getting valid output data is of utmost impor-
tance. Some nice references about stability of subdivision schemes can be found in [24], [9], [11],
1], (3], [15-

Nonlinear reconstruction and subdivision schemes [35] appear as good candidates to avoid
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potential singularities and to improve the adaptation to the given data. Theory is in general not so
well studied as for linear stationary schemes. In what stability issues regards, all linear subdivision
schemes are proved to be stable, while a particular analysis is needed for each particular nonlinear
scheme.

Multiresolution schemes are deeply connected with subdivision schemes and they inherit many
of their properties. For more information about these useful schemes one can consult [5] as a first
reference.

In [6] a nonlinear reconstruction called PPH was introduced, and the associated subdivision
scheme was studied. The stability issues were considered in [11] through the use of certain con-
tractivity properties of second order divided differences. In this work we propose a parallel study
using first order divided differences instead, giving rise to better stability bounds, more fitted to
reality. The study is carried out for convex initial data coming from smooth functions. Since the
considered PPH subdivision scheme is convexity preserving [37], [10], the convexity property of the
initial data is ensured at all refinement scales.

This chapter is organized as follows: in Section 2.2 we introduce the PPH subdivision scheme,
in Section 2.3 we give the scheme for the differences, and the result ensuring the convergence of the
scheme, in Section 2.4 we study the contractivity of the scheme for the differences, in Section 2.5 we
prove the announced stability result improving the stability constant in [11] and in [33] for strictly
convex initial data satisfying a certain restriction. Finally in Section 2.6 we give some conclusions.

2.2 PPH subdivision scheme

Let us consider a set of nested grids in R:
Xk = {x?}jez, .’L’? =jhr, hgp= 27k,

The PPH subdivision scheme is described in detail [6], and we refer the interested reader to
this paper for more specific details. We would like to remark that it had been already studied
following different approaches by F. Kuijt and R. van Damme in [37], and independently by M.S.
Floater and C.A. Michelli in [32]. In both of these papers, and opposed to the development in
[6] the subdivision scheme is compeltely defined outside of the environement provided by Harten’s
framework for multiresolution.

In this section, we introduce the scheme given in [6] and express it as follows

ko gk
st 1 AGFRA T ; kA gk

(S92 1 =9 1 2% 18,758, A At >0, (2.2)
5 else,

where A]f = fj,1 — ij + fj+1.
This scheme is proven to be uniformly convergent, to attained fourth order accuracy in smooth
convex regions, and to maintain convexity in the following sense.

Definition 1. An univariate data set {f;} is said to be strictly convex if and only if Af; > 0 Vj.

Definition 2. An interpolatory subdivision scheme is said to be convexity preserving for a set of
sequences A if and only if the data set {fjk} = Sk £0 is strictly convex for any strictly convex initial

data O € A for all subdivision levels. The subdivision scheme is said convezity preserving if the
requirement is satisfied for all strictly convex initial data.
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A general proof for convexity preserving schemes through the use of associated reconstruction
operators can be found in [10].

2.3 Scheme for the differences. Convergence

k

In [6] a nonlinear scheme S; for the first order differences §;f* := fjlC - fi-

we can express it in the following way

1 was defined, and

(S16.%)2j41 = (2.3)
Ajiq fF Ajy1fF )
(3 - iﬁm)@ﬂf’c + i(ﬁ)@f’f if AjfEAfR >0,
Lgfk else.

And similarly for the even indexes,

(510/%)2; =
Aj_qfF Aj_1fF .
(5~ ia a5 + i S if A A >0,
. rk
%Tf else.

The following two results were proof in [6], which proof that the operator S; is contractive in
loo(Z) and that the PPH subdivision scheme is uniformly convergent.

Proposition 1. Associated to the PPH nonlinear reconstruction, there exists a nonlinear subdivi-
sion scheme Sy for the differences that satisfies

1
1916 f* i@y < 1105 i) VFF € 1oo(Z),

where 5jfk = f]k — ff_l.

Proposition 2. The nonlinear subdivision scheme associated to the PPH reconstruction is uni-
formly convergent. Moreover, for any f € loo(Z) the limit function S*®(f) satisfies

3C such thatV z,y € R, [S®(f)(z) — S*(f)(y)| < Clx —yl.

2.4 Lipchitz condition for the scheme S; for a class of strictly
convex initial data

For the rest of the chapter we are going to work with strictly convex initial data satisfying

1 , 11

1A FF = Ajaffl < 27!Ajfk + A fM Vg = —10g2(\ﬁ —35) (2.4)

Ja>0:min{A;f"} >a>0 (3 a>0:max{A;f*} < —a <0). (2.5)
J J

Notice that conditions (2.4) and (2.5) are true for initial data coming from the point value
discretization of smooth strictly convex functions with compact support for a sufficiently small
step of discretization. This kind of functions are the most common in practical cases.

22



The first result that we need to prove is that after one step of subdivision the data still satisfy
the conditions (2.4) and (2.5).

Lemma 1. Let x, y, and z be any positive real numbers and let us define the functions H(x,y) =
%, and Z(z,y,z) = % — Y(H(z,y) + H(z,2)). If |z —y| < (x4 y), |z — 2| < 5=(z + 2) with
n= —logQ(% — 1), then

{H ) = 2(0,,2)| < 5 ((Hy) + 2,9, 2)) (2.6

Proof. In first place we see that (2.6) is equivalent to

T 6y 2z T Y z
—14 - — < 2 — . 2.7
8| T4y a:+z‘_2”+2( +:v+y :13+z) (27)
. 6 2 __ 6 2
Case 1: ’4_%_zfz|_r—‘€y+xfz_4'

Inequality (2.7) will be true if and only if

32" — 1)L f (@4 1)—— <242t
T4y T+ z
Now using condition (2.4) we get that % < 222111, and Iiz < Z:Lﬂ Thus
Y z 2"+ 1 2" +1
(32" =D+ @) S S B2 - D) (2N )
= 242!
and Case 1 is proven.
. 6 2 _ 6 2
Case 2: ’4_%_Tﬁfz|_4_%_ffg'
Inequality (2.7) will be true if and only if
(3-2" + 1)% + (2" - 1)% <ontl o, (2.8)
r+y T+ 2z
Using again condition (2.4) we get that T—le-y > 24, and s 2 2. Thus
Y z 2" —1 2" — 1
(3~2”+1)$+y +(2”—1)x+2 > (3-2"41) S +(2”—1)W
= ontl_ 9,

O

Proposition 3. If the data f* satisfy conditions (2.4) and (2.5) at a given level of subdivision k
then the data f**1 = Sf* after one level of PPH subdivision satisfy also the same conditions.

Proof. Let us suppose without lost of generalization that A; f* >0, Vj. Computing AV fE*+1 and
Agj1 fFH we get

1
Agif = Z(AGFY Aja P 850 f7) Doy fH = ZH(AG 1Y A 1Y),
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Condition (2.4) is now directly obtained just by using Lemma 1. Condition (2.5) is immediate
taking into account that
A fE
2 )

L

18(H(A]~f’“, A f*) + H(AG* A1 f9)] <

and
1 1 .
A2j+1karl = ZH(Ajfk;AHlfk) > 1 mm{Ajfk,Aij’“} > 0.

O]

We proof now a proposition of practical importance in applications, since the subdivision scheme
is always run with initial data affected of some small errors.

Proposition 4. If the initial data f° satisfy conditions (2.4) and (2.5) and € > 0 is such that
forallj € Z |A;f°—Ajf0 < ‘21;_4f — 8¢ > 0, with a = mjin{|Ajf0|}, then any sequence g°

satisfying || f° — ¢°||so < € satisfies also conditions (2.4) and (2.5).

Proof. Condition (2.5) comes from
18;6° > |A; £ — 4e > a — 4e > 0,
due to the chose of e. The following chain of inequalities proves the condition (2.4),

879" = Aj1g’| < 8e+[A;f0 — Ay f]
a—4e  (a—4e) + (a — 4e)

< on—1 - on
1
< 27(A190+Aj+190)-

O]

Now we are going to prove the Lipchitz property addressing separately two cases, convex-concave
and convex-convex, in two respective propositions.

Proposition 5. (convexz-concave) If the data f*,g* € 1 (Z) satisfy conditions (2.4) and (2.5) at
a given level of subdivision k and Ajkaijk >0, AjgkAngk > 0, with Ajkajgk < 0, then

1. |81 fFTY = G210 < S0 % — 648l V) € Z,
2. ’(52jfk+1 — 52jgk+1| S %H(ka — 5gk”oo VJ S Z

Proof. We are going to prove the first point. Second point is derived in the same way. From (2.3)
we get

4

1 1 Ajafk 1 A fF
5o k+1 - - J+ 5. k - J 5. k
2j+1f Gaa, s a0l T i A, @)
1 1 Aii1gk 1 Aii1gk
‘ k+1 _ Lt 1 j+19 ] E, o+ j+19 k
02j+19 (2 4Ajgk+Aj+1gk)5ng + —( )059".

Ajgk 4+ Ajyig
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Operating algebraically we arrive to

((8j419" = 8j41f") + (6,1F — 8;9"))

A f* VA, fE.

1
Sajy1 fFTY — 8954198 = 5(5j+1fk —8j419")
N 1 Ajagt
40jgk + Ajag*
1 AipqgF
+ Z( ]+1g

NN TR N LN Ty

Let us suppose Ajfk > 0, and Ajgk < 0. Otherwise we change the roles of f* and g*. We

differentiate two main cases,

Case 1: If [6gj41 /T — 0251195 = Sgj1 fFT — 0501951,

1Bt AjpafF
AjgR+A g% = AjfFHA fRY
1
k+1 k+1
|02j 41 f"T" = b 7] < (5
1

1 Ajy1gF

YN Aj+1gk)(5j+lfk ~din1d")

Z Ajgk + Aj+1gk

. k
A]-i—lg (5]fk - 5]gk)7

and therefore |02;4+1f*! — Soj 11 fAH < S0 — 69"
—If Aji1g” Ajyafk
AjgF +AG 19" T A A4 [
1
(G fMH = o S < S (05 fN = i)

1 Ajirg" k k k k

+ oo 81" — 8y f5) + (3, 1% — §;
4Ajgk+Aj+1gk(( j+19 j+1f") + (0, f i9"))
1 AjiigF Ajiaf* k k

+ = 2 - AfF— A
4(Aj9k+Aj+19’“ Ajfk+Aj+1fk)( i/ i9°)
11 Ajafk X .

— (= _—= 5 5
(2 4A]fk +A]+1fk)( ]+1f ]+1g )
1 Ajafk . L

+ - 5 6, f* —6;9%),
4Ajfk+Aj+1fk(Jf i9°)

and we easily get |62j+1fk+1 — 52j+1fk+1| < %H(ka — 69"

Case 2: If [§oj41 fFF — 621197 = 891197 — Goja fHT,

B 1 Ajfk + Aj+1fk

1 A fF

)(8j419" — Sj41f)

. k
AJJrlf (5jgk o 6jfk),

_If o Bingt Aji f*
AjgF+A gk = AjFRHAj 4 fRO
k1 k+1 1
0241 f7 = bojp1 f7T| < (5
L
4
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and therefore |52j+1fk+1 — 52j+1fk+1’ < %HCka — 69" -

_If Ajyig” > Ajyif*
Ajgh+Ajigh T A RN fR?

1
G0 0 = baja fUH < S (05500" = 0 1)
1 A fk
YN flA L fF ((8j+1/* = 8j19%) + (859" = 6;/%))
J J
1 A -+1gk Aj+1fk k k
+ - 2 - AP — A
1 1 Ajag” K k
= (5~ 17,55 1 Aj+1gk)(5j+19 = 6j41f")
1 Aj+19k k k
+ ZAjgk +Aj+1gk (9 6 f"),

and we easily get [d2;11 /" — G 11 /| < ][0fF — 69| co-
O

Before giving the convex-convex proposition, we introduce some previous lemmas and defini-
tions.

Lemma 2. The following equality holds
DA g" = DjgP A F = Nt (8,1 = 8,6) + Nj(Aj19" — Aja f9),

with . .
N, .= Dif"+Ajg

: Nt = Ajf* + Aj+19k_
J 2 )

J T 9

Proof. Applying the mean value theorem to the function F'(x,y) = xy we have that
F(x,y) = F(2,9) = Fo(0)(x — ) + Fy(0)(y — 9),

with = ¢(z,9) + (1 — t)(z,y), forsomet € (0,1). Since VF' = (F,,F,) = (y,x), taking
(r,y) = (Ajfk,Angk), (z,9) = (Ajgk,Aijk), we get the result after realizing that ¢ =
works.

DM\»—A

We now introduce the following definitions for A; f¥ >0, Aj 1% >0, AjgF >0, Aj116" >0,

1 Ajagt _ 1 N1 A f*
Apg = < A PR Crg =7 k k k kY’ (2.9)
4095 +Aj119 4 (A R+ Aj fE)(A g% + Aj1igh)
p, _ 1 N;A; f*
T 7 A 4 A (A 0F + AjagF)
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1 AjgF 1 NA; o fF
Efg = 2 Frg=+ et , 2.10
o 4005+ Ajag T AA A ) (B + Ajiagh) (210)
a,. - L Nj1Ajif*
Ta 4 (A fF 4+ A1 fR) (A% + Ajiagh)

And the corresponding to Ay¢, Cyy,, Dgs, Egr, Fyr, and G4r. With all these definitions we can
proof the next lemmas.

Lemma 3. Let us consider Asy, Cpg, and Dy,. If the condition 0 < A; f¥ < min{Aj 1 f* A9, Aj 119"}
hold, then
1. 0< Afg < ifAjJrlgk < Ajgk, and 0 < Afg < % ifAjJrlgk > Ajgk.

0<Cfg<

= 0ol ool

0<ng<8’

Afg — Cfg > 0,

AN R

1
|Afg — Cg — Dyl < 1

Proof. 1. Since Ajg* > 0, Aj 1% > 0, it is trivial. 2. Since A;f% > 0, Aj 1% >0, Ajg* > 0,
Aji1g% > 0, it is trivial that Cpg > 0. Let us suppose now that max{A;1f* Aj 110"} = Ajpigh.
The other cases are similar. Then

gy < b Al Ajngt 111
T A A fR) (Bjg + Ajagh) T4 2008
3. From max{A;f* A;g*} = A;g*, we have
Dy 1L At A" S 1T
T AA R A fR) (g + Ajagh) T4 28

4. In order to prove point 4 we use the following sequence of inequalities,

Ajiig" 1 Ajf* )
Ajgh+ Ajragh 2(AfF + Aja fF)
AjfPa
(A5 fF 4+ Dja fF) (D95 + Ajiagh)
Ajprf*

(D55 4 A fF) (A% + Ajragh)

Afg - Cfg =

>

B 00l = ] =

1
(Aj+19k - §Ajfk) > 0.

5. It follows from |[Ap, — Cry — Dyy| < max{Ayy, Crg+ Dy} < .

O
Lemma 4. Let us consider Eg, Fyq, and G ¢g. If the condition 0 < Aijk < min{A;f*, A;g%, Aji195}
hold, then
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if A]’gk < Aj+1gk, and 0 < Efg < % if Ajgk > A]’+1gk.

[SATE SN Co S}
&
~
Q
3
<
Vv
=

By — Frg = Gpgl < 3.
Proof. Tt can be done with the same track as in Lemma 3. 0

Lemma 5. Let us consider data f*, g* satisfying conditions (2.4) and (2.5), and for a givenj € Z
let us define

¢j=Arg = Crg 41 =Cpg+ Dyg = Agg,  cjya=—Dyy,
¢j=Agp —Cypy Cit1=Cyp+ Doy — Agy, Cjra = —Dyy,
dj =Gyg, djp1=Epg = Frg = Gpgy  djra = —Efg + Fy,
Jj = Gy, dj+1 = Egp — Fyr — Gy, Jj+2 = —Egp + Fyy.
Then one of the quantities |cj| + |cjy1] + |cjral, [&] + |Eja] + [€j32ls [ds] + |djsa] + |dj4al, or
\dj| + |dj1| + |djsa| is strictly lower than .
Proof. o [f0< Ajfk is lower or equal than Aj+1fk, Ajgk, Aj+1gk,
Then using Lemma 3 we have Ay, — Cry > 0.
— If ¢j41 > 0, then
51+ eyl +lejol = 2Dgy < 5.
— If ¢j41 <0, then

leil 4+ lejal +lejvel = 2(Agg — Crg),

Asg — Cy L Ayt —1(271_1) N
Y AA;gF + Ajpagh 40 27 T AGgR 4+ Ajygh
1 on —1 Aji1gF 1,3-2"+1_2"+1
< (1- n+2) ,kj . kS’( n+2 ) n+l)
4 2 Ajgt+ Ajig 4 2 2
_ 16v2+7 1
8 16 8

e If 0 < A;g" is lower or equal than A; g%, A;f* A f*,
then following the same steps as in the previous supposition

L N 1
1E5] + [Ej1] + |€j12] < T

o If0 < Aijk is lower or equal than Ajfk, Ajgk, A]’+1gk,
we consider several subcases:
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- 1Ifdj1 <0,
A+ Iyl +1dy ] = 26, < 5.
—Ifdj;1 >0,
x If Ajig® > Ajg",
then using Lemma 4 we have that

1
|dj| + |dj1] + |djra| = 2(Efg — Fg) < 2max{Eyg, Fyy} < 7

« If Ajgk > Aj+191C > Ajfk > Aj+1fk7
then AjJrlgk - %Ajfk > 0, and according to the proof of point 4 of Lemma 3
Arg — Cpg > 0. In this case eilther il + lejr1| + lejre] = 2(Afy — Cpg) < i) or
lcjl + lejral + |ejre| = 2Dyy < 7, since

Aj-i-lglC 1
Ajgk+Ajyigh 8
Ajfk Aj+19k
Ajfk + Aj+1fk Ajgk + A]‘+1gk

A f* A f* 1

AjfF+Aj fRAjgF + Ajyigh 8
N;A; f* _L AR

(A fF+ Ajr fR) (A% + Ajyagh) — 8D R+ Ajafk

« AP > Ajgh > Ajagh > AjafF,

Afg = <

Cfg =

<

ng = <

=~ ol |l K|KF

1
g

Efg—Frg = . Ajgk -1 Ajﬂfk )
4098 + Ajy1g 20;fF+ Ajia fF
1 AjrifrA;f*
8 (A fF + Ajy1 fF)(Ajg% + Ajyagh)
_ 1 A At )
T 40+ Ajagh AjfF+ A fF
1 At A f*
AN+ A agE A F A S
< 1 1 1 1

[ p— 2 —
4(27”rl + 2) < 8’

and therefore |d;| + |dj1| + |djt2| = 2(Epy — Fyrg) < 3.

« If Ajg* > A" > Ajagh > A fF,
then Ajfk — %Aj+1gk > 0, and therefore Eyr — Fyy > 0. Now again we separate two
cases,

S If djy <0,

S ~ 1 Ajagh A fF
dj| + |djra| + |djs2| = 2Ggp < 5 L J
‘ J| | J+1| | J+2| af 2Aj9k+Aj+1gkAjfk+Aj+1fk

<1
1
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- It dj1 >0, then |dj| + |dji1| + |djs2| = 2(Egp — Fyp) < §, since

Egf — Fgp =

1 Ajfk 1 Ajag”

AN+ AP 20508 + Ajiagh
1 Ajy1g"AjgF

8 (A% + Nja fF)(AjgF + Ajrrgh)
< 1 Ajf At
TOAN R AP AjgE + Ajagh
_ 1 Ajf* Ajg"
AN A R AR+ Ajagh
< i<

4 2n+l = 2 8

o If0 < Aj+1gk is lower or equal than Ajfk, Aj+1fk, Ajgk,
then the case is symmetrical to the previous one.

And since we have considered all posible cases the proof is finished.

Now we are ready to prove the convex-convex proposition.

Proposition 6. (convez-convex) If the data f*,g* € 1.o(Z) satisfy conditions (2.4) and (2.5) at
a given level of subdivision k and Ajkaijk > 0, AjgkAj_Hgk > 0, with Ajkajgk > 0, for

] € Z, then

1. |81 fF = G210 < 2116 % — 69%| |00,

2. [60; [T — 606" < 3|6 % — 69" || oo

Proof. We are going to prove the first point. Second point is derived in the same way. From (2.3)

we get the four expressions,

k+1 k+1
d2j41f" — 025419

k1 k+1
02541 f" T — 025419

=Sl R~ N

1
5(5j+1fk ~j19") (2.11)
1 Aigh
Ta g A e (g =8l + (6 = 039"))
J J
1( Aj-l—lgk B Aj—i—lfk )A fk
LAgE+ Ajgh AR A
(641./* = 6j419") (2.12)

N TA 419" (041" = 05419") = (042" = 0j129%))
J J

( Ajg® Ayt
Ajgh + Ajagh A fF 4 Ay fF

A1 fF,
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k1 k1
62j119° T = G [T

k1 k41
62j119" T = G [T

1
5(5j+19k — 8j41./%) (2.13)
1 A fk
1A, fF iLHA 1 fF ((0541f* = 8j119%) + (039" — 0;1%))
J J
1( Ajaff Ajag® 1A gk
AN E+Aja P Ajgh+ Ajagh
1 k k
5(0419" = 01 f7) (2.14)
1 A fk
1At A O =05 fY) = (Ograg" = 0j12/%)
J J
1( Ajiif* 3 AjiigF VA"
CANF A fF T Ajgh+ Ajagh T

Now taking absolute values, that is computing |(52j+1fk+1 — 62j+1gk+1], we can use Lemma 2
and regroup terms to rewrite expressions (2.11), (2.12), (2.13), and (2.14) in the form,

0241 fF T — 695119

k+1 k+1
02541 f* T — G25419"F

1 1
|60 41 /5T = G219

0241 fFT1 — Sa5019" T

According to Lemma 5 either |

1
2

16 (6517 = 6;9") + (5 + ¢j41) G f* = 05419%) (2.15)

+ Cj+2(5j+2fk - 5j+29k)|7
. 1
= 1E0, " —5j9k)+(§+cj+1)(5j+1fk —0j419")
+ Eia(0jpaft — 820",
k k 1 k k
= |d;(6;f" —6;9") + (5 +dj1)(051f" —dj1197)
+ diga (82 f" = 0j429")],
5 k k L 5 k k
= |dj(0;f" = 0;9") + (5 +djy1) (0541 f" — 05419")
+ djpa (042 f® — 8;109").

¢l + (5 +lejal) + lejals 1G]+ (5 +1810) + 1842l ldi] + (3 +

i+1|) + |djy2|, or L+ (2 4+ |d; 1|) + ; 2| is strictly lower than 3. Let us suppose then tha
djt dj+ d;l + (3 + |djt djt trictly 1 than 3. Let then that
;| + (3 + |¢j41]) + |ej+2] < 2. Now applying the triangular inequality we get

102541 f7 — 82541951

Operating with the even indexes in the same way we also get

|52 f*

< leglldiff = 65001 + (% +len)6 f* = 6" (2.16)
+ lejpalldipaf® — 6j129"|

< (legl+ G+ legal) + legaDlI8 £ — 66

< 21ast sl

byt < SIS 6 (247)
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Finally from (2.16) and (2.17) we get

3
154 = 60" |ow < S167* = 66" e

O]

Theorem 1. If the initial data f°,g° € 1(Z) satisfy conditions (2.4) and (2.5) then ||0fF+1 —
595 oo < 2(|6f% — 6g"||oe, VK € N.

Proof. Since the data satisfy conditions (2.4) and (2.5) at the inicial scale, applying Proposition 3
the same will be true for all succesive scales with & > 0. At a given scale k, for any j € Z the
data will satisfy the hypothesis of either Proposition 5 or Proposition 6 and from here it follows
immediately the thesis given in the theorem. O

2.5 Stability result for a set of strictly convex initial data

In this section we proof the main result of the chapter ensuring stability with respect to slight
perturbations in the initial data.

Theorem 2. Let f0,¢° € 1.(Z) initial data satisfying conditions (2.4) and (2.5) then

1571 = 5%6°lloe < 311 = 9°lloc- (2.18)

Proof. Again we are going to deal with odd and even indexes of |S* 0 — S¥¢%| separately. Let us
denote f* = S¥f9 and ¢g* = S¥¢°. From the expression of the PPH scheme in (2.1) and (2.2) we
get

féﬂ] = f]lc_l,
gé_} = g;'f_la
k—1 k—1 k—
fim = fi w1 A (S fFt =605
J+ 9 4 Ajfk—l + Aj+1fk71 J J
k—1 k—1 _
k _ 9 + 9j+1 . 1 Ajgk ! (5 k=1 _ 5. kfl)
9241 = 2 AN 5T+ Ajprghd j+29 j+19" )
and therefore
k k k—1 k—1 k— k—
\f3; = g5l = 17 =gy <1 = 0" o (2.19)

and for the odd indexes using Lemma 5 and supposing without lost of generalization |c¢;| + |¢jq1]| +
|cjyal < §, we get
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k—1 k—1 k—1 k—1
i =g e =gl
2 2

o1 — g5l < (2.20)
1 At k—1 k—1 Ajgh! _ -
- 5 5. o J 5 k-1 5 k—1
4|Ajfk71 + Aj+1fk71( ]+2f ]+1f ) Ajgkfl ¥ Aj+1gk*1( j+29 j+19 )|

— _ 1 3
< ||fk 1_gk 1||oo+‘52j+1fk—62j+1gk_f k 1)|

2(5]'+1fk_1 —0j+19
= I = 0" Moo + e (57 = 656" + i1 (6540571 = 654019" )
+ cjya(GipafF = 800" )|
<

_ _ 1 _ _
15 = 05 e 16557 = 665 o

)

Joining (2.19) and (2.20) we get

_ . 1 _ _
175 = Moo < 17571 = 6" Hloo + 116/ = 06" oo (2.21)

Now from expression (2.21) using the Lipchitz property proven in Theorem 1

17 =Ml < P = 0 Mo+ 31650 — 66l
e PR I (( AR Ll L L P
< I = Pl + (1 4o+ (VIS = 560l
< (1472~ olloe =317~ ol

2.6 Conclusions

We have improved the stability bound in [11] for initial data coming from strictly convex
smooth functions, obtaining a value of the constant C' = 3 instead of 9. The stability result has
been obtained by analyzing the scheme of the first order differences, while in [11] was done with
second order differences.
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Chapter 3

On the convexity preservation of a
quasi C° nonlinear interpolatory
reconstruction operator on o
quasi-uniform grids

The contents of this chapter are wholly included in the already published paper [42]

e Ortiz, P.; Trillo, J.C. On the Convexity Preservation of a Quasi C® Nonlinear Interpola-
tory Reconstruction Operator on o Quasi-Uniform Grids. Mathematics. 2021, 9(4), 310.
https://doi.org/10.3390/math9040310

3.1 Introduction

Reconstruction operators are widely used in computer-aided geometric design. For simplicity,
the functions that are typically used as operators are polynomials. In order to avoid undesirable
phenomena generated by high-degree polynomials, reconstructions are usually built piecewise. Due
to the bad behavior of linear operators in the presence of discontinuities, it has become necessary to
design nonlinear operators to overcome this drawback. One of these operators was defined in [6] and
was called the piecewise polynomial harmonic (PPH). This operator essentially consists of a clever
modification of the classical four-point piecewise Lagrange interpolation. The initial purpose of
this definition was to deal with discontinuities, reducing the undesirable effects to only one interval
instead of the three intervals affected in a reconstruction built with a four-point stencil. In addition
to that, as we will see throughout this chapter, the reconstruction may also play an important role
in design purposes, since it keeps the convexity properties of the given starting data.

For the sake of simplicity, as much in the theoretical analysis as in the practical implementation
and computational time, studies usually start with data given in uniform grids. Nevertheless, some
applications require dealing with data over nonuniform grids. At times, it is not trivial to adapt
operators defined over uniform grids to the nonuniform case. The above-mentioned PPH operator
was defined over a uniform grid and some of its properties were studied in [6]. These reconstruction
operators are the basis for the definition of associated subdivision and multi-resolution schemes. In
this chapter, we use the definition that we made of the PPH reconstruction operator for data over
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nonuniform grids in [41], and we study some properties of this operator in greater depth. In par-
ticular, we focus on the smoothness of the reconstruction and the convexity-preserving properties
of the initial data. We show that PPH reconstruction gives a C'"*° function, except for the knots
where the function remains C° and the differences between the first, second, and third one-sided
derivatives are of the third, second, and first order, respectively (see Definition 7).

In [10], the authors proved that the related subdivision scheme in uniform meshes preserves
the convexity of the control points. In this chapter, we attempt to determine if this result about
preserving convexity can be extended for the reconstruction operator and not only in uniform
meshes, but also in o quasi-uniform meshes with o < 4.

The chapter is organized as follows: Section 3.2 is devoted to defining the PPH reconstruction
operator over nonuniform grids. For this purpose, we will use the weighted harmonic mean with
appropriate weights. Then, we show that the new reconstruction operator amounts to the original
PPH reconstruction operator when we restrict to uniform grids. The definition is given for general
nonuniform meshes, although in order to establish some theoretical results, we consider o quasi-
uniform meshes. In Section 3.3, we study some basic properties of PPH reconstruction, such as the
reproduction of polynomials of the second degree, approximation order, smoothness, boundedness
of the operator, Lipschitz continuity, and convexity preservation. In Section 3.4, we analyze the
reconstruction when dealing with strictly convex (or concave) initial data. In Section 3.5, we
present some numerical tests. Finally, some conclusions are included in Section 3.6.

3.2 A nonlinear PPH interpolation procedure on nonuniform grids

Let us define the nonuniform grid X = (z;); ¢ z. Let us also denote the nonuniform spacing
between abscissae as h; := z; — z;_1. We will work with continuous piecewise reconstructions of
a given underlying continuous function f(x) with, at most, a finite set of isolated corner or jump
discontinuities, that is

R(z) = Rj(x), z € [zj,xj41], (3.1)
where R;(x) is a third-degree polynomial satisfying
Rj(z;) = [f(z;), (3.2)

Rj(zj41) = flzjt).

From now on, we will use the notation f; := f(x;).

Taking (3.1) into account, this implies that we are interested in building the appropriate poly-
nomial piece R;(x) in the interval [z}, z;11]. Let us consider the set of values { fj_1, fj, fj+1, fj+2} for
some j € Z corresponding to subsequent ordinates of a function f(x) at the abscissae {x;_1,xj, 41,242}
of a nonuniform grid X, and PL;(x) is the Lagrange interpolatory polynomial built with the points
(zi, fi),i=7—1,7,7 + 1,7 + 2, that is, the unique polynomial of degree less or equal 3 satisfying

The polynomial PL;(x) can be expressed as
2 3
PLj(z) = ajo+ aj1 (x—mj+%) + a2 (m—wﬂ_%) +a;3 <x—xj+%) , (3.4)
where Tj1= w
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It is well known that from conditions (3.3), one obtains the following linear system of equa-
tions, where the coeflicient matrix is a Vandermonde matrix with different nodes and is, therefore,

invertible:
hj1 hjt1)” hjt1)®
R RS
1 Ny Wi i 45,0 f;—l
2 4 8 a1 | — J . (35
) hjt1 7 hi i aj2 fit1 (3:5)
hiiq ? hitq ! 2 hitq ° 3 s bres
() (o) (o)

In order to express the solution of system (3.5) in a form that is convenient for our purposes,
we introduce the definition of the second-order divided differences

fi—1 i fi+1
D':Zf{E'fl,fL",fL" 1] — - + )
Aatloms S hj(hj + i) hihjer  hipa(hy + hjea) (3.6)
fi fita fite '
D.q1:=flx;,xi1, 2509 = — + ,
i1 = fl T ] hjyi(hjs1 + hjvo)  hjpahjpe  hypo(hjpn + hjto)
and a weighted arithmetic mean of D; and D; 1, defined as
Mj = wjoDj +wj1Dji1, (3.7)
with the weights
_ i+ 2k
wj,O - )
2(hj + hjt1 + hjt2)
(3.8)

hj+1 + 2hj
wjﬁl =
2(hj + hjp1 + hjt2)
With these definitions, after solving the system (3.5), we get the following expressions for the
coefficients of the polynomial (3.4):

=1- ’LUj’().

2
it i hj-l—lM

a’jvo - 2 4 J
—fi + fi+1 h2
a:1 = + D. — M. ,
7 hjt1 2(2h; + hj+1)( 3= M) (3.9)
aj2 = Mj,
= D:— M.
7,3 2h] + hj—l—l( J 3)7
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which can also be expressed as

_fit fin _ h?—&-lM

—fi+ fit1 h12'+1
a;1 = + —-D; + M; ;
31 hjt1 2(2hj42 + hj+1)( I ) (3.10)
aj2 = Mj,
2
aj3 = (=Djs1+ Mj).

2hjpa+ B
At this point, we give some more definitions and lemmas that we will need later.

Lemma 6. Let us consider the set of ordinates { fj—1, f;, fi+1, fj+2} for some j € Z at the abscissae
{xj—1, 2,241,242} of a nonuniform grid X = (x;); ¢ z. Then, the values fj_1 and fjio at the
extremes can be expressed as

-1
fi-1=—0fi + virfiv1 + v2fire) + ——, (3.11a)
7]771 /7‘7’71
-1 M;
five = —(vj—1fi-1 +vi0f5 + v fi) + =%, (3.11b)
5.2 5.2
with the constants v;;, 1 = —1,0,1,2 given by
= hiv1 + 2hjpo
P 2h(hi + hy)(hy R+ hyga)
o= 1 < hjr1+2h;  hjp + 2hj+2>
P 2hj1(hy A hyga + hyya) \hjer + o hy 7 (3.12)
S 1 (th +2hjps  hjn+ 2hj> '
” 2hji1(hj + hjt1 + hjt2) hjt1+ hy hjto ’
hjt1 + 2h;
Y2 j J

B 2hjro(hjp1 + hjr2)(hj + hjy1 + hjyo)

Proof. This proof is an immediate calculation just by expanding the expression of the weighted
arithmetic mean in (3.7) in terms of f;, i =5 — 1,4,5 + 1,7 + 2, that is

Mj =~j-1fj-1 +750f; + Vi1 fis1 +vi2fitve- (3.13)
O

Definition 3. A nonuniform mesh X = (x;);cz is said to be a o quasi-uniform mesh if there erist
Romin = min h;, Amaee = max h;, and a finite constant o such that %’”M <o.
€L 1E€EZ min

In the presence of isolated singularities, predictions made using Lagrange reconstruction oper-
ators lose their accuracy in the vicinity of the discontinuity; in fact, three intervals are expected to
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be affected, since we are considering a stencil of four points. In order to reduce the affected inter-
vals to only one, the one containing the singularity, we introduce a weighted harmonic mean over
nonuniform grids, which will be used in the general definition of the PPH reconstruction operator.
Notice that it is not possible to recover the exact position of a jump discontinuity inside an interval
by using point value discretization of an underlying function. For the case of a corner discontinuity,
a strategy such as the subcell resolution technique [34] could be used to detect its position. This
harmonic mean is built as the inverse of the weighted arithmetic mean of the inverses of the given
values. We define the following function.

Definition 4. Given z,y € R, and wz,w, € R such that w; > 0, w, > 0, and w,; +wy = 1, we
denote as V the function

~ S — ifzy > 0,
Viz,y) = Wl T Wyt (3.14)
0 otherwise.

Lemma 7. If x > 0 and y > 0, the harmonic mean is bounded as follows
~ ) 1 1
V(z,y) <min{ —z,—y . (3.15)
Wy Wy
Before giving another important lemma for our purposes, we will introduce a definition about
a basic concept that will be used throughout the rest of the chapter.
Definition 5. The expression e(h) = O(h™) means that there exist hg > 0 and M > 0 such that
V0 < h < hg,

le(M)]
< M.
hr

Lemma 8. Let a > 0 be a fized positive real number and let x > a, y > a. If |x —y| = O(h), then
the weighted harmonic mean is also close to the weighted arithmetic mean M (x,y) = wyx + wyy,

v Wz Wy 2 2
Mz, y) = V(z,y)| = ———(x — = O0(h*). 3.16
M(,9) = V(o) = 22 (@) = O(R?) (3.16)
Remark 1. The smaller the value of a > 0 in Lemma 8, the smaller the hg in Definition 5 required
to attain the expected theoretical order.

It is well known that the divided differences (3.6) work as smoothness indicators [5, 7, 11, 26, 29,
27, 32, 35, 37, 50]. If a potential singularity appears at the interval [z;1, zj42], we propose that the
data (z12, fj+2) are not interpolated, and that the ordinate f; 2 is exchanged for another value that
is more convenient for what happens in the target interval [z;,2;11], where we want to implement
the local polynomial piece according to (3.1). In the same manner, if a potential singularity lies in
the interval [z;_1,z;], a symmetrical modification is carried out. According to these observations,
we can give the following definition for the PPH reconstruction on nonuniform meshes.

Definition 6 (PPH reconstruction). Let X = (z;)iez be a nonuniform mesh. Let f = (fi)icz be
a sequence in loo(Z). Let Dj and Djyq be the second-order divided differences, and for each j € 7Z,
let us consider the modified values {fj-1, f;, fi+1, fj+2} built according to the following rule:
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e Case 1: If |D;| < |Djyal,

i B (3.17)
five = V5,2 (’YJ,—lfJ 1+7%50f; +vj1fi+1) + 7;2
e Case 2: If |Dj| > |Dj]
A LY o fiag) -
fi-v= 33 (viofi +via ki +vi2five) + Vj—1’ (3.18)

fi=  f,  i<i<j+2

where 7v;;, © = —1,0,1,2 are given in (3.12) and T~fj = V(Dj,DjH), where V is the weighted
harmonic mean defined in (3.14) with the weights w;o and w;1 in (3.8). We define the PPH
nonlinear reconstruction operator as

PPH(z) = PPHj(x), € [zj,zj1], (3.19)
where PPH(x) is the unique interpolation polynomial that satisfies
PPH;(x;) = fi, j—1<i<j+2. (3.20)

According to Definition 6, and establishing a parallelism with expression (3.4), we can write
the PPH reconstruction as

2 3
PPH;(z) = a0+ aj1 (ac —:Uj_’_%) +ajo (:U — xj+%> +aj3 (.QC —:Uj+%> , (3.21)

where the the coefficients a;,, ¢ =0, ..., 3 are calculated by imposing conditions (3.20). Depending
on the local case, Case 1 or Case 2, the coefficients will have different expressions.

Case 1: |Dj| < |Dj41], i.e., the possible singularity lies in [xj41, 2 42]. The replacement of fjio
with fvj+2 by exchanging the weighted arithmetic mean in Equation (3.11b) for its corresponding
weighted harmonic mean has been proposed. It is also important to point out that Equation (3.17)
shows that fj;o is not significantly affected by a potential singularity at the interval [z;41,2j42],

since, by property (3.15) in Lemma 7, |V| < —|D |, and in turn, D; is not affected by this
w;

discontinuity. Therefore, the influence of f; 2 on the values of the reconstruction in the interval
[, 2;41] will be limited. In this case, the coefficients of the new polynomial (3.21) come from
solving the linear system

hji1 hjr1)’ hjr1)’
() () (ot N
1 _hin hin hin 3,0 fjf:l
2 4 8 Gl = L] (322
1 hjt1 M Wi 5,2 fin (3:22)
hii1 ? hit1 ! 2 hiiq ° 3 @33 fi2
1 <]2+ + hj+2> <]2+ + hj+2> <J2+ + hj+2>



Thus, the coefficients a;;, ¢ = 0,...,3 take the form

. , h2,. -
aj0 = fitfivn  Mng

2 4 7
~ —fi+fin h? i ~
o By 2hj+1( 3=V (3.23)
Zij,? - ‘77'5
- 2 (D ‘7)
Fin = — RN VA
7,3 th _I_th J J

Case 2: |Dj| > |Dj41], i.e., the possible singularity lies in [xj_1, z;]. In this case, in Definition 6,
the value f;_; is replaced with fj_l by using expression (3.18). The net effect is again the exchange
of the weighted arithmetic mean in Equation (3.11a) for the corresponding weighted harmonic
mean. On this occasion, we get an adaptation of the reconstruction to a potential singularity in
[zj_1, 2], since the effect of the value f;_; is largely reduced. In fact, by property (3.15) in Lemma

7, HN/]| < ——|Dj41], and Dj4q is not affected by any discontinuity.
Wj,1
By solving the system (3.22), we obtain the following coefficients for the polynomial (3.21):

o3 fit+ fin h?Jrl";

.770 - 2 - 4 j’
~ —fitfin hii ~
Gt = + (~Djs1 + V),
’ hjt1 M1 +4hje T (3.24)
Gja =V,
- 2 ~
aj3=— (=Dj41 +Vj).

hjt1+2hjqo

Remark 2. The replacement of the weighted arithmetic mean for the corresponding harmonic mean
in Definition 6 does not only guarantee adaptation near singularities, but also enlarges the region
where the reconstruction preserves convexity according to expressions (3.40) and (3.43), as we will
see in the next section.

Remark 3. In both cases, the value of the PPH reconstruction at the midpoint Tjpd of xj, Tjq1
gets the value PPHj(xj+;) = aj0. This expression directly defines an associated subdivision scheme
2

and, consequently, also an associated multi-resolution scheme in nonuniform meshes. The interested
reader is referred to [5, 6] for more details in the context of uniform meshes.

Remark 4. Notice that, considering uniform meshes, i.e., h; = h Vi, all the given expressions
reduce to the equivalent expressions in [6], which are valid only for the uniform case.

Remark 5. Notice that Definition 6 of the PPH reconstruction operator has been given for general
nonuniform meshes. From now on, one needs to take into account that some results are true for
general grids, while others need the restriction to o quasi-uniform meshes.
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3.3 Main properties of the PPH reconstruction operator in nonuni-
form meshes

In this section, we study some interesting properties of the new reconstruction operator. More
precisely, we study the reproduction of polynomials, accuracy of the reconstruction, smoothness,
boundedness, Lipschitz continuity, and convexity preservation. We start with the reproduction of
polynomials up to degree 2.

3.3.1 Reproduction of polynomials up to degree 2

If the underlying function f(x) is a polynomial of degree 2, then D; = D;;1 = D is constant
and D;jDj+1 = D? > 0. Using Equations (3.7), (3.10), (3.14), (3.23), and (3.24), we get

Mj = w]’70D + (1 — wj70)D =D,
~ D2
V= =D,
7 wjoD + (1 —wjo)D

EM = Qj,i Vi = 0, 1, 2,3.

So, PPH;(x) = PLj(z), i.e., PPH;(x), reproduces polynomials of a degree less than or equal
2, since PLj(x) does this.

3.3.2 Approximation order for strictly convex (concave) functions

We will prove full-order accuracy, that is, fourth order, for a reconstruction that locally uses four
centered points to get the approximation at a given interval [x;, zj41] for any j € Z. In particular,
we can enunciate the following proposition.

Proposition 7. Let f(z) be a strictly convex (concave) function of class C*(R) and leta € R,a > 0
be such that f"(z) > a >0, Vz € R (let a € R,a < 0 be such that f"(z) < a <0, Vo € R). Let
X = (x4)iez be a o quasi-uniform mesh in R, with h; = x; — x;_1, Vi € Z, and f = (fi)iez, the
sequence of point values of the function f(x), fi = f(x;). Then, the reconstruction PPH (x) satisfies

|f(z) — PPH(z)| = O(h'), Vz €R, (3.25)
where h = max{h;}.
S/

Proof. Given z € R, there exist j € Z such that € [zj,xj;1]. This implies that PPH(z) =
PPHj(x).

Now, let us suppose that the initial data f = (f;)icz come from a strictly convex function (for
a concave function, the arguments remain the same) satisfying the given hypothesis f”(z) > a >
0, Vz € R for some a > 0. Then, D;D;; > 0, since second-order divided differences amount to
second derivatives at an intermediate point divided by two, i.e.,

D, - f ;/!“)

>

s Djn1 =

|

with 1 € (xj_1,2;41) and p2 € (4, 2;42). Moreover, we have

[Dj1— Dj| < Mh = O(h),
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where M is a bound of the third derivative of f(z) in the compact interval [x;_1,xj42].

Since from Equations (3.7) and (3.14), we can write

wjow;1(Djp1 — Dj)?

M. —V: =
s wjoDj1 +wj1D;

we get from Lemma 8 that
|M; = V| = O(h?). (3.26)

Putting this information into (3.9) and (3.23), if |D;| < |Dj41/, or into (3.10) and (3.24), if
|Dj| > |Djy1|, we get that

|aji — ajil = O(h*™") Vi=0,1,2,3. (3.27)
Thus

3 .
PPH () = PL@I <3 i3~ ayl |(-2,0,) | =00
1=0

where PL;(z) is the Lagrange interpolatory polynomial. Taking the triangular inequality into
account again

|f(z) = PPH;(2)| < |f(x) = PLj(2)| + |PLj(x) — PPHj;(x)| = O(h"),

and using that Lagrange interpolation also attains fourth-order accuracy.

3.3.3 Smoothness

In this part, we study the smoothness of the resulting reconstruction, and for this purpose, we
give the following definition.

Definition 7 (Quasi C* function). A function f: R — R is said to be quasi C*(R) if it satisfies:

(a) f(x) belongs to class C°(R) except for a numerable set of points X = (z;)icz with h =
mazx{hi} < oo, where h; = x; — x;_1.
1€

(b) There exist one-sided derivatives until order s, f'™ (z]) and f™(z7), m = 0,...,s, and
these satisfy | f™ (z]) — f™(27)| = O(*F1™), m=0,...,s.

Before giving the main result regarding smoothness, we will prove an auxiliary lemma that
we need.

Lemma 9. Let f : [a,b] — R be a derivable function in (a,b), and let us suppose that there exist
ho,M >0 and r > 1 such that VO < h < hy:

/()]
hr
then, there exists K > 0 such that VO < h < hg
/(@)

F S K, Yz & (a,b).

<M, Vz € (a,b),
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Proof. From the fact that f is derivable in (a,b), we have that given x € (a,b) for all ¢ > 0, there
exists he > 0 such that, Vh: 0 < h < h,,

Let h € (0, hg); then, we take e, := A", and there exists he, > 0 such that, Vh:0<h< he,

|f(w +h) ~ (@)

<e,=h"1L
4 h

— f'(x)

We now define hy = min{h, h., }. Then, for all h with h € (0, h;), we get:

’ I +h) - 1 +h) -
G P CES RS ol P R3O RS 6
U1 | fe 4 h) — f(2)
< hr—1 + hr—1 B
S LA S B VAC) | DD P
h" h"

O]

We are now ready to present the following proposition with respect to the PPH reconstruction
given in Definition 6.

Proposition 8. Let f(x) be a strictly conver (concave) function of class C*(R) and a € R,a > 0
such that f"(x) > a >0, Ve € R (a € R,a <0 such that f"(z) <a <0, Ve € R). Let X = (x;)iez
be a o quasi-uniform mesh in R, with h; = x; —x;—1, Vi € Z, and f = (fi)icz, the sequence of point
values of the function f(x), f; = f(x;). Then, the reconstruction PPH (x) is quasi C3(R).

Proof. By construction, the PPH reconstruction is C*°((x;, z;+1)) for all i € Z, since it is nothing
else but a piecewise polynomial. Let us study the situation at a grid point z; where two polynomial
pieces join. Again, by construction, PPH;_1(x;) = PPH;(x;), and therefore, the reconstruction
is a continuous function. Using the proof of Proposition 7, we know that
gj—1(x) == f(x) = PPHj_1(x) = O(h"), Va € [zj_2,2j41], (3.28)
gj(z) := f(z) — PPH;(z) = O(h"), Vz € [zj_1,7)42].

From (3.28), we get that
PPH](.%') — PPHj_l(.%') = gj_l(x) — gj(x) = O(h4),Va; € [xj_1,$j+1}. (3.29)
Thus, from Lemma 9, we get that

PPH{™ (z) = PPH{")(z) = O(h*™™), m =1,2,3. (3.30)

In particular, Equations (3.29) and (3.30) are true for the abscissa zj, which proves the property
of quasi C® at the grid points.
O
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3.3.4 Boundedness and Lipschitz continuity

We start by giving the exact definitions of the concepts treated in this section.

Definition 8. A nonlinear reconstruction operator R : loo(Z) — C(R) is called bounded if there
exists a constant C' > 0 such that

IR(Hlloe < Cllflloc Vf € loo(Z).

Definition 9. A nonlinear reconstruction operator R : loo(Z) — C(R) is called Lipschitz continuous
if there exists a constant C > 0 such that VY x,y € R, it is verified that

IR(f) (@) = R(f) ()| < Clz —yl.
Before addressing these properties, we need to prove some lemmas.

Lemma 10. Let X = (z;)icz be a 0 quasi-uniform mesh in R, with h; = x; — x;—1 Yi € Z, and let
Ly(z) m=-1,0,1,2 be the Lagrange basis for a four-point stencil {xj_1,xj,xj41,%j4+2}. Then

|Lm(2)| <o Vo € [zj,xj41], m=-1,0,1,2.

Proof. As is well known, the Lagrange bases are given by

2
Lp(z)= J] —2=5* = -1,0,1,2 (3.31)
s=—1 x]+m - x]“rS

s#EM

Denoting o = x — x;, we have

Loy = | & Rt hypad g —a) jaf
hj hjp1+hj hjpo+hjpr +hj hj
‘L0($)| _ (h’] + a)(hj+1 - Oé) hj+2 + hj+1 —a < (max{hj, hj+1})2 - OéQ <o
hjthrl hj+2 + hj+1 B hjhj+1 -
Ly (z)] = hj + a hjjo+hjp—a .
hj+hjt1 hjpa hjyo

In order to obtain the bound for L;(x), we distinguish two cases.

1. If hj+2 Z hj_H, [0 S hj+2 - (hj+1 - a),

Ly (2)] < hij+a hjre— (hjp1 —a) hjro+ (hj1 —a) < ‘(hj+2)2 — (hjr1 — a)?
hj + hj+1 hjv1 hjye FESYORE
< |(maz{hjii, hjsa})? 5
- hjt1hjqo -

2. If hjq1 > hjt2, a < hji1 — (hjr2 — @), working in a similar way, we also get |Li(z)| < o.
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Finally,

| La(2)] <

hj+ o hjy1 —«
hj+hjp1+hjto hjp1+hjro  hjgo

hjy1—a

<

hjya

O]

Lemma 11. Let X = (x;);ez be a o quasi-uniform mesh in R, with h; = x; — x;—1 Vi € Z, and let

us consider the expressions ‘Eqrg‘ in (3.17) and ‘fj,l‘ in (3.18). Then, we have the following

bounds:

Froo| < 6+160)0° Ifll ), | Fia| < 5+ 160)0° £z -

Proof. From Equations (3.12), we get

Vit | _ [ Pgr2 R+ hire hygn 4 2040 3
V2 hj  hjpi+hy hjp 42k |7
50| _ | hyr2 1+ bt ( hjp1+2h;  hjea + 2hj+2)’ < 903
JEELAay e — X 407,
Yizl i hjea 42k \hje + by h;
Vir| _ |hir2 hjer + hjqo (hj+1 +2hje it 2hj> ) < 953
—=| = — < 20°.
izl hjrr hjpa 4 2h; hjt1+ hj hijt2
: : = 1Dl
According to property (3.15) of the harmonic mean |V;| < —=,, we also get
w;o
Vil ‘ Dj | _ Ahjia(hjsr + hjso)(hy + hjsa + hjso)?
V2| T w0 V52 (hj+1 + 2Rj12)(hy1 + 2hy)

fi—1 i fi+1
hj(hj + hjv1)  hjhjpr  hjpa(hy + hj)

< 160° kaHzoc(Z)'

Plugging (3.32) and (3.33) into (3.17), we obtain

Following a similar path for ‘f?,l

Using the property (3.15) of the harmonic mean \17}] <

Five] < 6160007 £

9

%o | _ | hi o hiithy ( hjyi+2h;  hjp+ 2hj+2> ’ < 905
Vil iy B+ 200 \ Dy + by hj T
Vil | h;j hji1+ hj (hj+1 +2hj42 _ hj1+ 2hj> ' < 993
V-1 hjt1 hjs1+ 2hj40 hjt1+ h hjto -
5,2 _ hj hj+1 + hj hj+1 + th < 53

Vj,—1 hjve hjy1+hjre hjy1 4+ 20| =

D.
| JAH‘, we get

J,1
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Vi
7.]7_1

Dj+1 _ 4hj(hj+1 + hj)(hj + hj+1 + hj+2)2
w1 - Vg1 (hji1 + 2hj12)(hjs1 + 2h;)
i fit1 )

hjro(hjro+hjv1)  hjvahjpr  hjpi(hjre + hjv1)

S ’

<160t |74,
S 160717, o)

which leads us to

] < 616000 £,
O

Proposition 9. The nonlinear PPH reconstruction operator is a bounded operator over o quasi-
uniform meshes.

Proof. Let x € R and j € Z such that € [z;,2;41]. Depending on the relative size of D; and

Dj1, the PPH reconstruction operator replaces the value f;12 with f]urg or fj—1 by fj—1 as
follows:

B_1fj—1+ Bofj + Bifjs1 + Bafjr2 if |Dj| <|Djil,
PPH,(z) =
B_1fj—1+ Bofj + Bifj41 + Bafjto if |Dj| > [Dj41],

where B,, = Ly, (x), m = —1,0,1,2, stand for the Lagrange polynomials. Applying the triangular
inequality for each case, we get

(1B=1 + [Bol + [Bil) [ flliz) + | Bell fi+2| it [Dj] < Dy,
|[PPH;(z)| <
|B-1l|fj—1l + (|1Bo| + |B1l + |B2|) [ fllizy i 1Dl > [Djsal-

According to Lemmas 10 and 11, we obtain the following bound for both cases

|PPH;(z)| < 0(3+50° + 160*) | £,z -

The following lemma will be used for proving the Lipschitz continuity.

Lemma 12. Let X = (z;)iez be a o quasi-uniform mesh in R, with h; = x; — x;—1 Vi € Z, and
let f = (fi)icz be a sequence in loo(Z). Then, the nonlinear reconstruction operator defined in (6)
satisfies that Vj € Z,

|PPH}(x)] < Cl|fllio@y VYo € (25,711)-

Proof. Since f € l(Z), there exists M € R, M > 0 such that |f;| <M VieZ.
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The reconstruction PPH;(x) and its derivative read
L N 2 3
PPH;(z) = ajo+ a1 (x—mj+%> +ajo <m—xj+%> +a;3 (x—mj+%) , (3.34)
2
PPHj(z) = a1+ 20 (2 51) + 355 (v —a;01) (3.35)

Without lost of generalization, we will suppose that |D;| < |Dj;1|. The case |D;| > |Dj41| can
be carried out similarly. First, we prove the following inequalities:

fi—1 fi n fi+1

D51 = hi(hj +hjs1)  hjhjpr  hjaa(hy + i) .
< [P BB ) = o i) < Gt M e
il < G
D=Vl < mas(DL I < G I

where hpin = miZn h; depends on the particular ¢ quasi-uniform mesh.
ic

Using the expressions (3.23) for the coefficients of the polynomial derivative in (3.35), we have

_ fiv1— [ (hjz1)? =
i1 < D. —V:
laja| < It + h; + 2ho |D; — Vjl
2 (hma:p)z 2

2 o?
S (1 + 6> 1 iz »
2

(homin )2 11 z)

A

laj2| = 1V;| <

2 2

|19 71 < g e W

< |z
- ‘th + hjt
= 3hmn)? 1l (z) -

Thus

|PPH)(z)| =

2
aj1+ 2aj:2 (:p - xj+%> + 3a; 3 (x —l'j+;)

2

2 o? 2 i 4 (hoas)?
< 14+ — )
- (hmin < * 6 ) + (hiin)? 2 + 33(hmin)3 4 > Hf”loo(z)

1 4
i (24204 30 Wby =CW iy ¥ € (@)

hmin

where C' =

hmzn

4
(2 + 20 + 302> depends on the o quasi-uniform mesh. ]
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Proposition 10. The nonlinear PP H reconstruction operator is Lipschitz continuous over o quasi-
uniform meshes.

Proof. Let us suppose first that there exists j € Z such that z,y € [z;,2;41]. Using the Lagrange
mean value theorem, 36 € (x;,2;41), such as

|PPH j(z) — PPH;(y)| = |[PPHj(0)(z —y)|.
Thus, using Lemma 12 now, we get
[PPH(x) — PPH,(y)| < Clz — |

In the general case, we can suppose that = <y, =« € [xj,2j41], Y € [Tjy,Tjo41] with
j1 < ja. If j1 = jo,, we have already proved the result. For j; < jo,

|PPH(x) - PPH(y)| = |PPHj (z)— PPHj,(y)| <|PPH; (x) — PPHj () 41)]
Jo—1
+ Y |PPHj(zj) — PPH(xj1)| + |PPHj,(z),) — PPHj,(y)]
Jj=j1+1
Jo—1
< Cle—zjnl+ Y, Clay— 20|+ Clag, —yl = Clz —yl.
Jj=jn+1

3.3.5 Convexity preservation

We first introduce a definition concerning what we call strictly convex data and a strictly
convexity-preserving reconstruction operator.

Definition 10. Let X = (x;);cz be a nonuniform mesh in R, with h; = x; — x;—1 Vi € Z, and let
f = (fi)iez be a sequence in loo(Z). We say that the data are strictly convex (concave) if, for all
i € Z, it is satisfied that D; > 0 (D; < 0), where D; stands for the second-order divided differences.

Definition 11. Let X = (z;)iez be a nonuniform mesh in R with h; = x; — x;—1 Yi € Z, and
let f = (fi)iez be a strictly convex (concave) sequence. We say that an operator R : loo(Z) —
C(R) is strictly convexity preserving in the interval (a,b) if there exists R(f)"(x) and R(f)"(z) >
0 (R(f)"(x) <0) Vx € (a,b).

Next, we give a proposition that introduces sufficient conditions on the grid for convexity
preservation of the proposed reconstruction.

Proposition 11. Let X = (x;);cz be a o quasi-uniform mesh in R, h; = x; — x;-1, Vi € Z, and
o < 4. Let f = (fi)iez be a sequence of strictly convex data. Then, the reconstruction PPH (x) is
strictly convexity preserving in each (xj,z;41), that is, it is a piecewise convex function satisfying

PPH}(z) >0 Vz e (zj,2541), ¥V j€eL (3.37)
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Proof. Let x € R and j € Z such that z € (z;,2;41). Let us also consider that D; > 0Vi € Z. The
case D; < 0Vi € Z is proved in the same way.

Computing derivatives in Equation (3.21), we get
PPH (x) = 22 + 6d;3 (;p — %) . (3.38)
In order to analyze the sign of PPH ]’f (z) we need to consider two cases due to the fact that
the expression of PPH;(x) is different for |D;| < |Dj4q| than for |Dj| > [Dji1].
Case 1: |Dj| < |Djiq].
Replacing coefficients @2, a;3 coming from Equation (3.23) in expression (3.38) results in

" ~ 12 ~

Taking into account that V; — D; > 0, from (3.39), we get that proving PPH" () > 0 is trivial
if V; = Dj. Otherwise, the inequality PPH"(x) > 0 reads

2tV

T>T. 1 — . (3.40)
J+
? 6 V;-D
Replacing ‘N/] with its expression in Equation (3.14), we obtain
hj +hjt1+hjre  Djp
1= . 3.41
T2 Ty 3 Djp1 — D, (341)

Evaluating the previous expression at x; , we obtain the condition for convexity preservation in
(j,2j41). This condition reads

(hjr1 = 2(hj + hjy2)) Djta < 3hjDj. (3.42)

Since X is a o quasi-uniform mesh with o < 4, we have hj;1 < 2(hj + hj;2), and therefore,
the condition (3.42) is immediately satisfied. This proves the proposition in this case.

Case 2: |Dj| > |Dji1].

This time, by replacing the coefficients a;2,a;3 coming from Equation (3.24) in expression (3.38)
and following a similar track to that in Case 1, we obtain expressions similar to (3.40) and (3.41)
for the abscissae verifying PPHJI»/(a:) > 0:

hj1 + 2hjio V;

r<T, 1+ = , 3.43)
aE 6 Vi = Dj (
hj+hjrr +hjve  Dj

< x; . 3.44
T<Tjy1 + 3 D; — Dy ( )

Now, evaluating at z;,1, we get
(hjr1 = 2(hj + hjy2)) Dj < 3hjs1Djta (3.45)
Thus, since X is a o quasi-uniform mesh with ¢ < 4, we get the result. ]
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Remark 6. As can be observed in expressions (3.41) and (3.44), the conditions that assure the
strictly convexity-preserving property depend on the second-order divided differences of the initial
data. The hypotheses of Proposition 11 are only sufficient conditions, but not necessary conditions.

Remark 7. Working in a similar way with the Lagrange reconstruction operator PLj(x), we obtain
the following expression that is analogue to (3.41) for the abscissa-fulfilling condition PL;-I (z) > 0:

~ 2hj+hjp1 hj+hjv by D;
6 3 Djt1 — Dj’

T > a1 (3.46)

Then, if we are under the supposition that D; < Dji1, calling xppy and xpy, to the second
members of inequalities (3.41) and (3.46), respectively, we get
hjr1 +2hji0

>0 3.47
6 ? ( )

TpL — TPPH =

i.e., PPH reconstruction operator preserves the strict convexity in a wider interval than the La-
grange reconstruction operator does. A similar conclusion can be reached under the supposition that
D;>Djqq.

J J+1

3.4 PPH reconstruction operator over o quasi-uniform meshes for
strictly convex (concave) initial data

In this section, we gather the most important properties of the presented PPH reconstruction
for strictly convex (concave) starting input data, and we give them in a unifying theorem. We want
to emphasize the potential practical importance of the studied technique for designing processes.

Theorem 3. Let f(z) be a strictly conver (concave) function of class C*(R) and let a € R,a > 0
such that f"(x) > a >0, Ve € R (a € R,a <0 such that f"(x) <a <0, Ve € R). Let X = (x;)iez
be a o quasi-uniform mesh in R with h; = x; — x;—1, Vi € Z, and let f = (f;)icz be the sequence of
point values of the function f(x), fi = f(x;). Then, the reconstruction PPH (x) satisfies

1. Reproduction of polynomials up to the second degree.
2. Fourth-order accuracy.

3. It presents a quasi C3 smoothness.

4. It is bounded and Lipschitz continuous.

5. It is strictly convexity preserving in each (xj,xj41).

Proof. Taking the previous results into account, the proof of this theorem is now immediate. In fact,
the first affirmation is proven in Section 3.3.1, and the rest of the affirmations are proven in
Propositions 7-11, respectively. ]
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3.5 Numerical experiments

In this section, we present three simple numerical experiments. The first one is dedicated
to comparing the convexity preservation between the Lagrange and PPH reconstructions. Let us
consider the initial convex set of points, (0,10), (8,9), (25,12), and (30, 30) , that is, D; > 0, Dj;1 >
0 . In Figure 3.1, we have depicted the reconstruction operators corresponding to Lagrange and
PPH, and we have marked with triangles the inflection points for each reconstruction (5.66 and
hjr1 +2hje

than the Lagrange reconstruction does (see expression (3.47)). In fact, according to Theorem 3,
PPH reconstruction is strictly convexity preserving for the abscissae corresponding with the central
interval (8,25), while Lagrange reconstruction is not.

10.16, respectively). We observe that PPH preserves convexity in a wider range

30

20

Figure 3.1: Solid line: Lagrange polynomial; dashed line: piecewise polynomial harmonic (PPH)
polynomial. Circles stand for Lagrange values at the nodes, asterisks stand for PPH values at the
nodes, and triangles stand for inflection points.

The next experiment computes the numerical approximation order of the considered reconstruc-
tion operator.
Let X be a nonuniform grid:

X <22 28 28 79 149 47 67 92 98 113 185 251 141 134 469 316 1189)
= 7'["

and let f(x) = sin(z) be a smooth test function. Let us consider the set of initial points given
by (x;, f(x;)), ¢ = 1,...,17. In this experiment, we will measure the approximation errors and
the numerical order of approximation of the presented PPH reconstruction. The numerical order
of approximation p is calculated in an iterative way, just by considering at each new iteration
k, k=1,2,3,4,5,6,7 a nonuniform grid X, built from the previous one by introducing a new node
in the middle of each two consecutive existing nodes. The error Ey, for the PPH reconstruction at
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each iteration k is calculated as a discrete approximation to || f(x) — PPH(z)| ., , thus evaluating
a much denser set of points. Both the errors and the approximation orders p for each iteration are
shown in Table 3.1, where we can see that PPH reconstruction tends to fourth-order accuracy with
this smooth concave function, as is expected according to Proposition 7.

Defining h := _max {h;}, we use the following formulae to compute the numerical order of

h p
Ep1 = C<2k1> )

h p
Ey

—1 Ex—
—— 2P ~1 =1,2,3,4 .
Ek —p 089 Ek ) k ) 737 757677

The appropriate behavior of the reconstruction can be checked in Figure 3.2, where the preser-
vation of the concavity and the accuracy of the approximation can be observed.

=1,...,

approximation p:

Thus

k Ey D k Ey D

4.6114 x 107* - 4 | 1.4165 x 1078 | 3.8226
3.3727 x 107> | 3.7732 5 | 9.4710 x 1010 | 3.9027
2.6009 x 107° | 3.6968 6 | 6.1330 x 10~ 1T | 3.9488
2.0042 x 10~7 | 3.6979 7 13.9035 x 10-2 | 3.9737

Wl N = O

Table 3.1: Approximation errors Fj in [, norm and corresponding approximation orders p obtained
after k iterations for the PPH reconstruction with f(z) =sin(x), £ =0,1,..,7.

3.6 Conclusions

We have defined and studied the PPH reconstruction operator over nonuniform grids, paying
special attention to the case of o quasi-uniform grids and initial data coming from strictly convex
(concave) underlying functions.

We have theoretically proven some very interesting properties of the new reconstruction oper-
ator from the point of view of a potential use in graphical design applications. These properties
include the reproduction of polynomials up to the second degree, approximation order, smoothness,
boundedness of the operator, Lipschitz continuity, and convexity preservation. In particular, we
would like to emphasize the quasi C® smoothness of the operator and the preservation of strict
convexity according to the result contained in Theorem 3.

In the section on the numerical experiments, we checked that the behavior corresponded to the
developed theory, in particular, the reconstruction attained fourth-order accuracy and preserved
the convexity of the initial data. The results clearly show that the reconstruction introduces im-
provements in comparison with the Lagrange reconstruction. Therefore, the numerical experiments
that we carried out reinforce the theoretical results.
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(a) (b)

Figure 3.2: Solid line: function f(z) = sin(x); dashed line: PPH reconstruction obtained with the
finest considered nonlinear grid. (a): Original function and PPH reconstruction. (b): Zoom of a
part of the signal.
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Chapter 4

PPH nonlinear interpolatory
reconstruction operator on
nonuniform grids: Adaptation around
jump discontinuities and elimination
of Gibbs phenomenon

The contents of this chapter are wholly included in the already published paper [43]

e Ortiz, P.; Trillo, J.C. A Piecewise Polynomial Harmonic Nonlinear Interpolatory Reconstruc-
tion Operator on Non Uniform Grids—Adaptation around Jump Discontinuities and Elimina-
tion of Gibbs Phenomenon. Mathematics. 2021, 9, 335. https://doi.org/10.3390/math9040335.

4.1 Introduction

Due to the extended use of reconstruction operators in many fields of application, ranging
from hyperbolic conservation laws to computer aided geometric design, it is of great importance to
dispose of efficient methods to build them for different situations. In general, and for the sake of
simplicity, the considered functions are polynomials. High degree polynomials are, however, usually
avoided because they are known to generate oscillations and undesirable effects.

Linear operators behave improperly in presence of jump discontinuities, so that different nonlin-
ear operators have emerged to deal with this problematic. Recent approaches to deal with similar
problems of functions affected by discontinuities can be found for example in [19, 13, 14, 8, 34].
And these nonlinear methods also give rise to interesting applications. To mention some of them
one can refer to [16, 31, 25, 40, 26, 27].

In this chapter we pay attention to one of these operators that was defined in [6] under the
name PPH (Piecewise Polynomial Harmonic). This operator can be seen as a nonlinear counterpart
of the classical four points piecewise Lagrange interpolation. The theoretical analysis as much as
the practical applications were developed in uniform grids in previous articles (see, for example,
[6, 10, 50, 7, 11, 32, 37]). In turn these reconstruction operators are the heart of the definition of
associated subdivision and multiresolution schemes [29, 5, 34, 35].
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In this chapter, we extend the definition of the PPH reconstruction operator to data over
nonuniform grids and we study some properties of this operator. In particular, we analyze the
behavior of the operator in presence of jump discontinuities. We prove adaptation to the jump
discontinuity in the sense that some order of approximation is maintained in the area close to
the discontinuity, on the contrary to what happens with linear operators that lose completely the
approximation order. We also prove, as much theoretically as in numerical experiments, the absence
of any Gibss phenomena.

The chapter is organized as follows: In Section 4.2 we remind the nonlinear PPH reconstruction
operator [42] on nonuniform grids. Section 4.3 is dedicated to study the adaptation of the operator
to the presence of jump discontinuities, making some emphasis in the order of approximation.
In Section 4.4 we analyze the behavior of the operator with respect to the Gibbs phenomena.
In Section 4.5 we present some numerical tests. Finally, some conclusions are given in Section 4.6.

4.2 A nonlinear PPH reconstruction operator on nonuniform grids

In this section we recall the definition of the nonlinear PPH reconstruction operator on nonuni-
form grids, see [42]. We include the necessary elements for the rest of the chapter. In [42] the
reconstruction operator is designed to deal with strictly convex functions, albeit it is also of inter-
est in the case of working with piecewise smooth functions affected by isolated jump discontinuities.
This will be our case of interest in this section and in the rest of the chapter.

Let us define a nonuniform grid X = (z;); ¢ z in R. Let us also denote h; := x; — z;_1, the
nonuniform spacing between abscissae. We consider underlying piecewise continuous functions f(x)
with at most a finite set of isolated corner or jump discontinuities, and let us call f; := f(z;) the
ordinates corresponding to the point values of the function at the given abscissae. We also introduce
the following notations. In first place, the second order divided differences

fi—1 i fit1
D'sz[l"_hﬂi",]?' 1]: - + )
J J Jr i+ hj(hj + hj+1) hjthrl hj+1(hj + hj+1) (4 1)
[ fit1 fite '
Dj1 = floj, @41, Tj40] = - + ;
! re hjri(hjer +hjr2)  hjpahjee  hjpa(hjpn + hjyo)
in second place a weighted arithmetic mean of D; and D;y; defined as
Mj = wjoDj + wj1Djia, (4.2)
with the weights
 hjp 2k
w.]vo - )
2(hj + hj1 + hjt2)
(4.3)
h; 2h,;
wj1 = Iy,

2(hj + hjt1 + hjyo)

Given these ingredients in [42] we can find the following definitions, and results that we will
use later.

Lemma 13. Let us consider the set of ordinates {fj—1, fj, fi+1, fi+2} for some j € Z at the
abscissae {x;_1,xj,xj11,Tj42} of a nonuniform grid X = (x;); ¢ z. Then, the values fj_1 and
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fj+2 at the extremes can be expressed as

fic1 = ——jofi + vitfit1 + viafive) + —2, (4.4a)
rijfl ’Y]»fl

five = —(vi—1fi-r +vi0fi +viafin) + —=, (4.4b)
V4,2 Y4,2

with the constants v;;, 1 = —1,0,1,2 given by

hjt1 + 2hj4

T 2 (i + hy)(hy + By + b))
o = 1 < hjvr +2h;  hjp + 2hj+2>
I 2hjp1(hj 4+ hjp1 4+ hjpa) \hjt1 + hjto h;j ' (4.5)
- 1 <hj+1 +2hjpe  hjpa 2hj> .
o 2hj+1(hj + hj+1 + h]’+2) hj+1 + hj hj+2 ’
hii1+ 2h;
Yj.2 Jj+ J

" 2hypa(hyer + hyya) (hy + by + hyye)

Definition 12. Given x,y € R, and w;, w, € R such that w, > 0, wy, > 0, and w; +wy = 1, we
denote as V the function

_ v ifxy >0,
V()= Wb+ wye (4.6)

0 otherwise.

Lemma 14. If x > 0 and y > 0, the harmonic mean is bounded as follows

~ 1 1 1
V(z,y) < min {m, y} < —u. (4.7)

Wy Wy Wy

Next definition, which is commonly used in numerical analysis, is going to be essential through
the rest of the chapter.

Definition 13. An expression e(h) = O(h"), r € Z means that there exist ho > 0 and M > 0 such
that ¥ 0 < h < hy
le(h)]

hT
Lemma 15. Let a > 0 a fized positive real number, and let © > a and y > a. If |z —y| = O(h),

and Ty > 0, then, the weighted harmonic mean is also close to the weighted arithmetic mean
M(x7 y) = Wzx + Wy Y,

< M.

~ Wy Wy

|M(z,y) = V(z,y)| = m@ —y)* = 0(h?). (4.8)

Definition 14 (PPH reconstruction). Let X = (x;);cz be a nonuniform mesh. Let f = (fi)icz a
sequence in loo(Z). Let Dj and D11 be the second order divided differences, and for each j € Z let
us consider the modified values {fj—1, fj, fi+1, fj+2} built according to the following rule

56



e Case 1: If |D;| < |Dj1]

fi=  f,  j-1<i<i+l,
: , (4.9)
fivz= 5 (y—1fimr ki +vafie) + 55,
e Case 2: If |Dj| > |Dj41]
o e
fi-1= wﬁﬂvnir+%Jﬂ+r+%ﬂﬁ+ﬂ4‘wfﬂ (4.10)

fi=  f,  i<i<j+2

where vj;, i = —1,0,1,2 are given in (4.5) and f/] = ‘N/(Dj, Dji1), with V the weighted harmonic
mean defined in (4.6) with the weights wjo and wji in (4.3). We define the PPH nonlinear
reconstruction operator as

PPH(z) = PPHj(x), € [zj,zj1], (4.11)
where PPH;(x) is the unique interpolation polynomial which satisfies
PPHj(z;)=fi, j—1<i<j+2. (4.12)

According to Definition 14, it is possible to establish a parallelism with Lagrange interpolation,
in fact we can write the PPH reconstruction as

2 3
PPH;(z) = a0+ aj1 (ac —:Ej_’_%) +ajo (:E — xj+%> +aj3 (ac —$j+%) , (4.13)

where the the coefficients a;;, ¢ = 0,1,2,3 are calculated by imposing conditions (4.12). We
explain each one of the two possible local cases, Case 1 or Case 2. The coefficients will have
symmetrical expressions.
Case 1. |Dj| < |Dj41|, which means that a potential singularity may lay in [z;11,2;42]. It has
been proposed to replace fj;2 with fj+2 in Equation (4.9) by changing the weighted arithmetic
mean in Equation (4.4b) for its corresponding weighted harmonic mean. This replacement has been
performed to carry out a witty modification of the value j?qrg in such a way that its difference with
respect to the original fj;o is large in presence of a discontinuity, but remains sufficiently small in
smooth areas maintaining the approximation order. Lemma 14 is crucial for the adaptation in case
of dealing with the presence of a jump discontinuity, while Lemma 15 plays a fundamental part in
proving fourth approximation order for smooth areas of an underlying function.
In this case the coeflicients a;;, i = 0,1,2,3 of the PPH polynomial read
- ﬂ+ﬁu_@ﬂv

a]70 = 2 4 VR
= —fi+ fin h32'+1 =
o hjt1 +_4hj4-2hj+1( 3=V (4.14)
Ga =V,
2 _
~ o — V).
a],3 th +hj+1 J)
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For our purposes, in the next sections we need to examine deeper the relation with Lagrange
interpolation. In particular we get that

2hjra(hjt1 + hj2)(hj + hjrr + hjio)
2h; + hjy1

| fi+2 = fit2l = |M; = Vjl, (4.15)
and considering the Lagrange interpolation polynomial written in the same form as in (4.13), that
is

2 3
PLj(x) = ajo+aj1 <a; —:cj+%) +ajo (x — acj+%> +aj3 <a; —xj+%) , (4.16)

we get that the difference of these coefficients with the ones of PPHj(x) is given by

B2, _
a0 — a0 = == (Mj - Vj) ;

h= ~
Tjg — aj1 = (M, — Vj),
Ahj + 2N (4.17)

Tjo —ajo = —(M; = V),

~ 2 =
aj3 = aj3 = _W(Mj - Vi)

Case 2. |Dj| > |Dj1|, which means that a possible singularity lies in [z;_1,;]. In this case,
in Definition 14, the value f;_; is replaced with fj,l by using expression (4.10). Similar comments
apply in this case due to symmetry considerations. The coefficients for the polynomial (4.13) now
read

~_fitfin h?ﬂf/

a]70 2 4 VA
_ —fi+ fita h2 ~
a1 = (_D'+1 + V)?
’ hj+1 2hjt1 +4hja ’ (4.18)
ajo =Vj,
a 2 (=Djp1+ V)
5o — . Yy
7,3 hj+1 + 2hj+2 Jj+1 J

The expressions relating the coefficients of the PPH polynomial with the Lagrange interpolation
polynomial now write
i(hj1 +hi)(hj + hjt1 + hjt2)
2hjyo + hjtq

~ 2% -
\fi-1— fi—1l = |M; — Vjl. (4.19)
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4
h? ~
~ j+1
a'vl _a'71 - - (M _V)’
J J 2hj+1 + 4hj+2 J J (420)

Tjo —ajo = —(M; = V),

2

- (M; V).
2hj+2+hj+1( ! i)

aj3 = aj3
In next section, we will study the approximation order of the PPH reconstruction operator in
presence of isolated jump discontinuities.

4.3 Approximation order around jump discontinuities

We are going to study the approximation order of the given reconstruction for functions of class
C*(R) with an isolated jump discontinuity at a given point x. We consider only the case of working
with ¢ quasi-uniform grids, according with the following definition.

Definition 15. A nonuniform mesh X = (x;)icz is said to be a o quasi-uniform mesh if there
exist Pupin = mi% hi, hinazr = maZX hi, and a finite constant o such that Z"LM <.
7/6 fLe min

In what follows we give a proposition proving full order accuracy for convex regions of the
function, that is fourth order accuracy, and observing that the approximation order is reduced to
second order close to the singularities and to third order close to inflection points. We would like
to focuss especial attention to the intervals around the discontinuity where the order is reduced,
but not completely lost.

Theorem 4. Let f(x) be a function of class C*(R\{u}), with a jump discontinuity at the point .
Let X = (z)iez be a o quasi-uniform mesh in R, with h; = z; — x;—1, Vi € Z, and f = (fi)iez,
the sequence of point values of the function f(x), fi = f(xi). Let us consider j € Z such that
w1 € [xj,xi41), a > 0, a fized positive real number, Q2 the set of all inflexion points of f(x), and
d(z, ) the distance function defined by

min{lz —w|:w e} Q#0,
d(z,Q) =
+00 Q=0.
Then, the reconstruction PPH (x) satisfies
1. Inz € [z, xi41), 0 # 7 —1,4,7+ 1, if DiDiy1 >0, and d(z;—1,Q) > a, d(xit2,Q) > a, then

max |f(z) — PPH(z)| = O(hY),

:I?E[l’i,xi_‘_l]

2. Inz € [z, xi41], i # 7 —1,5,+1, if DiDiy1 > 0, and d(z;—1,Q) < a, or d(zi+2,9Q) < a,
then
max |f(z) — PPH(x)| = O(h*™P), with 0 < p < 1.

l’E[Ii,Ii+1]
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3. Inz € v, vip],i#j—1,5,j+1,if DiDiy1 <0,

max |f(z) — PPH(z)| = O(h%),

Z‘E[.I,‘,Z‘i+1]
4. Inx € [zj1,25) U [2j41, 542],

max |f(x) — PPH(z)| = O(h?),

z€lrj—1,75]U[T54 1,25 42]
where h = max{h;}.
i€Z

Proof. We do the proof point by point.
1. Given z € [z, zit+1], the reconstruction operator is built as PPH (z) = PPH;(x).
From Equations (4.2) and (4.6) we can write
. c(Dii1 — D)2
N ’LUz,O’U)z,l( i+1 z) if DiDi+1 > 07
M;, -V, = w; 0D;1 + wi1D; (4.21)

M; otherwise.

From hypothesis we have that the initial data are strictly convex in the considered area
[zi—1,2it2] (for a concave function the arguments remain the same) and therefore they satisfy
f"(x) >b>0, Vo € [x,-1,Tit2], for some b > 0. Since second order divided differences amount to
second derivatives at an intermediate point divided by two, i.e

M) M (p2)
Di="—== Din="7

with py € (-1, 211) and pg € (x4, z42). Therefore, we have
D; = O(1), Diy1 = O(1) and Dyyy — D; = O(h),
and from (4.21) we get that
IM; — V7] = O(h2). (1.22)

Plugging this information into (4.17) if |D;| < |Djy1], or into (4.20) if |D;| > |Dit1], we get
that

[@is = aisl = O(h'™), s=0,1,2,3. (4.23)
Thus

3
|PPH,(x) — PLi()] < z_:o [Gis — aisl | (2= 251) | = 0",

where PL;(x) is the Lagrange interpolatory polynomial. Taking into account again the triangular
inequality

|f(z) = PPH;(z)| < |f(z) — PLi(%)| + |PLi(x) — PPH;(x)| = O(h"),

using that Lagrange interpolation also attains fourth order accuracy.
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2. We now prove Point 2. Since d(z;—1,Q2) < a, or d(x;y2,) < a, and depending on the exact
distance to the inflection point we encounter D; = O(hP), D;1; = O(h?), with 0 < p < 1. Then,
from Equation (4.21), we directly get |M; — V;| = O(h?P), and the rest of the proof follows exactly
the same track as in Point 1, giving the enunciated result.

3. For proving Point 3, we observe that in this case |M; — Vi| = |M;] = O(h), and again following
the same track as in previous points we get

= O(h3_5), s=0,1,2,3,

|ais_
\PPH;(z) — PLi( |<Z\a” ai.s| ‘(a?—x ) ‘7 (h3),
|f(z) — PPH;(z)| < |f( ) — PLi(z)| + |PLi(x) — PPH;(x)| = O(h?),

and therefore in this case the accuracy is reduced to third order.

4. In order to prove Point 4, let us suppose without lost of generalization that « € [xj_1,z;]. The
other case it is proven analogously. Since by hypothesis the function f(z) is smooth in [z;_2, ;] ,
and it presents a jump discontinuity at the interval [z;, ;1] we have D;_1 = O(1) and D; =
O(1/h?). Therefore |D;_1| < |D;] .

Let PL2;_1(z) be the second degree Lagrange interpolatory polynomial built using the three pairs
of values (zj-2, fj-2), (xj-1, fi-1), (), f;)-

2
PL2j_1(£C) =aj-10+taj-1,1 (ZL’ — .%'j_%> +aj-1.2 (I’ — :Uj—%) ,

where )
. fici+ ;i N
aj—1,0 = % - 4]DJ 1
~_—fiat (4.24)
aj—1,1 = T?
J

aj_12=D;_1.

The difference between these coefficients and the ones of PPH;_;(z) shown in Equation (4.14)
is given by

h? ~
aj—10— Qj—1,0 = ZJ <Dj—1 - Vj—1> ,
h2 ~
aj-11 — aj—l,l m( - Vj—l)a (4.25)
Gjo12—@j-12 = —(Dj_1 — Vj_1),
aj 13 = _2hj12+hj(Dj_1 ~Vj1).

At this stage we distinguish two cases:
4.1. Dj_le > 0.
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Taking into account Equations (4.6), (4.7) and (4.25) and the triangular inequality we obtain

_ 1
[V(Dj-1,D;)] £ ——|Dj-,
Wj5—-1,0

1—|—U]j 1,0

~ 1
D, 1 -V 1| <|D;_1| + D, | =
‘ Jj—1 J 1‘ ‘ J 1’ "U)j—l,O‘ J 1‘ Wi

|6j_175 - aj_LS‘ = O(h278)7 s = 0 17 2737

’DJ 1‘— ()7

)

3
s
|PPH]',1( ) PL2J 1 z_(:) aj—1,s —Eij,175| ‘(:Cijié) ‘: O(hQ)’

(@) — PPH;1(2)| < |f(2) — PL2j1(2)| + |PL2j-1(2) — PPHj ()] = O(h?).

4.2. D, 1D, <0.
Equations (4.6) and (4.25) and the triangular inequality lead us to

‘7}'—1 = 07

IDj-1 = V| = 0(1),
‘EJ‘_LS - aj_LS‘ - O(h’Q_S)? s = 07 17 2737

3
|pij_1( ) PL2] 1 Z aj—15 — a] 15| ‘(az—x ;) ‘— hQ)
5=0

|f(@) — PPH;_1(2)| < |f(2) — PL2j_1(2)| + |PL2j1(2) — PPH;_ ()| = O(h?).

And these last chains of equations finish the proof.
O

We observe that close to the jump discontinuity, that is, in the intervals [x;_1, z;] and [z;11, xj42],
we do not lose all accuracy, but we maintain at least second order accuracy. Unfortunately, in the
central interval [z;,2;41] containing the singularity this approach does not allow us to obtain any
gain with respect to other reconstruction operators.

Remark 8. Notice that linear reconstruction operators based on an stencil of four points typically
lose the approximation order in three intervals around discontinuities, while the introduced nonlinear
reconstruction operator only loses completely the aproximation order in the interval containing the
jump discontinuity and maintains at least second order accuracy, that is, O(h?), in the adjacent
intervals. In the interval containing the jump discontinuity the approximation order is lost also
in the nonlinear reconstruction strategy, since with point values of the function it is impossible to
detect the exact position of the jump discontinuity.

Remark 9. The order reduction due to inflection points can be tackled using a translation strategy
in the definition of the Harmonic mean, to avoid arguments of different signs. This strategy com-
plicates the definition of the operator, but it has been satisfactorily introduced on various occasions
[6], [20]. In practice the translation is needed not only at the interval containing the inflection
point, but also in adjacent intervals.
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4.4 Analysis of Gibbs phenomena around jump discontinuities

In this section we are going to give a result analyzing the behavior of the proposed nonlinear
reconstruction with respect to the generation of possible Gibbs effects due to the presence of jump
discontinuities in the underlying function. In particular we prove the following proposition.

Before enunciating the theorem we introduce some definitions.

Definition 16. Given X° = {z;}icz a 0 quasi-uniform grid in R, we define, for k € N (the larger
the k the larger the resolutwn) the set of nested grids given by Xk = {a; }Yiez, where 3721 = a:k !

_ +x1+1
and 15, = f‘

Let us also denote [f] the size of a jump discontinuity, rf(x) the straight line joining the points
(z J,fk) and (z* Tii1s ]H) d¥(z), i = j —1,4,7 + 1 the vertical distance from the reconstruction

PPH]’“( x) to the horizontal line passing through the middle point of (.CL‘?, fjk) and (;U?H, f]k+1)-
The respective expressions come given by

Pt T | S
(o) = 200 Lo i La—at,),
k
dH(a) = PPH @) - 1T

We will also use 7%, as the maximum distance between PPH Jk(m) and rf(w) measured perpen-
dicularly to r;“(m)

Theorem 5. Let X¥ = {2F}icz, k € NU {0} be a set of nested o quasi-uniform grids in R
with o < %T‘/ﬁ Let f € C*(R) be a function with four continuous derivatives in all the real line
with an isolated jump discontinuity at the abscissa p located at a certain [x§’$§+l] for each k,

where j depends on k. Then, ko : Vk > ko the reconstruction PPHF(x) associated to the data
¥ = (f(2F))icz does not generate Gibbs phenomena. In particular, the following statements hold:

L. [[PPH"z) — f(2)|[z = O((hM)*) in  (—o0,zf_j] U [z}, 00),
2. |db_, ()] = O"),
3 ‘d]—l-l(x)’ _O(hk)7

4. PPH’?(:E) lies inside the rectangle [z% z, g+1] [fj ?fg+1]
5' max = O(hk)
k. k
where h* := niaeauzx{hz }.

Proof. Let us consider k large enough, k > kg, such that

ko _ ¢k
h[kf] > /s h,‘fj‘l : (4.26)
j+1 J

ko gk
h[l{] N fJ+2hk f]—i—l (4'27)
j+1 )
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Then

D?—l = O(l))

fin =8 5 =1

’ B+ R

k k k k
five = Fi =1

ko h§+2 h§+1 o /]
D= h?ﬂ + h§+2 - ((hk)2> 7 (429
D,y =0(1).
and from (4.28), (4.29) and (4.6) we get
sgn(D}) = sgn ([f]) # sgn(D}y), (4.30)

Sk
Vit =0.

We carry out the rest of the proof addressing point after point.
1. Since only three intervals are affected by the jump discontinuity for construction, then, Vk

|PPH () = f(2)l[z = O((B")") in (=002 4] U [2],,00).

2. We are going to show now that the oscillations due to the presence of the discontinuity diminish

at the interval [ac;‘?_l, :cf] with k increasing.

In [a:;?_l, x?] the PPH reconstruction amounts to

2 3
k ~k ~k k ~k k ~k k
PPH]_l(x) = aj_170 + aj—l,l (.T) — I'J_%) + aj—1,2 (.f — 37]_%) + CL]'_173 (.’I) — wy_%> . (431)

As |D§:_1| < |D;?|, the coefficients are given by (4.14) adapted to the interval j — 1

jl'C—l + f]k . (hk)2

~k _ J) 1k
aj_10 = 9 A V;‘—lv
ko *fyk—l * ka (hﬁ;)Q k vk
411 = Tk 1ok P = Vit
j j—1 j (4.32)

52?7172 = V;'k;l’
as 13:_#(1)]'C 1 vk 1)

J—1 Qh;?—l +h§ J— J—
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Taking into account property (4.7) of the harmonic mean, we can write

a1l \Dkl}
wjilv

| jal <20|DF .

“Zkfﬂ = “7]']6—1(1);{71,17?)\ < min{

J

Considering (4.31), the distance d;‘-;l(x) can be bounded by

Lt il
2

where hF := max{h’?},

i€EZ
3. In [x ?+17 ?+2] applying arguments based on symmetry and taking into account that ]D] +1| >
|D]+2] we also get that ‘ i ( ‘ = O(h").

4. In [$§7x§+1]7 as ij = 0 due to (4.30), the expression of PPHJ]-“(x) according to (4.13),
(4.14), (4.18) will be

fk+fk+1 ~ - 3
PPH} () = 25 4 by (o —ak )+l (v -2t ) (4.33)

. . . . k; k
At this point we consider two subcases depending on |[D7| and |DF, |

4.1 |D¥| < Dk, |
We can write

3
df(x) = aﬁl <x — xf+%) —|—a§,3 (:L' —a:?Jr%) = (:L' —a:;“Jr%) E]k(a:), (4.34)

where

fk+1 — fk Dk
Bf(z) =1t 0y ; ((h’?ﬂ)? Az —a* l)2) .
! hE, AR% +2hk AT i*3

The maximum value of the function d;“(x) in the interval [:z:éf , xf 1] is either at the extremes
of the interval or among any possible critical point z. verifying (d?)/ (xc) = 0. At the extremes

. ko k| — | k(o k _ 1k k
of the interval we have ‘dj (.%J)) = ‘dj (ajjﬂ)‘ =5 ’fjﬂ = fj

, and the condition is satisfied.
We are going to prove that the local reconstruction PPHf(w) lies inside the rectangle

[a:k 3 Rl x| f], 7 F ,] since any critical point z. of the function dk( ) falls outside the

interval [xf,xfﬂ] For this purpose, we shall prove that (PPHJ’-“) (r) #0 Va € [2F ry, ]+1]
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We start computing (PPHJI?)’(m) and (PPH]”-“)”(JC)7

—fF D’-“
PPH"Y (z) = S J (h’? 2_19(z — oF 2) 4.35
k
(PPHY)"(z) = —24 Di(x—m’? ).
g AR% +2hk it3

Last equations show that (PPH; ¥)(x) is symmetric respect to the vertical axis passing
through = = 2* ) =0.

jil where it reaches a local maximum since (PPH j’?)” (z*

J+s
Evaluating (4.35) at x?, :r;:_% and ¥ 141 We obtain

S DAL

KNT(oo 0\ kN (o —
(PPHEY () = (PPHEY () = 252 = 00 (40
k\t(..k _ J+1 j+1
(PPH}) (27,1) = h§+1 (2h R (4.37)
From (4.37) and (4.30) we get
sgn ((PPHY (2%, 1)) = sgn((f)). (4.38)

To analyze the sign of (PPH]’?)’(J:j) we replace in (4.36) D}“ by its expression (4.28)

k k k k k
(PPHk)/( ) f]+1 f] o (hj+1)2 f]+1 f] _ f] _fj_l
AR Y (hF )2+ 3RERE +2(hk)2 | hE wE |
j+1 j+1 773 +1 J j+1 J
and we consider two subcases depending on the sign of [f],
k_ gk
4.1.1 sgn[f] > 0. From (4.26), [lf] > —f] kfj_l, and we get
h]+l hj
o= fF (R 1) kl_f"C
(PPHEY (aj) > "4~ s g o
7o hfﬂ (R )% +3RERE, +2(h5)2 — hby,
- J+1 fk 2(hjs1)” >0
h (hE )2+ 3RERE L+ 2(hh)? ’
since P
(h]+1) <1
(hk )2 4 3RERE |+ 2(R8)2
3417
for o < %ﬁ
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4.1.2 sgn[f] < 0. Again from (4.26), < —

4.2

[f] fjk - fjk—l
i

W , and we get
j+1

fj+1 ff (h§+1)2 2fj+1 ff

hfﬂ (R 1) + BhERE, + 2(h))? hy

215, ] oy

_ S
h§+1 (hfﬂ) +3hkR% |+ 2(hk)?

(PPH}) (x)) <

3+V17
for o < S

In both subcases, sgn <(PPH;“)’($§)) = sgn ((PPH’“) (x ]H)) = sgn([f]), which together

with expression (4.38) allow us to write sgn <(PPH]I“) (x)) =sgn ([f]) V€ [2¥ ry, §+1] and
therefore (PPHJI»“) () #0 Vax € [oF i, j+1] what amounts to say that there is not local
maximum value of PPH Jk( x) inside the interval.

k k
|Dj| > |Dj4|

In this case

fEa—fF D},
El(y) = 29t J+ ( 2 f(y— ot 2)7
J( ) h§+1 4h 2+2h3+1 ( j+1) ( jJr%)
— fF D,
PPHY () — 1141 P ((h)? = 12— 2k, 1 )?),
( i)(@) = LT T (hji1) ( 1)
D%,
(PPHY'(z) = 24— ——(z — 2k ).
J 4hj+2+2hj+1 J+3

Following a similar path to case 4.1 we arrive to

I} + i

d8(@)| = | PPHE() - 2=

1
k k .k
< 5 ‘f]-i-l i ‘ Vo e [1?]'7 $j+1],

(PPH}) (x) #0 Va € [z),x11],
and therefore PPHf(a:) remains inside the rectangle [z¥ 3, y+1] [f] , ]+1]

5. We start computing the points where the slope of the tangent of PPH Jk(:v) equals to the
slope of the straight line T;-C (z). We consider two subcases,
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5.1

5.2

|D¥| < |Dy ]
In this case, the above mentioned points where the tangent of p? (z) is parallel to rf (z)
are given by:

poo (o Y3 Fat i v fa—f V3 D)
ity T3 T2 2 2 9 202hk+nk ) )

py=(at,, - Y3 lin fﬁﬁfk_i fu—ff VB D" )
Tity T3 20 2 2 9 2(2hk +nk )

The largest distance from these points to 7";“ (z) is the maximum distance between

PPH ]k(x) and 7";"’(;1:) measured perpendicularly to 7“}“ (z).
For both points this distance coincides with

. V3 !D’“\ W' oo
mazr — g \/ (héc )2 2(2h + h]_H)
|D}| > D41,
The required points P, and P, in this case take the form:
P = L V3 \f 3 hin ]+1+fk \f fa— 8 V3 Dia(hin)’
1= {7y 2 2 2 9 202nk,,+hk ) )
P = J}k f h]—i—l j+1 + fk \/> j—‘rl ] + @ Df—&—l(h?—f—l)g
2T\t 3 2 2 2 9 202nk,,+hk ) )
and 7k is given by
L3 |D]+1| W)
max ~ k k - .
9 \/ - ] (th)Q 2(2h3 5 + i 14)

O]

Remark 10. The hypothesis in Theorem 5 concerning the use of a nested set of o quasi-uniform
grids amounts in practice to build the reconstruction with a small enough mazximum grid size.

In the next section we carry out some numerical experiments to check that the practical obser-
vations coincide with the theoretical results.

4.5 Numerical experiment

In this section we present a simple numerical test to validate the theoretical results. Our
experiment computes the approximation order of the considered reconstruction in several areas
corresponding with the different points in Theorem 4. In particular we measure the approximation
order in the following areas, identified with the given acronyms:
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Ap: In the subinterval containing the discontinuity.

Ajp: In a region where the function is smooth without inflexion points.

Ag: In a region where the function is smooth but contains a inflexion point.
As: In a region close to the inflexion point without containing it.

Ay: In the subinterval just to the right of the one containing the singularity.

Let X0 = (0,3,8,11,17,23,25,27, 31, 32, 36, 37.5, 38, 39.3, 40)210 be a nonuniform grid in [0, 27]

and f(z) the following smooth function with a jump discontinuity at x = 1.2, and an inflexion

point at x = 37”,

sinx T < 1.2m,
flx) =
cosr+ 10 z= > 1.27.
Given the initial abscissas z;,i € I = {0,...,14}, we consider the set of nested grids X k—
k—1 k—1
{xf}ielk, where xlgz = a:f_l, aclzci_H = %, and IF = {a:’{j,...,xflk}, with ng = 2ng_1 — 1,

ng =14, k =0,1,...,7. For each level of resolution k& we build the PPH reconstruction using the
data (xf, I (xf)),z € I, computing the approximation errors in infinity norm with respect to the
original function using a denser set of abscissas, that is, we compute a numerical approximation of

Ej,:= || f(x) = PPH"()||c.

Then, we compute the numerical approximation order as

By

k=0,1,..,7.
Ek;’ 07) 77

p = logy

Notice that due to Theorem 4 we can assume that for fine enough grids

k—1
Ey=C (hk>p, with h¥ := max hF hF.=aF —aF | K= h .
i€l \{0} 2
In Tables 4.1 and 4.2 we present the errors committed by Lagrange and PPH reconstructions
respectively when using as initial nodes the defined nested grids X*. The errors appear separately
for each kind of region Ag, A1, A2, As and A4. The largest error comes near the jump discontinuity
for Lagrange reconstruction, as it can be observed in the column corresponding with Ag.
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k Lagrange
Ag A, As As Ay
k=0 | 5.6495 3.7038 7.5463 x 1071 | 6.3455 x 10~* | 7.5463 x 10!
k=1194448 | 7.3685 x 104 | 4.2214 x 10~ | 9.0640 x 10~° | 6.1204 x 107!
k=2193578 | 6.2735 x 107> | 3.4996 x 107° | 9.2479 x 1076 | 6.1887 x 10!
k=319.3587 | 4.0575 x 1076 | 3.0851 x 10~7 | 6.5454 x 10~7 | 6.2234 x 10T
k=41]93591 | 25733 x 1077 | 2.2334 x 108 | 4.3080 x 10~% | 6.2409 x 107!
k=5193593 | 1.5978 x 10~° | 1.4894 x 1072 | 2.7567 x 1079 | 6.2496 x 10!
k=6 193594 | 1.0021 x 1077 | 9.5977 x 10~ | 1.7424 x 10~! | 6.2540 x 10!
k=1719.3595 | 6.2737 x 1011 | 6.0880 x 10~2 | 1.0951 x 10~ T | 6.2562 x 10T

Table 4.1: Approximation errors obtained at iteration k,k = 1,..,7 for the considered cases Ay,

Aq,A2, A3 and A4 using the Lagrange reconstruction.

i PPH
Ao A As As Ay
k=0 |5.0072 | 1.9182 x 1072 | 8.3447 x 1073 | 2.2239 x 1073 | 7.3017 x 1073
k=11]93051| 6.5968 x 10~3 | 7.8190 x 10~* | 2.9306 x 10~* | 2.3996 x 103
kE=209.3588 | 83401 x 10~* | 2.4763 x 10~* | 3.4429 x 10> | 6.1993 x 10~*
kE=3]09.3591 | 3.4729 x 10~° | 3.0993 x 1075 | 2.7653 x 107% | 1.5738 x 10~*
E=419.3593 | 2.6086 x 1076 | 3.8754 x 1075 | 2.0098 x 10~7 | 3.9636 x 10~
E=51]9.3594 | 1.8126 x 1077 | 4.8446 x 1077 | 4.3976 x 10~ | 9.9451 x 10~©
k=6 ]9.3595 | 1.0730 x 10~% | 6.0559 x 10~5 | 4.6559 x 10~7 | 2.4908 x 10~
kE=719.3595 | 6.5331 x 10710 [ 7.5699 x 1077 | 5.0457 x 1010 | 6.2325 x 10~ 7

Table 4.2: Approximation errors obtained at iteration k,k = 1,..,7 for the considered cases Ay,
Aq,A5, A3 and A4 using the PPH reconstruction.

In Table 4.3 we present the obtained approximation orders for the studied PPH reconstruction
and just for the sake of comparison we also add the approximation orders for the classical four
points piecewise Lagrange polynomial interpolation. We have computed the approximation order
in the specified different regions Ay, A;, A, Az and A4. More in concrete, in the case of region
Ay we use the interval [2,3] for the x variable, in the case of region A the interval [4,5], and in
the case of region Ag the intervals [zq, 1, 27|, where k indicates the resolution level and the index
dj, is such that the inflexion point falls into the interval [zq, _1,2q4,] for each k. We can observe
that in the region Ay both reconstructions are affected by the jump discontinuity and they lose the
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approximation order due mainly to the subinterval containing the discontinuity. In the region of
type A1 both reconstructions attain fourth order accuracy as expected. In the case Ay the PPH
reconstruction reduces the approximation order to third order due to the presence of the inflexion
point. Similarly in the vicinity of the inflexion point, region Aj, the PPH reconstruction stays
between p = 3 and p = 4. In the adjacent intervals to the singularity, case A4 we clearly observe an
improvement with respect to Lagrange interpolation, since we obtain order p = 2 while Lagrange
completely loses the approximation order. Notice that the order reduction produced in the regions
As and Ajs occurs in very limited areas and it can be corrected using a translation strategy (see
[6],[20]) that we have not implemented in this experiment with the aim of studying the original
reconstruction operator.

k Lagrange PPH
Ao Ay Az As Ay Ao A, Az As Ay
k=1| —0.7414 | 12.2953 | 14.1257 | 2.8075 | 0.3021 —0.8940 1.5399 | 3.4158 | 2.9238 | 1.6054
k=2 0.0133 3.5540 | 3.5925 | 3.2929 | —0.0160 —0.0083 2.9836 | 1.6588 | 3.0895 | 1.9526

k=3 | —0.0001 3.9506 | 3.5038 | 3.8206 | —0.0081 | —5.4 x 10~ | 4.5859 | 2.9982 | 3.6381 | 1.9779
k=4]65x107°| 3.9789 | 3.7880 | 3.9254 | —0.0040 | —2.9 x 10~ | 3.7348 | 2.9995 | 3.7823 | 1.9893
k=5|33x10""| 4.0094 | 3.9064 | 3.9660 | —0.0020 | —1.5 x 107° | 3.8472 | 2.9999 | 2.1923 | 1.9948
k=6|16x10""| 3.9950 | 3.9559 | 3.9838 | —0.0010 | —7.4 x 1076 | 4.0784 | 3.0000 | 3.2396 | 1.9974
E=7181x10"%1 3.9976 | 3.9787 | 3.9919 | —0.0005 | —3.7 x 1075 | 4.0377 | 3.0000 | 3.2059 | 1.9987

Table 4.3: Approximation orders obtained at iteration k,k = 1,..,7 for the considered cases Ay,
Aq,A5,A3 and A4 using the PPH and Lagrange reconstructions.

In Figure 4.1 we plot the function f(x) and the Lagrange and PPH reconstructions obtained
from the initial grids X* k = 0,1,2. We can see that around the singularity, Lagrange recon-
struction looses the approximation order and the Gibss phenomena appears. In this zone, PPH
reconstruction performs in a more proper way, avoiding any Gibbs effects. We can see that no
oscillations appear in the PPH reconstruction even for the coarsest grid. These observations can
be seen more clearly in Figure 4.2 where we have plotted a zoom of this region for k = 3 for both
reconstruction operators Lagrange and PPH. We also point out that the oscillations due to the
jump discontinuity in Lagrange reconstruction do not diminish to zero with the subdivision level.
In fact, from & = 2 we have check out that the reconstruction values at the local maxima and
minima of the oscillations remain almost constant.

In the jump interval the distance 7% . decreases as k increases, since 7%, . = O(h¥). In
Table 4.4 the values for £k =0,1,...,7 are shown. We can see that at a certain subdivision level
the given values are approximately decreasing with the ratio % Therefore, PPH reconstruction

k

approaches to the straight line r; (x) as k increases.

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
TR e | 1.1126 x 1073 | 5.4822 x 10~% | 1.2527 x 1077 | 6.2825 x 101 | 3.1452 x 10~ | 1.5735 x 10~1 | 7.8700 x 10° | 3.9356 x 10~°

Table 4.4: Distances rF

max

obtained at subdivision level k,k =0,1,2,3,4,5,6,7.
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4.6 Conclusions

We have studied the behavior of the PPH reconstruction operator in presence of jump discon-
tinuities for the case of working with o quasi-uniform grids. For this purpose, the arithmetic and
harmonic means used in the uniform case are changed for weighted means with concrete weights,
so that the main properties that allow for maintaining order of approximation in smooth areas and
adaptation near singularities continue being true.

A explicit result concerning the approximation order, Theorem 4, has been proved, showing at
least second order of approximation for the adjacent intervals to the one containing the jump dis-
continuity, and ensuring fourth order of approximation in convex (concave) parts of the function far
from inflexion points. At a interval containing a inflexion point we get third order of approximation
and in the vicinity the order grows progressively till fourth order.

A main result of this chapter is Theorem 5 in Section 4 proving that the presented reconstruction
operator does not generate any Gibbs phenomena in the concrete sense indicated in the enunciate
for o quasi-uniform grids where the maximum space between nodes of the grid is small enough.

Finally we have carried out some numerical experiments to reinforce the theoretical results
proven as much in Proposition 1 as in Theorem 1.

72



12 12 -
10 M 10t r@,@"'@‘dl
st 8t

6 6

4t 4

o 2 +
O'TMHS\‘\S\.J O'M

2 L 2

4 4

L L
0 1 2 3 4 5 6 0 1 2 3 4 5 6

12 . . . . 12
" M 10 M
8 i 1 8
3
6 6
4t 4
2 21
O'M O'M
2 2r
4 4
. .
0 1 2 3 4 5 6 0 1 2 3 4 5 6

(e) (f)

Figure 4.1: In black solid line: function f(z), in green solid line the straight line joining the extreme
points of the jump interval [xf , xf +1], in blue dotted line: Lagrange reconstruction, in red dotted
line: PPH reconstruction. Void circles stand for initial nodes, filled circles for nodes at the k
subdivision level and asterisks for points P; and P» . (a): Lagrange k =0, (b): PPH k=0,
(c): Lagrange k =1, (d): PPH k =1, (e): Lagrange k=2, (f): PPH k =2.
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Figure 4.2: Zoom of the region around the jump discontinuity for subdivision grid level k = 3. (a):
Lagrange, (b): PPH.
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Chapter 5

Improving the approximation order
around inflection points of the PPH
nonlinear interpolatory reconstruction
operator on nonuniform grids.

This chapter is the result of a fruitful collaboration, which has given rise to a fully written paper
which is now submitted [17]

e Amat, S.; Ortiz, P.; Ruiz, J.; Trillo, J. C.; Yanez, D. F. Improving the approximation or-
der around inflection points of the PPH nonlinear interpolatory reconstruction operator on
nonuniform grids. Submitted.

5.1 Introduction

A high quantity of reconstruction operators have emerged in the last decades to attend the
demands of diverse applications in applied mathematics and industry [1, 2, 26, 25]. Normally,
polynomials are considered because of their simplicity and fast computation, and more specifically
piecewise polynomials in order to avoid using high degree polynomials. High order polynomials
involve larger stencils to build the reconstructions, what makes them more vulnerable to be affected
by the presence of potential discontinuities in the data, apart of being well known for producing
spurious maxima and minima known as Runge phenomena.

Nonlinear reconstructions allow adaptation to the available data and they also permit to pre-
serve certain properties inherent to the initial data. One of such properties is convexity, which
is intimately related to curve and surface design. In this context some nonlinear operators have
appeared in the literature in the past few years [6, 7, 10, 20, 4, 27]. In particular we pay attention
to the Piecewise Polynomial Harmonic (PPH) reconstruction [6, 11, 32, 37, 42, 50], which was
defined in nonuniform grids to preserve the convexity of the initial data under certain restrictions
[42]. This reconstruction works well with data coming from strictly convex functions, but it fails
to guarantee the approximation order in the vicinity of inflection points. This drawback comes
directly from the heart of the definition itself of the PPH reconstruction operator, that is, the use
of the weighted harmonic mean of two positive quantities. However, the problem can be solved by
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using a modified mean with a translation strategy.

In this chapter we introduce the definition of what we call a translation operator. Then, we apply
this operator to the weighted harmonic mean obtaining a new adapted mean which retains similar
properties as the original one, what is a crucial issue in order to be inserted into the construction of
the improved PPH reconstruction operator. Our main concern about improving the approximation
order around inflection points is to generate a tool that retains the approximation order in the whole
domain for smooth functions and maintains local convexity in the convex areas. This convexity
preservation property in smooth areas was proven in [42] under certain constrains. Also in [42] is
made evident that the PPH reconstruction, both in uniform and in nonuniform grids, is relevant
not only as an adapted reconstruction for smooth function with isolated jump discontinuities (see
[6, 43]), but as a reconstruction that preserves convexity of the initial data.

We study several possible options to work in combination with the PPH reconstruction operator.
In particular we define a way of choosing the best option depending on the specific data to which
it is going to be applied. Part of this work has been inspired by the ideas given in [20].

The chapter is organized as follows: In Section 5.2 we remind the nonlinear PPH reconstruction
operator [42] on nonuniform grids and its application for data coming from strictly convex functions.
Section 5.3 is dedicated to definition and study of the translation operator. In Section 5.4 we analyze
the behavior of the improved PPH reconstruction operator with respect to the approximation order.
In Section 5.5 we give a way of selecting the translation parameter depending on the data. In
Section 5.6 we present some numerical tests in order to confirm the theoretical results. Finally,
some conclusions are provided in Section 5.7.

5.2 A nonlinear PPH reconstruction operator on nonuniform grids

In this section we recall the definition of the nonlinear PPH reconstruction operator on nonuni-
form grids, see [42]. We include the necessary elements for the rest of the chapter. In [42] the
reconstruction operator is designed to deal with strictly convex functions, albeit it is also of inter-
est in the case of working with piecewise smooth functions affected by isolated jump discontinuities.
This will be our case of interest in this section and in the rest of the chapter.

Let us define a nonuniform grid X = (z;); ¢ z in R. Let us also denote h; := x; — z;_1, the
nonuniform spacing between abscissae. We consider underlying piecewise continuous functions f(z)
with at most a finite set of isolated jump discontinuities, and let us call f; := f(z;) the ordinates
corresponding to the point values of the function at the given abscissae. We also introduce the
following notations. In first place, the second order divided differences

fi—1 i fi+1
D'sz[f'fl,l“,ﬁ' 1]: - + )
J J Jr i+ hj(hj + hj+1) hjhjiq hj+1(hj + hj+1) (5.1)
i fit1 fi+2 '
D‘+1 = f[xﬁm'-‘rlax?i-Q]: - + )
! pem hjvi(hjer +hjr2)  hjpihjee  hjpa(hjpn + hjyo)
in second place a weighted arithmetic mean of D; and D;y; defined as
Mj = w;oDj + wj1 Dy, (5.2)
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with the weights
_ hjri A2k
0 Sy + g + hyga)”
( g+ i1+ J+2)
hj+1 + 2hj
2(hj + hjs1 + hjyo)

wj1 = =1 —wjpo.

These weights will allow us to express the third order Lagrange interpolation polynomial based
on the stencil {z;_1, 2,241,242} in terms of D; and D;; and their weighted arithmetic mean.
Given these ingredients in [42] we can find the following definitions, and results that we will use
later.

Lemma 16. Let us consider the set of ordinates {fj—1, fj, fi+1, fi+2} for some j € Z at the
abscissae {x;_1,xj,j11,j42} of a nonuniform grid X = (x;); ¢ z. Then, the values fj_1 and
fj+2 at the extremes can be expressed as

fici = ——(yjofi +virfivn +viafive) + —, (5.4a)
7]771 ,y]v*l
fiv2 = 7(%‘,—1fj—1 +v50f5 + v fie1) + Téa (5.4b)
J’ -]7

with the constants ~v;;, 1 = —1,0,1,2 given by

hj1 + 2hj1o

T o (b + ) (g + g+ Byra)
yio = 1 < hji1+2h; B hj1+ 2hj+2>
I 2hj+1(hj + hjp + hj+2) hji1+ hjqo h;j ’ (5.5)
S 1 <hj+1 t2hje2 Ry 2hj> .
I 2hjp1(hj + hjp1 + hjt2) hjy1+hj hjyo ’
hjy1 + 2h;
Vi J+1 J

 2hyea(hygr + hypa)(hy + hi + hjva)

Definition 17. Given x,y € R, and w;, w, € R such that w, > 0, wy, > 0, and w; +wy = 1, we
denote as V the following extension of the weighted harmonic mean given by the function

_ — " ifay >,
V(e,y) =4 W=yt (5.6)

0 otherwise.

Lemma 17. Ifx > 0 and y > 0, the harmonic mean in (5.6) is bounded as follows

~ 1 1 1
V(z,y) < min {m, y} < —u. (5.7)

Wy Wy Wy

We also include the definition of the approximation order such as it is commonly introduced in
numerical analysis. We are going to use it through the remaining part of the chapter.
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Definition 18. An expression e(h) = O(h"), r € Z means that there exist hog > 0 and M > 0 such
that V.0 < h < hg
le(h)]

hT’
Lemma 18. Let a > 0 be a fized positive real number, and let |x| > a and |y| > a. If |x—y| = O(h),

and xy > 0, then the previously defined weighted harmonic mean is also close to the weighted
arithmetic mean M (x,y) = wyx + wyy,

< M.

(M (z,y) = V(z,y)| = m(:v —y)? = 0(h?). (5-8)

Definition 19 (PPH reconstruction). Let X = (x;);cz be a nonuniform mesh. Let f = (f;)icz be
a sequence in loo(Z). Let Dj and Dji1 be the second order divided differences, and for each j € 7Z
let us consider the modified values {fj-1, f;, fi+1, fj+2} built according to the following rule

e Case 1: If |Dj| < |Dji4|

fi=  fi j-1<i<j+1,
§ o (5.9)
fit2 = ;iﬁerﬂer+%pﬁ“%%Jﬁ+ﬁ-Fﬁgv
e Case 2: If |Dj| > |Dj41|
S LN SRS "3 v
fj—l = 3 ('VJ,Of] + ’YJ,lf]-'rl + ’Y],Qf]-i-Q) + P (5.10)

fi=  fi,  j<i<j+2,

where 7vj;, i = —1,0,1,2 are given in (5.5) and ‘7] = V(Dj,DjH), with V the weighted harmonic
mean defined in (5.6) with the weights wjo and w1 in (5.3). We define the PPH nonlinear
reconstruction operator as

PPH(z) = PPHj(x), € [zj,zj1], (5.11)
where PPH(x) is the unique interpolation polynomial which satisfies
PPH(x;) = fi, j—1<i<j+2. (5.12)

According to Definition 19, it is possible to establish a parallelism with Lagrange interpolation,
in fact we can write the PPH reconstruction as

2 3
PPH;(x) =ajo+ aj1 (:E ijJr%) +ajo <£L‘ ijJr%) +aj3 (x ij+%) , (5.13)

where the the coefficients a;;, i = 0, 1,2, 3 are calculated by imposing conditions (5.12). We explain
each one of the two possible local cases, Case 1 or Case 2. The coeflicients will have symmetrical
expressions.

Case 1. |Dj| < |Dj41|, which means that a potential singularity may lay in [z;11,2;42]. It has
been proposed to replace fji2 with fj+2 in equation (5.9) by changing the weighted arithmetic
mean in equation (5.4b) for its corresponding weighted harmonic mean. This replacement has been
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performed to carry out a witty modification of the value fj.,.g in such a way that its difference with
respect to the original f;42 is large in presence of a discontinuity, but remains sufficiently small in
smooth areas maintaining the approximation order. Lemma 17 is crucial for the adaptation in case
of dealing with the presence of a jump discontinuity, while Lemma 18 plays a fundamental part in
proving fourth approximation order for smooth areas of an underlying function.
In this case the coeflicients a;;, i = 0,1,2,3 of the PPH polynomial read
~ ﬁ+ﬁﬂ_@ﬂv

aj70 = 2 4 J0
_f. . h? -

1= f]+f]+1+ j+1 D, — V),

’ hj+1 Ahj + 2hj1 (5.14)
a2 =V,
- 2 (D ‘7)
G — — N VAN

7,3 th +hj+1 J J

For our purposes in the next sections, we need to go deeper and examine the relation with
Lagrange interpolation. In particular we get that

2hjy2(hj1 + hjr2)(hj + hjt1 + hjto)

M; —V; 5.15
2hj+hj+1 ‘ J ]” ( )

|fi+2 — fi+2l =

and considering the Lagrange interpolation polynomial written in the same form as in (5.13), that
is

2 3
PLj(x) = a0+ aj1 (JU —l‘j+%) + ajo (93 — ijr%) +aj3 (CC —ﬂfj+%) , (5.16)

we get that the difference of these coefficients with the ones of PPH;(z) is given by

4
h? ~

~ 7+1

g — M. —V:
aj1 — aj1 4h; +2hj+1( J i) (5.17)
i — ajo = —(M; — V),
“—m~————z—4M~v)
a;,3 33 = 2h; + hye1 J il

Case 2. |Dj| > |Dj41], which means that a possible singularity lies in [z;_1,2;]. In this case,
in Definition 19, the value f;_; is replaced with f;_; by using expression (5.10). Similar comments
apply in this case due to symmetry considerations. The coefficients for the polynomial (5.13) now
read
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__fit+fin M

ajvo = 2 4 j’
_ —fi + fit1 hZ ~
a1 = + (=Djy1+Vj),
’ hj+1 2hjt1 +4hja ! (5.18)
o =Vj,
a 2 (=Djp1+V5)
5= . Yy
7,3 hj+1 n 2hj+2 J+1 J

The expressions relating the coefficients of the PPH polynomial with the Lagrange interpolation
polynomial now write

Fir— fia| = 2hj(hjt1 4 hj)(hj + hjt1 + hjio)
J— J— -

M; — V|, 5.19
2hj+2 + h]+1 ‘ J ]’ ( )
B h? ~
Gjo —ajo= 1= <Mj - Vj) ,
h2 ~
=g = _ J+1 _ 1
T g, Y (5.20)

Tjo —ajo = —(M; = V),

2 ~

N . — M: = V).

In next section we introduce the definition of a translation operator, which is meant to solve
the lost of approximation order close to the inflection points of the underlying function due to the
implementation of the weighted harmonic mean 17 in the case of having arguments with different
signs.

5.3 The translation operator

In [42] it was proven that if the data come from a piecewise smooth function with an isolated
jump discontinuity which verify D;D;y; < 0 at some interval away from the discontinuity, then
the PPH reconstruction operator gives an approximation of order O(h?) lower than O(h%) ob-
tained just by using the piecewise Lagrange interpolation polynomial. This fact is produced by
the presence of an inflection point in the function. Also, even if D;D;; > 0, when we are near
an inflection point it happens a reduction of order towards third order due to the definition of the
extended weighted harmonic mean (5.6). And a similar drawback would be observed in the two
adjacent intervals to the interval that potentially contains a jump discontinuity. In these intervals
the approximation order decreases to second order. Therefore, we observe three situations that
may require a modification in the definition of the reconstruction operator in order to attain the
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expected fourth order of approximation at the time that none of their positive qualities about adap-
tation to discontinuities and behavior with strictly convex functions is affected. The first and third
of these situations occur due to the fact that the weighted harmonic mean used in the definition
of the PPH reconstruction operator is defined with value 0 whenever the sign of the two involved
arguments D; and Dj;, is different or one of them is zero. The second situation has also to do
with the definition of the weighted harmonic mean and more specifically with Lemma 18, since the
hypothesis of this lemma are not satisfied if either or both D; and Dj;, are of order O(h") for
some 7 > 0.

In order to solve this problematic behavior we introduce a new adapted version of the weighted
harmonic mean. We first give the definition of a translation operator T, [20].

Definition 20. Given h > 0, a translation operator T is any function T : R? — R satisfying
1. T(0,0) =0,

T(x,y) =T(y, ),

T(-x,—y) = =T(2,y),

sign(z + T(x,y))sign(y + T(z,y)) >0,V (z,y) # (0,0),

if (z,y) # (0,0), with |z] < [yl
a) if |z| = |y|, sign(z) # sign(y), then sign(z + T(z,y)) > 0, sign(y + T(x,y)) > 0,
b) otherwise, sign(x + T(x,y))sign(y) > 0, sign(y + T'(z,y))sign(y) > 0,

6. min{|z +T'(z,y)|, |y + T(z,y)[} = O1), V (z,y) # (0,0), with [z| = O(h?), |y| = O(h?), for
some a > 0.

ARSI

Property 4 of Definition 20 avoids the division by zero in Definition 17, eliminating the case in
which the sign of the arguments does not coincide. This solves the inconveniences that generates
reducing the mean to zero in expression (5.6). Property 5 guarantees that the translation is done
towards the largest of the arguments in absolute value. Finally, property 6 will be needed to prove
similar lemmas to Lemma 17 and Lemma 18, what in turn will allow to prove adaptation in case
of discontinuities and fourth order accuracy in the reconstruction respectively.

With the above definition of a translation operator T', we are now ready to present the adapted
weighted harmonic mean.

Definition 21. We define the translated weighted harmonic mean as

J(x,y) =V(e+T(z,y),y+T(x,y) —T(z,y), (5.21)
where T is an appropriate translation operator.

From now on, we will drop the arguments of the translation operator T for the sake of simplicity.
They are easily inferred by the context.
For this new mean we can give the following technical lemmas.

Lemma 19. For all (x,y) € R2, the J(x,y) mean satisfies J(—x, —y) = —J(z,y).
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Proof.

J(—x7 *y) = Y(ix + T(*SE, *y)a -y + T(*CC, *y)) - T(*{L‘, *y)
= V(=@ +T(z,9), ~(y+ T(z,y))) + T(z,y)
= —V(I+T(I,y),y+T(ﬂf,y))+T(5€,y) = —J(.CU,y).

O
Lemma 20. For all (x,y) € R?, the translated weighted harmonic mean is bounded as follows
T
(2. 9)] < max { z 1], m} . (5.22)
Wy
Proof. Since ‘7(1‘ + T,y + T) and T have the same sign, then applying Lemma 17 we get
~ T
el < max {7+ T+ DL i} < max { 22T |
Wy
O

Lemma 21. Let a > 0 be a fized positive real number, T be a translation operator, and let (x,y) €
R? be such that |x+T| > a and |y+T| > a. If |x—y| = O(h), then the translated weighted harmonic
mean is a second order approximation to the weighted arithmetic mean M (x,y) = wyx + wyy, i.e.,

wewy(x —9)* _ o

Proof. Using the definition of J(z,y) we get

and applying Lemma 18 we have that

~ wewy(z — y)? 2
M T -V T | = Y = O(h?).
|M(xz+T,y+T) (x+T,y+T)| T —— (h%)

O

Notice that Lemma 20 and Lemma 21 correspond to an extension of previous Lemma 17 and
Lemma 18.

Remark 11. The bound obtained in Lemma 20 can be improved for particular choices of the
translation T, due to the fact that in the general case, one applies the triangular inequality in the
proof to reach the result, and this step can be refined for a given T. See for example the definition
of the translation T in (5.24) and its corresponding Lemma 22.
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One possible definition of translation 7' fulfilling previous Definition 20 is obtained by

_ {se if zy > 0,

T(z,y) = (5.24)

s (min {|z|, |y} + €) otherwise,
where € = O(1) is a constant and s is defined using the sign function as
[ signly) iffal <1yl
T { sign(x) otherwise.
The proposed new mean is then given by
J@,y)=V(@+T,y+1)-T, (5.25)
and verifies the following specific lemma which improves the bound in Lemma 20.

Lemma 22. For all (x,y) € R?, the translated weighted harmonic mean J is bounded as follows

o s Lo ippal <y
z,y)| <
M—F%e otherwise.

Wy Wy

Proof. Let us suppose without loss of generality that || < |y|. We consider four possible different
cases, and we prove the result separately for each case.

Case A. x <0,y > 0. In this case T = —x + ¢ > 0.

J(x,y)=V(ey—x+e)+z—e

Now, we observe that

Viey—z+e) >e
~ 1
Vie,y —x+e€) < —e.
Wy
If Viey—az+e) +x—e>0,
~ w
Ty < Jo] + e

T

If Viey—z+e¢)+z—e<0,

|J($,y)’ :E*$7V(€,yfx+€) < |.’E’

Case B. >0,y <0. In this case T = —z — e < 0.

J(x,y) =V(—ey—x—¢€)+x+e
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Observing that

If V(—e,y—ax—€)+a+€>0,

|J(z,y)] :‘7(—67y—x—6)+x+e§ |z].

If V(—e,y—xz—¢€)+z+e<0,

~ w
J < —Ye.
T, y)| < la] + —Le

xT

Case C. z > 0,y > 0. In this case T = ¢ > 0.

J(iﬂ,y) :V($+€,y+6) — €

We are going to use that in this case

Vix+e,y+e) >x+e,

1
Viz+ey+e) < —(z+e).

Wy

Since in this case V(x4 €,y + €) — e > 0, then

\T(z, )| < lel | wy
w w

x x

Case D. x <0, y < 0. In this case T=—c<0.

J(x,y)=V(rx—ey—c¢) +e

In this case using that

V(.T—G,y—E)Sx—E,

Via—ey—eo>—(x—e),

Wy

and observing that 17(33 —€,y—€)+e€<0, we get

w
|J(z,y)] < — + —Le.
w

Wy z
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5.4 Improved PPH reconstruction operator

In this section we introduce the modified mean defined in previous section into the definition
of the PPH reconstruction operator, giving rise to the following definition.

Definition 22 (Translated PPH reconstruction). Let X = (x;);cz be a nonuniform mesh. Let
[ = (fi)iez be a sequence in loo(Z). Let Dj and Dji1 be the second order divided differences in
(5.1), and for each j € Z let us consider the modified values {fj_l, E, fj.},.l, fvj+2} built according to
the following rule

e Case 1: If |D;| < |Dj1]

fi=  fi  J-1<i<j+1,
/ § ) (5.26)
five = 5 (i—1fiv + 0l +viafiv) + 55
e Case 2: If |Dj| > |Dj41]
~ _ J‘
ficv= 55 (ofi + vt +viafive) + 575,
, , (5.27)

fi=  f,  i<i<j+2

where vj;, 1 = —1,0,1,2 are given in (5.5) and J; = J(Dj, Djy1), with J the translated weighted
harmonic mean defined in (5.21) or in (5.25) with the weights wjo and w;1 in (5.3). We define
the translated PPH nonlinear reconstruction operator as

PPHT(z) = PPHTj(z), x € [zj,xj41], (5.28)
where PPHTj(x) is the unique third degree interpolation polynomial which satisfies
PPHT(x;) = f;, j—1<i<j+2. (5.29)

The coefficients for this new reconstruction operator match exactly with the expressions in
(5.14) and (5.18) respectively depending on the case, except for the substitution of 17] for J;.

We can prove now the following result about the order of approximation attained by the recons-
truction. We want to point out that the order improves in the vicinity of inflection points due to
the considered translation, which is an improvement with respect to the original reconstruction
procedure, see Theorem 1 in [43].

We are going to study the approximation order of the given reconstruction for functions of class
C*(R) with an isolated jump discontinuity at a given point . We consider only the case of working
with o quasi-uniform grids, according with the following definition.

Definition 23. A nonuniform mesh X = (z;)icz is said to be a o quasi-uniform mesh if there
exist Ropin = mi%l hi, hinaz = maZx hi, and a finite constant o such that }}’lmi <.
ZE 7/6 min

The next theorem proves full order of accuracy, that is fourth order of accuracy, in all intervals
except the interval containing the singularity and the two adjacent intervals. We observe that the
approximation order is reduced to third order close in the two adjacent intervals, but it is not
completely lost.
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Theorem 6. Let f(x) be a function of class C*(R\{u}), with a jump discontinuity at the point .
Let X = (x;)iez be a o quasi-uniform mesh in R, with h; = ©; — x;—1, Vi € Z, and f = (fi)iez,
the sequence of point values of the function f(x), fi = f(x;). Let us consider j € Z such that
p € [xj,xj41]. Then, the reconstruction PPHT (x) satisfies

1. In [z, xiv1], i # 7 —1,7,5+ 1, then

max |f(z) — PPHT(x)| = O(hY).

xe[xi,xi+1]
2. In [zj—1, ;] U 2541, j42],

max |f(z) — PPHT (x)| = O(h?),

z€lzj—1,2;]U[Tj41,2;42]
where h = max{h;}.
i€EZ

Proof. We do the proof point by point.
1. Given z € [z, zi+1], the reconstruction operator is built as PPHT (x) = PPHT;(x).
We recall that second order divided differences amount to second order derivatives at an inter-
mediate point divided by two, i.e
" (p2)

Dii1 = TR

_ m)

with 1 € (xi—1,zi4+1) and pg € (x4, zi4+2). Due to the properties of the translation 7" in Definition
20, we have that

Di+T =0(1), Dip1 +T = O(1) and Diyy — D; = O(h),
and from Lemma 21 we get that

w; ow; 1(Dit1 — D;)?
wi 0Dip1 +w; 1Dy +T

M; — J; = = O(h?). (5.30)

Plugging this information into (5.17) if |D;| < |D;11], or into (5.20) if |D;| > |D;t+1], we get that
|@is — ais| = O(R*™®), 5=10,1,2,3. (5.31)

Thus

5. 5 \
|PPHT (z) — PLi(2)| < 3 [d1s — ai| ‘(x _ mH%) ‘ — O(hY),
s=0
where PL;(x) is the Lagrange interpolatory polynomial. Taking into account again the triangular
inequality

|f(x) = PPHT;(z)| < |f(z) — PLi(z)| + |PLi(z) — PPHT;(x)| = O(h"),

using that Lagrange interpolation also attains fourth order of accuracy.
2. In order to prove Point 2, let us suppose without lost of generalization, that x € [x;_1,z;]. The
other case is proven analogously. Since, by hypothesis, the function f(x) is smooth in [z;_2, z;] and
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it presents a jump discontinuity in the interval [z}, z;41], we have Dj_1 = O(1) and D; = O(1/h?).
Therefore |D;_1| < |Dj] .

Let PL2;_1(z) be the second degree Lagrange interpolatory polynomial built using the three pairs
of values (z;2, fj—2), (zj-1, fi-1), (x5, f;)-

2
PLQj_l(.T) =aj-1,0+taj-1,1 (:L‘ - $j7%> +aj—1.2 (l‘ — a:jf%) ,

where )
~ 1t f 0
aj-1,0 = /i 12 fi _ Zij—h
. = fiit fy (5.32)
Got1 =
J

The difference between these coefficients and the ones of PPHTj_1(x) shown in Equation (5.14)
with J instead of V' is given by

2

aj-10 — @j_1,0 = ZJ (Dj—1 = Jj-1),
aj-11—aj-11 = m( j-1 = Jj-1); (5.33)
Zij—l,z _aj—l,Q = —(Dj—l - Jj—l)v
2
Qija=——-" (Di g —Ji_1).
CL] 1,3 2hjfl +h’j( j—1 J 1)

Taking into account Equations (5.33), Lemma 20 and the triangular inequality we obtain

|Jj-1(Dj-1, Dj)| < max{

|Dj_1 +TI,|T|},

Wj—1,0

)

1
wji—1,0
|aj*173 - 2L\.7'*1,5| = O(hQ_S)v s = Oa 1a 2a 37

[Dj—1 = Jj-1] < |Dj1| + max{

3 S
[PPHT)_1(2) — PL2j_1(2)| < 3 [@j-1,6 — dj-1.6] ‘ (2= 2,1) ‘ — o),
s=0
|f(x) = PPHT;1(z)| < |f(z) — PL2j1(2)| + |PL2j_1(x) — PPHTj_1(x)| = O(h?).
O

Remark 12. If one pays attention to the proof of point 2 in Theorem 6, and considers the defi-
nition of the particular translation proposed in (5.24) and Lemma 22, then it is easy to reach the
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conclusion that the smaller the €, the better accuracy obtained in the two intervals adjacent to the
gump discontinuity. However, in order for the proof of point 1 to work, € must still be O(1), so
that it is possible to avoid the reduction of order close to inflection points where the second order
divided differences could be O(h) and, therefore, Lemma 21 would not be applicable. A nonlinear
choice of the value of € seems then appropriate.

Remark 13. In the intervals adjacent to the jump discontinuity, one can get third order of accuracy
in the cases where there is a change of sign between the two consecutive second divided differences
involved in either [xj_1,x;] or [xj11, Tj42], just by considering a translation of the type T' in (5.24)
with an adapted value of €, small enough in those intervals, at least ¢ = O(h). In this cases we will

have
max |f(z) — PPHT (x)| = O(h?).
z€[zj—1,2;]U[Tj4+1,T542]
The reason for this fact comes from the expression of the adapted mean J in these cases, Case A

and Case B of Lemma 22, combined with the proof of the second point of Theorem 6 by estimating
now the difference |Dj_1 — Jj—1| = O(h).

5.5 Nonlinear choice of the parameter ¢ in the translation operator

It turns out that it is better to take a small € near a potential jump discontinuity, but it must
remain O(1) at zones where there is the possibility of having second order divided differences D;
of order O(h), just as it happens close to of inflection points. This assessment is also observed in
the numerical experiments.

This is the reason why we propose a strategy to choose € automatically depending on the data.
Inspired by the smoothness indicators proposed in [47],[20], see Remark 14, we propose an € with
the following expression,

. hj
6]' (534)

" Djl+ [Dja| + €

where o := [B(|Dj| + |Dj+1])] is the integer part of IS; := B(|Dj| + |Dj+1]), which stands as a
kind of smoothness indicator. The parameter ¢ = h? is included to avoid divisions by zero. The
parameter [ is taken into account to make the e smaller as we get apart from the inflection points.
This fact will result in obtaining a reconstruction almost equal to the original PPH reconstruction
in smooth areas without inflection points, allowing the preservation of convexity (see [42]). We have
considered 8 = 1 in our numerical experiments. The parameter « is large when a jump discontinuity
affects the stencil used to obtain it and, in turn, this situation will result in a very small value of
€; in that area. On the other hand, this indicator provides @ = 0 near an inflection point for
sufficiently small grid sizes and, therefore, ¢; = O(h™"), for some r > 0. Thus, € is guaranteed to
be large in this region.

Remark 14. In [}7] Jiang and Shu propose to obtain smoothness indicators using something
similar to the total variation, but based in the L? norm, so that the result is smoother than the total
variation. The proposed formula is just a sum of the L? norms of the derivatives of the interpolation
polynomials in the cell-averages over the interval (z;_1/2,7;41/2). Those indicators are more related
with the localization of critical points instead of inflection points. Moreover, for our case expression
(5.84) is cheaper computationally since D; and Djyq are already computed.
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5.6 Numerical experiments

In this section we present a simple numerical test to validate the theoretical results. Our
experiment computes the approximation order of the considered reconstructions in several areas
corresponding with the different points in Theorem 6. In particular we measure the approximation
order in the following areas, identified with the given symbols:

Ap: In the interval containing the jump discontinuity.
Aj: In a region where the function is smooth without inflection points and far away from them.
As: In a region where the function is smooth but contains an inflection point.
As: In a region close to the inflection point without containing it.
Ay: In the subinterval just to the right of the one containing the singularity.
We deal with the following piecewise polynomial reconstruction operators of third degree:
e Lagrange: piecewise centered Lagrange interpolation polynomial.
e PPH: nonlinear reconstruction operator given in Definition 19.
e PPHT, € = 0.5: translated version of the PPH reconstruction operator given in Definition 22.

e PPHT, ¢ = 0.05: translated version of the PPH reconstruction operator given in Definition
22.

e PPHT, ¢;: translated version of the PPH reconstruction operator given in Definition 22 using
an adaptive value of the parameter € according to expression (5.34).

Let X0 = (0,3,8,11,17,23,25,27, 31, 32, 36, 37.5, 38, 39.3, 40)5—0 be a nonuniform grid in [0, 27]

and f(z) the following smooth function with a jump discontinuity at x = 1.27, and an inflection
point at x = 37”,

sinz r < 1.2m,

cosx +10 x> 1.2m7.

This function has also inflection points at * = 0,7, but we will be dealing with the indicated
regions, letting aside those inflection points. The results for those cases give similar conclusions
and they have not been reported. In fact, the numerical tests that have been carried out with
different functions presenting well separated inflection points and isolated jump discontinuities give
similar results as the one shown in this article. For example, if the jump size is smaller, then the
approximation errors are in turn smaller, but the approximation orders present exactly the same
behavior (maybe with the need of smaller grid sizes).

In our experiment we have taken for the grid X° the following regions AJ = [0,27], AY = [2,3],
AY = [4,5], A = [2F,6.2], AJ = [27T, 4]. Notice that this intervals correspond to the initial grid X°
and they need to vary appropriately among the scales k to satisfy the requirements of the definition
of the associated region.

Given the initial abscissas 20,i € Iy = {0,...,14}, we consider the set of nested grids X* =
k—1 k—1
k k k=1 _k T 4w k k k :
{77 }ien, where x5, = o™, x5, = “—5"*, and I¥ = {xg,...,2z5 }, k = 0,1,...,7, with
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ng = 2ni_1 — 1, ng = 14. For each level of resolution k, we build the corresponding reconstruction
Ry.(z) using the data (z¥, f(2F)),i € I} computing the approximation errors in the infinity norm
with respect to the original function using a denser set of abscissas, i.e., we compute a numerical
approximation of

By = [|f(x) = Ri()]]co-

Then, we compute the numerical approximation order as

Ex1
=1 k=1,..,71.
b OgQ Ek; ) ) 9

Notice that due to Theorem 6 we can assume that for fine enough grids

hk—l

Ey~C <hk)p, with B = max B, = af ok 0F =

iel;\{0} !

In Tables 5.1, 5.3, 5.5, 5.7, 5.9 we present the errors committed by the considered reconstruction
operators by using as initial nodes the defined nested grids X*. The errors appear separately for
each kind of region Ag,A1,42,A3 and A4. In Tables 5.2, 5.4, 5.6, 5.8, 5.10 appear the corresponding
approximation orders.

In Tables 5.1, 5.2 we can see that neither of these methods is designed to adapt in the interval
containing the jump discontinuity since it is impossible to localize exactly the discontinuity just
working with the point values of the function. The largest error comes near the jump discontinuity
for Lagrange reconstruction, as it can be observed in the column corresponding to this reconstruc-
tion. In the region A; all the reconstruction operators attain fourth order of accuracy, p = 4, as it
can be seen in Tables 5.3, 5.4. Regions Ay and A3 correspond to the vicinity of an inflection point,
where the nonlinear PPH reconstruction operator reduces the approximation order to third order.
We can observe in Tables 5.5, 5.6, 5.7, 5.8 how all the translated versions get closer to fourth order
in these two regions, Az and As. Albeit, the version with larger € and adapted ¢; perform in a better
way than with smaller € in these cases. Finally in Tables 5.9, 5.10 we can see how the nonlinear
reconstruction operators reach second order of accuracy in the intervals to the right and to the left
of the interval containing the jump discontinuity, while the linear Lagrange reconstruction operator
completely loses the order of approximation. In the case of the adapted translated version, we get
third order due to the observation given in Remark 13.

In Figure 5.1 we plot the function f(z) and the Lagrange, and PPHT (with €; adapted) recons-
tructions obtained from the initial grids X* k = 0,1,2. We can see that around the singularity,
Lagrange reconstruction looses the approximation order and the Gibss phenomena appears. In
this zone, PPHT reconstruction performs in a more proper way, avoiding any Gibbs effects. We
can see that no oscillations appear in the PPHT reconstruction even for the coarsest grid. These
observations can be seen more clearly in Figure 5.2 where we have plotted a zoom of this region for
k = 3 for both operators Lagrange and PPHT. We also point out that the oscillations due to the
jump discontinuity in Lagrange reconstruction do not diminish to zero with the subdivision level.

In Figure 5.3 we analyze the numerical behavior of the truncation parameter € and the effect of
the parameter § introduced in its definition. As we can see the large values of € correspond with
the areas around the inflection points of the function and the parameter takes values very close
to € = 0 in the three intervals around the jump discontinuity. The effect of 5 is more noticeable
as we increase its value from § = 1 to 8 = 100, setting the value of the parameter € closer to
zero for the smooth areas without inflection points. This fact makes the translated version of this
reconstruction similar to the original PPH reconstruction operator in smooth convex areas.
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Remark 15. The numerical experiment has been carried out using a finite interval, that in princi-
ple, falls out from the scope of Theorem 6. However, the results are also true for the finite case away
from the boundaries, and the proof remains exactly the same. Notice that any finite discretization
of a finite interval is a o quasi-uniform grid according to Definition 23. The boundaries have been
treated by using non-centered third degree Lagrange polynomials, so that if we take into account that
the discontinuity and the inflection point are placed far from the boundaries, they do mot affect to
the attained numerical approrimation order.

5.7 Conclusions

Using the general definition of a translation operator given in [20], and previously mentioned
in [6], we have considered several specific cases. In particular, we have studied a way of choosing
a translation adaptively depending on the specific data to which it is going to be applied. In
turn, this translation operator has been used to extend the definition of the already existing PPH
reconstruction operator on nonuniform grids [42, 43] to work appropriately with functions which are
not necessarily strictly convex. We give a corresponding theorem ensuring the pursued objective
of getting fourth order of approximation at the smooth parts of the function, independently of the
presence or not of inflection points. Finally we have performed some numerical experiments to
check the behavior of the proposed adaptation.

k Lagrange | PPH | PPHT,e = 0.5 | PPHT,e =0.05 | PPHT,g;
k=0 5.6495 5.0072 4.8870 4.9125 4.9153
k=1 9.4448 9.3051 9.1754 9.1740 9.1738
k=2 9.3578 9.3588 9.5194 9.5194 9.5195
k=3 9.3587 9.3591 9.5207 9.5208 9.5208
k=4 9.3591 9.3593 9.5214 9.5214 9.5214
k=5 9.3593 9.3594 9.5217 9.5217 9.5217
k=6 9.3594 9.3595 9.5219 9.5219 9.5219
k=17 9.3595 9.3595 9.5220 9.5220 9.5220

Table 5.1: Approximation errors E}, in the infinity norm obtained at iteration k, k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region Ay.
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k Lagrange PPH PPHT,e =0.5 | PPHT,e =0.05 | PPHT,¢;
k=1|-74x10"1 | -89 x 107! —9.1x 1071 —9.0x 1071 —9.0x 1071
E=2| 13x1072 | —-8.3x1073 —5.3x107? —5.3x107% —5.3x 1077
k=3] -13x10%| =54 x 107 —2.1x107* —2.0x 1072 —2.0x 1071
k=4] 65x107° | —2.9x107° —1.0x 107% —9.9%x107° —9.9x107°
E=5] 33x107° | -1.5x107° —5.0 x 107 —5.0 x 107 —4.9x107°
k=6 1.6 x107° | —7.4x107° —2.4x107° —2.5x107° —2.4x107°
k=7| 81x107% | -3.7x107° —1.2x107° —1.2x107° —1.2x107°

Table 5.2: Approximation orders p in the infinity norm obtained at iteration k,k = 1,..,7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region Ay.

k Lagrange PPH PPHT,e =0.5| PPHT,e = 0.05 PPHT,¢;
k=0 3.7038 1.9182 x 1072 1.4586 x 10~ 1 2.7869 x 10~? 4.4601 x 1072
k=11 7.3685 x 10~* | 6.5968 x 1073 1.4201 x 1073 4.6348 x 1073 9.5688 x 10~*
k=21 62735 x 107> | 8.3401 x 10~ 9.4378 x 107 4.5210 x 10~* 6.9863 x 107°
k=31 4.0575 x 1076 | 3.4729 x 107 5.8493 x 1076 2.2392 x 107° 4.4229 x 1076
k=41 25733 x 1077 | 2.6086 x 1076 3.6925 x 1077 1.5670 x 1076 2.7765 x 1077
k=5] 1.5978 x 1078 | 1.8126 x 107 2.3181 x 10~ 1.0414 x 1077 1.7329 x 10~°
k=6 | 1.0021 x 1077 | 1.0730 x 1078 1.4459 x 1079 6.3099 x 10~ 1.0840 x 1077
E=7|6.2737x 107! | 6.5331 x 10719 | 9.0272 x 10~ ! 3.8843 x 10719 | 6.7782 x 10~

Table 5.3: Approximation errors Fj in the infinity norm obtained at iteration &,k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,

and PPHT with adapted ¢; in the region A;.
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k Lagrange | PPH | PPHT,e = 0.5 | PPHT,e =0.05 | PPHT,¢;
k=1 12.2953 1.5399 6.6824 2.5881 5.5426
k=2 3.5540 2.9836 3.9114 3.3578 3.7757
k=3 3.9506 4.5859 4.0121 4.3356 3.9815
k=4 3.9789 3.7348 3.9856 3.8369 3.9937
k=5 4.0094 3.8472 3.9935 3.9115 4.0019
k=6 3.9950 4.0784 4.0030 4.0447 3.9987
k=17 3.9976 4.0377 4.0015 4.0219 3.9994

Table 5.4: Approximation orders p in the infinity norm obtained at iteration k,k = 1,..,7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region A;.

k Lagrange PPH PPHT,e =0.5 | PPHT,e = 0.05 PPHT,e¢;
k=0 | 7.5463 x 1071 | 8.3447 x 1073 | 2.3123 x 102 5.6651 x 1073 2.9178 x 1073
k=11 42214 x107° | 7.8190 x 10=* | 1.9193 x 10~ 6.4427 x 10~* 6.7164 x 107°
k=21 3.4996 x 1076 | 2.4763 x 10=* | 1.8960 x 10~ 1.0918 x 1074 5.3926 x 1076
k=31 3.0851 x 1077 | 3.0993 x 10~° | 1.2028 x 1076 8.7545 x 10~° 4.8008 x 10~7
kE=4| 22334 x107% | 3.8754 x 107 | 7.5666 x 10~° 6.3675 x 10~ 7 3.3935 x 10~°
k=05 1.4804 x 1077 | 4.8446 x 107 | 4.7431 x 1077 4.3337 x 107° 2.2339 x 107
k=6 95977 x 1071 | 6.0559 x 10~ | 2.9687 x 10~10 2.8345 x 1079 1.4299 x 1010
k=76.0880 x 10712 | 7.5699 x 1077 | 1.8566 x 10~ 1! 1.8137 x 1010 9.040 x 1012

Table 5.5: Approximation errors Fj in the infinity norm obtained at iteration &,k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region As.
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k Lagrange | PPH | PPHT,e = 0.5 | PPHT,e =0.05 | PPHT,¢;
k=1 14.1257 3.4158 6.9126 3.1364 5.4411
k=2 3.5925 1.6588 3.3395 2.5609 3.6386
k=3 3.5038 2.9982 3.9784 3.6406 3.4896
k=4 3.7880 2.9995 3.9907 3.7812 3.8224
k=5 3.9064 2.9999 3.9957 3.8770 3.9251
k=6 3.9559 3.0000 3.9980 3.9344 3.9655
k=17 3.9787 3.0000 3.9990 3.9661 3.9835

Table 5.6: Approximation orders p in the infinity norm obtained at iteration k, k = 1,..,7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region As.

k Lagrange PPH PPHT,e =0.5| PPHT,e = 0.05 PPHT,¢;
k=0 6.3455 x 10~* | 2.2239 x 1073 1.2150 x 1073 1.9915 x 1073 8.6245 x 10~*
k=11 9.0640 x 10~° | 2.9306 x 10~ 1.4797 x 1074 2.5484 x 1074 1.1640 x 10~
E=21] 92479 x 1076 | 3.4429 x 107 1.6629 x 10~° 3.0064 x 10~° 1.2170 x 107
k=31 6.5454 x 1077 | 2.7653 x 10~° 1.0760 x 1076 2.3029 x 10~° 8.1262 x 1077
k=41 43080 x 10~8 | 2.0098 x 107 6.8410 x 10~° 1.6202 x 1077 5.1976 x 10~
k=5 | 2.7567 x 107 | 4.3976 x 10~° 4.6111 x 107 2.2983 x 10~° 3.2797 x 107
k=6 |1.7424 x 10719 | 4.6559 x 1077 | 2.9178 x 1010 1.8210 x 1079 2.0587 x 10710
E=7/|1.0951x 10! | 5.0457 x 10719 | 1.8375 x 10~ ! 1.3610 x 10710 | 1.2895 x 1011

Table 5.7: Approximation errors Fj in the infinity norm obtained at iteration &,k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region As.
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k Lagrange | PPH | PPHT,e = 0.5 | PPHT,e =0.05 | PPHT,¢;
k=1 2.8075 2.9238 3.0376 2.9662 2.8893
k=2 3.2929 3.0895 3.1535 3.0835 3.2577
k=3 3.8206 3.6381 3.9500 3.7065 3.9046
k=4 3.9254 3.7823 3.9753 3.8291 3.9667
k=5 3.9660 2.1923 3.8910 2.8176 3.9862
k=6 3.9838 3.2396 3.9821 3.6578 3.9937
k=17 3.9919 3.2059 3.9891 3.7420 3.9969

Table 5.8: Approximation orders p in the infinity norm obtained at iteration k,k = 1,..,7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region Aj.

k Lagrange PPH PPHT,e =0.5 | PPHT,e = 0.05 PPHT,e¢;
k=0 75463 x 1071 | 7.3017 x 1073 | 2.3122 x 102 4.9884 x 1073 2.9178 x 1073
E=1/|6.1204 x 10! | 2.3996 x 1073 | 3.3130 x 1073 4.8664 x 10~* 1.7116 x 1074
E=2|6.1887 x 107! | 6.1993 x 10~* | 8.0841 x 10~* 9.8797 x 10~ 1.9854 x 107
k=316.2234x10"" [ 1.5738 x 10~* | 1.9971 x 10~2 2.2119 x 107° 2.3812 x 10°©
kE=4|6.2409 x 1071 | 3.9636 x 107> | 4.9635 x 10~ 5.2260 x 1076 2.9126 x 1077
k=5 |6.2496 x 10! | 9.9451 x 107° | 1.2372 x 10~ 1.2697 x 107° 3.6003 x 10~°
k=6 | 62540 x 1071 | 2.4908 x 107% | 3.0887 x 10~° 3.1290 x 10~ 4.4750 x 1079
k=716.2562x 107" [ 6.2325 x 107 | 7.7161 x 10~7 7.7664 x 1078 5.5778 x 10710

Table 5.9: Approximation errors Fj in the infinity norm obtained at iteration &,k = 0, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region Ay.
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k Lagrange | PPH | PPHT,e = 0.5 | PPHT,e = 0.05 | PPHT,¢;
k=1 0.3021 1.6054 2.8031 3.3577 4.0914
k=2 —0.0160 1.9526 2.0350 2.3003 3.1078
k=3 —0.0081 1.9779 2.0172 2.1591 3.0597
k=4 —0.0040 1.9893 2.0085 2.0815 3.0314
k=5 —0.0020 1.9948 2.0042 2.0412 3.0161
k=6 —0.0010 1.9974 2.0021 2.0207 3.0082
k=17 —0.0005 1.9987 2.0010 2.0104 3.0041

Table 5.10: Approximation orders p in the infinity norm obtained at iteration k, k = 1, .., 7 by using
the considered reconstruction operators, Lagrange PPH, PPHT with ¢ = 0.5, PPHT with ¢ = 0.05,
and PPHT with adapted ¢; in the region Aj.
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Figure 5.1: In black solid line: function f(x). In green solid line the straight line joining the extreme
points of the jump interval [xf , xf +1]. In blue dotted line: Lagrange reconstruction. In red dotted
line: PPHT reconstruction with adapted €;. Void circles stand for initial nodes, filled circles for
nodes at the k subdivision level. (a): Lagrange k=0, (b): PPHT k=0, (c): Lagrange k = 1,
(d): PPHT k =1, (e): Lagrange k=2, (f): PPHT £k =2.
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Figure 5.2: Zoom of the region around the jump discontinuity for subdivision grid level k = 3. (a):
Lagrange, (b): PPHT with adapted ;.
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Figure 5.3: Values of the € parameter in (5.34) along different intervals for the z variable. (a): for
f =1 in the interval [0, 27], (b): for § = 1 in the interval [3.7,3.8], (c): for f = 100 in the interval
[0,27], (d): for 8 =100 in the interval [3.7,3.8].
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Chapter 6

On certain inequalities associated to
curvature properties of the nonlinear
PPH reconstruction operator

The contents of this chapter are wholly included in the already published paper [44]

e Ortiz, P.; Trillo, J.C. On certain inequalities associated to curvature properties of the non-
linear PPH reconstruction operator. Journal of Inequalities and Applications. 2019, Paper
No. 8, 13 pp, https://doi.org/10.1186/s13660-019-1959-0

6.1 Introduction

Reconstruction and subdivision operators have been studied, analyzed and implemented in
computer aided geometric design giving rise to interesting applications in different fields of science.
Subdivision schemes provide easy and fast algorithms for the generation of curves and surfaces
from a coarse initial set of control points. They are closely related to reconstruction operators.

Starting from a given set of data, the target of the reconstruction operators is to obtain a
piecewise function p(z) which interpolates or approximates the data preserving certain properties
which are of interest because of some geometrical or physical reasons. One particular case is given
by smoothing splines (see [23], [46]) in a given interval [a,b]. They are built through polynomial
reconstruction pieces that are connected in a smooth way at the control knots and that satisfy the
minimization problem

b
. L . 10, \2 2
i Jp)= min [ f(a) o+ Y stotas) = £ (6.1)
where II,, stands for the polynomials of degree less or equal to n. The considered functional implies
a balance, dominated by the weights p;, between a low curvature term and a small value of the
accumulated distance to the initial set of data (x;, f;).

PPH reconstruction was firstly defined in [6], although as subdivision scheme was already in-
troduced in [32]. Later the PPH reconstruction operator was extended to allow for the use of
nonuniform meshes [41], issue that is needed to link this reconstruction with general splines. This
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reconstruction is inherently a nonlinear interpolatory technique that has some remarkable charac-
teristics. We mention those that are attractive for our purposes. In particular: a fixed centered
stencil is used to build each polynomial piece, fourth order accuracy is reached in smooth convex
regions, reduction to second order occurs at the vicinity of singularities but the approximation
order is not completely lost as it happens in the linear case, and Gibb’s effect is avoided. Also we
specially remark two more properties which are going to be crucial for this reconstruction. The
convexity preservation when dealing with initial discrete set of convex data [41] and a low curva-
ture term. This last property about the curvature is part of what is going to be proven in next
sections. More precisely we study the term of curvature of the functional (6.1) for the Lagrange
and PPH reconstructions, in the uniform and the nonuniform case. Then, due to these suitable
properties, we think that connecting the PPH reconstruction with smoothing splines could result
in very interesting applications.

The chapter is organized as follows: In Section 6.2 we analyze the curvature term for the
Lagrange and the PPH reconstruction on uniform meshes. In Section 6.3 we study the case of
nonuniform meshes. Finally, in Section 6.4 we present some conclusions and future perspectives.

6.2 Study of the curvature term in uniform meshes

Let us consider the set of values f;_1, fj, fj+1, fj+2 corresponding to subsequent ordinates at
the abscissas x;_1, 2, ¥j41, ;42 of a regular grid X with fix grid spacing h = xj;1 — ;. The set
of polynomials p(x) which pass through the central points (x;, f;) and (241, fj+1) can be written
in terms of two free variables A and B as follows

1 . _ _ .
p@) == (@ — 2j) (i — x) AL+ L) 4 B4 T2
6 h (6.2)
acj+1 — T xr — xj

= fi i
From now on, we will use the following definition of the local curvature term.

Definition 24. Given a polynomial p(z) in an interval [xj,xj+1] we define the local curvature term
as

Clp) = / % ()2 da. (6.3)

In order to compute the local curvature term in Definition 24 for the set of polynomials given
by (6.2) we proceed as follows. The difference between the evaluation of polynomial (6.2) and the
corresponding initial data at the abscissas xj_1, 2,42 is given by

p(zj1) = fi-1 = h*(A=2D;),  p(xjt2) = fiva = h*(B = 2Dj11), (6.4)
where D; and D, are the second order divided differences

_fia=2f+ fim fi—2fj41+ fite
212 ’ 2h2 '

D;j Djp1 = (6.5)

Computing the second derivative of the polynomial p(z) in (6.2) and introducing this compu-
tation in the local curvature term of expression (6.1) we get
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Cp) = / P @) d = g(fﬁ + AB+ B). (6.6)

i
6.2.1 Curvature term for the Lagrange reconstruction

Let pr(x) be the third degree Lagrange polynomial which interpolates the data (z;+s, fjts),
s =—1,0,1,2. In order to write pr,(x) in the form of polynomial (6.2) we look for the appropriate
values of the parameters A and B which allow for the remaining interpolation conditions to be
satisfied

pr(zj—1) = fi—1,  pr(zjy2) = fiyo. (6.7)

Solving the last two equations we get

A = 2Dj, By, = 2Dj+1.
Thus, the defined curvature term (6.6) takes the form

4h

CL = C(pL) = 3

(D3 + DjDji1 + Dy ). (6.8)

6.2.2 Curvature term for the PPH reconstruction

Let now pg(z) be the PPH polynomial (see [6]). This fourth order reconstruction based also on
the data (245, fits), s = —1,0,1,2, basically proceeds as follows: firstly a modification of either
fj—1 or fjyo is carried out in order to avoid the bad influence of a potential singularity at [z;_1, z;]
or [xj41, T 2] respectively, secondly a third order Lagrange interpolation is applied to the modified
data. Then, due to this intrinsically nonlinear nature we need to consider two different cases to
carry out the curvature study for pg(z). This is done in the following theorem.

Theorem 7. The curvature term associated to the PPH polynomial pg(x) in a uniform mesh with
grid spacing h is given by

4hD*(D? — 2D, D; 41 + 13D2, )
J J jHi+1 J+1 .

if |D;| <|Djy1| & D;jDjq >0,
3(D; + Djs1)? F1D;] < 1Djia| & DjDja

2
4h D5

C 3 if |D;| <|Djt1| & DjDjy1 <0, oo
" ; ; 2 6.9
4hD?,,(13D? —2D;D;, + D?, )
Jt+1 J JHi+1 1 i
D;| > |Djs1| & DjDj 1 >0,
3(Dj + Djy1)? if |Djl > |Djsa] & DjDjsa
4hD?

TJH if |Dj| > [Djs1| & D;jDji1 <0,

where D; and Dji1 are the second order divided differences defined as,

Ji = 2fjv1 + five
2h?

p. - fisi = 2fi + fin

J 2h2 ) D]"v‘l =

Moreover, for all cases Cyr satisfies Cp, — Cir > 0.
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Proof. Depending on the absolute values of the second order divided differences D; and Dj; in
(6.5) we analyze the following two cases:

Case 1. |Dj| < |Dj1], i.e, a potential singularity lies at [xj41, zj42].
In this case in order to build the py(z) in the form of polynomial (6.2) we need to impose the
following two conditions
pu(xj-1) = fi-1,  pu(Tjt2) = fit2, (6.10)

where fvj+2 represents the modified value at x4, and it is computed by (see [6] for more details)

~ D. + D. ~
fivo = fj42 — 4h® (3 5 ol Vj> , (6.11)
where ‘7j stands for the extended Harmonic mean defined by
2D;Dji1 -
7, = Diipe i DD >0, (6.12)
0 else.

Solving equations (6.10) for the free parameters results in

Ay =2Dj, By =4V; —2D;.
Depending on the sign of the product D;D; 1, the parameter By takes a different expression,

and therefore the same happens for the curvature term Cy defined by Cy := C(pg), according to
expression (6.6). We consider now the following new two cases,

Case 1.1. D;D; 1 > 0.
In this case the term By reads
_ 2D;(3Dj41 — Dj)

BH — )
Dj + Dj+1

and thus 4hD?%*(D? — 2D;D; 13D?
Crr — 5 (D —2D;Djy1 + j+1).
3(Dj + Djt1)?
It is now interesting and in fact part of our objective with this computation to compare the
obtained curvature with the previous result (6.8) for the usual third order Lagrange polynomial.
Performing this comparison we reach to

4hDj+1(Dj+1 — Dj)2(5Dj + Dj-i—l) >0 (613)

Cp—Cpy =
o 3(D; + Djs1)> -

which shows clearly that the curvature term C'y for the PPH reconstruction is always lower than
the corresponding curvature C'f, for the Lagrange polynomial. This could be an interesting property
in practical applications related with manufacturing and graphical design.

We study now the other case.
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Case 1.2. Dij+1 < 0.
In this case the terms By and Cy read

4hD]2
By =-2D;j, Cg= 3

Therefore the difference Cr, — Cy is now

4hD; 1(D; + D;
J+1( J + ]+1) > 0. (614)

Cr—Chy= 3 >

Again we see that also in this case the curvature term Cp for the PPH reconstruction is lower
than the corresponding curvature C', for the Lagrange polynomial.

Case 2. |Dj| > |Dj41], i.e, the potential singularity lies at [z;_1,2;]. In this second case
in order to build the polynomial pg(z) in the form (6.2) we need to impose the following two
conditions

pr(zi-1) = fi-1, pu(zi42) = fita. (6.15)
where fj_l is the modified value at x;_;. Its expression is given by (see [6] for more details)

Dj + Dj+1 _ ‘7)

fio1 = fio1 — 41 ( 5 f (6.16)

Working in a similar way to case 1 we obtain
Ap =4V; —2D; 1, Bpg =2Djy.
and depending on the sign of the product D;D;1 we consider two subcases.

Case 2.1. Dij+1 > 0.
Replacing V; by (6.12) in the expression of Ag we get

_ 2Dj11(3D; = Djy1)

A
" Dj+ Djy1

and therefore from (6.6) we have

4hD?

711(13D7 = 2D;Dj 1 + D, y)
H =

1
3(Dj + Djy1)?

Computing the difference between the curvature terms C7, and C we obtain

4hD;(Dj — Dj+1)*(D; +5Dj41)

oG = 3(D; + Dyr1)?

> 0. (6.17)

Case 2.2. D;Dj;1 < 0. Replacing 17] by (6.12) in the expression of Ay we get now

Ag = —2Dj1,
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and therefore from (6.6) this time we have

2
—
Finally, the difference between both curvature terms writes
4hD;(D; + D,
Cp,—Cyg= i ]3—1_ i+1) > 0. (6.18)
O

We have just seen that for data in uniform grids, the curvature term in equation (6.1) associated
to PPH reconstruction operator remains below the value of the curvature associated to Lagrange
operator.

6.3 Study of the curvature term in nonuniform meshes

Let us consider the set of points fj_1, f;, fj+1, fj+2 corresponding to subsequent ordinates at
the abscissas xj_1,%;,Zj4+1,%j+2 of a nonuniform mesh X. Let be h; = z; — xj_1, hjy1 = xj41 —
xj, hjt2 = xj42 — xj41 . Similarly to the uniform case, the set of polynomials p(x) which pass
through the central points (x;, f;) and (241, fj+1) writes

1 Tit] — T Tr— T
p(x) =~ (@ = ;) (w0 — 2) [AL+ =) + B+ =)
741 741 (619)

Tjy1 — T T —
+ = :

hja 7 hj1
At the boundary points x;_1,x;42 of the interval, the distance of the polynomial to the initial
data is

hj(hj + hjt1)

plwj—1) = fim = - (A(hj + 2hj41) + B(hjt1 — hyj) — 6Djhjt1),
J
hysa(hjsn + h;
p(@jy2) — fi+2 = g2 é;lﬂ i+2) (A(hjy1 — hjq2) + B(2hjq11 + hjt2)
J
— 6Dj41hj4), (6.20)

where D; and Dj 1 are the general divided differences defined by

D. Ji—1 i n fit1
J )
hj(hj + hjs1)  hshjtr o hjpa(hy + hjt)
Djpi = i ~ fin n fi+2 (6.21)

hjs1(hjg1 4+ hjyo)  hjrihjre  hjpa(hjpr + hjpe)

Introducing the second derivative of (6.19) in the curvature term of (6.1) we get

Tjt1 . .
Clp) = / P (2)2da = %(A2 4 AB + B?) = %((A + B)? - AB). (6.22)

J
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6.3.1 Curvature term for the Lagrange reconstruction in nonuniform meshes

When p(z) is the Lagrange polynomial py (), it verifies

pr(xj—1) = fi—1, pr(zj+2) = firo. (6.23)
From previous conditions and equations (6.20) it results the following linear system for A and B

Ar(hj +2hj11) + Br(hjir — hj) = 6Djhji,

6.24
Ap(hjsr = hjt2) + Br(2hjy1 + hjt2) = 6Djihjpr (6.24)
Solving this system, we obtain the parameters A and B for the Lagrange polynomial
A, = APiChin1 + hjvo) + Djya(hy = hjy1)]
hj + h i+1 + h/j+2 ’ (625)
B, — 2Dk hir) + Dya(hy + 2hy40)]
hj+ hjy1+ hjo
It is convenient to observe that
Ap + B = 4Mj,
A, — By = 6hji1(Dj — Djs1) (6.26)
hj+hji1+ hjpo
where M; is the weighted arithmetic of D; and Dj41, that is
Mj = wjoDj + wj1Dji1, (6.27)
and the weights w; o, w; 1 are defined by
hjt1 +2hji2
Y0 T 9 hy + by + hyse)’
i g1 T 42 (6.28)
i+1 + 2h;
wj,l = == 1 - 'u)j70.

2(hj + hjs1 + hjt2)
Plugging these values into expression (6.22) we get the curvature term Cr, = C(pr) for the Lagrange
reconstruction.

6.3.2 Curvature term for the PPH reconstruction in nonuniform meshes

The PPH reconstruction in nonuniform meshes is defined in the interval [z;, z;41] by using the
data f;_1, fj, fj+1, fj+2 at the abscissas x;_1, =;, Tj+1, Tj4+2 in the following way: depending on
the relative size of |D;| an |D;11|, we substitute either f;_; for fj 1 or fjio for fj+2 After this
replacement Lagrange reconstruction is applied to the new set of data. We remark that the initial
substitution is made in order to adapt to the presence of potential singularities at the same time
that we maintain the fourth order accuracy of Lagrange reconstruction in smooth convex areas.

In what follows we present some expressions that we will need to derive the curvature term.
For more information about these expressions see [41]. The mentioned substitutions, depending on
the relative size of |D;| and |Dj;1], take the form

A hi(hj +hjv1) (2. =

Fv =i = 20 (8- V5). (6.292)

- hiva(hjsr + hy -

Freo = fao - itllirithive) (o gy, (6.29D)
Wj,1

106



where ‘7] is the harmonic means of D; and D;1, that is

D;D;
~ gt if Dij—H > 0,
V=1 wjoDjt1 +w;jiD;j (6.30)
0 otherwise,

From equations (6.27) and (6.30) we obtain

wj,0Dj41+w;1D;

_ wiowii(Di+1=D)* e p.p. 5
- { Rt (6.31)

M; otherwise.

This expression will be used later. B N
The divided differences D; and D;;q calculated with the PPH ordinates f;_1 and f;42 are now
given by

B — fia i fi+1
ST gyt hin) by Byea(hy + by
i(hj 4 hjg) 3Nj+1 j+1(hj + 1) (6.32)
Dy — fi ~ fin fi+2
! hjt1(hjsr +hjy2)  hjtihjre  hjra(hjtr + hjto)
and their difference with (6.21) becomes
T ST
D;j—D; = Sl ST (6.33)
i(hj + hjt1) wj,0
~ fiva = fieo M; -V,
Dji1—Djuy = - .
A hjra(hjp1 + hjyo) wj1

We are now ready to compute the curvature term associated to PPH reconstruction p(x) = pg(z).

Theorem 8. The curvature term associated to the PPH polynomial py(x) in a nonuniform mesh
satisfies

1.1) If |D;| < [Djya| & DjDjy1 >0,

12h3_,w; gw? wi oDt +wi1D;i + D
Cr —C _ J+1739 J,1< 4,05 +1 J 15 J) D.i1— D)3
b (2h; + hjy1)* \ (wjoDjs1 + w1 D;)? (Disr = Dj)
+ Ahj (M7 = V7).
Cp,—Cg>0.
1.2) If |Dj| < |Djy1] & DjDj1 <0,

8Mh;

CL—Cn= I (2(h2 + hyhji + 3 0) My — 3h3,,D;),

(2h; + hjt1)?
Cr, — Cy >0, under one of these natural conditions:

1.2.1) If M; and D; have different sign.
1.2.2) If Mj and D; have the same sign and

M; 3

Dj 2(h§ + hjhj+1 + h?Jrl) '
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2.1) If |Dj| > [Dj11| & D;Dj41 > 0,

3 2
1205 [y wiowin  wjoDjy1 +wiiDj 4+ Djyy

C,-Cy = ( )(Dj = Dj11)?

(hj1+2hj42)2 " (wjoDj41 +wj1D;)?
+ 4hj+1(Mj2 —‘7}2)7
Cp,—Cg>0.
2.2) If |Dj| > |Dj11| & D;Dj41 <0,

8M;h, i1

Cp— Cp = — it
E T (hyr + 2hj40)2

(2(h2 1 + hjsrhja + B3 o) M; — 33, Djy1),

Cp — Cy >0, under one of these natural conditions:
2.2.1) If M; and Djq1 have different sign.
2.2.2) If M; and Dj1 have the same sign and

Mj 3
Djiq 2(h§+1 + hjr1hjio + h§+2)

Proof. We need to consider two main cases.
Case 1. |Dj| < |Dj1], i.e, the possible singularity is at [xj41, 2;2]

pu(zi—1) = fi—1, pr(Tj4) = fj+2-

(6.34)

From previous conditions and equations (6.20) and (6.29b) we get the following linear system in A

and B
Ap(hj + 2hj1) + Br(hjyr — hj) = 6Djhjy1,
AH(hj_H — hj+2) + BH(th—H + hj+2) =6Dj11hj1.

(6.35)

We observe that this system has the same form as the system for the Lagrange case (6.24), except

for l~)j+1. Its solution is

A = 2Dy + hyv2) + Djia(hy — hyji)]
H — )
hj + hj+1 jj hj+2
By = 2Di(hje2 — hjr) + Djsa(hy + 2hj41)]
H — )
hj+ hjt1 + hjye

which can also be expressed as

_ 6D;hyp +4(hy — hy1)V

A )
" 2h; + hjp N
By — —6Djhj+1 + 4(hj + 2hj+1)‘/}
2h; + hjy1 ’
From (6.36) we can easily see that
Ag+ By = 4‘7]'.
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We also point out that parameters Ay, By, and Ay, By are related by

6h;i1 ~

Ag=Ap— (2- 2N Y, v
H L ( 2h]6;'h]+1>( J .7)7
j+1 7
Ll RS T YD VI A
2h]+h]+1 ( J .7)

(6.38)
By = By, — <2 +

Taking into account equations (6.22), (6.26), (6.37) and (6.38), we obtain the difference Cr, — Cp,
between Lagrange and PPH curvature terms.

1213, (M; - Vj) _
Co—Cn = (2jhj e wj1(Djy1 — Dj) — (Mj = Vj)) (6.39)

-+ 4hj+1(Mj2 — ‘7;2)

Introducing the expression (6.31) of the difference M; — 17} in previous equation, the following
subcases appear:

Case 1.1. D;Djq1 > 0.

12h3~ 1w~0w21 ’LU‘()D‘ 1 +wi1D; + D;
C.—Cgx = J+170% 4 < 7,07+ 3,177 J) (D‘_H—D‘)S
(2hj + hjr1)? \ (wjoDjr1 +wj1Dj)? ’ !

+ Ahj (M2 - V). (6.40)

On one side, as the sign of D; equals to the sign of D; 1 then MJ2 > XN/J?.
On the other side, since we are in the case |D;| < |Dj41|, this implies that

(wj0Dj41 + wj1Dj + D;)(Djp1 — Dj)* > 0.
Thus, CL — CH Z 0.

Case 1.2. Dij+1 S 0.

8Mjhj+1

L= @yt by

(2(hZ + hjhjt1 + b3 )M; — 3h5, D;). (6.41)

Cr, — Cy will be positive if M; and 2(h]2» + hjhji1 + h?H)Mj — 3h]2~+1Dj have the same sign.
This happens in the following cases

1.2.1. M; and D; (the lower divided difference in absolute value) have different sign.

2
M; 3hi

Dj Q(h? + hjhji + h?-i—l).

1.2.2. M; and D; have the same sign and

The last conditions are not always satisfied. However we can solve this situation by paying
proper attention to the following facts:
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e Case 1.2 will only take place around inflection points on the underlying function. Therefore,
if we work with data corresponding to strictly convex or concave functions this case will never
happen.

e Case 1.2.2 will not occur around discontinuities except for extremely nonuniform grids where
wjo ~ 1, since M; and D; have the same sign if and only if \Dé%;ﬂ < %

e In the supposition that for the given data condition in Case 1.2.1 is not satisfied, although
this is a rare situation, then we can consider the replacement at this concrete interval of the
original data f;_1 by fj_l according to (6.29a) instead of fj;2 by fj+2 in order to attain
Cp > Cpg. This observation is easily proven because we go directly to Case 2.2.1. Thus,
we give priority to the minimization of the curvature instead to the adaptation to possible
singularities. Notice that as mentioned in the previous point, there should not be a singularity
at the considered interval but for exceptional cases.

Case 2. |Dj| > |Dj1], i.e, the possible singularity is at [x;_1, z;]

pr(zio1) = fi1, pu(rjs2) = fjta- (6.42)

Previous conditions together with equations (6.20) and (6.29a) give the following linear system for

A and B _
Ap(hj +2hji1) + Br(hjy1 — hj) = 6Djhj 1, (6.43)
Ap(hjt1 — hjr2) + Bu(2hj1 + hjy2) = 6Dj1hjt.

Its solution is _
Ay = AP+ hjvo) + Djsa(hj = b))
» hj + hj+1 + hj+2 ’ (644)
By = 2Di(hyv2 = hyji1) + Djia(hy + 2hj41)]
H — )
hj+hji1+ hjpo

which can also be expressed as

A, = “ODs+1hji1 +4(2hj41 + hj2)V;
H — )

hjv1 +2hjp2 (6.45)
_ 6Djahji +4(hjr2 — hir1)V;

hjt1 + 2hji2

Bu

)

where we see that, as in Case 1,
Ag+ By = 4‘7]'.

We also point out that parameters Ay, By, and Ay, By are related by
6h,41 > ~

Ay =A; — (24— | (M, = V),

H L < Tir1 + 2h; (M; i)

6hj11 =
By =B — (2—- ——L5— ) (M; - V)).
e < hjt1+ 2hj42 (M = V3)

(6.46)
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Taking into account equations (6.22), (6.26), (6.37) and (6.46), we also reach in this case to the
expression for the difference Cy, — C'yy, between Lagrange and PPH curvature terms

CL—Chy = L2k (M — ‘7]2) (2w;0(Dj = Dj11) — (Mj = V) (6.47)
(hj+1 + 2hj42) ’

+ Ay (MF - V).

Using expression (6.31) of the difference M; — V; in previous equation, we get the subcases

Case 2.1. D;Djq1 > 0.

12h3 1w2'()wj1 wioDiv1 +wi1D; + Diyq
C,—Cy = Jj+177, ) < J,0+~7+ J,1 -] Jj+ > D. — D 13'
(hj+1+2hj42)? \ (wj0Dj+1 +wj1D;)? (g = Dy1)

+ 4hj+1(Mj2 — ‘7]2) (6.48)

On one side, D;jD;y1 > 0 implies MJ2 > 17]-2.
On the other side, since |D;| > |D;11|, then

(wjDjs1 + w1 Dj + Djy1)(Dj — Djg1)® > 0.
Thus, C;, — Cy > 0.

Case 2.2. Dij+1 S 0.

8Mh;
CL—Cn= LIt 5 (2015 1 + hyrahyia + B o) Mj — 315 Djyy). (6.49)

(hj41+2hj42)
Cr, — Cy will be positive if 2(h?Jrl +hjrihjo+ h]2~+2)Mj - 3h32-+1Dj+1 have the same sign as M;.
This occurs when

2.2.1. M; and Dj4q (the lower divided difference in absolute value) have different sign.

M, 302,
2.2.2. M; and Dj; have the same sign and — > Zhs .
J J Dji Z(h?_,’_l +hj1hjpe + h?_i_z)

At this point, the same observations as in Case 1.2 can be done. That is, the last conditions
are not always satisfied. However, we can solve this situation by paying proper attention to the
following facts:

e Case 2.2 will only appear around inflection points. Therefore the case is avoided if we consider
only data corresponding to strictly convex or concave functions.

e Case 2.2.2 will not occur around discontinuities except for extremely nonuniform grids where

a1 si , , ! don i if | Li wj.1
wj1 ~ 1, since M; and Dj1; have the same sign if and only if ]Dj_H\ <

e In the supposition that for the given data condition in Case 2.2.1 is not satisfied, albeat
this is not a common situation, we can give priority, as it happened in Case 1.2.2, to the
minimization of the curvature instead to the adaptation to possible singularities. Then, we
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consider in this case the replacement at this particular interval of the original data fj+2 by
fj+2 according to (6.29b) instead of fj_1 by fj—1 in order to attain Cy, > Cp. Again, this
observation is trivial to prove.

O]

6.4 Conclusions and perspectives

We have obtained some inequalities which demonstrate that PPH reconstruction operator be-
haves better than usual linear Lagrange reconstruction operator regarding to curvature issues. This
study complements other previous results [6], [10], [41] where it was proven that PPH reconstruc-
tion preserves also the convexity properties of the initial data. This property is also inherited by
the associated subdivision scheme [37], [50].

This opens up a potential future work connecting PPH reconstruction with smoothing splines
in order to obtain a PPH-type reconstruction of class C? in the whole interval with interesting
convexity preserving properties and low curvature term. Notice that piecewise PPH reconstruction
is only continuous at the joint nodes.
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Chapter 7

Analysis of PPH interpolatory
subdivision scheme on o
quasi-uniform grids.

The contents of this chapter are wholly included in the already published paper [45]

e Ortiz, P.; Trillo, J.C. Analysis of a New Nonlinear Interpolatory subdivision scheme on o
quasi-uniform grids. Mathematics. 2021, 9, 1320. https://doi.org/10.3390/math9121320

7.1 Introduction

Subdivision schemes are closely related to reconstruction operators. They have been used in
the last few decades in many applications ranging from the numerical solution of partial differential
equations to image processing and computer aided geometric design. Subdivision schemes give
simple and fast algorithms to approximate the limit function from a set of initial data at a coarse
resolution level. There is an immediate way of generating subdivision schemes from reconstruc-
tion operators, and more in concrete from prediction operators [5], [35]. Due to this connection,
subdivision schemes inherit many of the properties of their associated reconstruction operators. In
particular, the subdivision scheme will be nonlinear if the reconstruction operator is nonlinear, and
it is said interpolatory if it comes from a reconstruction operator which is an interpolation.

Nonlinear subdivision schemes have emerged as good candidates to adapt to the concrete data
in use. The research in this field counts with new contributions each year and receives the attention
of many researchers, see for example [22], [28], [30], [38], [39]. Nonlinearity means data dependent
subdivision schemes which may also involve nonlinear operations in their definition. Then, by
definition, they are designed to overcome certain drawbacks that appear when dealing with their
linear counterparts, such as bad behavior in presence of isolated discontinuities for instance. An
example of these kind of operators was defined in [6] and was named as PPH (Piecewise Polynomial
Harmonic). This scheme basically consists on a clever modification of the classical four points
Lagrange subdivision scheme. Several studies have been carried out about their properties and
performance in different applications, see for example [6], [10], [32]. Two main purposes of this
subdivision scheme are related to dealing with data containing isolated discontinuities, reducing the
undesirable effects, and preserving the convexity of the initial data, while maintaining a centered
support based on four points.
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In [42] the authors extend the definition of the PPH reconstruction operator to nonuniform
grids. In turn, this fact allows us to extend the PPH subdivision scheme to nonuniform grids, and
carry out a parallel study in this new scenario. In order to overcome some technical difficulties in
the theoretical proofs, we have restricted to o quasi-uniform grids for some results. The resultant
scheme is quite interesting in terms of applications due to the almost C' smoothness of the limit
function, allowing to approximate accurately continuous functions with corners, and also due to
appropriate properties regarding convexity preservation of the initial data, see [10]. In this chapter
we focus on proving the convergence of the scheme towards an almost C'! limit function, and also
we address numerically the issue of stability, which is a central issue in order to be useful for
applications.

The chapter is organized as follows: Section 7.2 is devoted to remind the PPH reconstruction
operator over nonuniform grids. Section 7.3 presents a short review about Harten’s interpolatory
multiresolution setting, which is closely connected to interpolatory subdivision schemes. In Section
7.4 we define the associated subdivision scheme, which we show that it amounts to the PPH
subdivision scheme when we restrict to uniform grids. The definition is given for general nonuniform
meshes, although in order to establish some theoretical results we consider ¢ quasi-uniform meshes.
In section 7.5 we analyze the main issues about subdivision schemes. In particular, we prove some
results about convergence, smoothness of the limit function, and convexity preservation. In section
7.6 we carry out some numerical tests to check the theoretical smoothness of the limit function, and
the performance of the nonlinear subdivision scheme. Finally, we give some conclusions in section

7.7.

7.2 A nonlinear PPH reconstruction operator on nonuniform grids

In this section we remind the definition of the nonlinear reconstruction that will give rise
to the nonlinear subdivision scheme under study in this chapter. More information about this
reconstruction operator can be found in [6], [42], [43].

Let us define a nonuniform grid X = (z;); ¢ z. Let us also denote h; := x; —x;_1, the nonuniform
spacing between abscissae. Let us consider the set of values {f;_1, fj, fj+1, fj+2} for some j € Z
corresponding to the abscissae {xj_1, 2,241,242} of the nonuniform grid X.

We need to introduce the definition of the second order divided differences

fi—1 i fit1
Dj 1= floj-1, 25, 2501] = - + 7
’ PR h(hy 4 hyea)  hhye (g + hyg) (7.1)
fi fit it '
D1 := flrj,xi11,T540] = — + ,
a 3o g, 2542 hjvi(hjrn +hjr2)  hjpahjre o hja(hjo + hjpo)
and the weighted arithmetic mean of D; and D;y; defined as
Mj = wjoDj +wj1Dji1, (7.2)
with the weights
__ hir #2040
Y30 = 9 h + hyar + hya)]
(hj + hjt1 + hjt2)
(7.3)
h; 2h;
wj1 = gL T 2y =1—wjpo.

2(hj + hjs1 + hjy2)
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We require also some definitions and lemmas that appear in [42].

Definition 25. Given x,y € R, and w;, w, € R such that w, > 0, wy, > 0, and w; +wy = 1, we
denote as V the function

~ L foy > 07
Viz,y) = Wl T Wy (7.4)
0 otherwise.

Lemma 23. If x > 0 and y > 0, the harmonic mean is bounded as follows

~ 1 1 1
V(z,y) < min {x, y} < —u. (7.5)
Wy Wy Wy
Lemma 24. Let a > 0 a fized positive real number, and let x > a and y > a. If |x—y| = O(h), and
xy > 0, then the weighted harmonic mean is also close to the weighted arithmetic mean M (z,y) =

Wg T + WyY,
~ Wy Wy

|M(z,y) — V(z,y)| = m(ﬂﬁ —y)* = 0(h?). (7.6)

We remind the following definition for the PPH reconstruction on nonuniform meshes. The
details and main properties of this reconstruction operator can be found in [42], [43].

Definition 26 (PPH reconstruction). Let X = (x;);cz be a nonuniform mesh. Let f = (fi)icz a
sequence in lo(Z). Let Dj and Djy1 be the second order divided differences, and for each j € Z let
us consider the modified values { fj—1, fj, fj+1, fj+2} built according to the following rule

e Case 1: If |D;| < |Dj1]

fi=  fi J-l<i<jtl
- - (7.7)
five = 5 (i—fi-r +viofi +vatie) + 55,
e Case 2: If |Dj| > |Dj41|
fi-i= 55 (pofi +viafi +viafive) + 575, (7.8)
fi=  fu  j<i<j+2
where v;;, i = —1,0,1,2 are given by
S hjr1 +2hji2
P 2hy(hygn + hy) (R + Ry + hyao)
o = 1 ( hj1+2h; i+ 2hj+2>
I 2hjt1(hj + hjp1 + hjt2) \hjr1 + hjto hj ’ (7.9)
vi1 = 1 (hj+1 T 2hjte  hjer th) '
I 2hjy1(hj + hjp1 + hjt2) hji1+ hj hjio ’
hit1 + 2h;
Vi J+ J

~ 2h (b + hyy2)(hy + hjg1 + hys2)

115



and ‘7} = XN/(D]-7 Dj1), with V the weighted harmonic mean defined in (7.4) with the weights wjo
and w1 in (7.3). We define R(x) as the PPH nonlinear reconstruction operator given by

R(z) =Rj(x), € xjxjt1], (7.10)

where R;(x) is the unique interpolation polynomial which satisfies

Rj(z) =fi, j—-1<i<j+2 (7.11)
We can write the PPH reconstruction by using the middle point x 4l = L;cj“ as
2 3
Rj(x) =a;o + a1 <x793j+%)+2ij,2 (:vfszr%) +a;3 <xij+%) , (7.12)
where the the coefficients a;;, i =0, ..., 3 are calculated by imposing conditions (7.11). Depending

on the local case, Case 1 or Case 2, the coefficients will have different expressions.
Case 1. |Dj| < |Dj41], In this case, the coefficients of the polynomial (7.12) take the form

~ it fin h s

(Ij’(] - 9 4 VYJ

_f. . h2 ~
ajl _ fJ + f]+1 + Jj+1 Dj — V]),
a2 =V},
a ——3—4D Vi)
Gia — — R VA
3,3 th +hj+1 J J

Case 2. |Dj;| > |Dj41], In this case, we obtain the following coefficients for the polynomial
(7.12)

~_fit v i

aj,() - 9 4 ‘/3
~ —fi+ fi+1 hj2+1 ~
aj1 = + (_D 1+V')7
J hj1 2hj1 +4hjyo " ’ (7.14)
aj2 = Vj,
Ggm (LD 4T
Fin— _n. Y
7,3 hj+1 + 2hj+2 Jj+1 J

With the previous definitions and lemmas we are now ready to introduce the PPH subdivision
scheme. But before doing it, we will also remind some basic concepts of Harten’s interpolatory
multiresolution setting and its connection with subdivision schemes.

116



7.3 Harten’s interpolatory multiresolution setting
Let us consider a set of nested grids in R,
Xk = {l‘f}iezy
and the point-value discretization
Dy : Cp(R) — V*
fooe i = ez = (faf)iez, (7.15)

where V¥ is the space of real sequences related to the resolution of X* and Cp(R) the set of
bounded continuous functions on R.

A reconstruction operator Ry associated to this discretization is any right inverse of Dy, which
means that for all f¥ € V¥ R, f* € Cg(R), and DyRy = I, that is

Ry : VF = Cp(R)
¥ R, (7.16)

(Rif*)(@f) = (fFiez = (f(a]))iez-

The sequences {Dy}reny and {Ry}ren define a multiresolution transform [5]. The prediction
operator, i.e, Dy 1Ry : V¥ — VF+1 defines a subdivision scheme. Relation (7.16) implies that
the subdivision scheme is interpolatory. If R, is a nonlinear reconstruction operator, then the
corresponding subdivision scheme S := Dy 1Rj, becomes also nonlinear.

7.4 A nonlinear PPH subdivision scheme on nonuniform grids

Let us consider a particular set of nonuniform nested grids X* = (2%),cz, k > 0, generated from
an initial grid X°.

Definition 27. Given X° = {x;}icz a nonuniform grid in R, we define, for k € N (the larger the

k the larger the resolution), the set of nested grids given by X* = {xf}iez, where xél = aszl and
¢ sy
2i+1 = 2 :

Let us also consider hf = xf — xi‘ip the nonuniform spacing between abscissae. Given a set of

control points ¥ = ( fik)ieZ7 we define the nonlinear PPH subdivision scheme as

5l = (SfF) = fF,

7.17
o fh s, (747
2 4 v

féﬁll = (Sf*)2i41 =

where YZ’“ = @k(Df,Dfﬂ) is given in (7.4) and it is computed with the weights (wﬁo)iez, and
(wﬁl)iez given in (7.3), and the second order divided differences DF and Df,, are defined in (7.1).
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Notice that the expression of the subdivision scheme at odd indexes coincides with the coeffi-
cient agp of the PPH reconstruction operator in (7.13) or (7.14), due to the fact that the defined
subdivision scheme satisfies S = Dj1R. This means that the expression of the subdivision scheme
is symmetric, even if the modification of the data has been carried out to the left (7.14) or to the
right (7.13) for the concrete piece of the underlying reconstruction operator.

Supposing that the initial data come from a convex smooth function, then by the process of
definition through its associated reconstruction operator, we get a fourth order accurate subdivision
scheme. In case of having data coming from an underlying smooth function with inflexion points,
the order would be reduced around these inflexion points [43]. The use of the weighted harmonic
mean in Definition 7.17 guarantees certain adaptation near jump discontinuities. In presence of an
isolated singularity we have two adjacent intervals where D; = O(1) and D;11 = O(1/(h¥)?), or
D; = O(1/(h*)?) and D1 = O(1), with ¥ := max hé‘;. For these cases, the harmonic mean remains

J
of order ‘7@ = O(1). If both D; and D;y; are affected by the discontinuity, then no adaptation is
taking place. But this situation happens only in the prediction of one value per scale and per
discontinuity.

It is also interesting to remark that for uniform meshes, i.e., h; = h Vi, then all the given
expressions reduce to equivalent expressions in [6] valid only for the uniform case.

Notice that Definition 7.17 of the PPH subdivision schemes has been introduced for general
nonuniform meshes. From now on, one needs to take into account that some results are true for
general grids, while others require the restriction to a particular type of nonuniform meshes, that
by the way, are the most common in practice.

In next section we study some main issues about the defined subdivision scheme. In particular
we prove convergence, almost C'' smoothness in the limit function, and we give a result concerning
convexity preservation.

7.5 Main properties of the PPH subdivision scheme in nonuniform
meshes

We start the section with some definitions taken from [6] that will be used in the rest of the
chapter.

Definition 28. A nonlinear subdivision scheme is called uniformly convergent, if for every set of
initial data f° € loo(Z), there exists a continuous function S® ¥ € C(R), such that

lim |[Sf*— 8> 02 k)|, 2 = 0.
k—oo

Definition 29. A convergent nonlinear subdivision scheme is called stable, if there exists a constant
C such that for every pair of initial data f°, f° € oo (7Z),

18 £° = 8 0| < CIIf° = fOllio@)-

Definition 30. Let N > 0 be a fixed integer. A nonlinear interpolatory subdivision scheme has the
property of polynomial reproduction of order N, if for all P € Ily, where Il stands for the vector
space of polynomials of degree less or equal to N, we have Sp = p, where p and p are defined by
pe = P(27F) and pj, = P(2~FD.).
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Definition 31. A nonlinear subdivision scheme is called bounded, if there exists a constant C' > 0
such that

ISflliwz) < Cliflli@) VI € loo(Z).

Definition 32. A nonlinear subdivision scheme is called Lipschitz continuous if there exists a
constant C > 0 such that for every f,g € loo(Z) it is verified

ISf = S9llie@) < ClIf = 9llia(z)- (7.18)

We can now give some basic results before addressing the convergence of the scheme. In order
to prove the coming theoretical results we are going to work with o quasi-uniform grids, according
to the following definition

Definition 33. A nonuniform mesh X = (x;)icz is said to be a o quasi-uniform mesh if there
exist Popin = mi% hi, hinazr = maZX h;, and a finite constant o such that Zmﬂ <.
7/6 746 min

Proposition 12. The nonlinear subdivision scheme associated to the PPH reconstruction
1) reproduces polynomials of degree N < 2,
2) is bounded,
3) is Lipschitz continuous.

Proof. 1) If f is a polynomial of degree less or equal to 2,
Dj=Dju1 =V,

therefore the proposed scheme reproduces polynomials of degree 2.
2) By definition of the PPH subdivision scheme for a given j € Z we have that

(Sf)25 = 1j,

fj+2fj+1 _ (thl)QXN/j if Dij+1 >0,

(Sf)2j1 =

% otherwise.

Uiz Y| flioo @
Wm()’ |Dj1| < —55=% we get that

2
2h’min

Using that |D;| <

(hjt1)’ = _ (hjp1)?

2
g
ma{|Dj 1], D51} < Tl e

Thus,
2

g
S fllioz) < (1 + ?)||f||loo(2),

and therefore the nonlinear subdivision scheme is bounded.
3) Let us consider {f},{g} € l(Z).
Clearly
(Sf)2j — (S92l = |f; — g5l < — 9lli(2)-
Since
|fj +fir1 gt 9t
2 2

| <l = 9llie2)
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to estimate the odd components |(Sf)2j4+1 — (Sg)2j+1| we simply need to estimate the terms

. 2 __ . 2 __
CitZg ), Bl

or ‘ 5 A 5
Bas) g p) - Gl )

according to the sign of D;(f)Dj4+1(f) and D;(g)Dj+1(g)-
a) Suppose D;(f)Djy1(f) > 0 and D;(g)Dj4+1(g9) < 0. In particular, D;j11(f)D;y1(g) < 0 or
D;(f)D;(g) <0. In the first case, we write

(hj—l-l)2~ ( max) ’DJ-H( )’
: <
I
< ( mam) ’D]+1( ) Dj+1(g)|
- 4 Wi 1
hmax 2 4
< Lk 2 vl = gl
< f = 9lli@)

and in the second case we get similarly

(hj+1)? = (hmaz)? |1 D;(f)]
SOV s
< (hmaz)? |D;(f) = Dj(9)]
- 4 wj0
(hmaa:)2 4

< 1 2(hmm)220-”f_g”loo(Z)

< Nf = 9l
b) Suppose now that D;(f)D;+1(f) > 0 and D;(g)D;+1(g9) > 0. If D;(f)D;(g) < 0, then using

the same arguments as in case a) we obtain

|(hj11)21~/j(f) B (hyzl)z

If Dj(f)Dj+1(f) < 0, we consider the function Z(z,y) =
is easy to check that the Jacobian of the function Z verifies

ol = 18507 )1 B () < 2091 — gl

defined for all xy > 0. It

w; oy+w 1T

1z(, y)l|oo < 20

Thus, the mean value theorem easily leads to

N2 )2 <
L) - Gl < Qo 0y() - Dyta) D) - Dy (o)l
< (lzjzﬂ) ollf = gl < °lIf = gl

mwn

Clearly, C' =1 + 203 is a convenient constant that completes the proof.
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Next lemma and proposition allow to prove the existence of a contractive scheme S; for the
differences §; := f; — fi—1.

Lemma 25. Let D be the set defined by D := {j € Z : DjDji1 > 0} and let the expressions
Evj, Eoj and M be defined as follows

hj1 hj+1
B = : Dy, ¥ : D,
(hj1 + Do) (i1 +wj0—5—=) (A1 + D) (wi0 + w1 5=—)
J J+1

M = sup{|Eyj|, | Ea;1}.
JE€D

Then,the following inequalities are satisfied

1) Elj > 0, Egj > 0, VjeD,
2) E <M, Ey<M, Vj €D,
3) M<Li

Proof. 1) and 2) are trivial. Let us see 3). Given j € D, we have

hjt 1
4 wir(hjer + hjya)

E1j < < 5,

since
hj+1 < ZIUj71(hj+1 + hj+2) S 0< hjthrl + 2hj+1hj+2.

Analogously, we can see that Fa; < %
Thus

—

M = sup{|Eyjl, | Bzl} < 5.
jeD
O

Proposition 13. Associated to the PPH nonlinear reconstruction, on non-uniform grids there
exists a nonlinear subdivision scheme S1 for the differences. If the grid is o-quasy uniform, then
Sy is bounded, i.e. satisfies

1618* 1o 2y < M8 l1o@) VI € 1oo(2),
where (5;? = f;«‘: - ff_l, and A1 = 3 + (o0 — 1) M.

1
Moreover, if o <1+ S then A\1 <1 and S1 is contractive.

Proof. a) Existence of Sj.

S16% has the following expressions for even and odd indexes.
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a.1l) Even indexes

k k)2
S+l k4l —fkﬂ _ 5j+1 + (hj+1) vk
274+2 7 J2542 25+1 — 2 4 i

and depending on the value of 17] we differentiate two cases,
a.1.1) If D*D | >0,

k k k k
O 0 e On

k kK bk k
Mg hy o e Pin
k 2 k 2 k k k k
(hj+1> ~]€ _ (hj+1) hj +hj+1 hj+1 +h’j+2
j % % 2 k
4 4 Ofr2  Ofy 0fy1  Of
Wiz M hj N
e L S
g1 T e 5 T4
k k
bk 1 (hjﬂék - 1)
a k k kOt J+
4 %2 O e
k k h?+2 h;?—&-l k &
wjﬁo(hj + hj+1) 5k ok + wj,l(hj+1 + hj+2)
it 75
k %
hii  hj
hk
k +1 ok k
42
Then
5k‘+1 _ 5;?4’1 Ek h?‘f‘l (Sk 5k 1
2j+2 = To T I ke~ O ) (7.19)
J
a.1.2) If D¥Dk, | <0, )
ok
k+1 +1
Oy = 92 . (7.20)
a.2) Odd indexes
k k 2
R O SE N TS W L Rt
2j+1 = Joj41 T 25 T T A j

and again by proceeding in a similar way we get for the two different cases,

a.2.1) If D¥ D} >0,

Jj+1
k 5k+1 hk—i-l k k
1
O =~ — ES; (;Lkéj — 5j+1> : (7.21)
i
knk
a.2.2) If D*DF | <o, )
"
O = (7.22)
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b) S is bounded.
We consider again even and odd indexes.

b.1) Even indexes

b.1.1) If DfD;-“H > 0, from equation (7.19) it follows

< [18°l10e 2

1 hj
e, (2 -
2 M5 y2

1 k sk WS i\ ok
(5 = B8 + | 7 Eij | 0j42

|6k+1 .
2 M v

2j+2

1
< |3+ - 0M] Il

k Dk
b.1.2) If DDk, <0,

1 1
55;532’ = 5’5%1’ < 5’\5kHlm(Z)-

b.2) Odd indexes

b.2.1) If DfoH > 0, from equation (7.21) it follows

L, o (Mn
J

k 0k
b.2.2) If D¥D%, | <0,

1
181 < |5 + (7 = DM 1] o

k+1
|52j+1| <

|6k+1 1

1
k k
951l = 2’5j+1| < §H5 100 (z)-

Thus

k+1

sup {[ a7 o574} < (5 = 0 ) 1o

2j+1

)

1.e.
165 @) < Ml16% 1 2

with Ay = § + (0 — 1) M.
c) Contraction property.

The subdivision scheme &7 will be contractive if

1 1
— 4+ M(c—-1 1 14+ —.
2+ (o ) < s o< +2M

O

DN | =

Corollary 1. For o-quasy uniform grids where o < 2, the scheme Sy is contractive, since M <
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We give now a simple and technical lemma to support the proof of next lemma.

(7.23)

k vk
Lemma 26. —; and kj are bounded by 40%(1+ o) H5k||l @)
7.]72 ’Y-%_l -
Proof. By definition of ~;2 in (7.9) together with property (7.5) of the harmonic mean |‘~/Jk| <
Dk
| w]ljl’, and the expression of D,
g1
k k
6]+2 _ 6]""1
k k
Dh M
T Rk o+ hb,
41
we can write
k k k 2 | sk
vt S| Bin | e + 1+ R | O <4521 ok
k 342 Bk opk W Rk | =70 (L+0)
| T Jwk | (A1 +205)? iz i foe

The case of ;1 can be derived analogously.

We need two more lemmas that will be used in the proof of Theorem 9.

Lemma 27. Let {Ry} be the sequence of nonlinear PPH reconstruction operators associated to a
sequence of nested o quasi-uniform grids { X*} satisfying Definition 27 and S the PPH interpolatory

subdivision scheme. There exists C € R such that, if f**1 = Sf*, then Vk,

[Rpes1 (F5) = Ri(f)lzoe < Cl8*|lioz

(7.24)

Proof. Let f*¥ € I(Z), and € R. Let j be such that z € [af;k :Ufﬂ] and assume that = €

k+1 k41 k41 k41 o
(23, ", 25, 11]. The case x € 25,25 5] is similar.

We can write

R (ff) (@) = Ri(fF) (@) < [Rpa (FF) (@) = RE L (F) ()]
+ R (@) — RE(M) ()]
+ [RE(M) (@) = Ri(£5) ()],

where Rf stands for the centered Lagrange reconstruction operators of the same order.

1) We prove first the bound for the second term on the right hand side.

. k41 k+1 k ok :
Since x € [z, 5 4] C [z, 27,4 we can write
k1) ( Z fhe
k+1 f Am 2j+m7
m=—1
L k
Ry (f%) g B, ]+m,
m=—1
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where

S
An(@) = ] 7S, m=-1,0,1,2,
s;—l Lojtm — T2jts
SFEm
2 k
x —
Bu(x)= [[ +—2L5— m=-1012
s=—1 Tj+m = Tjts
s#m
According to Lemma 5 in [42]
|Am ()| <o, |Bn(z)| <o, m=-1,0,1,2. (7.25)

Here, we remind that the Lagrange polynomial bases sum to one
2 2
> An(@)= > Bu(x)=1 (7.26)
m=—1 m=—1
From now on, we drop the explicit dependence on z for the sake of clarity and write simply
Ay, By, when referring to these quantities.
Since f**t1 = Sfk and S is interpolatory we have

REAH @) = REG @) = A5 = Boaffy + (Ao - Bo)f
+ AL 4 (A2 — B ff — Baffial,

where
k k k)2
i it ) s
2j—1 B RS
- k
Taking into account property (7.5) of the harmonic mean \ij_ 1| < —— we can write
wh
Jj—11
k k
0 6f
k)2 k\2 1k ko pk k k
‘(hj) 7| < (R5)" By +hj +hisy | Ay (7.27)
i-1 = k k ko pk :
1 PN T N
| T Sy O R A 1
< Z J J J 7+ 7 ’(Sk‘ ‘_'_’6]6‘ <702(J+1)H5k”
=9 pk L hk k k A il = loo (Z)
PN R L T A VI 1

and similarly for the term in fé‘;j'*_"_ll

k k k2
k+1 _ fj T T (hj+1) vk
f2j+1 - ) B 4 J-
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. Dk
Taking again into account the property (7.5) of the harmonic mean we have |ij] < #
w':
7,0
and we can write

5k 5k
Jj+1 75
(h§+1) W+ RS+ R, | B R

k k
2 hh+2nk, | +hj+1

(7.28)

1 h;fH hE 4+ b+ hb (‘ +1 _1

o ‘ J M o?(1+ 0)][8"]
k k j+1 loo(Z)
Ry 1+ 2R, ! =17

Using (7.27) and (7.28) we get

]+1

S+

REA (@) = RE @) < [AL =

Bflf]]‘f—l

_I_ k
+ (Ao — Bo) f§ + A1 JHQf
+ (A2 - Bl)fj—H - B2fj+2|

1
+ (14| + A1) 30% (1 + 0) 10 1o )

The modulus of the first term at the right hand side can be rewritten as

'(1421 - B_ ) (ffy =5+ <A_1 — B4+ Ay— B+ ) (fF = £
+ By (fﬁl f]+2) ((A_1+ Ao+ A1 + A2) — (B_1 + By + B1 + B2)) f4,] .
Then, using (7.25) and (7.26)
IR (M) (@) = REM) @) < 6o 2y (7.29)
2) Let us estimate now [RE(S*) () — Ry(f*) ().

Ri(f*)(x) = 1f 1+ Boff + By AR + Baff i+ if |Dy| < |Dy+1|
1ff 1+Bof + Biff 4+ Bafty, if |Dk| > | Dk .

Let us suppose, without loss of generality, that we are in the first case, i.e. |Dj*| < \D] 1l -

IRE(FF) (@) = Ri(f*) (@) = |Ba(fFra — flia)l- (7.30)

Using Definition (26) and applying the triangular inequality we get
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3)

1 vk
| Jj+2 = j+2| j+2 + ’7 (’7],—1 7j—1 + ’7_7 Of + 7],1 ]—‘,—1) + 7]1 (731)
J:2 7,2

Taking now into account that Zi:q v5,s = 0, we can rewrite the first term and we can
bound it as follows

k k k k k

Vi1t V2 Yj0 T Vi1t Ve

’ff—i—? - ff+1 + <j7k]> (fj+1 fk) " ( j yjk ’ (fjk a ka_l)' (7.32)
5,2 J:2

7] 1 fy],

372

,‘Y]v_l

j72

< |0F ol + 165011 + 1651 < (2+ 30°) [16%(1.. 2)-

The second term at the right hand side of (7.31) can be bounded using Lemma 26.
Considering (7.30), (7.32) and Lemma 26 we have,

IRE(E) (@) = Ri(f5) ()] < 02+ 40? + 70%)[16 1o 2) = C2lI8" 1o 2)- (7.33)
For the other case, |Dk] > | Dj % 1| using the same ideas we also get the same bound.

Let us study now |Ry1(f*™)(z) — RE, (f*)(2)].
Inequality (7.33) allows us to write

Riee1 (fFF) (@) = REL(S ) (@) < Coll6™ i)

Since by Proposition 13 the operator & is bounded by & we get that

[Ries1 () (@) = REQ(F ) (@) < CallS18% i z) < ClloM iy, (7.34)

with C3 = %02.
Finally, joining the results in (7.29), (7.33), and (7.34) we obtain

R (fF) (@) — Ri(fF)(@)] < (C1+ Co + C3) (16512

which completes the proof.

O]

The following theorem uses standard arguments and previous lemmas to prove the convergence

of the nonlinear PPH subdivision scheme.

Theorem 9 (Convergence). Let {Ry} be the sequence of nonlinear PPH reconstruction operators
associated to a sequence of nested o quasi-uniform grids {X*} with o < 1+ﬁ satisfying Definition
27. Then, the associated PPH interpolatory subdivision scheme S is uniformly convergent.
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Proof. The basis of the proof is to observe that {Rx(f*)}ren is a Cauchy sequence in Cz(R), the
space of continuous and bounded functions in R.

Let be f' = f € I(Z).
From Lemma 27 3C; € R such that, if f5+! = Sf*, then Vk,

Ri1 (F) = Re(F) |2 < Ol 1oy
and from Proposition 13 3C5 € R such that

1S16% 1.2y < Call6™|liu @) VY € 1so(Z),
So
IRE+1(FF) = Ri(F)|ee < C1Co|I6% i 2) < C1(C2)M18° 1 (2)-

As 0 <1+ 55,8; is contractive, which means (Cy < 1) and klim (Co)kF = 0.
—00

Thus, given

€

50, 3Jkye N such that Vk > ko, ‘Ck‘<
C1110%1. (z 2

¢
C1l|0%1o(z)’

i.e. given € >0, dko € N such that Vk > kg
€
Rir1 (FF) = R ()| e < C1 =————]|6° (7)) =€
Rica (51 = Ra( £ T 1 leco

which proves that {Ry(f*)}ren is a Cauchy sequence in Cp(R).
Since Cp(R) equipped with the L> norm is a Banach space, there exist S>°(f) = klim Ry (f*).
—00

O]

In order to continue addressing the study of the degree of smoothness of the limit function, we
need one more lemma.

Lemma 28. Let {Ry} be the sequence of nonlinear PPH reconstruction operators associated to a
sequence of nested o quasi-uniform grids {X*} satisfying Definition 27. The interpolatory PPH
reconstruction operators Ry, have the following properties:

1) [IRef* e < ClH i@y VE-

2) For each level k > 1, for all x,y such that |z — y| < )\]f_lho with Ay = % +(c—-1)M <1,

man’

the contractivity constant of the scheme 81 of the differences and hgm-n = mi%l hf, there exist
j€

a constant C' such that
IRe(f*) (@) — Re(f*) ()| < Cl16" 1. 2)- (7.35)

Proof. 1) The proof of this point can be found in Proposition 3 in [42].
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2) We prove property 2). We write

Re(f*)(@) = Re(FF) W) < IRe(f*)(2) = RE(SS) ()]
+ IRE(f) (@) = RE(FH) ()]
_|_

IRE(F) ) - R

B
—~
~
B
~—
—~
<

According to expression (7.33) inside the proof of Lemma 27 we have that

RE(F) (@) = Re(f5) (@) < CLll6*|lie(z) Vo € R. (7.36)

Then, we focus now in the second term. Let us suppose x € [ and let us see that

2k
]’ j+1]
yE [xs7$s+1] with |$ _]| <4
Let us take the integer number k; = [1 — (k — 1)
that k1 > 1. Then, we have that

))] such that A}~ < (3)"71, and notice

In(2)

1 2.2k B0 2- 21 k1 () Bo k In(2) KO Lo
=yl < 25) A = e < S T g P RGTD Tn g T,
which implies |s — j| < 4. We now write
RE(fF) (@) = B ffy + Boff + Biff1 + Baffio,
RE(f*)(y) = Doafioy + Dofs + Difliy + Daflis.
Then
IRE(F) (@) = RE(F W) = |B-affoy + Boff + Biffi1 + Baffis

— D_1fF | —DofF —DifE - Daft ).

Regrouping terms

IRE(f*) (@) = RE(fO) ()]

By (ff1 = fio1) + Bo(ff — £2)
+ &uﬁlfﬁa+&uﬂrﬁﬁg
+ (B_1—D_1)ff |+ (Bo — Do) fF
+ (B1— Dl)fs+1 + (By — Do) fFs].

Since B_.1+ By+ B1+ By =D_1+ Do+ D1+ Dy =1, we can plug ff into the previous
formula as follows

IRE(S) (@) = REUM W) < IBalff = 1) + Bolff — f5)
+ Bi(ffi — ) + Ba(ffia — flio)
+ By = Do) (fEy = fh)
+ (Bi—Di)(fE — )
+ (By— Do) (fEo — ¥,
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Now taking into account that |B;| < o,|D;| < o, i = —1,0, 1,2 according to Lemma 4 in [42],
and that |s — j| < 4, we get

IRE(fM) (@) = RE(SF) (W) < (dols — j|+ |B-1 — D_1| +|B1 — D
+ 2|By — Dal)|[6"||1(z) < 240]|6% |1 (2)-

what finishes the proof.

With all these requisites, the limit function turns out to be Hélder continuous with a = 1.

Theorem 10 (Smoothness). Let {Ry} be the sequence of nonlinear PPH reconstruction operators
associated to a sequence of nested o quasi-uniform grids {X*} with o < 1+ ﬁ satisfying
Definition 27. Then, the associated PPH interpolatory subdivision scheme S is Hélder continuous
with o = 1.

Proof. In order to prove a Lipschitz condition for the limit function we have that

[S2(f) (@) = Ri(f) (@) < D IR (F5) (@) = Ru(f) (@)

1>k

By using Lemma 27 and Proposition 13 we get

[5%(F)(@) = Re(f*)(@)] < Cill6" |l z)- (7.37)

If [z —y| > A2, then, using the boundedness of the limit function S*°(f) derived from Theorem
9, we get

o - 202/ f iz 20,1z
§(N(@) = SN <2000l = =g Phiin € ===yl (738)
If |x —y| < B, , then there exists k € N such that \¥h0. < |z —y| < AF7!A0 . Thus, from
point 2 of Lemma 28 we obtain

R (%) (@) = Ri(F*) ()] < C3l16%]1.. 2, (7.39)
and therefore
S™(f)(z) = S™(f) ()| < (2C1 + C3)[16%]]1. z)-
Then, from Proposition 13,

(201 + C3)]10°]]1,(z)
hO

man

[S=(F)(x) = S=(F)W)] < 2C1 + Ca)AT]|8 |l (z) <

|z — yl. (7.40)

Finally, from (7.38) and (7.40) we deduce
%) (@) = 8= (f)W)| < Clo —yl,

. 59 . .. . . . .
with C' = max{ 202%”_1"0(2’ : (201+C;f0)|| oo 2 }, that is, the limit function S*°(f) satisfies a Lipschitz

condition, which cofrnlgletes the prglozl?.

O]
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We complete our theoretical study with the important issue of preservation of convexity of the
initial data. In order to address this question, we introduce two definitions.

Definition 34. A univariate data set {(x;, fi)} is said to be strictly convez if and only if D; > 0 Vi,

- fiz1 _ _ L fit1
where D; = hi(hi+hiy1) hihit1 + hit1(hi+hit1)?

and h; = x; — x;—1.

Definition 35. An interpolatory subdivision scheme is said to be convexity preserving if and only
if the data set {(z¥, f¥)} is strictly convex for all level k of subdivision.

Using these definitions we can give the following theorem.

Theorem 11 (Convexity). Let {Ry} be the sequence of nonlinear PPH reconstruction operators
associated to a sequence of nested o quasi-uniform grids {X*} with o < 1+ﬁ satisfying Definition
27. Then, the associated PPH interpolatory subdivision scheme S is convexity preserving if and
only if

. hk ~
oDk . _ i yk_ L yk o5 0,VieZ,Vk eN.
i h;'c + hf—l—l ' h? + h?—ﬁ—l H_l

Proof. The proof is based on the fact that if DF > 0,Vi € Z, at a given scale k € N, then we

have that the interpolatory subdivision scheme will be convexity preserving if D];;g_ll > 0, and

DYEL > 0,Vi € Z.

We start computing Dg;jrll > 0,
k1 i it
Rl _ 2i e 22
2+l = TRkt k1 RS RSy | RS
hoii(hailyy + holis)  holiihols  hol ooy + hos)

Having into account the relations between the scales k£ and k + 1 we get

k+1
e 20 ARG 2/

i+l . (7.41)
TR D? (B (Rf)?
Using that the odd points at the scale k + 1 are predicted by (7.17) we obtain
DL =V >o, (7.42)

due to the fact that D¥ > 0 and Df;rl > 0.

Computing DEFL > 0,

242
fk+1 fk—f—l fk+1
D+l _ 2i+1 B 242 243
2i+2 7 3 k+1 1 k+1 k+1 k+1 3 k+1 k+1 /1 k+1 k+1 "
hoio(hoio + hotis)  hoiliohsls  halg(hals + haflts)

Plugging now the corresponding values for kaZil]_ and f;i% according to (7.17) into last expres-
sion we arrive to

ko fk ko2 k k ko\2
fi + i (hit1) Tk 1 it1 T Jive (hiio) Tk
DE+L _ 2 40l " 2 4 il
242 pk Rk RE, hE | REL, hE o REhEL,
5 (5 +57) 2 2 5 (5 +57)
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After simple algebraical manipulations we reach to

W o Wiy o
DL, =2Df Y s
2i42 — 441 T hk’ LBk » i h TRk » i+1
(3 1

Considering that we have already proven D’;;;ll > 0 in (7.42), in order for the interpolatory

subdivision scheme to be convexity preserving it remains only to ask for Dgiﬁz > 0, that is
k k
h ‘7k hz—i—l V >
k ) i+
hy + hZ ‘1 h + hZ 1

what concludes the proof. O

2Dz+l

Corollary 2. Let {Ry} be the sequence of nonlinear PPH reconstruction operators associated to
a sequence of nested o quasi-uniform grids {X*} with o < 1+ ﬁ satisfying Definition 27. If
|Vk] < me{Dk Dfﬂ} Vi € Z,Vk € N, then the associated PPH interpolatory subdivision scheme
S is convexity preserving.

Proof. Let us consider Df > 0,Vi € Z, at a given scale k£ € N. We get the following chain of
inequalities

2Dk L R U Y, LS (D, D1}
i+1 7 7k, pk Vi pk g pk Vitl +1 7;& e fh
’ h +hz+1 ' h +hz+1 ' ' hz hz+1 Z

_ LQ {DF |, DF

h h,’f_;'_l mln +1> +2
h¥ hk

> 2DF 72Dk —~ leD =0,

= i+1 h hf+1 i+1 h hﬁrl i+1 —
what proves the property of convexity preservation by applying Theorem 11. O

Corollary 3. Let {Ry} be the sequence of nonlinear PPH reconstruction operators associated to
a sequence of nested o quasi-uniform grids {X*} with o < 1+ 2]1\4 satisfying Definition 27. If

o 521} < 2,Vi € Z,Yk € N, then the associated PPH interpolatory subdivision scheme S

18 convemty preserving.

Proof. Let us consider Df > 0,Vi € Z, at a given scale k € N. Taking into account that 172’“ is a
mean we have

[VF| < max{DF, D¥ ,} < 2min{DF, D, },
and therefore we can apply Corollary 2.
O

Remark 16. If the initial data f?,i € Z come from a smooth function, we would have the hypothesis
of Corollary 3 satisfied for h® = max h? sufficiently small since
1€

Divv () _ (o) + () (i1 — po)
D; f" (ko) f" (ko)
I i)

m(#l — o) < 2,

due to the fact that py1 — o = O(RY), where pg, 11, ¢ are intermediate points between xf_l and a:f+2.
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Remark 17. In the case of dealing with uniform grids, we have that sz coincides with the classical
harmonic mean, and therefore |V¥| < 2min{DF, Dfﬂ}, and Corollary 2 applies. Thus, we have a
convezity preserving interpolatory subdivision scheme for any initial data.

Remark 18. If instead of the weighted harmonic mean X~/Zk we use the classical harmonic mean in
the definition of the subdivision scheme given in (7.17) we immediately get a convexity preserving
subdivision scheme because the hypothesis of Corollary 2 are met. However, we will reduce the
approximation order to second order in this case, while the original scheme comes from a recon-
struction which is fourth order accurate for strictly convex functions (see [42]).

7.6 Numerical experiments

In this section we carry out some numerical experiments to analyze the obtained outputs and
to compare them with the expected theoretical results. Our first experiment is focused on the
presented result about the smoothness of the limit function. We are going to estimate the exponent
a of the Holder continuity of the limit function. In order to do it we have considered the following
functions f(z) and g(x) given by

z(z +1)4 0<x<0.3,
flz) = x(cos (2mx) + 1), 03 <z <0.7, (7.43)
zt 4z, x> 0.7,
—5 + 10z, 0<z<03,
g(z) = cos (2mx) — 2 — cos (0.67), 0.3 <z <0.7,
zt 4+ 2, x> 0.7.

We also consider the point-value discretization f° given by the function values at a nonuniform
grid X with 30 points in the interval [0, 1]. Then, we carry out an estimation of the quotient

15 %) — 5 1()

C:
|z —y|*

, T F Y,

for different levels k of refinement, & = 10, £k = 15 and k = 17, and for different values of «,
a=0.75, a=099, a=1,a=1.1 and o = 1.25.

In Figure 7.1 we show the considered original function in solid blue and the subdivision curve
after k = 5 subdivision levels in dash-dotted black. In Table 7.1 we can observe that the constant
C converges with the resolution levels to a fix value for &« = 1. For smaller values of a than 1 the
estimated value of C' decreases with the number of resolution levels k, what means that the Holder
exponent of the subdivision scheme is higher. In turn, for larger values of o than 1 the estimated
value of C increases with the number of resolution levels k, what means that the Holder exponent
of the subdivision scheme must be lower. Notice that the constant C' in the definition of Holder
continuity depends on f(x) but must get stable as we approach the limit function with larger and
larger k. We have also carried out the same experiment varying the number and position of the
grid points, and for both functions given in (7.43). We have used a nonuniform grid X with 20
non equally spaced abscissae. As it can be seen in Tables 7.2 and 7.3, the results are consistent
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with our previous observations, getting in all cases an estimation for the Holder exponent o = 1.
However, we can appreciate that the value of the constant C' depends not only on the function
from which the point-values are taken, but also on the starting grid, since the limit functions for
different grids are pretty similar, in the sense that they approximate the underlying function with
fourth order, but they are not the same.

Ela=07 | a=099 | a=1 | a=1.01 | a =1.25
10 2.7529 43.8798 | 49.2457 | 55.2677 880.9333
15 1.1575 42.3851 | 49.2457 | 57.2167 | 2095.2244
17 0.8574 41.8016 | 49.2457 | 58.0154 | 2963.0947

Table 7.1: Estimations of the C constant in the condition for Holder continuity with exponent «
for approximations of the limit function with k& levels of subdivision for initial data coming from
30 point-values of the function f(x) at the grid X; of non equally spaced abscissas.

E|la=075 | a=099 | a=1 |a=1.01 | a =1.25
10 3.8460 55.9552 | 62.7977 | 70.4769 | 1123.3592
15 2.4247 54.0492 | 62.7977 | 72.9622 | 2671.8134
17 1.7569 53.7591 | 62.7977 | 73.9808 | 3778.5147

Table 7.2: Estimations of the C constant in the condition for Holder continuity with exponent «
for approximations of the limit function with k& levels of subdivision for initial data coming from
20 point-values of the function f(x) at the grid X, of non equally spaced abscissas.

E|la=07 | =09 | a=1 | a=1.01 | a=1.25
10 8.3078 83.2891 | 91.6855 | 100.9284 | 1011.8533
15 3.4930 80.4520 | 91.6855 | 104.4876 | 2406.6064
17 2.4699 79.3443 | 91.6855 | 105.9462 | 3403.4554

Table 7.3: Estimations of the C constant in the condition for Holder continuity with exponent «
for approximations of the limit function with k levels of subdivision for initial data coming from
20 point-values of the function g(x) at the grid X2 of non equally spaced abscissas.

In our second experiment we just perform a comparison between the presented PP H subdivision
scheme and the classical linear scheme with 4 points based on Lagrange interpolation. We have
plotted in Figure 7.1 the subdivision curve obtained for both methods, PPH and Lagrange, after
k =5 levels of subdivision and starting from the nonuniform grid X; with 30 initial points used in
the first numerical experiment and the associated point-values of the function f(x). The original
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function is also provided to compare the approximation capabilities of both subdivision methods.
We see the original function in solid blue line, the Lagrange subdivision scheme in dashed red line
and the PPH subdivision scheme in dash-dotted black line. As it can be appreciated in Figure 7.1
the Gibbs effects and undesirable oscillations due to the presence of a jump discontinuity are highly
reduced with the PPH scheme in contrast with what happens with the linear scheme. Notice the
high oscillations that appear near the jump discontinuities when using the linear scheme, what is
known to happen when one implements whatever linear scheme. In Figure 7.1 to the right we have
shown a zoom of the area around the first jump discontinuity to observe more clearly the behavior
of the nonlinear scheme. In Figure 7.2, we also plot the results obtained with the nonuniform grid
X9 with 20 non equally spaced points considered in the previous experiment. We have considered
both functions f(x) and g(z). Again, the same type of Gibbs effects appear around the jump
discontinuity for the linear method. The corner is not so problematic.

In Table 7.4, we see the errors || f& —S* f9)|,, p = 1,2, 00, committed by approximating the original
data f*, i.e., the right point-values of the function f(z) at the corresponding abscissas with S* f°
for k = 5 subdivision levels, where S* fO stands for the iterative application k times of the analyzed
subdivision schemes, namely PPH and Lagrange, starting from the initial function point-values f°
at the given grid X7 with 30 abscissae. In Table 7.5, we give the corresponding results for the grid
X, with 20 abscissae. In Table 7.6, we consider this time the errors ||g* — S*¢°||,, p = 1,2, 0o, for
the function g(z) using the grid Xy with 20 abscissae.

25

0.8 I I
0.6

0.4

0.2

01 016 02 025 03 035 04 045 05 055
() (b)

Figure 7.1: (a): Comparison of the subdivision curve after k£ = 5 subdivision levels for the Lagrange
subdivision scheme, in dashed red line, and the PPH subdivision scheme in dash-dotted black line.
The original function f(x) is also plotted in solid blue line. The initial control points, plotted with
red circles, come from one of the nonuniform grids X considered in our two experiments, the one
which consists on 30 abscissas in the interval [0,1]. (b): Zoom of the area around the first jump
discontinuity.

7.7 Conclusions

We have defined and analyzed the PPH subdivision scheme on nonuniform grids, which is
derived from its associated reconstruction operator. We have paid special attention to the case of
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Figure 7.2: Comparison of the subdivision curve after £k = 5 subdivision levels for the Lagrange
subdivision scheme, in dashed red line, and the PPH subdivision scheme in dash-dotted black line.
The original function is also plotted in solid blue line. The initial control points, plotted with red
circles, come from one of the nonuniform grids X considered in our two experiments, the one which
consists on 20 abscissas in the interval [0, 1]. (a): Subdivision curve for data coming from f(z).
(b): Subdivision curve for data coming from g(z).

Method | [[f* — S*fOll1 | [1F* — S*fOll2 | [IF* — S*fOlloo
PPH 0.0098 0.0454 0.4239
Lagrange 0.0388 0.1355 0.9767

Table 7.4: Subdivision errors || f* — S*f0||,, p = 1,2, 00, committed by approximating the original
data f* with S¥f0 for k = 5 subdivision levels starting from the initial function point-values f° at
the given grid X; with 30 points.

Method | [[f* — S*fOll1 | [If* — S*fOll2 | [1F* — SOl
PPH 0.0163 0.0529 0.3412
Lagrange 0.0809 0.1849 0.8953

Table 7.5: Subdivision errors || f* — S*¥f0||,, p = 1,2, 00, committed by approximating the original
data f* with S*f9 for k = 5 subdivision levels starting from the initial function point-values f° at
the given grid X with 20 abscissae.

o quasi-uniform grids and initial data coming from strictly convex (concave) smooth functions.

We have theoretically proven some crucial issues when dealing with subdivision schemes, such
as existence of a contractive scheme for the first differences, convergence, smoothness of the limit
function, and preservation of the convexity properties of the initial data.
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Method | [[f* — S*fOI1 [ [IF* — S*fOll2 | 1% — S*fOlleo
PPH 0.0580 0.2808 2.1087
Lagrange 0.2837 0.8468 4.6606

Table 7.6: Subdivision errors ||g¥ — S*¥¢°||,, p = 1,2, 00, committed by approximating the original
data ¢g* with S*¢° for k = 5 subdivision levels starting from the initial function point-values ¢° at
the given grid Xy with 20 abscissae.

In the numerical experiments section, we have carried out some experiments that reinforce
the theoretical results, in particular we have observed the Holder continuity of the limit function,
giving a numerical estimation of the exponent «, which coincides with the result in Theorem 10.
We have also carried out another experiment to analyze the performance of the subdivision scheme
with initial data which contain a numerical jump discontinuity, observing that Gibbs effects and
oscillations are negligible. Finally a potential real application in 2D is given by making zoom of
some coarse data from geological areas corresponding with unaccessible seabeds.
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Chapter 8

Graphical interpretation of the
weighted harmonic mean of n positive
values and applications.

This chapter has given rise to a fully written paper which is now submitted [18]

e Amat, S. ; Ortiz, P.; Ruiz, J.; Trillo, J.C. ; Yanez, D.F. Graphical interpretation of the
weighted harmonic mean of n positive values and applications. Submitted.

8.1 Introduction

The arithmetic and the harmonic mean of positive numbers are present in many scientific
applications ranging from statistics to numerical analysis. The harmonic mean has the property
of penalizing large values, giving rise, because of this reason, to several interesting applications.
Moreover, when the arguments do not differ much from each other, both means remain close, which
is another crucial property in applications.

In our field of research both the arithmetic mean and the harmonic mean have been used
successfully in several occasions for different applications. See for instance [48, 49] for an example
in numerical conservation laws, [6, 7, 11, 50| for applications regarding signal processing and signal
compression, [12, 21] for their use in image denoising and compression, and [10, 20, 37] for the case
of generation of curves and subdivision.

In [42] a nonlinear reconstruction operator called PPH (Piecewise Polynomial Harmonic) was
extended to nonuniform grids by using a specific weighted harmonic mean instead of the standard
harmonic mean. In this chapter our aim is to introduce some necessary ingredients to extend in
turn this last reconstruction operator to several dimensions. More specifically speaking, we need to
dispose of an appropriate mean in several dimensions which satisfies the required basic properties,
the two mentioned above, as the harmonic mean does. We carry out this study accompanied by a
graphical interpretation of the weighted harmonic mean of several values, which helps to quickly
understand the theoretical results.

The chapter is organized as follows: In Section 8.2 we work with the weighted arithmetic and
harmonic means of two positive numbers, proving two essential results about these means which
will allow us to define adapted reconstruction operators in the numerical experiments section.
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These properties come accompanied with an intuitive graphical interpretation in 2D according
to a corresponding theoretical result that will be also proven. In Section 8.3 a similar path will
be followed for the 3D case, which involves working with weighted and harmonic means of three
positive numbers. Section 8.4 deals with the general case of considering the weighted arithmetic
and harmonic mean of n positive numbers for whatever integer value n > 2. In Section 8.5 we
outline some applications of these results in order to define adapted reconstructions in several
dimensions, and we explicitly define a new reconstruction in 2D over triangular meshes adapted
to discontinuities, that is, a kind of PPH reconstruction method (see [6]) on triangles. Finally, in
Section 8.6 we give some conclusions.

8.2 About specific results on the weighted harmonic mean of two
positive values

In this section we present an intuitive graphical interpretation of the weighted arithmetic and
harmonic means of two positive values together with two key results about the weighted harmonic
mean that justify their use in several fields of application. Among them we can mention image
processing, curve and surface generation, numerical approximation of the solution of hyperbolic
conservation laws apart from more traditional uses in statistics and physics. Perhaps the better
known problem where the weighted harmonic mean appears is in the computation of the average
speed of a vehicle that drives along a path divided into two parts of different lengths s; and s9 at
constant speed vy and vy respectively, that is

_Ss1t+s2  s1t+sy 1
- Tos1 o os2 T 1 17
t1 4+ to o1 + vs (i —i—w2v2

Va

: _ _s1 _ s
with wy = s W2 = i

The weighted harmonic mean H,, is given in the following definition.

Definition 36. Given a; > 0, az > 0 two positive real numbers and two weights wy > 0, wy > 0
with w1 + we = 1, the weighted harmonic mean of a1 and as is defined by

a1a2
Hw(al, a2) - wi1a9 + wo a1 ’

We now present two particular properties, which have been already used in [43] in order to
work with a nonlinear reconstruction for nonuniform grids adapted to the potential presence of
jump discontinuities on the signal. The first property has to do with the adaptation in case of
jump discontinuities, while the second property is related to the order of approximation attained
by the nonlinear reconstruction operator, see [43] for more details.

Lemma 29. Ifa; > 0 and ag > 0, the weighted harmonic mean is bounded as follows

1 1
Hy(ay,a2) < min {al, az} . (8.1)
w1 w2

Lemma 30. Let a > 0 a fized positive real number, and let a1 > a and ag > a. If |ag —az] = O(h),
then the weighted harmonic mean is also close to the weighted arithmetic mean My(a1,a2) =
wiay + waaz,

wi1w2

\Mw(al,ag) — Hw(al, agﬂ = (a1 — a2)2 = O(hQ) (8.2)

w1as + woaq
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A way of intuitively check these two properties graphically is by using the following interpreta-
tion. Given aq, as two positive numbers and considering H,, the weighted harmonic mean of these
values, we can build the following two parabolas

A1TH — —5 - — a1
pl((E) _ 14 H D) (L’2 + 2 14 H z,
xH(l—xH) :ITH(l—:UH) (8 3)
—sz +ag(xg — 1) 5 —HQ“J +ag(xg —1)(xg +1)
pa(r) = r® - T+ az,
mH(xH—l) QZH(.%'H—I)

where x g is defined as the abscissa of the point where both parabolas intersect inside the trapezoid
delimited by the four vertices (0,0), (1,0), (1,a1), (0,a2). Its value is given by
w1a2
rg=————"—"". 8.4
i wiag + waaq (8.4)
Remark 19. Geometrically, one can build the parabolas p1(x) and p2(x) as the unique polynomials
of degree less or equal to 2 such that they interpolate the points {(0,0), (%, (% + %)al + (3 -

T-)as), (1,a1)}, and {(0,a2), (3, (3 — ﬁ)m +(3+ i)ag), (1,0)} respectively.

8ws

In Figure 8.1 (a) we can see the representation of the trapezoid with the two parabolas inter-
secting at a point with abscissa z 7, for similar values of a; and as and for a value of the weights
wy = %, Wy = 1%. In this case, it is appreciated a similar value of the weighted harmonic and
arithmetic means. This particular situation relates with Lemma 30. In Figure 8.1 (c¢) we can see
the case for quite different values of a; and as. Now, it can be observed that the weighted harmonic
mean remains much closer to the minimum value between a; and as than the weighted arithmetic
mean. This situation has a close relation with Lemma 29. In Figure 8.1 (b) and (d) we consider the
case of having equal weights w; = we = %, which gives rise to the usual arithmetic and harmonic
means. The observations are the same as in the weighted case, although it is interesting to notice
that the parabolas degenerate in the two diagonals of the trapezoid.

There are infinitely many ways of defining two parabolas which degenerate in the two diagonals
for wi = wy = %, and intersect at the abscissa xy where as + (a1 — ag)xy = H,. In fact, for
each ordinate of the type yg = f(w1,ws)aixg with f(wg,w;) =1 for w; = wy = %, the parabolas
interpolating the points {(0,0), (zf,ym), (1,a1)} and {(0, az2), (zm,ym), (1,0)} satisfy both require-
ments. In particular, we remark three particular cases because of their symmetry or simplicity.

Case 1: f(wi,wy) = 2
w1

In this case we have
w2 waa2a1
YH = —a1TH = ——————,
w1 wiag + waaq

and the parabolas take the form

Case 2: f(wi,wy) = 1.
In this case we get
YH = 01TH, (8.7)
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Figure 8.1: Representation of the weighted harmonic and arithmetic means.

(c)

(d)
(a): w; = 0.7,

we = 0.3, a1 = 14, ag = 10. (b): wy; = 0.5, wy = 0.5, a1 = 14, as = 10. (¢): wy; = 0.7, wy = 0.3,
a1 =14, ag = 2. (d): wy = 0.5, wg = 0.5, a1 = 14, ag = 2. In black the weighted harmonic mean, in
red the weighted arithmetic mean, in dashed magenta line the parabola p;(x) and in dashed green
line the parabola pa(z).

and the parabolas are given by

p1(z)
p2(x)

ayxr,

ai
xH—l

+a2)x2—< S
Ty g — 1
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1
Case 3. f(wi,w2) = —.
Flwr,wa) = 3 o
In this case )
= —az 8.9
YH 2un 1TH, (8.9)
and the parabolas are given in (8.3).
Notice that in the first two cases one of the parabolas remains always equal to one of the diagonals
of the trapezoid for all values of wj. Since the first and second cases are symmetrical, we will
consider only first and third cases from now on. In the next section, we will present the geometrical
extension of the given results to the three variables case. The proofs will be omitted because they

appear later in the general n-dimensional case.

8.3 Geometrical interpretation of the weighted harmonic mean of
three positive values

In this section we give the corresponding results about the weighted harmonic mean for the case
of dealing with three positive values. These results can be generalized to n values with n a positive
integer number, and we will address this situation in the next section, where we will include the
proofs.

Definition 37. Given a; > 0, as > 0, ag > 0 three positive real numbers and the weights wy > 0,
wo > 0, wg > 0 with w1 + wo + wg = 1, their weighted harmonic mean is defined by

ajagas

Hy(ay,a2,a3) = :
w1a2a3 + weaia3 + wsaias

Lemma 31. Ifa; > 0, az > 0, az > 0 the weighted harmonic mean is bounded as follows

1 1 1
Hy(ay,a2,a3) < min{al,ag,ag} . (8.10)
wp w2 T wg

Lemma 32. Let a > 0 a fized positive real number, and let ay > a, ag > a, ag > a. If |ag — ag| =

O(h), a1 — ag| = O(h), then the weighted harmonic mean is also close to the weighted arithmetic
mean My(a1, az,as) = wiar + waaz + wzas,

wiwa(ar — az)?az + wiws(ar — az)?az + wows(az — az)’ar
w1a2a3 + W2a1a3 + W3a1a2
= O(h?). (8.11)

| My (a1, a2, a3) — Hy(a1,az,a3)| =

The following two theorems are dedicated to write in a formal way the geometrical interpretation
of the weighted harmonic mean, generalizing the expressions for the two variables case given in (8.3),
and (8.6). The case of expressions (8.8) could be treated in a similar way, and we will not consider
it, since it is a symmetrical version of case (8.6). Let us first introduce the following notations for
the vertices of a straight prism with triangular base

By = (1,0,0), B2=(0,1,0), Bs=(0,0,0),
P1 = (1,0,04), PQZ(O,l,CLQ), P3:(O,O,a3),
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where B;,1 = 1,2,3, stand for the vertices of the base and the corresponding P; for the vertices
located at the heights of the prism through the points B; satisfying that the length of the segment
between P; and B; is a;. We will also use the barycenter of the points B;

GM,, := w1 B1 + we By + w3 Bs.

The first theorem amounts to the generalization of the expressions in (8.6) and can be written
as follows.

Theorem 12. Let us consider the plane 11 which passes through the points Py, P> and Ps3 given by
the equation

HExl(ag—a1)+x2(a3—a2)—|—fc3—a3 = 0. (8.12)
Let us also consider the plane V3 which passes through the points By, By and P3 given by the

equation

Va= a1 g+ 2 =1, (8.13)
as

and the two paraboloids Vi and Vo given by the equations

Vi = x3=>bx’+ (a1 — by)x1, which passes through Py, Bo, Bs, (8.14)
Vo = x3=boxe’ + (ag — by)xa, which passes through By, Py, Bs,

where the coefficients b; are given by

bz' = (w3 — wi), 1= 1, 2. (8.15)

v
x; (.fl — 1)
Then, the system of equations formed by (8.13) and (8.14) has a unique solution (T, T2, T3) given
by

H, H

Tl = wliw, To = wgi, T3 = wsH,. (816)

aq a9
Moreover, the height of the prism through the point (Z1,Z2,0) coincides with the weighted harmonic
mean H,, of a1, as, ag and the height of the prism through the barycenter of the triangular base
GM,, = w1 B1 + we By + w3 B3 coincides with the weighted arithmetic mean.

The second theorem deals with the generalization of expressions (8.3).

Theorem 13. Let us consider the plane 11 which passes through the points Py, P> and Ps given by
the equation
II=xi(ag — a1) + z2(ag — a2) + 3 — a3 = 0. (8.17)

Let us also consider the paraboloid V3 passing through B1, Ba, P53 given by

x3 = a3+ (c1x1(z1 — 1) — agxy) + (coxa(xe — 1) — agxwa), (8.18)

where the coefficients ¢; are given by

Ho o (= o =
o = T—F(:Cl—l-xg — 1)&3’
Qi'i(i’i — 1)

i=1,2, (8.19)
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and the two paraboloids Vi and Vo given by the equations

V' = z3=bix>+ (a1 —b1)xy, which passes through Py, Bo, Bs, (8.20)
Vo = x3=boxy? + (az — by)xa, which passes through By, Py, Bs,

where the coefficients b; are given by

Hy, 1

m(f —w),  i=1,2. (8.21)

bi =
3

Then, the system of equations formed by (8.18) and (8.20) has a unique solution (T1,Z2,T3) given

by
H H H
T = wliw, To = wgiw, XT3 = —— (8.22)
a1 as 3
Moreover, the height of the prism through the point (Z1,Z2,0) coincides with the weighted harmonic
mean H,, of a1, as, ag and the height of the prism through the barycenter of the triangular base

GM,, = w1 B1 4+ we By + w3 B3 coincides with the weighted arithmetic mean.

In Figures 8.2 and 8.3 we represent the situation given in Theorem 13, being the situation of

Theorem 12 similar. In Figure 8.2 (a,c,e), we show the paraboloids built with the values a; = 3,
az = 4, az = 6, with the weights w; = 0.2, wy = 0.2, w3 = 0.6, and in (b,d,f), the planes obtained for
the case of dealing with equal weights w; = wo = w3 = % These plots correspond to the situation
considered in Theorem 13. We observe how the paraboloids degenerate in planes generalizing the
case of the non-weighted harmonic mean.
In Figure 8.3, we show the intersection of the three paraboloids for the same values and weights.
It is interesting to compare the representation of the weighted harmonic mean H,,, which coincides
with the height of the prism through the point GH,, (orthogonal projection onto the base of the
intersection point of the three paraboloids considered in Theorem 13), with the representation of
the weighted arithmetic mean M,,, which amounts to the height of the prism through the barycenter
GM,, of the vertices of the triangular base affected by the corresponding weights.

8.4 Results on the weighted harmonic mean of n values

First, we introduce the definition of weighted harmonic mean H,, that we are going to be using

Definition 38. Given a; > 0,i = 1,...,n n positive real numbers and the weights w; > 0,1 =
L,...,n with Y ;" | w; =1, the weighted harmonic mean is defined by

n
. la
B k=1
Hw(al,---,a/n)— s —n n )
T
w; [ ax

k=1
ki

i=1 Qi i=1

and the weighted arithmetic mean is defined by
n
Mw(al, ey an) = Zwiai.
i=1
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P,(1,0,a,)

B, (0,1,0)

B, (1,0,0)

(c)

P,(0,0,a,)

! B, (0,1,0)
B, (1,0,0)

(e)

Figure 8.2: Representation of the three paraboloids considered in Theorem 13 for the representation
of the harmonic mean of the values a1 = 3, aa =4, a3 = 6. (a, c, e): weights w; = 0.2, wy = 0.2,
w3 =0.6. (b, d, f): weights w1 = ws =ws =1%. (a, b): V*. (c, d): V5. (e, f): V5.

We now give the main two results which are crucial in applications in numerical analysis, such
as we will show in the section devoted to practical cases.
property of boundedness of the mean by the minimum of its arguments and it is used to define

adaptative methods.

P, (1,0,a,)

B, (0, 0, 0)

B, (0,1,0)

(b)

P,(0,1,a,)

B,(1,0,0)

(d)

P,(0,0,a,)

i B, (0,1,0)
B, (1,0,0)

(f)
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P,(0,0,a,) P;(0,0,a,)

P,(0,1,a,) P,(0,1,a,)

P (1,0,a,) - P, (1,0,a,) ‘

B, (0,1, 0)

B, (0, 1,0)

B, (1,0,0) i
B, (1,0,0)

(a) (b)

P,(0,0,a,) P, (0,0, a,)

P,(1,.0,a,) 4 P (1,0,a,) A

B, (0, 1,0)
B, (1,0,0) B, (1,0,0)

B, (0, 1,0)

(c) (d)

Figure 8.3: Representation of weighted harmonic mean of three positive values a1 = 3, as = 4,
a3 = 6 as the height of the prism through the intersection point of the three paraboloids considered
in Theorem 13. Comparison with the weighted arithmetic mean for the representation of the
harmonic mean of the values. (a, c): weights w; = 0.2, wy = 0.2, w3 = 0.6. (b, d): weights
w1 =wy = w3 = 5. (a, b): Intersection of the three paraboloids. (c, d): Comparison between
the weighted harmonic mean and the weighted arithmetic mean.

Lemma 33. Let a; > 0,i = 1,...,n be n positive real numbers and w; > 0,4 = 1,...,n the
corresponding weights with Y ;- ; w; = 1. Then, the weighted harmonic mean H,, is bounded as
follows

Ajq . a1 Gn
= min{—, -, —}.
Wy, w1 Wn

where
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Proof.

o w, bz 4, _ a
k=1 10 20 10 7
Hw = n = w nw n < w S E, 1= ]., ,
[ J [ 7
> wj IT ak © > — Il a 0
j=1 k=1 j=1 Wig k=1
k#j k#j

O

The second lemma deals with how close remains the weighted harmonic mean to the weighted
arithmetic mean when the arguments are also close among them. This property is essential to
define nonlinear methods which preserve the order of approximation of their linear counterparts
from which they are derived. We will also show this relation in the section dedicated to the practical
examples.

Lemma 34. Let a; > 0,i = 1,...,n be n positive real numbers and w; > 0,i = 1,...,n the
corresponding weights with Y . jw; = 1. If a; = O(1), Yi = 1,---,n, and |a1 —ai =
O(h), Vi=2,---,n, then, the weighted harmonic mean H,, and the weighted arithmetic mean

My, =" wia; satisfy
| M, — Hy| = O(h?).

Proof. Using the expressions of H,, and M,, we have

n n n n
n > wiai y, wi [T ap — [T ax
IT ar i=1 =1 ;1 =1
|M,, — Hy,| = Zwlal - = - _ nj . (8.23)
i=1 >willa > ws I1
=1 7 =1 j=1 =
k#j k#j

Now, paying attention to the fact that given two indices i, jo such that 1 < iy < jo < n we have

n n
2
Wiy Qi Wi, H ag = Wiy a; Wy, H ag, (8.24)
k=1 k=1
k#70 k#i0,jo
n n
— o o2 0.
Wiy Gjo Wi H A = Wip a5 Wj, H ag, (8.25)
k=1 =1
k#io k?fZOJO

and just by summing up both terms in (8.24) and (8.25) we get

n n n

2 2
Wig Qi Wi H ag + Wj, a4, Wi, H ax = Wi Wiy, H ak(aio + ajo). (8.26)
k=1 k=1 k=1
k#jo k#io k#i0,j50

For the case ig = jo we get

n n
2
Wi Qi Wi H ap = wj, H ay. (8.27)
k=1 k1
k#jo
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Using the simplifications in (8.26) and (8.27) we can rewrite (8.23) as

n
> w? {1 ax + Z wiwj(af + af) H aj, > wiw;(a; — a;)? H aj
=1 k=1 i,7=1 i,j=1
|Mw - Hw’ = nz<] n k?él,] = = n n k?éhj = O(h2)v
3w, [la 5w, [l o
= k#) a k#]
since by the triangular inequality we have that |a; — a;| < |a; — a1| + |a1 — a;j| = O(h). O

We introduce the following notation for the vertices of a prism in R".

Bi (07'”7071707'”70) izl?"'an_17

Bn:(ov 70)7
PiE(O)"'7071707"'707ai) 7::17"'7”_1)
i

Pn:(oa ,O,Cln),

where the points B; represent the vertices which lay on the base of the prism and the vertices P;
are nothing more than the points located at the maximum height of the prism at the corresponding
points B; in the base and in the parallel direction to the x,, axis.

We are now ready to give the following two theorems for the weighted harmonic mean, which
generalize the geometrical representations using prisms.

Theorem 14. Let us consider the hyperplane II which passes through the points P;,i = 1,...,n
n > 2, given by the equation

II= xn—an—l—ZazZ a; — ap). (8.28)

Let us also consider the hyperplane V,, which passes through the points B;,i=1,...,n—1 and P,
given by the equation
= Z o, (5.29)

and the paraboloids Vi, i =1,...,n— 1 given by the equations
Vi = xn=biv 4 (a; — b))y, (8.30)
which pass through By, ..., Bi_1, P, Bi+1, . .., B, respectively, where the coefficients b; are given by

Hy,

bi = :fz(i‘z — 1)

(wn —wi), i=1,...,n—1. (8.31)

Then, the system of equations formed by (8.29) and (8.30) has a unique solution (Z1,...,Z,) given
by

Ti=w,—, 1=1,...,n—1, I, =w,Hy. (8.32)

Moreover, the following two affirmations are true:
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a) The height of the prism through the point (Z1,...,Tn—1,0) coincides with the weighted har-
monic mean Hy, of a;,i =1,...,n, that is, the point (T1,...,ZTn—1,Hy) belongs to the hyper-
plane II.

n
b) The height of the prism through the barycenter of the base GM,, = > w;B; coincides with
i=1
the weighted arithmetic mean.

Proof. Tt is immediate to check that the proposed solution satisfies (8.29) and (8.30). Let us prove
that the solution is unique. By reductio ad absurdum, let us suppose that there exists another
solution z/ = (z),---,z}) with 2/ # Z. Then, denoting z; = 7; — z},i = 1,--- ,n, the system of
equations formed by (8.29) and (8.30) can be easily transformed into

n—1
Y st =0, (8.33a)
i=1 n

Zn — bzz,(a’:z + :z:;) — (a,- — bz-)zi =0, +=1,---,n—1, (833b)

what amounts to a homogeneous linear system of n equations with n unknowns. If we show that
this system has only the trivial solution z = 0, then we would have proven that z = 2/, what is
a contradiction with the starting supposition. Therefore, £ would be the unique solution. Let us
then prove that system (8.33) has z = 0 as the unique solution. Again by reductio ad absurdum,
S
let us suppose that the system has infinite solutions, that is, z = 0¥, where s = n — r, being
k=1
r the rank of the coefficient matrix of the linear system, A\; € R, and v*, k =1,...,s, represent
a base of the kernel of the associated linear map. Let us consider the univariate set of solutions
z = Mv', A1 € R. By the sake of simplicity, we will drop the superindex and we will write z = Awv.
Thus, we obtain

=z —2=171— v,
whose coordinates are given by
T =T — 2 = T — ;. (8.34)
Plugging (8.34) into (8.33b) we get
Aoy, = bidv; (2T — Av;) + (a; — b)) v, Yi=1,--- ,n—1, (8.35)
and simplifying expression (8.35) we obtain
—Abiv? 4 2bviZ; 4 (a; — bj)v; —v, =0, Yi=1,---,n—1, A#O. (8.36)

Now, particularizing expression (8.36) for two different values of A\, A\; # Ay, and subtracting both
expressions, we reach to

(A = A)biv? =0, Vi=1,---,n—1. (8.37)

We are going to prove now that there exists ig € {1,--- ,n — 1} such that b;, # 0 and v;, # 0, and
therefore, from (8.37), this would imply that A; = Ay what is a contradiction. Thus, z = 0 would
be the unique solution of the homogeneous linear system and & would be the unique solution of
the system given by (8.29) and (8.30).
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Since v # 0, Ju; # 0 for some i € {1,--- ,n— 1}. Otherwise, if v; =0, Vi € {1,--- ,n — 1},
n—1

from (8.33a) we get v, = —ay, Z v; =0 and v = 0, what is not possible. Let us denote I the set
=1

of indices for which v; # 0. If we suppose that b; = 0, Vi € I, then from (8.36) we get a;v; —v, = 0.

Thus, v; = U—, Vi € I. Also, from (8.33a)

a;

E:m»+%?:o. (8.38)

Now, using in (8.38) the fact that v; = U—n, Vi € I, we get v, =0, and in turn, v = 0, what gives a
p
contradiction which comes from the suppolsition b; = 0, Vi € I. Therefore, Jig € I, such that b;, # 0.

In order to prove now point a) of the theorem, we consider the straight line parallel to the x,,
axis passing through (z1,...,%,-1,0), that is

r1 = X1,
(8.39)

ﬁ
g
Il

Tp—1 = Tp—1-
Cutting this straight line with the hyperplane IT we get the point (Z1, ..., Z,—1, Hy), which gives the
enunciated result. A similar argument proves point b), just by Considering in this case the straight
line parallel to the z,, axis passing through the barycenter GM,, = Z w;B; = (w1, ...,wy—1,0),

and Verlfylng that its intersection point with the hyperplane II is just the weighted arithmetic mean

M, = Z W;a;. d
i=1

Theorem 15. Let us consider the hyperplane 11 which passes through the points Pj,v = 1,...,n,
n > 2, given by the equation

=z —an—l—ZxZ a; — ap). (8.40)

Let us also consider the paraboloid given by V,, which passes through the points B;,i=1,...,n—1
and P, given by the equation

Vo= x5 =an + Z cixy — (¢ + ap)xi), (8.41)
where the coefficients ¢; are given by

Hw+(

(n— (i—l) ’

and the paraboloids V;,i =1,...,n — 1 given by the equations

)ﬂb
MI
\_/

i=1,...,n—1, (8.42)

C; =

Vi = xy =bix® + (- b)), (8.43)
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which pass through B, ..., Bi_1, P;, Bi+1, . .., B, respectively, where the coefficients b; are given by

Hy, 1

b= -

ﬁ—wi), i=1,...,n—1 (8.44)
Then, the system of equations formed by (8.41) and (8.43) has a unique solution (Zy,...,T,) given
by

Ti=wi—, 1=1,...,n—1, Tp,=". (8.45)
a; n

Moreover, the following two affirmations are true:

a) The height of the prism through the point (Z1,...,Tn—1,0) coincides with the weighted har-
monic mean Hy, of a;,i =1,...,n, that is, the point (T1,...,Tn—1,Hy) belongs to the hyper-
plane II.

n
b) The height of the prism through the barycenter of the base GM,, = > w;B; coincides with
i=1
the weighted arithmetic mean.

Proof. Tt is trivial to see that the proposed solution satisfies (8.41) and (8.43). Let us prove that

the solution is unique. Let us suppose that there exists another solution o’ = (24, -+ ,}) with
x’ # z. Then, denoting z; = T; — «},i = 1,--- ,n, the system of equations formed by (8.41) and
(8.43) can be written as

n—1

Z [cizi(Zi + xf) — (¢ + an)zi] — 20 =0, (8.46a)

i=1

Zn — bzzl(iz + SL‘;) — (ai — bl)Zl =0, +=1,---,n—1, (846b)

what amounts to a homogeneous linear system of n equations with n unknowns. If we show that
this system has only the trivial solution z = 0, then we would have proven that £ = 2/, what is
a contradiction with the starting supposition. Therefore, £ would be the unique solution. Let us
then prove that system (8.46) has z = 0 as the unique solution. By reductio ad absurdum, let us
S
suppose that the system has infinite solutions, that is, z = ) \zv*, where s = n — r, being r the
k=1
rank of the coefficient matrix of the linear system, \; € R, and v*, k = 1,...,s, represent a base
of the Kernel of the associated linear map. Let us consider the univariate set of solutions z = Ajv?!,
A1 € R. By the sake of simplicity, we will drop the superindex and we will write z = Av. Thus, we

obtain
= —z2=7— v,
whose coordinates are given by
iU; =T; — 2, = T; — \v;. (8.47)
Plugging (8.47) into (8.46b) we get
AUy, = bi)\vi(%i — )\U,‘) + (ai — bz-)/\vi, Vi=1,---,n—1, (848)
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and simplifying expression (8.48) we obtain

—Abjv? 4 2bviT; 4 (a; — bj)vi —v, =0, Yi=1,---,n—1, A#O. (8.49)

Now, particularizing expression (8.49) for two different values of A\, A\; # A2, and subtracting both
expressions, we reach to

(M = A)biv? =0, Vi=1,---,n—1. (8.50)
Before continuing with the main proof, we need to prove the following statement
sl) sign(c;) = sign(c;) Vi,j €{1,...,n—1},
where sign(.) denotes the sign function,
1 x>0,
sign(z) :=¢ —1 x <0,
0 ax=0.
Statement s1) is proven just by isolating the term H,, in equation ¢; = 0, that is
n—1 n—1 ]
o Ny — wj
¢ =0 (1 ij) an — Hy(an > ) (8.51)
=1 7j=1
n
a [ a
& Hy, = = =1 .
%4—%21% %al anl—i—ZwJHak
= e

k#J

Comparing expression (8.51) with the expression of H,, in Definition 38, we get that ¢; = 0 <
wn:%,ci>0<:>wn<%, andci<0(:>wn>%.

We are ready to continue with the main proof. Since v # 0, the set of indices I such that v; #
0,7 € I, is not empty. Let us suppose that b; = 0,Vi € I. From (8.46), we get

v = au, (8.52)
vn = D _(=Acivi + 26T — (an + ci))v; (8.53)
icl

Plugging (8.52) into (8.53) and using that v; # 0, and in turn v, # 0, we get that

Y (At 2e T - %) _1_0, vAeR.

a; a; a;

(8.54)

From equation (8.54), since it is true for all value of ), taking two different values A1, Ao we get
that

~Xion Z )+ 3 (2 f Gty gy, (8.55)
ier @ icl @i @i

ovn( Z )+ > (200 - O + C") —1=0, (8.56)
ZEI i€l
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and subtracting (8.55) and (8.56) we get

Ci

— =0. (8.57)
iel 1

Taking into account statement s1), since all ¢; have the same sign, it must be ¢; = 0,7 € I. In turn,

by using (8.53), this fact implies

anUn an .,
_Z . —’Un:>’0n(1+za7)—0,

iel iel "

what is not viable as v, # 0, and we get a contradiction. Therefore, 3i € I, such that b; # 0.
From (8.50), this means that A; = Ay what gives again a contradiction, this time with the initial
supposition. Thus, z = 0 is the unique solution of the homogeneous linear system and Z is the
unique solution of the system given by (8.41) and (8.43).

In order to prove now point a) of the theorem, we consider the straight line parallel to the x,,
axis passing through (z1,...,Z,—1,0), that is

r1 = %1,

ﬁ
g
11l

(8.58)

Tp—1 = Tp—1-

Cutting this straight line with the hyperplane IT we get the point (%1, ..., Zn—1, Hyw), which gives the
enunciated result. A similar argument proves point b), just by considering in this case the straight
n

line parallel to the x, axis passing through the barycenter GM,, = Y w;B; = (w1,...,wy_1,0),

i=1

and verifying that its intersection point with the hyperplane II is just the weighted arithmetic mean
n

Mw = Z w;a;. O
i=1

Remark 20. In the non-weighted case, that is, when all w; = %,i =1,...,n, all the paraboloids

degenerate in diagonal hyperplanes.

A simpler representation using only hyperplanes is also possible for the general case of dealing
with the weighted harmonic mean, as it comes out directly from Remark 20 and from the observation

al Qa
H%(E""’FZ) =nHy(a1,...,a), (8.59)
where H1 stands for the harmonic mean with uniform weights w; = %,i =1,...,n.

Morenprecisely, using the previous notations and defining also

(

Hy,=Hy(ai,...,an),w = (wy,...,wy),
L= Hoofai)w = (B B
My = My(ai,...,an),w = (wi,...,wy,),
P = My(at, . an),w= (5, 0),



we can give the following corollary.

Corollary 4. Let us consider the hyperplanes II, II* which pass through the points P;, and P} ,i =

1,...,n, respectively, n > 2. They are given by the equations
n—1
o= z,=a,+ Z:ci(ai — an), (8.60)
=1
\ 4 N a4 an
I = x”_@+zxi(5_ﬂ)' (8.61)

Let us also consider the hyperplane V,* which passes through the points B;,i =1,...,n—1 and P}
given by the equation

n—1
. T
V= le, +wn£ =1. (8.62)
1=
and the hyperplanes V.*,i =1,...,n — 1 given by the equations
V= x,= ﬂxi, which pass through By, ..., Bi_1, P}, Bi+1,..., Bn. (8.63)

i
Then, the system of equations formed by (8.62) and (8.63) has a unique solution (Zy,...,T,) given
by

H Hi
ji:wila i:l,...7n—1, Inp = & :Hu}- (864)
a; n

Moreover, the following two affirmations are true:

a) The height of the prism P* (with vertices P;) through the point (Z1,...,Tp—1,0) coincides
with the harmonic mean of a},i =1,...,n, that is, H}, and the height of the prism P (with

vertices P;) through the same point is % 1 = Hy, that is, the point (T1,...,ZTn—1,Hy) belongs

to the hyperplane II.

n

b) The height of the prism P* through the barycenter of the triangular base GM1 = ) %Bi
=1

coincides with the arithmetic mean M7, and the height of the prism P through the weighted

n

n
barycenter of the triangular base GM,, = > w;B; coincides with the weighted arithmetic
i=1
mean M.
Proof. 1t is trivially derived either from Theorem 14 or from Theorem 15 just by applying the
relation (8.59) and observing the Remark 20. O

In Figure 8.4 we see the representation of Corollary 4 in 2D and in 3D for a particular choice
of the arguments a; and the weights. In the upper part we see the case of two arguments. We
can appreciate the relation (8.59) between the harmonic mean of the modified arguments a; and
the weighted harmonic mean of the original arguments a;, which is placed at the half part of the
height of the trapezoid at the abscissa where both means take place. However, no clear relation
is observed between the arithmetic mean of the modified values M7 and the weighted arithmetic

mean M, of the original ones. The same appreciation runs for the case of three arguments, where
the weighted harmonic mean of the original arguments locates at the third part of the height of
the prism through the corresponding abscissa.
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(a) (b)

P;(0, 0, a/w,) P30, 0, a /w,)

P;(U- 1, aw,) Y ! P;UJ- 1, a,lw,)

Py(1, 0, ayiw,) P;(1,0, a,w,)

P, (0.1, TP, (0.1.ay)

5 e A A B AT
NP FEE RS

B, (0, 1, 0) 6H,, My B,(0,1,0)

B, (1,0,0) 8,(4,0,0)

(c) (d)

Figure 8.4: Representation of weighted harmonic mean according to Corollary 4. (a): Weighted
harmonic mean of the two positive values a; = 3, aa = 6, with weights w; = 0.6, we = 0.4. (b):
Comparison among H? , Hy,, M7}, M, in the case of two arguments. (c): Weighted harmonic mean
of the three positive values aq - 6, as = 7, ag = 10 with weights wi; = 0.4, wy = 0.3, wz = 0.3.
(d): Comparison among H}, Hy,, M}, M,, in the case of three arguments. In blue the harmonic
mean, in red the weighted arithmetic mean of the original values, in yellow the arithmetic mean of
the modified values.

8.5 Examples of application

In this section our main purpose is to point out how to use the simple theoretical results
presented in previous sections to define a nonlinear reconstruction operator adapted to jump dis-
continuities. This application is just one possibility of use of the introduced concepts. It can be
applied in many other contexts in order to define a nonlinear method from an already existing
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linear method, just by writing the necessary expressions in terms of a weighted arithmetic mean of
some quantities, which satisfy certain requirements having to do with satisfying the hypothesis of
Lemma 34 in smooth areas of an hypothetical underlying function, acting as smoothness indicators,
being just one or a few of them potentially affected by a discontinuity (and very large because of
this reason), and not using these affected quantities in the rest of the expressions. Then, the fact
of substituting the arithmetic mean for a corresponding harmonic mean will allow the adaptation
thanks to Lemma 33, since the large values, due to the presence of a discontinuity, will be limited.

Some examples of already existing methods that use these ideas with the harmonic mean of two
values can be found in several applications. Let us mention for example:

e Point values reconstructions and the related field of subdivision and multiresolution schemes,
see [6, 42] and the references therein.

e The field of image processing, to define nonlinear compression methods into the cell averages
framework inside Harten’s multiresolution, see [12].

e Also in the field of image processing for denoising purposes, see [21].

e Generation of curves and surfaces, due to some remarkable properties of the harmonic mean
in relation with the definition of convexity preserving reconstruction methods, see for example
[37].

e In combination with spline reconstructions, see [20].
e In the solution of hyperbolic conservation laws, see [49, 48].

Up to our knowledge, there are no existing applications using these ideas, and involving har-
monic means of 3 or more values. In what follows, we are going to present a new nonlinear adapted
reconstruction method for approximating two variable functions using the point values of the func-
tion over triangular meshes. Since our aim with this definition is just to clarify the way of using the
presented theory, we are going to focus on the local definition of the reconstruction operator for a
given triangle of the mesh. Let us consider S C R?, the equilateral triangle with sides of length 25,
with h > 0 any positive real number, defined by the vertices A(—h, @h), (o, —@h), E(h, @h),
as shown in Figure 8.5. Let us also consider that the triangle is divided into 4 new smaller triangles:
Sa of vertices ABF, S¢ of vertices C DB, Sg of vertices EF D, and Sg of vertices BDF', just by
considering the mid points of each side of the original triangle, see also Figure 8.5. We are going to
describe how to build a nonlinear reconstruction inside the triangle Sk of an underlying function
f(z,y), from which we know its point values at the six mentioned points A, B,C, D, E, F. This
nonlinear reconstruction will attain third order of approximation in case the underlying function
f(z,y) is of class C3, and will be adapted to the presence of jump discontinuities that affect only
one of the three values A, C, or E.

Firstly, we are going to define the associated linear reconstruction, that it is going to be nothing
more than the second degree interpolating polynomial that goes through the six given initial points.
Let us write the polynomial around the barycenter of the triangle G(0, %h) in the form

V3 V3,

V3
p(x,y) = ag + aor + api(y— —) + a0r? + anz(y — —) + ap2(y — ?) .

; ; (8.65)
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Figure 8.5: Disposition of the considered domain to build the reconstruction inside the red triangle
Sgr with vertices BDF, using the point values of an underlying function f(z,y) at the six points
A,B,C,D,E,F.

Imposing the interpolation conditions p(Q;) = f(Q;), for Q; € {A,B,C, D, E,F}, we get a linear
system of equations, which has unique solution given by
4 1
agp = §(fB + fo+ fr) — §(fA + fo+ fB),
—fa—4fp+4fp+ fE

aip =

6h
apl = fgi(f/l_4fB_2fC_4fD+fE+8fF);
v — Ja—2fr+ fE
20 — 2h2 )
ap; = —?:f;(fA—2fB+2fD—fE),
_ fa—Afp+afc—4Afp+ fe+2fF
ap2 = 6h2 ’

where fg, denotes f(Q;). It is easy to prove, by using Taylor expansions, the following theorem
that ensures third order of approximation of the proposed linear reconstruction.

Theorem 16. Let f: Q = R be a function of class C3(Q), with S C Q. And let p(x,y) denote the
interpolating polynomial defined by (8.65) with the coefficients given by (8.66). Then, we have

‘f(x7y) —p(.%',y)’ = O(h3)7 v (x7y) € Sr.

We have then accomplished the first step in the definition of the nonlinear method, that is, we
have a ready to modify linear method. Secondly, we want to rewrite the coefficients of the linear
reconstruction by making appear arithmetic means. Let us define Ay, A¢, and Ag as follows

Ay = fA_(fB;:fFHfD, (8.66)
An fc—(fB+ fp) + fF

C T h M
A fe—(fp+ fr)+ [B
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Figure 8.6: Disposition of the considered domain affected by a jump discontinuity along the blue
curve.

It is immediate to prove, by using Taylor expansions, that in smooth areas of the function

Aa=O0(h), Ac = O(h), Ap = O(h), (8.67)
Ax—Ac=O0(h), Ax—Ap =O0(h), Ac — Ap = O(h). (8.68)

Moreover, these values Ay, Ag, Ag act as smoothness indicators, a kind of divided differences,
in the sense that if a jump discontinuity lies affecting one of the values A, C, or E, then the
corresponding divided difference will be O(+), while the others will remain O(h). In Figure 8.5,
we see the case of having the vertex E affected by a jump discontinuity, which takes place along a
curve plotted in blue. The idea behind the method that we are going to explain is to substitute fg
for a more suitable value fE, that both maintains the approximation accuracy in case of dealing
with a smooth function and allows for adaptation in case of discontinuity.

The coefficients in (8.66) can be rewritten as follows

hAxs+Ac+ Ag

agpy = (fB+fD+fF)_§ 3 , (8.69)
_ Jfo—Jfp 1 1LAs+Ac+ Apg
alg = h 6(2A +Ac)+2 3 ;
3 - 3A A A
agl = K(AC‘FQM)‘FK A+ ABc+ E7
6 h 6 3
o — —iA 3 As+Ac+Ag
07 TopTY Ty 3 ’

2v/3 V3 V3 A4+ Ac+ Ag

a;n = —TAAJr 3h2(fD_2fF+fB)+T 3 ;
B _i ot = 1 AA+A0+AE
@2 = Top oh 3

It is important that the potentially affected value by a possible discontinuity fg, the one that makes
Apg be the largest in absolute value, appears only inside the term Ag and in turn Ag appears only
in the arithmetic mean.
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Thirdly, we are going to modify the expressions of the coefficients in (8.69) implementing the
substitution of the arithmetic means by adequate harmonic means. Since the values of the divided
differences could be positive, negative, or zero, and we are also going to need that these quantities
satisfy the hypothesis of Lemma 34, we require the redefinition of the weighted harmonic mean by
using a translation strategy. In order to do so, we introduce the concept of translation operator,
which will allow us to extend the definition of the weighted harmonic mean.

Definition 39. Given h > 0, a translation operator T is any function T : R3 — R satisfying
1. T(0,0,0) = 0,
2. T(x,y,z) =T(o(x),0(y),0(2)), where o is any permutation of three elements,
3. T(—CE, -Y, _Z) = —T((IZ, Y, Z)a
4. sign(z + T(x,y,2)) = sign(y + T(z,y,2)) = sign(z + T(x,y,2)), ¥V (z,y,2) # (0,0,0),
5. if (z,y,2) # (0,0,0), with |s| = max{|zl, [y|, |2[},
a) if 3 s1:|s1| = |s], sign(s1) # sign(s), then sign(x + T(z,y,2)) > 0,
sign(y +T(x,y,2)) > 0, sign(z + T(x,y,2)) > 0,
b) if B s1:|s1| = |s|,sign(s1) # sign(s), then sign(z + T(z,vy, 2))sign(s) > 0,
sign(y + T(x,y, z))sign(s) > 0, sign(z + T'(x,y, z))sign(s) > 0,
6. min|z + T(x, 5, ), ly + T(,y, 2), |2 + T(w, 5, )} = O(1), ¥ (w,,2) £ (0,0,0), with
|z| = O(h%), ly| = O(h%), |z| = O(h%), for some o > 0.

Properties 1 to 4 are meant to apply the weighted harmonic mean in mind by using basically
the expression given for positive numbers. While the property 5 will play an important role to
guarantee the adaptation of the method in case one of the arguments is very large due to the
presence of a discontinuity. In turn, property 6 ensures that the new arguments that are going to
be considered in the new definition of the mean will satisfy the hypothesis of Lemma 34.

We are now ready to redefine the weighted harmonic mean

Hw(al +T7 a2 +T7 as +T) - T> ((ll,ag,ag) 7& (anao)a

07 (a17a27a3) - (07070)7 (870)

Jw(ai, az,a3) = {

where T is any translation operator satisfying Definition 39. It it important to notice that the new
mean also satisfy similar lemmas, Lemma 33 and Lemma 34, as the weighted harmonic mean. In
fact, we can prove the following two lemmas.

Lemma 35. Let a; > 0, ¢+ = 1,2,3 be be real numbers and w; > 0, i = 1,2,3 the corresponding
weights with wy + we + wg = 1. Then, the translated weighted harmonic mean J,, is bounded as
follows

T
) < max{ 9Ly,
w1
Proof. Since Jy(a1+T,a2+T,a3+T) and T have the same sign, then applying Lemma 33 we get

a1 +71T
|Jw(a1,az,a3)] < max{]Hw(al+T,a2+T,a3—|-T)],\T|}Smax{|1w1|,|T|}.
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Lemma 36. Let a; > 0, ¢« = 1,2,3 be real numbers and w; > 0, i = 1,2,3 the corresponding
weights with wy +wa +ws = 1. If |a1 — a;| = O(h), i = 2,3, then, the translated weighted harmonic
mean Jy, and the weighted arithmetic mean M,, := wia1 + woas + wsas satisfy

|M,, — Ju| = O(h?).

Proof. The case of (a1, as,a3) = (0,0,0) is trivial. If (a1, ag,a3) # (0,0,0), using the definition of
Juw we get

|My(a1,az,a3) — Jw(a1,a2,a3)] = |My(ai,az,a3) — Hy(ar +T,a2 +T,a3+T) —T)|
= ]Mw(al +T,a0+T,a3+ T) — Hw(a1 +T,a9+ T, a3+ T)|,

and applying Lemma 34 we have that
|My (a1 + T,as + Tya3 + T) — Hy(a1 + T,as + T,az + T)| = O(h?).
O

Thanks to the new translated version of the weighted harmonic mean in (8.70) we can finally
define the modified coefficients

~ 1 h
do = S(f5+fp+fr) =571 (As A, Ap), (8.71)
~ — 1 1
G0 = % - 6(QAA +Ac) + §J%(AA,ACHAE)7
_ 3 - 3
6 h 6 3
_ 3 3
asy = —ﬁAch %J%(AAaACHAE),
- 2v/3 3 3
all = —iAA—ﬁ—£2(fD_2fF+fB)+£Jl(AA7AC7AE)’
h 3h h 3
N 1 1
age = _ﬁAC—i_ ﬁJ%(AAaA07AE)'

The new nonlinear local reconstruction method writes then

_ o _ V3. _ NEN. V3
plx,y) = a00+a1033+a01(y—?)+620$2+6L11$(y—?)+002(y—?)2, (8.72)

where the coefficients ago, @10, ao1, @20, @11, ao2 are given in (8.71). It is also interesting to notice
that this reconstruction amounts to modifying the value fg

fe= T+ fp+[r—(fat fo) +3hM1(As, Ac, Ap),

in order to get

o =I5+ o+ fr—(fa+ fo) +3hJ L (Aa, Ac, Ap),

and then considering the original interpolation problem with modified function values { f4, f5, fc, fp, fE}
By definition, it is not difficult to prove a theorem about the adaptation of the proposed method
and the third order accuracy in smooth areas.
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Theorem 17. Let f : Q = R be a function of class C3(Q), with S C Q. And let p(x,y) denote the
interpolating polynomial defined by (8.72) with the coefficients given by (8.71). Then, we have

‘f(x7y) _5('%'7:9)’ = O(h3)7 v (x7y) € Sr. (8'73)

Moreover, if f has a jump discontinuity along a curve letting S\ Sg to one side and the vertex E
to the other side of the curve, then we have

|f(l‘,y) _ﬁ(IE?y)‘ = O(h)? v (m,y) € Sr. (874)

Proof. Taking into account that |M% — ']§| = O(h?) according to Lemma 36, from (8.69) and (8.71)
we get that
ago — ago = O(h®),
ajg — 610 == O(h2), ap] — 501 == O(h2), (875)
asy — 520 = O(h), all — 511 = O(h), ap2 — 602 = O(h)

Now, from the expressions of the linear reconstruction p(z,y) in (8.65) and of the nonlinear recon-
struction p(z,y) in (8.72) we easily obtain by applying the triangular inequality that

N N N N V3 N
Ip(z,y) —plz,y)| < laoo — @ool + |aro — @ol|z| + |ao1 — @o1|ly — ?l + |ago — dgol|a|?

~ V3 ~ V3
+ o —anllzlly — <=1 + laoz — dozlly — ?!2- (8.76)
Thus, using (8.75) we reach to
p(z,y) — Pla,y)| = O(h?). (8.77)
Applying Theorem 16 and (8.77) we have
[f(,y) =Bz, y)| < |f(z,y) = p(a, )| + p(z,9) - Blz, y)| = O(R%),
which proves (8.73).
In order to prove (8.74) we start by pointing out that
‘f(:lf,y) _pl(xa y)| = O(h2>7 V(Jf,y) € SR7 (878)
where p(z,y) is given by,
V3
p1(x,y) = apo + a107 + ap1(y — ?)-
Now, taking into account that due to Lemma 35, |J§| = O(1), we have
_ ~ ~ - V3, - e
Ipr(2,y) =Pz, y)l < laoo — aool + lazo — aol|z] + laor — @orly — ~=[ + [azol|z| (8.79)
~ V3, - V3
+ fanllzlly = =1+ [aozlly — ?!2 = O(h) + O(1)O(h) + O(1)O(h) = O(h).
Thus
f(2,y) = Bla,y)| < [f(z,y) —pr(z,y)| + p1(z,y) — Bz, y)] = O(h?) + O(h) = O(h), ¥(z,y) € Sk,
which finishes the proof. O
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Remark 21. We have defined the reconstruction in equilateral triangles using the harmonic mean
of three values, but the reconstruction can be extended to whatever triangle by defining adequate
weights depending on the specific form of the triangle, expressing the coefficients in terms of weighted
arithmetic means instead, and then following the same track as in the given example.

The ideas expressed in the presented new reconstruction operator can be extrapolated to higher
dimensions, and into other fields of numerical analysis, such as the previously mentioned in the list
at the beginning of this section. To finish this section, we present a simple numerical example that
reinforces the theoretical results. Given the following two functions of two variables f(z,y) and

9(z,y),

L _f sin(z+y)+20, y<-—V3x-—
f(z,y) :=sin (z + y) + 20, g(x,y) = { cos (1 +9) + 200, 3> —v3(z —
defined in the triangle T of vertices A(—h, ¥2h), C(0,—¥2R), E(h, %2h), with h = 0.005, we con-
sider the linear reconstruction p(z,y) given by (8.65) and the nonlinear reconstruction p(z,y) given
by (8.72) inside the triangle Sg represented in Figure 8.5, and also the same kind of reconstructions,
but in the triangles Sy and Sg with sides of length a half and a quarter of the length of the sides of
the original triangle Sg. Then, we measure the errors and the approximation order of both linear
and associated nonlinear method in two scenarios, i.e., with the smooth function f(z,y) and with
the function g(z,y) which contains a jump discontinuity along the straight line y = —v/3(x — %) In
Figure 8.5, we see the domain of the considered functions and the representation of the reconstruc-
tions attained in the triangle Sg by both methods. One can easily observe how the linear method
produces the expected Gibb phenomena around the jump discontinuity, while the nonlinear method
seems to avoid it. This fact can also be appreciated in the Table 8.1, where we have measured the
committed errors for the two reconstructions inside the triangle Sg when building the reconstruc-
tions for the three triangles Sgr, Sy, and Sg respectively. We have also included the numerical
approximation order computed from these errors, i.e., we have approximated the numerical order
p by using
p ~ log, Esn , and p =~ log,
Es

Y

Sy

Es,’

where Eg,, Fs,, and Eg, stand for the approximation errors in infinity norm inside the triangle
Sa, attained by the considered reconstruction operators, builded using the information relative to
the indicated triangle. In the case of dealing with a smooth function, we see that the nonlinear
method imitates the good behavior of its linear counterpart. This point can be appreciated as
much in Figure 8.5 as in Table 8.2. We would like to remark the fact that the obtained numerical
orders coincide with the expected according to Theorem 16 and Theorem 17. Also, it is remarkable
the fact that the linear method completely loses any approximation order in case of the jump
discontinuity and produces Gibbs effects, while these drawbacks are avoided with the proposed
nonlinear method, attaining at least a first order approximation.

8.6 Conclusions

In this chapter we have presented two relevant properties of the harmonic mean that allow for
new constructions of numerical methods, such as nonlinear reconstruction operators, subdivision
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(a) (b)

200

150

100

(c) (d)

Figure 8.7: (a): Disposition of the considered domain to build the linear and nonlinear reconstruc-
tions inside the triangles Sg, Sy, and Sg. (b): Disposition of the considered domain affected by
a jump discontinuity along the blue curve for which we build the linear and nonlinear reconstruc-
tions inside the triangles Sg, Sy, and Sg. (¢): Obtained reconstructions, and comparison with the
original smooth function f(z,y) in the triangle Sg. (d): Obtained reconstructions, and comparison
with the original discontinuous function g(x,y) in the triangle Sgr. With blue circles the original
function, with red asterisks the linear reconstruction and with black triangles the new nonlinear
reconstruction.
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p(CC, y) 5(33’ y)
Triangle | ||p(z,y) — f(z,Y)||oo P Triangle | ||p(z,y) — f(z,Y)||oo P
Sk 16.9679 — Sk 7.0587 x 10~ 7 —
Sy 22.6243 —0.4151 Sy 4.7168 x 1077 0.5816
Sa: 22.6245 —1.3679 x 10~° S 2.3545 x 107 1.0024

Table 8.1: Numerical approximation errors ||p(z,y) — g(z,9)||s and ||p(z,y) — g(z, y)||oo in infinity
norm between the linear reconstruction and the original discontinuous function g(z,y) and between
the nonlinear reconstruction p(x,y) and the original discontinuous function g(z,y) in the triangle
Sq for the cases of building the reconstructions inside the triangles Sg, Sy and Sg of decreasing

side lengths. The approximation orders p are also offered.

p(z,y) p(z,y)
Triangle | ||p(z,y) — f(z,Y)|lo | P | Triangle | ||p(z,y) — f(z,Y)llc | P
Sk 9.1721 x 107° - Sk 8.9912 x 1077 —
Sy 1.6914 x 1079 2.4390 Sy 1.6687 x 1079 2.4298
Sa 2.1329 x 10~19 2.9874 Sa 2.1080 x 10~10 2.9848

Table 8.2: Numerical approximation errors |[p(x,y) — f(x,y)||c and ||p(z,y) — f(z,y)||co in infinity
norm between the linear reconstruction and the original smooth function f(z,y) and between the
nonlinear reconstruction p(z,y) and the original smooth function f(x,y) in the triangle S¢ for the
cases of building the reconstructions inside the triangles Sg, Sy and Sg of decreasing side lengths.
The approximation orders p are also offered.

and multiresolution schemes, and solvers of hyperbolic conservation laws. These properties have
been presented for any finite number of arguments, with the purpose of generating new algorithms in
problems involving N-dimensional spaces. We have given some geometrical representations of both
the weighted harmonic mean and the weighted arithmetic mean where the mentioned properties
can be appreciated in an intuitive way. In the last part of the chapter we offer a clear and simple
example on how to use these simple concepts to attain interesting and promising results in defining
new methods.
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Chapter 9

Future works and perspectives

This chapter is intended as a brief guide to continue and extend the work carried out through
the production of this thesis dissertation. Science and in particular the mathematics field is so
broad that many branches arise from the same stem, no matter the specific that it is. New ques-
tions always emerge as an opportunity to broad the human understanding of underlying ideas.

Here, we simply let written the thoughts that have appeared when dealing with each particular
chapter developed in this manuscript. In this way, we hope that anyone interested or maybe myself
together with perhaps my thesis advisor or other colleagues will find the time, motivation, and
appropriate circumstances to deepen in such items.

The remarkable points to be considered are separated in chapters as follows:

Chapter 2

Chapter 3

P2.1

P2.2

P2.3

P3.1
P3.2

P3.3

Extension of the general stability results of the subdivision scheme to ¢ quasi uniform
grids.

Particularization for the more specific case of dealing with convex or concave initial data,
that is the generalization of Chapter 2 to ¢ quasi uniform grids.

Study the possibility of imposing conditions for a local change of data in order to being
able to prove the stability of PPH-like subdivision schemes that consist on a local modifi-
cation of the data together with the application of an already known linear and therefore
stable scheme. This study can be done as much with uniform as with nonuniform grids.

Definition and analysis of PPH-type reconstructions of higher order in nonuniform grids.

Definition of another kind of mean in such a way that following the same ideas as in this
chapter, we get a reconstruction that keeps third order accuracy O(h?®) in the interval
[z, 2;41] in the case that a jump singularity is located at the interval [ 41, z;2], instead
of O(h?).

In combination with Chapter 7, calculation of the error bounds that appear in the pro-
cess of approximation of the limit function of the nonuniform PPH subdivision scheme
by firstly refining the initial data using some steps of PPH subdivision and then applying
the nonuniform PPH reconstruction operator.
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Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

P4.1

P5.1

P6.1

P71

P7.2

P7.3

P74

P7.5

P8.1

P8.2

P8.3

P84
P8.5

In combination with the definition of a translation operator in Chapter 5, analysis of
the behavior respect to Gibbs phenomena of the PPH reconstruction implemented with
the translation operator.

Analysis of the behavior respect to Gibbs phenomena of the PPH reconstruction imple-
mented with the translation operator.

Analysis in more detail of the connection between the PPH reconstruction operator with
smoothing splines in a given interval [a, b], giving not only a local relation between both
methods but a global one.

In combination with Chapter 3, calculation of the error bounds that appear in the process
of approximation of the limit function of the nonuniform PPH subdivision scheme by
firstly refining the initial data using some steps of PPH subdivision and then applying
the nonuniform PPH reconstruction operator.

Analysis of the PPH subdivision scheme in nonuniform grids with respect to the elimi-
nation of the Gibbs phenomena.

Implementation and study the PPH subdivision scheme implemented with a translation
operator.

Theoretical and numerical analysis of the associated PPH multiresolution scheme in
nonuniform meshes. In particular such things as compression capabilities and stability
of the subdivision and multiresolution schemes.

Definition and complete parallel developments for the case of extrapolating the ideas

of the PPH reconstruction, subdivision and multiresolution schemes to the cell average
setting.

Implementation of the proposed local reconstruction in equilateral triangles in a domain
that admits a previous tessellation with equilateral triangles.

Extension of the PPH reconstruction on equilateral triangles to general triangles.

Application of similar ideas to derive non separable reconstructions directly in 2D by
using polyominoes. It seems possible in this context to define methods such as ENO-
type, WENO-type and PPH-type methods.

Generalization of the previous points to higher dimensions, 3D, etcetera.

Potential application of these algorithms into Finite Element Methods (FEM).

We hope that at least some of all these points will be successfully carried out in a near future.
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