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Summary 

The effects of soil flooding on plant water relations and vegetative growth was 

studied in potted two-year-old apricot plants (Prunus armeniaca L., cv. Búlida) 

grafted on two different rootstocks: Pollizo prune (P. insititia L.) (P)  and Real 

Fino apricot (RF). Plants were submitted outdoors to three treatments: T0, not 

flooded (control), and two flooded treatments for 3 (T1) and 6 (T2) days. 

Apricot water relations were seen to be adversely affected from first day of the 

flooding onwards. These effects were more pronounced in Búlida/RF than in 

Búlida/P plants. The T1 plants developed an early stomatal regulation 

(decrease in leaf conductance (gl)), which prevented leaf tissue dehydration, 

together with decrease in net photosynthesis (Pn) and the increase in resistance 

to water flow (R(p+s)). This early gl and Pn response suggests that porometric 

and/or photosynthetic changes are reliable bio-indicators of the altered 

behaviour caused by flooding in apricot plants. The lowest gl and Pn, and 

highest R(p+s) values occurred with more prolonged flooding (6 days), when a 

decrease in leaf water potential (Ψl) and leaf turgor was noted, together with 

epinasty, which in Búlida/RF plants led to a decrease in Ψl to -6.0 MPa, and 

the death of all plants. These results indicate Búlida apricot plants grafted onto 

Pollizo prune rootstock is a more appropriate combination than Búlida/Real 

Fino to resist occasional soil flooding situations. 

 

Key words: Flooding stress - Gas exchange - Prunus armeniaca - Water relations. 
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Abbreviations: Ci internal CO2 concentration. - El leaf transpiration rate. - gl 

leaf conductance. - J water flow rate. - L root length. - Lp root hydraulic 

conductivity. - LIA leaf insertion angle. - P hydrostatic pressure. - Pn net 

photosynthesis. - Ψl leaf water potential. - Ψm soil matrix potential. - Ψo leaf 

osmotic potential. - Ψos leaf osmotic potential at full turgor. - Ψp leaf turgor 

potential. - R(p+s) plant plus soil resistance to water flow. - soil-O2 soil oxygen 

concentration.  

 

 

Introduction 

Apricot (Prunus armeniaca L.) is widely cultivated along the 

Mediterranean coast of Spain. The semi-arid climate of this area is 

characterised by occasional very heavy rainfall occurring in spring and autumn. 

Most of the soils, which are developed from Miocene lime marl, have clay-

loam to clay textures and a low organic matter content. Such soils frequently 

have poor drainage and heavy rain or excessive irrigation causes them to 

become waterlogged; air space is displaced by the water and O2 in the soil is 

quickly depleted, which induces a water stress situation in plants (Kawase 

1981).  

Research into the effects of water deficit on agricultural crops has been 

extensive, whereas less attention has been focused on plant responses to soil 

flooding. The physiological responses to flooding represent a wide range of 
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metabolic, hormonal, developmental and physiological processes. Among 

these, may be mentioned ethylene accumulation, stomatal closure, wilting, 

changes in the leaf insertion angle, reduced growth, and adventitious root 

formation (Bradford and Yang 1981, Kramer 1983, Fitter and Hay 1987). 

In fruit trees, the resistance to oxygen deficiency in roots is mediated 

by the characteristics of the rootstock. Differences in the level of soil aeration 

tolerated by the more commonly used rootstocks of apricot trees have been 

described (Egea 1970, Crossa-Raynaud and Audergon 1987). Although Egea 

(2000) indicated that Pollizo prune rootstock tolerate soil flooding better than 

Real Fino apricot, there have been no studies concerning the response of these 

apricot rootstocks to different soil flooding treatments.  

For these reasons, the aim of the present paper was to study the effects 

of soil flooding on the plant water relations and vegetative growth of young 

apricot plants grafted onto apricot and prune rootstocks, as well as to evaluate 

the effect of rootstock on the degree of resistance of apricot plants to flooding 

conditions. 

 

Materials and Methods 

Plant material and experimental conditions 

The experiment was carried out on two-year-old apricot trees (Prunus 

armeniaca L.), cv. Búlida, on two rootstocks: Pollizo prune (P. insititia L.) (P)  and 

Real Fino apricot (RF), growing outdoors in 35 litre pots (40 cm diameter) 

containing a mixture of clay loam topsoil and peat (4:1 v/v). Plants were drip 
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irrigated daily using one emitter of 4 l h-1 per tree, maintaining the soil matrix 

potential at about -20 kPa (monitored with tensiometers placed at 15 cm depth). 

Routine fertilization was applied (65 g N, 48 g K2O, 72 g P2O5 and 1.5 g Fe (Fe-

EDDHA) per plant and year) through the drip irrigation system every 2 weeks. 

No root emergence from pots into the surrounding soil was observed. 

At the end of July 1999, 30 apricot plants of each rootstock, of similar 

size and appearance were submitted to three treatments: T0, nonflooded 

(control treatment), irrigated daily as indicated, and two flooded treatments, for 

a period of 3 days (T1) and 6 days (T2). Ten plants of each rootstock were 

flooded by submerging the pots in a water tank (70 cm depth), maintaining the 

water level 4 cm above soil surface during the flooding period. A similar 

number of plants (ten) were used for the control treatment. After being 

submerged for 3 and 6 days, the plants were removed from the water, drained, 

then placed in the same conditions as the control plants. Irrigation was 

reinitiated when soil matrix potential values reached -45 kPa, which occurred 

three and four days after the end of the flooding period, for T1 and T2 

treatment, respectively. Recovery was studied over a period of 40 days. 

During the experimental period the climatic conditions were typical of 

a Mediterranean climate, with mean air temperature ranging from 24 to 28 ºC, 

while the mean daily evaporation, from a class A pan evaporimeter on grass, 

was around 7.5 mm d-1, and the mean air vapour pressure deficit, from dry and 

wet bulb temperature data, ranged from 2.5 to 3.5 kPa. 
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Measurements 

Soil and plant water status, and leaf gas exchange were measured daily 

during the flooding period, and every 2-4 days during the recovery period. The 

oxygen content of the soil water surrounding the roots (soil-O2) was measured 

with an oxygen-electrode Orion, model 810. One suction probe (5 cm 

diameter) was installed in three plants per treatment of each rootstock type. 

The oxygen-electrode was carefully introduced in the probes for the oxygen 

concentration measurements. 

Soil matrix potential (Ψm) were determined in three pots per treatment 

using tensiometers at 15 cm depth. Leaf water potential was measured at midday 

(12:00 h solar time) (Ψl) for one mature leaf per plant and five plants per 

treatment, using a pressure chamber, following the recommendations of Turner  

(1981). Fully expanded leaves were selected at random from the middle third of 

the shoots. After measuring Ψl, the leaves were frozen in liquid nitrogen and 

osmotic potential (Ψo) was measured after thawing the samples and extracting the 

sap, using a Wescor 5500 vapour pressure osmometer. Leaf turgor potential (Ψp) 

was derived as the difference between leaf osmotic and water potentials.  

Leaf osmotic potential at full turgor (Ψos) was measured on leaves 

adjacent to those used to measure leaf water potential. Five leaves per treatment 

were rehydrated to full saturation, following the same methodology as for Ψo. 

Osmotic adjustment was estimated as the difference between the Ψos of flooded 

and control plants. 
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Leaf conductance (gl), net photosynthesis (Pn), leaf transpiration rate (El) 

and internal CO2 concentration (Ci) were measured at mid-day, for a similar 

number (five) and type of leaves as for leaf water potential, using a field-portable, 

closed gas-exchange photosynthesis system (LI-6200) incorporating IRGA (LI-

6250). Each leaf was enclosed within a fan-stirred one-litre chamber. The mean 

return flow rates of air circulating within the closed system and the leaf to air 

vapour pressure deficit for all measurements were around 450 μmol s-1, and -2.1 

kPa, respectively. The CO2 analyser was calibrated daily with two standard 

CO2/air mixtures. 

The angle between leaf petiole and stem (leaf insertion angle, LIA) was 

measured with a transparent protractor to determine epinasty, the change in 

petiole angle. Ten randomised leaves per plant and five plants per treatment were 

measured. 

Plant plus soil resistance to water flow (R(p+s)) was derived, according to 

Sands and Theodorou (1948): 

El  = - (Ψl - Ψm) / R(p+s) 

Since the matrix potential is zero in the flooded treatment and close to 

zero in the control treatment, plant plus soil resistance can be expressed 

(following Savé and Serrano 1986) as: 

R(p+s)  =  - Ψl / El 

Root hydraulic conductivity (Lp) was measured according to Ramos 

and Kaufmann (1979) at the end of the two flooding periods on three plants of 
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each rootstock. The root system was carefully washed, and a portion was 

immediately submerged in a container of water before being placed  in the 

pressure chamber with the cut stump exposed. A small piece of tubing was 

fitted to the stump and connected to an Eppendorf micro tube. After 

obtaining a good seal, the air pressure was increased at a rate of  0.4 MPa min-1 

up to final pressure of 1.0 MPa. Every three min the exudate was collected and 

its volume measured. This was repeated four times, the first exudate was not 

included in the calculation of the mean exudate volume. Subsequently, total 

root length was estimated using an Image Analysis System (Delta-T Devices 

Ltd.). Root hydraulic conductivity was calculated using the formula:  

Lp = J / (P · L) 

where Lp is expressed in mg MPa-1 m-1 s-1, P is the applied hydrostatic pressure 

(MPa), L is the root length (m) and J is the water flow rate through the entire 

root system (mg s-1). 

  Vegetative growth was evaluated by measuring the trunk diameter 10 

cm above the graft union, using an electronic digital calibre. Measurements 

were taken on all the selected trees at the beginning of the experiment and at 

the end of the flooding and recovery periods. At the end of the experimental 

period, three plants per treatment and rootstock were separated into roots, 

stems and leaves, and the fresh and dry weights (oven-dried at 75 ºC to 

constant weight) of each component were determined. Total and average leaf 

area were determined using the Delta-T measurement system described above. 
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Results 

Water relations 

The concentration of oxygen in the soil water surrounding the roots 

(soil-O2) was similar in both rootstocks studied; the average values are shown 

in figure 1. Soil-O2 values in the control plants were around 6 mg l-1 

throughout the experimental period. 

 Soil-O2 values rapidly decreased from the beginning of the flooding 

period, with a 50 % reduction being observed in the first 24 hours. After three 

days this value decreased to 2.5 mg l-1 (T1 treatment), and around 0.5 mg  l-1 

after 6 days of flooding in the T2 treatment (Fig. 1). These values recovered to 

reach the levels of the control 3 and 18 days after the end of the flooding 

period, for T1 and T2 treatments, respectively (Fig. 1). 

Leaf water potential (Ψl) values in the control plants presented similar 

values of around -1.5 MPa in both P and RF rootstocks (Fig. 2). During the 

first three days of flooding non-significant differences in Ψl values were found 

between control and flooded plants in both rootstocks. At day 4 of the 

experimental period, the treated (T1 and T2) plants grafted onto RF showed a 

significant Ψl decrease (Fig. 2 a, c), whereas those grafted onto P showed 

similar Ψl values to those of the control treatment (Fig. 2 b, d). 

Minimum Ψl values of around -2.7 MPa were reached in T1 treatment 

two days after the end of the flooding period, with no differences between 

rootstocks. In the T2 Búlida/P plants Ψl remained constant from day 4 to 6, 
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then decreased to reach a minimum of -2.9 MPa four days after the end of the 

flooding period (Fig. 2 d). However, plants on RF rootstock showed a drastic 

decrease in Ψl (< -6 MPa) (Fig. 2 c), which caused the death of all the plants of 

this treatment. 

The leaf water potential recovered slowly after the plants were removed 

from the water. In the T1 treatment, recovery was faster in plants grafted on P 

than on RF rootstock (13 and 21 days after the end of the flooding period, 

respectively) (Fig. 2 a, b). In T2 plants grafted on P rootstock Ψl recovered 

after 23 days (Fig. 2 d). 

Leaf osmotic potential at full turgor was similar in plants of both 

rootstocks, with values of -1.8 MPa in both the control plants and those 

submitted to flooding (data not shown). 

Leaf conductance (gl) showed slight fluctuations during the 

experimental period both in the control and flooded plants (Fig. 3). Control 

plants showed slightly higher overall gl values when they were grafted on P 

than on RF (Fig. 3). Flooding caused a progressive reduction of these gl values 

from the outset, which was significant from day 1 in Búlida/RF plants (Fig. 3 

a) and from day 2 in Búlida/P plants (Fig. 3 b). 

Minimum gl values coincided with those of Ψl (Fig. 2), on day 5 for the 

T1 treatment of both rootstocks (gl values 30 % of the control) (Fig. 3 a, b), 

and on day 10 for the T2 treatment on Búlida/P plants (gl values 18 % of the 

control) (Fig. 3 d). T2 plants grafted on RF rootstock showed gl values near 
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zero from day 5 of flooding (Fig. 3 c). 

Leaf conductance was slow to recover in flooded plants (Fig. 3), 

reaching values similar to those of the control plants 5-8 days after Ψl had 

recovered (Fig. 2). This was particularly so in Búlida/RF plants in which gl 

recovered later than in Búlida/P plants. 

Net photosynthesis showed a similar behaviour to that of gl, with 

overall values slightly higher in plants grafted on P than on RF rootstock. A 

greater reduction in Pn was observed in plants grafted on RF rootstock (Fig. 4 

a, c). In T2 plants grafted on RF net photosynthesis reached negative after day 

4 (Fig. 4 c). However Pn values recovered to reach control values more rapidly 

than gl (Fig. 3), coinciding with the recovery of leaf water potential values (Fig. 

2). All flooded plants showed simultaneous decreases in Pn and gl, and an 

increase in internal CO2 concentration values (Table 1).  

Flooding caused a downward growth of the petioles known as epinasty, 

which was statistically significant from day 6 of the experimental period in 

plants of both rootstocks (Table 1), whether in the T2 treatment (still 

immersed in water) or in the T1 treatment (during the recovery period). 

Epinasty was more pronounced in plants grafted on RF than on P rootstock 

(Table 1). 

By day 3 of the flooding period an increase in plant plus soil resistance 

to water flow (R(p+s)) had occurred (Table 1). At the end of the flooding periods 

Búlida/RF flooded plants showed greater increases than Búlida/P plants. It 

should be noted that maximum R(p+s) values did not coincide with the end of 
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the flooding periods (Table 1). Recovery was similar to that of leaf 

conductance and occurred more rapidly in plants grafted on P than on RF 

(Table 1). 

Root hydraulic conductivity (Lp) was around 170 and 90 mg MPa-1 m-1 

s-1 for control plants grafted on RF and P, respectively. A greater reduction was 

observed in Búlida/RF plants (37 and 29 % of control values, for T1 and T2 

treatments, respectively), whereas the Lp values of Búlida/P only decreased 

after 6 days of flooding (T2 treatment) (data not shown). 

 

Vegetative growth 

 After three days of flooding, plants did not exhibit any evidence of 

wilting. However, on day 3 of the recovery period the plants on both 

rootstocks in the T1 treatment began to show visual wilting symptoms, which 

was more severe in Búlida/RF plants. On day 5, 20 % of these plants showed 

shoot desiccation, provoking slight leaf abscission, which did not affect 

Búlida/P plants. In the T2 treatment, leaf wilting and desiccation were 

observed in Búlida/RF plants, 2-4 days after flooding was discontinued. This 

led to total leaf shedding in the RF plants, whereas only 20 % of the Búlida/P 

plants lost their leaves (data not shown). 

 Total biomass was reduced by flooding in Búlida/RF plants, with a 

reduction with respect to non-flooded plants, of 22 and 41 % for T1 and T2 

treatments, respectively (Table 2). However, the dry weights of the shoots, 

leaves and roots of flooded plants were similar in flooded and control plants of 
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the Búlida/P combination. 

Trunk growth was also negatively affected by flooding, with negative 

values being observed in plants of the T2 treatment, at the end of the 

experiment (Table 2). No significant differences on trunk growth in Búlida/P 

plants were found, although a tendency to decrease by flooding effect was 

observed (Table 2). 

 

Discussion 

 In flooded soils, air space is displaced by water, and the oxygen 

remaining in the soil is quickly depleted (Fig. 1) by respiration of plant roots 

and soil microorganisms (Kawase 1981). When plants in this experiment were 

removed from water, soil-O2 recovery was slow (Fig. 1). A similar slow 

recovery period was found in citrus plants flooded for 8 days (Ruiz-Sánchez et 

al. 1996). 

 Flooding had no influence on the leaf water potential of apricot plants 

during the first three days of the flooding period (Fig. 2), while leaf 

conductance and net photosynthesis were more affected, decreasing from the 

beginning of flooding (Figs. 3 and 4). No osmotic adjustment was found in 

flooded plants. Nor were we able to detect differences in leaf turgor potential 

between the leaves of flooded and control plants (data not shown) at a time 

when leaf conductance was obviously affected (Fig. 3). 

For these reasons, stomatal regulation, which has been recognised as 
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one of the earliest responses to flooding in fruit trees (Kozlowski 1982, 

Syvertsen et al. 1983, Davies and Flore 1986, Smith and Ager 1988, Schaffer 

and Ploetz 1989, Larson et al. 1991), appears to have had a positive impact on 

the water balance of both apricot rootstocks during the early stages of flooding 

(McNamara and Mitchell 1989, Ruiz-Sánchez et al. 1996), and may be 

considered as an adaptive mechanism to prevent leaf dehydration (Bradford 

and Hsiao 1982).  

This stomatal regulation did not occur as a result of a water deficit in 

the leaf, but as a hormonal imbalance caused; it  has been proposed by an 

increase in abscisic acid as well as a deficiency in such factors from the roots as 

cytokinins and gibberellins, which promote stomatal opening (Wright 1972, 

Bradford and Yang 1981). 

During the recovery period, leaf conductance of treated plants 

remained lower than leaf conductance of control plants, although the stomata 

remained responsive to environmental changes (Fig. 3). Similar observations 

were made in blueberry plants submitted to periodic flooding during 2-7 days, 

although over longer periods leaf conductance did not respond to 

environmental changes, and did not recover pre-flood levels after flooding was 

discontinued (Crane and Davies 1988). 

Several studies have pointed to a parallel reduction in photosynthetic 

capacity and leaf conductance caused by flooding (Wong et al. 1979, 

Kozlowsky and Pallardy 1984). In our study, the concomitant increase in 

internal CO2 concentration (Table 1), and decrease in net photosynthesis (Fig. 
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4) suggested that carbon assimilation was also affected by nonstomatal factors 

(Farquhar and Sharkey 1982, Larson et al. 1991). 

Together with stomatal regulation, epinasty is one of the earliest 

responses of plants to soil flooding, and has been observed in a variety of 

herbaceous and woody species (Bradford and Yang 1981, Sánchez-Blanco et al. 

1994). Ethylene has been established as an important mediator in this response 

(Drew et al. 1979). 

Low concentrations of oxygen in the root zone have been shown to 

reduce the permeability of roots to water (Smith et al. 1990, Zang and Tyerman 

1991), increasing the resistance to water uptake (Table 1). Under these 

conditions loss of water from the shoots exceeds the supply from the root, 

leading to a drop in leaf water potential (Fig. 2). 

Leaf abscission reduced the leaf area in flooded Búlida/RF plants 

(Table 2), thus limiting transpiration, which is a mechanism to conserve soil 

water (Kozlowski 1985, Nash and Graves 1993). 

Trunk growth in T2 Búlida/RF plants was adversely affected by 

flooding (Table 2). Similarly, Nash and Graves (1993) observed that flooding 

induced negative RGR (relative growth rate) values in red apple, pawpaw and 

black tupelo plants, indicating that these plants were senescing. Larson et al. 

(1991) indicated that stem radial growth measurement is a more sensitive 

indicator of the effects of flooding on mango tree growth than the 

measurement of shoot length growth. 

 



 16 

Conclusions 

The data obtained in this study indicate that apricot water relations 

were adversely affected by soil flooding, and the differences between control 

and flooded plants were evident from the first day of the flooding.  

Plants grafted onto Real Fino apricot and Pollizo prune rootstocks 

developed similar mechanisms to confront short term soil flooding conditions 

(3 days), based on an early stomatal regulation, which prevented leaf tissue 

dehydration. Under long term soil flooding (6 days) severe leaf tissue 

dehydration were noted (as a result of root system deterioration), which, in the 

case of plants grafted on Real Fino rootstock caused wilting and the death of 

all plants. 

The early leaf conductance and net photosynthesis response seems to 

suggest that porometric and/or photosynthetic changes are reliable bio-

indicators of the altered behaviour caused by flooding in apricot plants, as has 

been proposed in lemon (Ruiz-Sánchez et al. 1996) and kiwi fruit (Savé and 

Serrano 1986). 

Flooding effects were more pronounced in apricot plants grafted onto 

Real Fino rootstock than in the plants grafted onto Pollizo prune. Also, 

flooding reduced the total biomass of Búlida/RF plants. Neither wilting nor 

desiccation was observed in Búlida/P plants. This indicates that the selection 

of rootstock is critical in reducing the impact of flooding in apricot plantations. 
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Table 1. Internal CO2 concentration (Ci), epinasty and plant plus soil 

resistance to water flow (R(p+s)) in young apricot plants grafted onto Pollizo 

prune (P) and Real Fino apricot (RF) rootstocks in control (T0) and flooding 

treatments for 3 (T1) and 6 (T2) days, during the experimental period. 

  Ci  

(mg L-1) 

Epinasty  

(º) 

R(p+s) 

 (MPa mol-1 m2 s1) 

Day Treat. P RF P RF P RF 

0 T0 320.2   340.3 79.9 77.6 265.3 199.6 

1 T0 308.9 a 337.6 a 78.2 a 76.5 a 251.5 a 259.4 a 

 T1 350.9 a 358.7 a 81.2 a 79.7 a 284.5 a 385.0 a 

3 T0 299.4 a 321.2 a 80.0 a 76.9 a 179.0 a 171.3 a 

   T1* 423.5 b 458.0 b 77.1 a 76.5 a 470.0 b 582.1 b 

6 T0 322.5 a 328.5 a 76.4 a 73.0 a 240.0 a 204.2 a 

 T1 395.5 b 440.5 b 62.6 b 63.6 b 1200.0 c 1487.5 b 

   T2* 411.0 b 569.4 c 62.0 b 54.0 b 547.4 b 10940.0 c 

10 T0 336.0 a 320.3 a 79.1 a 76.3 a 158.9 a 183.2 a 

 T1 313.8 a 401.4 b 66.3 b 61.1 b 493.6 b 640.0 b 

 T2 462.2 b - 68.2 b - 1611.0 c - 

24 T0 353.3 a 342.7 a 75.0 a 75.0 a 180.9 a 185.3 a 

 T1 351.6 a 356.0 a 70.5 a 71.3 a 191.1 a 334.7 b 

 T2 357.3 a - 72.7 a - 464.3 b - 

33 T0 347.0 a 378.0 a 74.1 a 70.4 a 221.3 a 219.5 a 

 T1 356.1 a 371.5 a 68.3 a 69.4 a 226.9 a 208.9 a 

 T2 339.0 a - 67.1 a - 255.8 a - 

*indicates the end of the flooding period. Each value is the mean of five measurements. 

Means, for each day, followed by different letter indicate the existence of significant 

differences by the LSD0.05 range test.  
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Table 2. Total biomass on dry weight basis, root dry weight, total leaf area and 

trunk diameter increase of young apricot plants grafted onto Pollizo prune (P) 

and Real Fino apricot (RF) rootstocks in control (T0) and flooded treatments 

for 3 (T1) and 6 (T2) days, at the end of the experimental period. 

 Biomass  

(g) 

Root  

(g) 

Leaf area  

(cm2) 

Trunk diameter 

increase (%) 

Treat. P RF P RF P RF P RF 

T0 1189 a 1180 a 455 a 399 a 5565 a 5313 a 3.88 a 6.40 a 

T1 1241 a 918 b 445 a 319 ab 4830 a 2917 b 3.08 a 0.79 b 

T2 1048 a 696 c 352 a 237 b 4148 a 0 c 1.71 a -3.39 c 

Each value is the mean of three (biomass) or five (trunk) measurements. Means followed by 

different letter indicate the existence of significant differences by the LSD0.05 range test.  
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Legend to figures 

Figure 1. Changes in oxygen content of the soil water surrounding the roots 

(soil-O2) of young apricot plants on Real Fino and Pollizo rootstocks not 

flooded (T0, ) or flooded for 3 (T1, ) and 6 (T2, ) days during 

the experimental period. Each point is the mean of six measurements. Vertical 

bars represent standard error of the mean.  flooding period. 

Figure 2. Leaf water potential (Ψl) of young apricot plants grafted onto Real 

Fino (a, c) and Pollizo (b, d) rootstocks not flooded (T0, ) or flooded for 3 

(T1, ) and 6 (T2, ) days during the experimental period. Each point 

is the mean of five measurements. Vertical bars represent standard error of the 

mean.  flooding period. 

Figure 3. Leaf conductance (gl) of young apricot plants grafted onto Real Fino 

(a, c) and Pollizo (b, d) rootstocks not flooded (T0, ) and flooded for 3 

(T1, ) and 6 (T2, ) days during the experimental period. Each point 

is the mean of five measurements. Vertical bars represent standard error of the 

mean.  flooding period. 

Figure 4. Net photosynthesis (Pn) of young apricot plants grafted onto Real 

Fino (a, c) and Pollizo (b, d) rootstocks not flooded (T0, ) or flooded for 3 

(T1, ) and 6 (T2, ) days during the experimental period. Each point 

is the mean of five measurements. Vertical bars represent standard error of the 

mean.  flooding period. 
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