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Abstract

In this article we construct free groups and subgroups of finite index
in the unit group of the integral group ring of a finite non-abelian
group G for which every non-linear irreducible complex representation
is of degree 2 and with commutator subgroup G’ a central elementary
abelian 2-group.

1 Introduction

It is well-known from a result of Borel and Harish Chandra that the unit
group of the integral group ring Z[G] of a finite group G is finitely presented
[2]. In case G is abelian, Higman showed that U(Z[G]) = £G x F, a direct
product of the trivial units £G with a finitely generated free abelian group
F. However, when G is non-abelian, there is no general structure theorem.

Hartley and Pickel [5] showed that if the unit group of the integral group
ring of a finite non-abelian group is not trivial, then it contains a non-abelian

*Research partially supported by the Onderzoeksraad of Vrije Universiteit Brussel,
Fonds voor Wetenschappelijk Onderzoek (Belgium) and Bilateral Scientific and Techno-
logical Cooperation BWS 05/07 (Flanders-POland).

fPostdoctoraal Onderzoeker van het Fonds voor Wetenschappelijk Onderzoek-
Vlaanderen.

fResearch partially supported by the Fundacién Séneca of Murcia and D.G.I. of Spain.



free subgroup of rank two. Marciniak and Sehgal constructed in [11] such a
subgroup using a non-trivial bicyclic unit u = 1 + (1 — z)yx of Z[G], where
zy € Gand T = 3 iy 2%, with o(z) the order of x. They showed
that (u,u*) is a non-abelian free subgroup of U(Z[G]), where * denotes the
classical involution on the rational group algebra Q[G].

It is thus a natural question to ask whether (u,@(u)) is free in case ¢
is an arbitrary involution on G. We will solve this question for the class
G consisting of the finite non-abelian groups G for which every non-linear
irreducible complex representation is of degree 2 and with commutator sub-
group G’ a central elementary abelian 2-group. Due to a result of Amitsur
[1] the former condition is equivalent to either G containing an abelian sub-
group of index 2 or G/Z(G) being an elementary abelian 2-group of order
8.

If e is a primitive central idempotent of Q[G] with G € G such that Q[G]e
is non-commutative, then H = Ge € G and clearly H' = Cy. We denote by
Cy, the cyclic group of order n. By [10, Lemma 1.4] we know that for an
arbitrary finite group G and p a prime, G/Z(G) = Cp x C), is equivalent to
|G’| = p and every non-linear irreducible complex representation of G has
degree p. Thus H/Z(H) = Cy x Cy. Hence we first will concentrate on
groups satisfying the latter property. Furthermore, we also will characterize
when two arbitrary bicyclic units generate a free group.

Besides constructing free groups in the unit group of an integral group
ring, finding generators for a subgroup of finite index is an important step in
understanding the structure of the unit group. When the non-commutative
simple components of Q[G] are of a so-called exceptional type, they are an
obstruction to construct in a generic way generators of a subgroup of finite
index in the unit group U(Z[G]) (Problem 23 in [15]). For details we refer
the reader to [7], [13] and [15].

In [3] p-unitary units were introduced to overcome this difficulty for finite
groups G of type G/Z(G) = Cy x Cy (and also for all groups up to order
16). These ¢-unitary units together with the Bass cyclic units generate
a subgroup of finite index in the unit group of Z[G| and we will extend
this result to groups in the class G. Recall that for ¢ € G with o(g) = n
and 1 < k < n, ged(k,n) = 1, a Bass cyclic unit of Z[G] is of the form

d(n) n
b(g, k) = (Z;C;é gﬂ) + 1=k )Q, where ¢ is the Euler’s function.

n
It is worth mentioning that from the classification in [12, Theorem 3.3]
it follows that the class G contains for example the finite groups of Kleinian
type with central commutators. For the finite groups G of Kleinian type
there exist geometrical methods [12] that allow to compute a presentation by



generators and relations for a subgroup of finite index in U (Z[G]). Although,
it is very hard to accomplish these calculations, several examples have been
calculated in [12]. Hence we need to obtain more algebraic information on
the structure of the unit group U(Z[G]) of such groups G of Kleinian type.

2 Free Subgroups

To investigate the group (u, p(u)) where u is a non-trivial bicyclic unit and
 is an arbitrary involution on a finite group G we will make use of the
following criterion.

Theorem 2.1. [14, 9, Proposition 2.4] Let A be a Q-algebra which is a
direct product of division rings and 2 X 2-matriz rings over subfields k of C.
Let a,b € A be such that a*> = b*> =0, then

1. if ab is nilpotent, then (1 + a,1+ b) is torsion-free abelian,

2. if ab is not nilpotent and if for some projection p of A onto a simple
component Ma (k) we have that |Tr(p(ab))| > 4, then (14-a, 1+b) is free
of rank 2, where Tr denotes the ordinary trace function on matrices.

2.1 Preliminaries

Let GG be a finite group that is not Hamiltonian and such that
G/Z(G) = Cy x Cs.

Note that by [4, Proposition II1.3.6] the latter is equivalent to G having a
unique non-identity commutator s and for x,y € G one has that zy = yz if
and only if z € Z(G) or y € Z(G) or zy € Z(G). The last property is the
so called lack of commutativity property. Note that s is central of order 2.

Take z,y € G with s = (z,y) ¢ (z), then v = 1+ (1 — z)yZ is a
non-trivial bicyclic unit of Z[G]. Clearly x2,3? € Z(G) and we can write
G = (z,y, Z(G)). It is readily verified that an involution ¢ on G has to be
of one of the following types:

. T — 21T . T — 21X . T — 1Y . T = 212y (1)
P g2y 2\ gy zmy Py zmr Ty 2y

for some z1, 29 € Z(G). The natural extension of ¢ to a Q-linear involution
on Q[G] is also denoted by ¢. Consider the images of the bicyclic unit u



under the mentioned involutions ¢. Since g = gAz(l + g) for a non-central
g € G, we obtain that

w=1+22(1—-a)y(l—s) and @(u) = 1+ o(2)2(1 + p(x))p(y) (1 — 5).

Investigating the structure of (u, ¢(u)) forces us to look at the non- commu-
tative simple components of Q[G], thus the simple components of Q[G] (%) .
By [4, Proposition VII.2.1] the primitive central idempotents of Q[G] (15%)

are precisely the elements of the form e = H (%), where H is a subgroup of

Z(G) not containing s and such that Z(G) = (H, ¢) for some 1 # ¢ € Z(G).
Furthermore, if Z(G)/H has order m, with m > 1 then Z(Q[G])e = Q(&mn)-

Recall that for a subgroup H of a finite group we denote by H the
idempotent \Tlﬂ > her b of Q[G]. Recall that H is central precisely when H
is normal in G.

Theorem 2.2. Let ¢ be an involution on a finite group G that is not
Hamiltonian and such that G/Z(G) = Cy x Cy. Let x,y € G be such that
u=14 (1 —2)yx is a non-trivial bicyclic unit (thus s = (z,y) ¢ (z)).
PutT = (22, p(x)?, p(x)z™) = (22, o(z)z™!) in case p(x)z~" is central,
otherwise put T = (22, o()?).
Then (u, p(u)) is a free group of rank two if and only if s ¢ T'. Otherwise,
it is a torsion-free abelian group.

Proof. Let e be an arbitrary primitive central idempotent of Q[G] (%)

Then e = H (%) for some subgroup H of G as mentioned above. Put
a=22(1—-2z)y(l—s)and b= p(x)? (1+ ¢(x))e(y)(1 —s). Then

@ (157) = AP @+ s+ e@le) (157

If o = 1 or g, then

1-— - 5 1—
ab( 5 S) = 422 2222 29> (1 4 21)(1 + sz) ( 5 8) :
If ¢ = 3, then
1-s > 5% 1 1-s
ab (152) = 42 B2 o (1t )1+ an) e (
If ¢ = 4, then
1—s -, < 2 1—s
ab 5 = 422 (z129)? 290°(1 + sx)(1 + 21y) 5 )
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Put P
di = do = 422 z%m222y2(1 + 21)
and P —_—
ds = 4a? 23y? 2oz, dy = 422 (z12y)? 209

Now Z(Q[G]))H (15%) =2 Q(&y,) and thus the central torsion units 22e, yZe,

z1e, 29, (2y)?e belong to (&), where m is the order of Z(G)/H. It follows
in partlcular that die € Q(&,) for 1 < i < 4. Furthermore, dije # 0 if and

only if z2e 7& 0, 213326 # 0 and z1e # —e, while dse and dse are non-zero if
andonlylf:):2e7é0 go( )2e #£ 0.
Write z2e = £, for some i > 0. Hence

2%e = kéi,,

where k = o(z?)/0(¢&,) and 5/;; = E;(:%‘)_l 4. Now g/g; # 0 if and only if
¢ =1. Hence x2e # 0 if and only if 22e = e. If this is the case, then

o(x)

/5: 2:7
x?e = o(x*) 5

Similarly, we deduce that We # 0 if and only if o(z)%e = e. If this is
the case, then

Hence

die # 0 if and only if z’e = e, z%:er =e¢ and ze # —e,

which is equivalent to z2e = e and z1e = p(z)r"te = e. Thusfori =1,2,3,4
die # 0 if and only if T'C H, (2)

where T is as in the statement of the Theorem.

If s ¢ T, then there exists a primitive central idempotent e = H (%)
of Q[G] so that H contains 7. In particular all d;e # 0 and thus Q[Gle is
not a division ring. Since it is four dimensional over its center and simple,
the algebra Q[Gle is a two-by-two matrix ring over its center. It is readily

verified, using x%e = e, that Q[G]e has the following set of matrix units

E = + 6 Eis=y
Ey = 5tylte By =1



With respect to these matrix units one verifies that

(10 (0 &, (-1 0
= o -1 O N T Lo -1 )

for some j > 0.
Since ze € (&) for any z € Z(G) we also have that |ze| = 1. Tt follows
|Tr(dy (14 sx)e)| =

that
r(0 5 )1 = dotar
|Tr(ds(1 + sx)(1 + Zly)(zly)me)’

_ o)’ 00 1o 0 & 0
"44%( 02)(5@ 1 >(£m o )0 1))l

0 0
1o Tr (g _pes )
= 20(z)?

and

Tr(da(1+ sz)(1 + 219)e)| = |4O(E)ZTT<<8 g)( L %ﬂ >>|

&
_ |0(:1:)2Tr< 22,% g>|

= 20(z)%

As o(x) > 2, Theorem 2.1 gives us that (u, p(u)) is free. N

If s € T, then for every primitive central idempotent e = H (%) of
QIG] (12) (so H is a subgroup of Z(G) with s ¢ H and Z(G)/H is cyclic)
the group H cannot contain 7. Hence, by (2), die = 0 for i = 1,2,3,4
and thus ab (352) = 0, so ab = 0. Therefore, by Theorem 2.1, (u,p(u)) is
torsion-free abelian.

O

Remark.
We note that in the proof of the Theorem it is not essential that ¢ is an
involution. The result actually characterizes when the non-trivial bicyclic
unit uxy =1+(1-2z)yzand v, , =1 +3/3\’y’(1 — ') generate a free group,
where ',y € G are such that G/Z( ) = (' Z(G),y Z(Q)).

Note that there are six cases to be dealt with; when 2/ = ¢(z) and
y' = p(y) with ¢ an involution on G then the cases reduce to the four listed



in (1). Hence to characterize when (ugzy,u., ) is free we also have to deal
with 2’ = z12y, ¥ = 200 and 2’ = 21y, ¥ = 292y. These are handled in a
similar manner.
4 )
Since g o, = Ugyr y
generate a free group.

, we then know when any two bicyclic (of both types)

Theorem 2.3. Let G be a finite group that is not Hamiltonian and such
that G/ Z(G) = Cy x Cy and let uyy and uy v be non-trivial bicyclic units.

Denote by s = (z,y) = (2/,y). Put T = (22,s2'x71) in case 2'z7! is

central, otherwise put T = (x?, 2"?).
Then (ugy, Uy o) is a free group of rank two if and only if s ¢ T. Oth-

erwise, it is a torsion-free abelian group.

2.2 The class G

Recall that the class G consists of the finite groups G for which every non-
linear irreducible complex representation is of degree 2 and with commutator
subgroup G’ a central elementary abelian 2-group.

Let G € G and let x,y € G be such that (x) is not normal in (z,y) and
thus u = 1+ (1 — z)yZ is a non-trivial bicyclic unit. Let S be a hyperplane
of the elementary abelian 2-group G’ not containing ¢t = (x,y). Obviously
|(G/S)'| = 2 and thus by [10, Lemma 1.4] (G/S)/Z(G/S) = Cy x Cy and
thus the primitive central idempotents of Q[G/S] (%) are given by

~ (11—t
:D _
=2(%)

where D is a subgroup of G containing S such that D/S C Z(G/S) and
Z(G/S)/(D/S) is cyclic and t ¢ D.

We now can deduce the structure of the group (u, p(u)), where ¢ is an
arbitrary involution on G.

Theorem 2.4. Let G € G and let ugy and uy v be non-trivial bicyclic units.
Then (Ugz.y, Uq o) is a free group if and only if there exists a hyperplane S
of G' such that

1 t=(z,y) ¢ ((z)NG)S,
2.t =('y) ¢ (=) NG,

1

3. t is not in Ts modulo S, where Ts = (z% tx'z~t) if 2’2~ is central

modulo S, and Ts = (2%, 2"?) otherwise.



Otherwise, (Ug .y, Ugr o) is a torsion-free abelian group.

Proof. Let S be a hyperplane of G’ satisfying conditions (1) to (3). Condi-
tion (1) says that (x.S) is not normalized by yS and thus the natural image of
Uy, is & power of a non-trivial bicyclic unit in Z[G/S]. Similarly, condition
(2) says that the natural image of u, ./ is a power of a non-trivial bicyclic
unit in Z[G/S]. Also G/S = (xS,yS, Z(G/S)) = («'S,y'S, Z(G/S)) and
(G/9)/(2(G/S)) = Ca x Cs.

It follows that 'S equals an element of the from 2125, z1yS or z12yS for
some z1 € G so that 215 € Z(G/S). If, for example 'S = z12S then since
2'S and y'S do not commute, the lack of commutativity in G/S implies
that 'S = 20yS or 'S = 2zo2yS for some z3 € G so that 205 € Z(G/S).
The other cases are dealt with similarly. Hence, because of Theorem 2.3 the
result follows.

If there does not exist a hyperplane S of G’ with conditions (1) to (3),
then for every hyperplane S of G’ either u,, becomes trivial modulo S,
or Uy, becomes trivial modulo S or the natural images of u,, and .
commute in Z[G/S]. It follows that in every non-commutative simple com-
ponent Q[Gle of Q[G], (usy, Uy ) is abelian and hence (g, — 1) (ug v — 1)
is nilpotent. It then follows easily from Theorem 2.1 that (ugy,uz ) is a
torsion-free abelian group. O

Examples.

1. We recover the result of Marciniak and Sehgal for the class of finite
groups G which are not Hamiltonian and such that G/ Z(G) = Cy x Cs.
Take x,y € G such that s = (z,y) ¢ (z), then uy , = 1+ (1 —2)yZ is a

non-trivial bicyclic unit. For the classical involution *, z*z~! = 272 is

central. Hence T' = (2, 272), which does not contain s by assumption.

Therefore, by Theorem 2.3 (ugy, uy , = Ugp—1,-1) 18 free.

2. Consider up, = 1+ (1 — b)a(l + b) in Z[Df5]. Let p(b) = b and
¢(a) = a®, then T = {1} and hence (u, p(u)) is free. For ¢(b) = a*b
and 1(a) = a®, we have that s € T = {1,a*} and hence (u,(u)) is
torsion-free abelian.

3 Subgroups of finite index

In this section we construct a subgroup of finite index in U(Z[G]) for G € G.
In order to do so we recall the following definition.



Definition. [3] For an involution ¢ of G, put

Up(Q[G]) = {u € UQ[G]) | up(u) =1}

and

U, (Z]G]) = U, (QIG]) N ZIG],
these units are called p-unitary. If o1, ..., pn all are involutions on G, then
we put

Upy,...on(ZIG]) = Uy, (Z[G]) | i =1, m).

We will prove that for each non-commutative Wedderburn component
Q[Gle; (i = 1,...n) of Q[G] there exists an involution ¢; on G such that
the group generated by the Bass cyclic units and Uy, ... ., (Z][G]) is of finite
index in U(Z[G]). The first part of the proof is done following the same lines
of [3], where this result is proved for groups of order 16. For completeness’
sake we give a compact version of the argument.

Theorem 3.1. Let G € G. Denote by Bg the group generated by the Bass
cyclic units of Z|G]. Then there exist involutions @1, . .., ¢, on G such that

(Ba, Upy,....0n (ZIG]))
is a subgroup of finite index in U(Z[G]).

Proof. First, let G be such that G/Z(G) = Cy x Cy and let x,y € G be such
that G = (z,y, Z(G)). Denote by s the unique commutator of G. Then by
[4, Theorem II1.3.3] G has an involution ¢ defined by

| g if gis central,
wlg) = { sg otherwise. (3)

By [4, Corollary VI1.4.8] Q[G] = @, D;, a direct sum of fields and general-
ized quaternion algebras over fields. Let e; be a primitive central idempotent
of Q[G] such that D; = Q[Gle; and let O; be a Z-order in D;. Because G
is nilpotent, by [8] the group generated by the Bass cyclic units contains a
subgroup of finite index in @, Z(U(O;)). Hence to prove the result it is suffi-
cient to search for a subgroup (of p-unitary units) that contains a subgroup
of finite index in SL;1(0O;), provided D; is a generalized quaternion algebra.
Recall that by definition SL1(0;) = SL1(D;) N O;, where SLy(D;) is the
group of elements g of reduced norm nr(q) = qg = 1, where — denotes the



standard involution with respect to the basis {e;, ze;, ye;, xye;} of this gen-
eralized quaternion algebra. Now for each such D; we have that ¢(e;) = ¢;
because the support of e; is central and

v(gei) = gei,

where g € G. Because — is linear, we get that ¢(q) = g for all ¢ € D;.
Hence SLi(D;) equals the image in D; of the p-unitary units of Q[G]. Since
general order theory gives us that U(Z[G]) and @, GL1(0;) have a common
subgroup of finite index, we have that U(Z|G]) contains a subgroup of finite
index in each (1 —e;) + GL1(0;), where e; is the unity of D;. Consequently,
the ¢-unitary units of Z[G] contain a subgroup of finite index in each (1 —
ei) + SL1(0;), as desired.

Now, let G € G and let e; be a primitive central idempotent of the
rational group algebra Q[G] determining a non-commutative Wedderburn
component. We will show that there exists an involution ¢y on G that
induces the involution (3) on H = Gey, in particular ¢k (eg) = ex. Since the
simple components of Q[H] are simple components of Q[G] and H/Z(H) =
(9 x (9, the case above and again order theory, yield the result.

Let H = (1,22, Z(H)), for some x1, 79 € G with 23 and z3 central in
G. Let S be a hyperplane of the elementary abelian 2-group G’ that does
not contain ¢ = (x1,x2). Then e, = D (%) , where D is a subgroup of G
containing S such that D/S C Z(G/S) and Z(G/S)/(D/S) is cyclic and
t¢ D. As G/Z(G) is an elementary abelian 2-group, say of rank n, we can
write G = (1,29, ..., Ty, Z(G)) with 22 € Z(G),1 <i < n and z; central
modulo S for 3 < i <n.

Any element g € G can be written uniquely as

g =zx{'zy? . xln,
with z € Z(G), a; € {0,1},1 < i < n. Put t;; = (x;,x;). Since G’ is an
elementary abelian 2-group we have that ¢;; = tj;. Let ¢ : G — G be given
by

al a2 a _ a1+as a;asN a;
pr(zaftag? agr) = 20 TIC T 6)a
i>1 j>2,7>1

Notice that the map ¢y is defined on the generators as yp(z1) = tiox1,
wr(z2) = t1oxg and g (z;) = x; for all i > 3. Also ¢i(z) = z for z € Z(G).
Note that the support of e, is D U Dt. Suppose that z{'z5’z € D with
z € (Z(G),z3,...,zy) and aj,az € {0,1} (but not both equal to zero)

then z{'z5%xer, = ey, thus z{'z5%e;, € Z(H) and therefore ter, = ey, a

10



contradiction. A similar reasoning holds for z{*z5?z € Dt. So the support

of ey, is contained in (Z(G), 3, ...,z,). Hence pr(ex) = ex. Using the fact
that G’ is of exponent 2 we easily can see that ¢y is an anti-automorphism
and that gpi = 1. Furthermore, if we restrict the involution ¢y, to the simple
component Q[Gle it induces (3). O
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