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Abstract

In this article we construct free groups and subgroups of finite index
in the unit group of the integral group ring of a finite non-abelian
group G for which every non-linear irreducible complex representation
is of degree 2 and with commutator subgroup G′ a central elementary
abelian 2-group.

1 Introduction

It is well-known from a result of Borel and Harish Chandra that the unit
group of the integral group ring Z[G] of a finite group G is finitely presented
[2]. In case G is abelian, Higman showed that U(Z[G]) = ±G× F, a direct
product of the trivial units ±G with a finitely generated free abelian group
F . However, when G is non-abelian, there is no general structure theorem.

Hartley and Pickel [5] showed that if the unit group of the integral group
ring of a finite non-abelian group is not trivial, then it contains a non-abelian
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free subgroup of rank two. Marciniak and Sehgal constructed in [11] such a
subgroup using a non-trivial bicyclic unit u = 1 + (1− x)yx̂ of Z[G], where
x, y ∈ G and x̂ =

∑
1≤i≤o(x) x

i, with o(x) the order of x. They showed
that 〈u, u∗〉 is a non-abelian free subgroup of U(Z[G]), where ∗ denotes the
classical involution on the rational group algebra Q[G].

It is thus a natural question to ask whether 〈u, ϕ(u)〉 is free in case ϕ
is an arbitrary involution on G. We will solve this question for the class
G consisting of the finite non-abelian groups G for which every non-linear
irreducible complex representation is of degree 2 and with commutator sub-
group G′ a central elementary abelian 2-group. Due to a result of Amitsur
[1] the former condition is equivalent to either G containing an abelian sub-
group of index 2 or G/Z(G) being an elementary abelian 2-group of order
8.

If e is a primitive central idempotent of Q[G] with G ∈ G such that Q[G]e
is non-commutative, then H = Ge ∈ G and clearly H ′ ∼= C2. We denote by
Cn the cyclic group of order n. By [10, Lemma 1.4] we know that for an
arbitrary finite group G and p a prime, G/Z(G) ∼= Cp ×Cp is equivalent to
|G′| = p and every non-linear irreducible complex representation of G has
degree p. Thus H/Z(H) ∼= C2 × C2. Hence we first will concentrate on
groups satisfying the latter property. Furthermore, we also will characterize
when two arbitrary bicyclic units generate a free group.

Besides constructing free groups in the unit group of an integral group
ring, finding generators for a subgroup of finite index is an important step in
understanding the structure of the unit group. When the non-commutative
simple components of Q[G] are of a so-called exceptional type, they are an
obstruction to construct in a generic way generators of a subgroup of finite
index in the unit group U(Z[G]) (Problem 23 in [15]). For details we refer
the reader to [7], [13] and [15].

In [3] ϕ-unitary units were introduced to overcome this difficulty for finite
groups G of type G/Z(G) ∼= C2 × C2 (and also for all groups up to order
16). These ϕ-unitary units together with the Bass cyclic units generate
a subgroup of finite index in the unit group of Z[G] and we will extend
this result to groups in the class G. Recall that for g ∈ G with o(g) = n
and 1 < k < n, gcd(k, n) = 1, a Bass cyclic unit of Z[G] is of the form

b(g, k) =
(∑k−1

j=0 g
j
)φ(n)

+ 1−kφ(n)

n ĝ, where φ is the Euler’s function.
It is worth mentioning that from the classification in [12, Theorem 3.3]

it follows that the class G contains for example the finite groups of Kleinian
type with central commutators. For the finite groups G of Kleinian type
there exist geometrical methods [12] that allow to compute a presentation by
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generators and relations for a subgroup of finite index in U(Z[G]). Although,
it is very hard to accomplish these calculations, several examples have been
calculated in [12]. Hence we need to obtain more algebraic information on
the structure of the unit group U(Z[G]) of such groups G of Kleinian type.

2 Free Subgroups

To investigate the group 〈u, ϕ(u)〉 where u is a non-trivial bicyclic unit and
ϕ is an arbitrary involution on a finite group G we will make use of the
following criterion.

Theorem 2.1. [14, 9, Proposition 2.4] Let A be a Q-algebra which is a
direct product of division rings and 2× 2-matrix rings over subfields k of C.

Let a, b ∈ A be such that a2 = b2 = 0, then

1. if ab is nilpotent, then 〈1 + a, 1 + b〉 is torsion-free abelian,
2. if ab is not nilpotent and if for some projection ρ of A onto a simple

component M2(k) we have that |Tr(ρ(ab))| ≥ 4, then 〈1+a, 1+b〉 is free
of rank 2, where Tr denotes the ordinary trace function on matrices.

2.1 Preliminaries

Let G be a finite group that is not Hamiltonian and such that

G/Z(G) ∼= C2 × C2.

Note that by [4, Proposition III.3.6] the latter is equivalent to G having a
unique non-identity commutator s and for x, y ∈ G one has that xy = yx if
and only if x ∈ Z(G) or y ∈ Z(G) or xy ∈ Z(G). The last property is the
so called lack of commutativity property. Note that s is central of order 2.

Take x, y ∈ G with s = (x, y) /∈ 〈x〉, then u = 1 + (1 − x)yx̂ is a
non-trivial bicyclic unit of Z[G]. Clearly x2, y2 ∈ Z(G) and we can write
G = 〈x, y,Z(G)〉. It is readily verified that an involution ϕ on G has to be
of one of the following types:

ϕ1 :
{
x 7→ z1x
y 7→ z2y

ϕ2 :
{
x 7→ z1x
y 7→ z2xy

ϕ3 :
{
x 7→ z1y
y 7→ z2x

ϕ4 :
{
x 7→ z1xy
y 7→ z2y

(1)

for some z1, z2 ∈ Z(G). The natural extension of ϕ to a Q-linear involution
on Q[G] is also denoted by ϕ. Consider the images of the bicyclic unit u
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under the mentioned involutions ϕ. Since ĝ = ĝ2(1 + g) for a non-central
g ∈ G, we obtain that

u = 1 + x̂2(1− x)y(1− s) and ϕ(u) = 1 + ϕ̂(x)2(1 + ϕ(x))ϕ(y)(1− s).

Investigating the structure of 〈u, ϕ(u)〉 forces us to look at the non- commu-
tative simple components of Q[G], thus the simple components of Q[G]

(
1−s
2

)
.

By [4, Proposition VII.2.1] the primitive central idempotents of Q[G]
(

1−s
2

)
are precisely the elements of the form e = H̃

(
1−s
2

)
, where H is a subgroup of

Z(G) not containing s and such that Z(G) = 〈H, c〉 for some 1 6= c ∈ Z(G).
Furthermore, if Z(G)/H has order m, with m > 1 then Z(Q[G])e ∼= Q(ξm).

Recall that for a subgroup H of a finite group we denote by H̃ the
idempotent 1

|H|
∑

h∈H h of Q[G]. Recall that H̃ is central precisely when H
is normal in G.

Theorem 2.2. Let ϕ be an involution on a finite group G that is not
Hamiltonian and such that G/Z(G) ∼= C2 × C2. Let x, y ∈ G be such that
u = 1 + (1− x)yx̂ is a non-trivial bicyclic unit (thus s = (x, y) /∈ 〈x〉).

Put T = 〈x2, ϕ(x)2, ϕ(x)x−1〉 = 〈x2, ϕ(x)x−1〉 in case ϕ(x)x−1 is central,
otherwise put T = 〈x2, ϕ(x)2〉.

Then 〈u, ϕ(u)〉 is a free group of rank two if and only if s /∈ T . Otherwise,
it is a torsion-free abelian group.

Proof. Let e be an arbitrary primitive central idempotent of Q[G]
(

1−s
2

)
.

Then e = H̃
(

1−s
2

)
for some subgroup H of G as mentioned above. Put

a = x̂2 (1− x)y(1− s) and b = ϕ̂(x)2 (1 + ϕ(x))ϕ(y)(1− s). Then

ab

(
1− s

2

)
= 4x̂2 ϕ̂(x)2 (1 + sx)y(1 + ϕ(x))ϕ(y)

(
1− s

2

)
.

If ϕ = ϕ1 or ϕ2, then

ab

(
1− s

2

)
= 4x̂2 ẑ2

1x
2 z2y

2(1 + z1)(1 + sx)
(

1− s

2

)
.

If ϕ = ϕ3, then

ab

(
1− s

2

)
= 4x̂2 ẑ2

1y
2 z2z

−1
1 (1 + sx)(1 + z1y)(z1y)x

(
1− s

2

)
If ϕ = ϕ4, then

ab

(
1− s

2

)
= 4x̂2 ̂(z1xy)2 z2y2(1 + sx)(1 + z1y)

(
1− s

2

)
.
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Put
d1 = d2 = 4x̂2 ẑ2

1x
2z2y

2(1 + z1)

and
d3 = 4x̂2 ẑ2

1y
2 z2z

−1
1 , d4 = 4x̂2 ̂(z1xy)2 z2y2.

Now Z(Q[G])H̃
(

1−s
2

) ∼= Q(ξm) and thus the central torsion units x2e, y2e,
z1e, z2e, (xy)2e belong to 〈ξm〉, where m is the order of Z(G)/H. It follows
in particular that die ∈ Q(ξm) for 1 ≤ i ≤ 4. Furthermore, d1e 6= 0 if and
only if x̂2e 6= 0, ẑ2

1x
2e 6= 0 and z1e 6= −e, while d3e and d4e are non-zero if

and only if x̂2e 6= 0, ϕ̂(x)2e 6= 0.
Write x2e = ξi

m for some i ≥ 0. Hence

x̂2e = kξ̂i
m,

where k = o(x2)/o(ξi
m) and ξ̂i

m =
∑o(ξi

m)−1
j=0 ξij

m. Now ξ̂i
m 6= 0 if and only if

ξi
m = 1. Hence x̂2e 6= 0 if and only if x2e = e. If this is the case, then

x̂2e = o(x2) =
o(x)

2
.

Similarly, we deduce that ϕ̂(x)2e 6= 0 if and only if ϕ(x)2e = e. If this is
the case, then

ϕ̂(x)2e = o(x2) =
o(x)

2
.

Hence

d1e 6= 0 if and only if x2e = e, z2
1x

2e = e and z1e 6= −e,

which is equivalent to x2e = e and z1e = ϕ(x)x−1e = e. Thus for i = 1, 2, 3, 4

die 6= 0 if and only if T ⊆ H, (2)

where T is as in the statement of the Theorem.
If s /∈ T , then there exists a primitive central idempotent e = H̃

(
1−s
2

)
of Q[G] so that H contains T . In particular all die 6= 0 and thus Q[G]e is
not a division ring. Since it is four dimensional over its center and simple,
the algebra Q[G]e is a two-by-two matrix ring over its center. It is readily
verified, using x2e = e, that Q[G]e has the following set of matrix units

E11 = 1+x
2 e E12 = y−2 1+x

2 y 1−x
2 e

E21 = 1−x
2 y 1+x

2 e E22 = 1−x
2 e
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With respect to these matrix units one verifies that

xe =
(

1 0
0 −1

)
ye =

(
0 ξj

m

1 0

)
se =

(
−1 0
0 −1

)
,

for some j ≥ 0.
Since ze ∈ 〈ξm〉 for any z ∈ Z(G) we also have that |ze| = 1. It follows

that

|Tr(d1(1 + sx)e)| = |4o(x)2

4 2 Tr
(

0 0
0 2

)
| = 4o(x)2,

|Tr(d3(1 + sx)(1 + z1y)(z1y)xe)|

= |4o(x)2

4 Tr

((
0 0
0 2

) (
1 ξk+j

m

ξk
m 1

) (
0 ξk+j

m

ξk
m 0

) (
1 0
0 −1

))
|

= |o(x)2Tr
(

0 0
2ξk

m −2ξ2k+j
m

)
|

= 2o(x)2

and

|Tr(d4(1 + sx)(1 + z1y)e)| = |4o(x)
2

4
Tr

((
0 0
0 2

) (
1 ξk+j

m

ξk
m 1

))
|

= |o(x)2Tr
(

0 0
2ξk

m 2

)
|

= 2o(x)2.

As o(x) ≥ 2, Theorem 2.1 gives us that 〈u, ϕ(u)〉 is free.
If s ∈ T , then for every primitive central idempotent e = H̃

(
1−s
2

)
of

Q[G]
(

1−s
2

)
(so H is a subgroup of Z(G) with s 6∈ H and Z(G)/H is cyclic)

the group H cannot contain T . Hence, by (2), die = 0 for i = 1, 2, 3, 4
and thus ab

(
1−s
2

)
= 0, so ab = 0. Therefore, by Theorem 2.1, 〈u, ϕ(u)〉 is

torsion-free abelian.

Remark.
We note that in the proof of the Theorem it is not essential that ϕ is an
involution. The result actually characterizes when the non-trivial bicyclic
unit ux,y = 1 + (1− x)yx̂ and u′x′,y′ = 1 + x̂′y′(1− x′) generate a free group,
where x′, y′ ∈ G are such that G/Z(G) = 〈x′Z(G), y′Z(G)〉.

Note that there are six cases to be dealt with; when x′ = ϕ(x) and
y′ = ϕ(y) with ϕ an involution on G then the cases reduce to the four listed
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in (1). Hence to characterize when 〈ux,y, u
′
x′,y′〉 is free we also have to deal

with x′ = z1xy, y′ = z2x and x′ = z1y, y′ = z2xy. These are handled in a
similar manner.

Since ux′,y′ = u′sx′,y′ we then know when any two bicyclic (of both types)
generate a free group.

Theorem 2.3. Let G be a finite group that is not Hamiltonian and such
that G/Z(G) ∼= C2 ×C2 and let ux,y and ux′,y′ be non-trivial bicyclic units.

Denote by s = (x, y) = (x′, y′). Put T = 〈x2, sx′x−1〉 in case x′x−1 is
central, otherwise put T = 〈x2, x′2〉.

Then 〈ux,y, ux′,y′〉 is a free group of rank two if and only if s /∈ T . Oth-
erwise, it is a torsion-free abelian group.

2.2 The class G

Recall that the class G consists of the finite groups G for which every non-
linear irreducible complex representation is of degree 2 and with commutator
subgroup G′ a central elementary abelian 2-group.

Let G ∈ G and let x, y ∈ G be such that 〈x〉 is not normal in 〈x, y〉 and
thus u = 1 + (1− x)yx̂ is a non-trivial bicyclic unit. Let S be a hyperplane
of the elementary abelian 2-group G′ not containing t = (x, y). Obviously
|(G/S)′| = 2 and thus by [10, Lemma 1.4] (G/S)/Z(G/S) ∼= C2 × C2 and
thus the primitive central idempotents of Q[G/S]

(
1−t
2

)
are given by

e = D̃

(
1− t

2

)
,

where D is a subgroup of G containing S such that D/S ⊆ Z(G/S) and
Z(G/S)/(D/S) is cyclic and t /∈ D.

We now can deduce the structure of the group 〈u, ϕ(u)〉, where ϕ is an
arbitrary involution on G.

Theorem 2.4. Let G ∈ G and let ux,y and ux′,y′ be non-trivial bicyclic units.
Then 〈ux,y, ux′,y′〉 is a free group if and only if there exists a hyperplane S
of G′ such that

1. t = (x, y) /∈ (〈x〉 ∩G′)S,

2. t′ = (x′, y′) /∈ (〈x′〉 ∩G′)S,

3. t is not in TS modulo S, where TS = 〈x2, tx′x−1〉 if x′x−1 is central
modulo S, and TS = 〈x2, x′2〉 otherwise.
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Otherwise, 〈ux,y, ux′,y′〉 is a torsion-free abelian group.

Proof. Let S be a hyperplane of G′ satisfying conditions (1) to (3). Condi-
tion (1) says that 〈xS〉 is not normalized by yS and thus the natural image of
ux,y is a power of a non-trivial bicyclic unit in Z[G/S]. Similarly, condition
(2) says that the natural image of ux′,y′ is a power of a non-trivial bicyclic
unit in Z[G/S]. Also G/S = 〈xS, yS,Z(G/S)〉 = 〈x′S, y′S,Z(G/S)〉 and
(G/S)/(Z(G/S)) ∼= C2 × C2.

It follows that x′S equals an element of the from z1xS, z1yS or z1xyS for
some z1 ∈ G so that z1S ∈ Z(G/S). If, for example x′S = z1xS then since
x′S and y′S do not commute, the lack of commutativity in G/S implies
that y′S = z2yS or y′S = z2xyS for some z2 ∈ G so that z2S ∈ Z(G/S).
The other cases are dealt with similarly. Hence, because of Theorem 2.3 the
result follows.

If there does not exist a hyperplane S of G′ with conditions (1) to (3),
then for every hyperplane S of G′ either ux,y becomes trivial modulo S,
or ux′,y′ becomes trivial modulo S or the natural images of ux,y and ux′,y′

commute in Z[G/S]. It follows that in every non-commutative simple com-
ponent Q[G]e of Q[G], 〈ux,y, ux′,y′〉 is abelian and hence (ux,y−1)(ux′,y′−1)
is nilpotent. It then follows easily from Theorem 2.1 that 〈ux,y, ux′,y′〉 is a
torsion-free abelian group.

Examples.

1. We recover the result of Marciniak and Sehgal for the class of finite
groups G which are not Hamiltonian and such that G/Z(G) ∼= C2×C2.
Take x, y ∈ G such that s = (x, y) /∈ 〈x〉, then ux,y = 1+(1−x)yx̂ is a
non-trivial bicyclic unit. For the classical involution ∗, x∗x−1 = x−2 is
central. Hence T = 〈x2, x−2〉, which does not contain s by assumption.
Therefore, by Theorem 2.3 〈ux,y, u

∗
x,y = usx−1,y−1〉 is free.

2. Consider ub,a = 1 + (1 − b)a(1 + b) in Z[D+
16]. Let ϕ(b) = b and

ϕ(a) = a5, then T = {1} and hence 〈u, ϕ(u)〉 is free. For ψ(b) = a4b
and ψ(a) = a3, we have that s ∈ T = {1, a4} and hence 〈u, ψ(u)〉 is
torsion-free abelian.

3 Subgroups of finite index

In this section we construct a subgroup of finite index in U(Z[G]) for G ∈ G.
In order to do so we recall the following definition.
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Definition. [3] For an involution ϕ of G, put

Uϕ(Q[G]) = {u ∈ U(Q[G]) | uϕ(u) = 1}

and
Uϕ(Z[G]) = Uϕ(Q[G]) ∩ Z[G],

these units are called ϕ-unitary. If ϕ1, . . . , ϕn all are involutions on G, then
we put

Uϕ1,...,ϕn(Z[G]) = 〈Uϕi(Z[G]) | i = 1, . . . , n〉.

We will prove that for each non-commutative Wedderburn component
Q[G]ei (i = 1, . . . n) of Q[G] there exists an involution ϕi on G such that
the group generated by the Bass cyclic units and Uϕ1,...,ϕn(Z[G]) is of finite
index in U(Z[G]). The first part of the proof is done following the same lines
of [3], where this result is proved for groups of order 16. For completeness’
sake we give a compact version of the argument.

Theorem 3.1. Let G ∈ G. Denote by BG the group generated by the Bass
cyclic units of Z[G]. Then there exist involutions ϕ1, . . . , ϕn on G such that

〈BG, Uϕ1,...,ϕn(Z[G])〉

is a subgroup of finite index in U(Z[G]).

Proof. First, let G be such that G/Z(G) ∼= C2×C2 and let x, y ∈ G be such
that G = 〈x, y,Z(G)〉. Denote by s the unique commutator of G. Then by
[4, Theorem III.3.3] G has an involution ϕ defined by

ϕ(g) =
{
g if g is central,
sg otherwise.

(3)

By [4, Corollary VI.4.8] Q[G] ∼=
⊕

iDi, a direct sum of fields and general-
ized quaternion algebras over fields. Let ei be a primitive central idempotent
of Q[G] such that Di = Q[G]ei and let Oi be a Z-order in Di. Because G
is nilpotent, by [8] the group generated by the Bass cyclic units contains a
subgroup of finite index in

⊕
iZ(U(Oi)). Hence to prove the result it is suffi-

cient to search for a subgroup (of ϕ-unitary units) that contains a subgroup
of finite index in SL1(Oi), provided Di is a generalized quaternion algebra.
Recall that by definition SL1(Oi) = SL1(Di) ∩ Oi, where SL1(Di) is the
group of elements q of reduced norm nr(q) = qq = 1, where − denotes the
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standard involution with respect to the basis {ei, xei, yei, xyei} of this gen-
eralized quaternion algebra. Now for each such Di we have that ϕ(ei) = ei
because the support of ei is central and

ϕ(gei) = gei,

where g ∈ G. Because − is linear, we get that ϕ(q) = q for all q ∈ Di.
Hence SL1(Di) equals the image in Di of the ϕ-unitary units of Q[G]. Since
general order theory gives us that U(Z[G]) and

⊕
iGL1(Oi) have a common

subgroup of finite index, we have that U(Z[G]) contains a subgroup of finite
index in each (1− ei) +GL1(Oi), where ei is the unity of Di. Consequently,
the ϕ-unitary units of Z[G] contain a subgroup of finite index in each (1 −
ei) + SL1(Oi), as desired.

Now, let G ∈ G and let ek be a primitive central idempotent of the
rational group algebra Q[G] determining a non-commutative Wedderburn
component. We will show that there exists an involution ϕk on G that
induces the involution (3) on H = Gek, in particular ϕk(ek) = ek. Since the
simple components of Q[H] are simple components of Q[G] and H/Z(H) ∼=
C2 × C2, the case above and again order theory, yield the result.

Let H = 〈x1, x2,Z(H)〉, for some x1, x2 ∈ G with x2
1 and x2

2 central in
G. Let S be a hyperplane of the elementary abelian 2-group G′ that does
not contain t = (x1, x2). Then ek = D̃

(
1−t
2

)
, where D is a subgroup of G

containing S such that D/S ⊆ Z(G/S) and Z(G/S)/(D/S) is cyclic and
t /∈ D. As G/Z(G) is an elementary abelian 2-group, say of rank n, we can
write G = 〈x1, x2, . . . , xn,Z(G)〉 with x2

i ∈ Z(G), 1 ≤ i ≤ n and xi central
modulo S for 3 ≤ i ≤ n.

Any element g ∈ G can be written uniquely as

g = zxa1
1 x

a2
2 . . . xan

n ,

with z ∈ Z(G), ai ∈ {0, 1}, 1 ≤ i ≤ n. Put tij = (xi, xj). Since G′ is an
elementary abelian 2-group we have that tij = tji. Let ϕk : G→ G be given
by

ϕk(zxa1
1 x

a2
2 . . . xan

n ) = zta1+a2
12

∏
i≥1

(
∏

j≥2,j>i

t
aiaj

ij )xai
i

Notice that the map ϕk is defined on the generators as ϕk(x1) = t12x1,
ϕk(x2) = t12x2 and ϕk(xi) = xi for all i ≥ 3. Also ϕk(z) = z for z ∈ Z(G).
Note that the support of ek is D ∪ Dt. Suppose that xa1

1 x
a2
2 x ∈ D with

x ∈ 〈Z(G), x3, . . . , xn〉 and a1, a2 ∈ {0, 1} (but not both equal to zero)
then xa1

1 x
a2
2 xek = ek, thus xa1

1 x
a2
2 ek ∈ Z(H) and therefore tek = ek, a
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contradiction. A similar reasoning holds for xa1
1 x

a2
2 x ∈ Dt. So the support

of ek is contained in 〈Z(G), x3, . . . , xn〉. Hence ϕk(ek) = ek. Using the fact
that G′ is of exponent 2 we easily can see that ϕk is an anti-automorphism
and that ϕ2

k = 1. Furthermore, if we restrict the involution ϕk to the simple
component Q[G]ek it induces (3).

References

[1] S.A. Amitsur, Groups with representations of bounded degree II, Illinois
J. Math. 5 (1961), 198–205.

[2] A.A. Borel and Harish Chandra, Arithmetic Subgroups Of Algebraic
Groups, Ann. of Math. 75 (1962), 485–535.

[3] A. Dooms, Unitary units in integral group rings, J. Algebra and its
Applications, in press.

[4] G. Goodaire, E. Jespers and C. Polcino Milies, Alternative Loop Rings,
North Holland, Elsevier Science B. V., Amsterdam, 1996.

[5] B. Hartley and P.F. Pickel, Free Subgroups in the Unit Groups of Inte-
gral Group Rings, Canadian J. Math. 32 (1980), 1342–1352.

[6] G. Higman, The Units of Group Rings, Proc. London Math. Soc. (2)
46, (1940), 231–248.

[7] E. Jespers and G. Leal, Generators of Large Subgroups of the Unit
Group of Integral Group Rings, Manuscripta Math. 78 (1993), 303–
315.

[8] E. Jespers, M.M. Parmenter and S.K. Sehgal, Central Units Of Integral
Group Rings Of Nilpotent Groups. Proc. Amer. Math. Soc. 124 (1996),
no. 4, 1007–1012.
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