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Abstract. In this survey we gather some results concerning polynomial identities (resp.
group identities) in the set of symmetric elements (resp. symmetric units), and when
these identities are transferred to the whole group ring (resp. unit group). We consider
several kinds of involutions, not only the classical involution.

1. Introduction

Let R be a ring with unity and * a ring involution on R. The set of *-symmetric elements,
or just symmetric when the involution * is clear from the context, is R, = {r € R| r* =r}.
We are going to denote by U (R) the group of units of R and by U, (R) = {u € U(R)| u* = u}
the set of symmetric units. In general the set R, (respectively U, (R)) is not a ring (resp. a
subgroup). In fact R, (resp. Ui(R)) is a ring (resp. subgroup) if and only if the symmetric
elements (resp. units) commute.

Several papers have dealt with questions of how various algebraic properties of the set R,
affect the structure of the whole ring. Similar question may be posed by making assumptions
about the symmetric units or subgroup they generate.

Definition 1.1. Let A be an R-algebra and S C A be a subset. We say that S satisfies a
polynomial identity (PI for short) if there exists a nonzero polynomial f(z1,...,2,) in the
polynomial ring R(z1, . .., zn) in the non-commuting variables z1, . . ., zp, with f(s1,...,8n) =
0 for all s; € S.

The set of units SNU(A) of the set S is said to satisfy a group identity (GI for short) if
there exists a nontrivial word w(xzy,...,x,) in the free group generated by x4, ..., T, such
that w(uy,...,up) =1 for all uy,...,u, € SNU(A).

Since results about symmetric units in rings with involution seem to be difficult to obtain,
one way to begin the study of these units is to try to mimic known results for the symmetric
elements. A fundamental result of this kind is the following theorem of Amitsur [1].
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Theorem 1.2. [1] If R is an algebra with involution whose symmetric elements S satisfy
a polynomial identity, then R itself satisfies a polynomial identity.

Most of the results concerning identities of the symmetric elements and symmetric units,
and how these identities are transferred to the whole ring or its group of units respectively,
have been stated in the context of group rings.

Let R be a commutative ring with unity and let G be a group. We denote by RG the
group ring of G over R. This ring is a ring with involution. Any involution on the group G
can be extended R-linearly to an involution on RG.

Let * be an R-linear involution in RG. We define the set of symmetric elements in the
group G by G, = {g € G| g* = g}. Notice that an element o of RG is *-symmetric if and
only if

*

* _ * _ .

af = agg | = agg” = agg =
geG geG geG

i.e., if and only if oy = ay~, for all g € G.
Thus, (RG). is generated, as an R—module, by the set

S={g+9g"|geGwith g* € G,} UG..

Therefore (RG). satisfy a multilinear polynomial identity if and only if S satisfy the same
identity.

A complete classification of group algebras satisfying a polynomial identity was given by
Isaacs and Pasmman [13] for characteristic zero and Passman in [26] for characteristic p.
Taking into account Theorem 1.2 we resume these results in the following theorem.

Theorem 1.3. Let R be a field of characteristic p and G be a group. Let x be an involution
of the group algebra RG. Then the following are equivalents.
(1) (RG)« satisfies a PL
(14) RG satisfies a PL
(#it) G has a p—abelian subgroup of finite index.

Recall that a group G is said to be p-abelian if the derived subgroup G’ is a finite p-group.
We say that G is 0-abelian if it is abelian.

Some specific PI’s as Lie nilpotence, Lie n-Engel and commutativity have also been
studied. We will call these identities Lie-identities. Recall that a set S of an R-algebra A is
Lie nilpotent if, for some integer n > 2, [z1,2,...,2,] =0, for any z1,...,2, € S, where
[z,y] = zy — yx denote the Lie bracket and inductively [z1,...,2,] = [[Z1,..., Tn-1], Tn].
Also, recall that S is Lie n-Engel if [z,y,y,...,y] =0, for all z,y € S.

—_—

n

As we will see in the following sections, that the set of symmetric elements satisfies a
Lie-identity does not imply that this Lie-identity is always satisfied by the whole algebra.

In this survey we are going to collect results concerning Lie-identities in the set of symmet-
ric elements and symmetric units of a group ring and when these identities are transferred
to the whole ring or the whole group of units respectively.

The rest of the paper is structured as follows. In Section 2 we collect the results con-
cerning commutativity, Lie nilpotence and Lie n-Engel for the set of symmetric elements
in group rings RG when the involution * is the classical involution on the group G, that is
¢* = g~ '. In Section 3 we deal with the commutativity of the symmetric elements when
the involution * is any group involution which is extended by linearity to the whole group
ring. In Section 4 we present the results concerning the commutativity of the symmetric
elements when the involution is not a group involution extended by linearity. The involu-
tions treated in this section are the oriented involutions introduced by Novikov [23] in the
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context of K-theory and its extension by considering an arbitrary group involution. Finally
in Section 5 we collect the results concerning GI property, nilpotence and commutativity of
the set of symmetric units. The first two properties have been studied only for the classical
involution, while the commutativity has been studied for any group involution extended
R-linearly to the whole group ring and also for oriented involutions.

2. Symmetric elements under the classical involution

Let R be a ring with unity and G be a group. Throughout this section we are going to
denote by * the classical involution, which is defined by setting ¢g* = ¢!, for all g € G,
and extending by linearity to RG; i.e., (3 ayz9)" = > ayg~'. Notice that set of symmetric
elements in the group G are the elements of order 2, that is G, = {g € G| g®> = 1}.

In this section we gather some results concerning Lie identities of symmetric elements in
group rings, when they are satisfied, and when these properties are transferred to the whole
group ring RG. We start with the more simple identity, the commutativity of (RG)., or
equivalently when (RG)., the set of symmetric elements, form a ring.

The following lemma states that if the polynomial identities like commutativity or Lie
n-Engel are satisfied, then the symmetric group elements are central.

Lemma 2.1. [7, 15] Let R be a commutative ring with unity and G be a group.
(7) If (RG). is commutative then G, C Z(G).
(i¢) If char(R) is odd prime and (RG). is Lie n—Engel then G, C Z(G).

Thus, (RG). is commutative if and only if S\ G, is commutative. Furthermore, if
char(R) is odd prime then (RG). is Lie nilpotent (resp. Lie n—Engel) if and only if S\ G.
is Lie nilpotent (resp. Lie n—Engel).

To study these Lie-identities in S \ G, the following Lemma is very useful.

Lemma 2.2. [7, 15] Let R be a commutative ring with unity and G be a group.
(1) If (RQG), is commutative then for any g,h € G one of the following condition holds:
(a) gh is equal to either hg,hg™' or h™1g;
(b) char(R) =2, gh = h~'g~! and the orders of g, h are both equal to /.
(ii) If char(R) is odd prime, (RG). is Lie n—Engel and g,h € G such that [g+g~*, h+
h=1] =0 then gh is equal to either hg,hg=—' or h™1lg.

Notice that Lemma 2.2 justifies the distinction between characteristic of the ring R equal
to 2 and different from 2. The following results states when the symmetric elements (RG).
commute, if the characteristic of the ring R is different from 2.

Theorem 2.3. [7] Let G be a non-abelian group and let R be a commutative ring of char-
acteristic different from 2. Then, (RG). is a commutative ring if and only if G is a Hamil-
tonian 2-group.

Recall that a group G is a Hamiltonian 2-group if G & Qg X E where Qg is the quaternion
group of order 8 and F is an elementary abelian 2-group. Thus, as a consequence of Theorem
2.3 one deduces that if (RG), is a commutative ring then G is a torsion group.

In the case in which the characteristic of the ring R is 2 we have the following result

Theorem 2.4. [7] Let G be a non-abelian group and let R be a commutative ring of char-
acteristic 2. Then, (RG). is a commutative ring if and only if G is the direct product of an
elementary abelian 2-group and a group H, for which one of the following conditions holds.

(i) H has an abelian subgroup A of index 2 and an element b of order 4, such that
conjugation by b inverts each element of A;

(i) H is the direct product of the quaternion group of order 8 and the cyclic group of
order 4, or the direct product of two quaternion groups of order 8;
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(iii) H is the central product of the group (x,y | 2* = y* = 1, 22 = (y,z)) with the
quaternion group of order 8, where the nontrivial common element to the two central
factors is x2y?;

(iv) H is isomorphic to one of the groups Hzo or Hays, where

2

H32 = (x,y,u | I4 = y4 = 17392 = (yvx)ayQ =u = (u,x),x2y2 = (U,y)>7

and

Hys = (z,y,u,0 | 2t =y = (v,u) = 1,2° =v* = (y,2) = (v,y),
P = (u,2),2%y% = (u,y) = (v,2)).

Notice that when (RG), is a ring and the exponent of the group G is different from 4
then G = H x E where E is an elementary abelian 2-group and H is a group with the
property (i) of Theorem 2.4. If the exponent of G is 4, then H can be any of the groups
listed in Theorem 2.4. This list of groups was given by V. Bovdi, Kovacs and Sehgal, in
[4], answering the question of when the set of symmetric units of a modular group ring RG
is a multiplicative group, assuming that R is a commutative ring of prime characteristic p
and G is a locally finite p-group. In the more general context of Theorem 2.4 when the
exponent of G is 4 the proof is reduced to verify the conditions of the result in [4] and
to prove that the commutativity of the symmetric units implies the commutativity of the
symmetric elements.

Another property in (RG), which has been studied is the Lie nilpotence. ;From now
until the end of this section we assume that R is a field of characteristic p # 2.

The characterization of the Lie nilpotence of (RG). was given by Giambruno, Sehgal
and Lee in two different papers. In the first one [10], Giambruno and Sehgal considered the
case in which the group G has no 2-elements. In the second one [15], Lee considered the
case in which the group G contains 2-elements. These two results can be resumed in the
following theorem.

Theorem 2.5 ([10, 15]). Let R be a field of characteristic p # 2 and let G be a group.
Then (RG), is Lie nilpotent if and only if one of the following conditions holds:
(1) Qs € G and G is nilpotent and p-abelian.
(i4) p> 2 and G =2 K x P where K is a Hamiltonian 2-group and P is a finite p-group.
(#i7) p=0 and G is a Hamiltonian 2-group.

y'=u

Recall that the Lie nilpotence of RG was characterized by Passi, Passman and Sehgal
in [24] (see also [27]) in terms of the group G and the characteristic of the ring R. A
consequence of this characterization is the following result.

Corollary 2.6. Let R be a field of odd prime characteristic and let G be a group not
containing a copy of Qs. Then (RG). is Lie nilpotent if and only if RG is Lie nilpotent.

n [10], Giambruno and Sehgal also proved the following result in a general context,
showing the strong relationship between Lie nilpotence and commutativity of the symmetric
elements.

Theorem 2.7. [10] Let R be a semiprime ring with involution % such that 2R = R. If R,
is Lie nilpotent then R, is a commutative ring.

Finally we consider a particular case of Lie nilpotence, the Lie n-Engel property. This
property was characterized by Lee in [16]. The result is the following.

Theorem 2.8. [16] Let R be a field of characteristic p # 2 and let G be a group. Then
(RG). is Lie n-Engel if and only if one of the following conditions holds:

(1) Qs Z G and either
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(#) p > 2 and G is nilpotent and contains a normal p-abelian subgroup A with G/A
a finite p-group or
(#1) p=0 and G is abelian.

(2) p> 2 and G =2 K x P where K is a Hamiltonian 2-group and P is a nilpotent
p-group of bounded exponent containing a mormal subgroup A of finite index such
that A’ is also finite;

(3) p=0 and G is a Hamiltonian 2-group.

Recall that the Lie n-Engel property in group rings RG was characterized by Sehgal in
[27]. A consequence of this characterization is the following corollary.

Corollary 2.9. Let R be a field of characteristic prime odd and let G be a group not
containing a copy of Qs. Then (RG). is Lie n—FEngel if and only if RG is Lie m— Engel.

3. Symmetric elements under an arbitrary group involution

Any group involution ¢ : G — G can be extended R-linearly to a ring involution ¢ :
RG — RG. In this section we only deal with the question of when (RG), is a commutative
ring for an arbitrary group involution ¢. Properties like the Lie nilpotence or Lie n-Engel
of (RG), are open questions except in the semiprime case (see Theorem 2.7).

When ¢ is the classical involution the study of the commutativity of the symmetric
elements was divided in two cases depending on the characteristic of the ring R, char(R) = 2
or char(R) # 2. The following theorem gives a characterization of when the symmetric
elements commute in terms of the group G and the involution ¢ when the characteristic of
the ring R is different from 2.

Theorem 3.1. [14] Let ¢ be an involution on a non-abelian group G and let R be a com-
mutative ring with char(R) # 2. The following are equivalent:

(i) (RG), is commutative.
(ii) The group G has the LC property, a unique non-trivial commutator s and the invo-
lution ¢ : G — G is given by

_J g ifgeZ(Q)
(p(g)_{sg ifg & Z(G)

(iii) G/Z(G) = Cy x Cy and p(g) = h~tgh or v(g) = g for all g,h € G.
In this case, (RG), = Z(RG).

Groups with lack of commutativity property (“LC” for short) have been described in [12].
A group G has the LC property if for any pair of elements g,h € G, it is the case that
gh = hg if and only if g € Z(G) or h € Z(G) or gh € Z(G).

When the characteristic of R is 2 we have the following result.

Theorem 3.2. [14] Let R be a commutative ring with char(R) = 2 and let G be a non-
abelian group with involution ¢. Then (RG), is commutative if and only if one of the
following conditions holds:

(i) G contains an abelian subgroup A of index 2 and b € G\ G, with b* € G, such that
o(a) =b"tab for all a € A.

(i1) G contains a central subgroup Z such that G/Z is an elementary abelian 2-group
and the involution ¢ : G — G is given by (g) = cqg where ¢, € Z and the
following properties are satisfied: (1) cg =1,(2)cg=1ifand only if g € Z, (3)
cgh = cgcn(g, k) and if (g, h) # 1 we have that cgp, = cg,cp, or (g, h).
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Under hypothesis of Theorem 3.2, if the group G has an element g with g2 ¢ G, then
the group is described by condition (7). In this case G, = Z(G) C A and there exists an
element ag € Z(G) of order two so that the involution ¢ is given by

| aog ifgg A
lg) = { b lgb ifge A

On the other hand if for all g € G, g? € G, condition (ii) of Theorem 3.2 holds.

4. Symmetric elements under oriented involution

One can wonder what happens with the commutativity of the symmetric elements if the
involution on RG does not come from the group G. In this section we are going to consider
an R-linear involution ¥ on RG which does not come from the group G.

Let 0 : G — {£1} be a group homomorphism. Such a map is called an orientation of the
group G. Novikov [23], introduced in the context of K-theory, an involution of RG, defined
by

(4.1) Z Qg9 = Z C@U(g)gfl

geG geG

which was subsequently studied by various authors (see [2], [6], [18] and [19]). Clearly, this
involution does not come from a group involution.

The above involution can also be constructed in a more general context. Given both an
orientation o : G — {£1} and a group involution ¢ : G — G, an oriented involution v of
R@G is defined by

YD g | =D olg)agels).
geG geG

Notice that if ¢ is trivial then 1 is the kind of involutions studied in the previous section.
Now we assume that o is non-trivial and hence the characteristic of the ring R must be
different from 2. Let N be the kernel of 0. Then N is a subgroup of index 2 in G. It
is obvious that the involution ¥ coincides on the subring RN with the ring involution .
Thus, if (RG), is commutative then (RN), is commutative and, by Theorem 3.1, we know
the struture of IV and the action of ¢ on N.

If (RG)y is a commutative ring, [G : N] = 2 and the structure of the group N and the
action of ¢ on N are both known. Despite this it is not an easy task to describe G and the
action of ¢ on G. The following theorem gives us this characterization.

Theorem 4.1. [8] Let R be a commutative ring with unity and let G be a non-abelian group
with involution ¢ and non-trivial orientation homomorphism o with kernel N. Then (RG)y
is a commutative Ting if and only if one of the following conditions holds:
(i) N is an abelian group and (G \ N) C Gy;
(i1) G and N have the LC property, and there exists a unique non-trivial commutator s
such that the involution ¢ is given by
g fgeNNZ(G)orge (G\N)\Z(G).
plg) = : ,
sg if otherwise.

(#i1) char(R) =4, G has the LC property, and there exists a unique non-trivial commu-
tator s such that the involution ¢ is given by

if g€ Z(G).
wlg) = { ig if Z ¢ Z(Q).
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In the case of when v is the involution of Novikov (¢ is the classical involution) we have
the following characterization.

Theorem 4.2. Let R be a commutative ring with unity and let G be a non-abelian group
with non-trivial orientation homomorphism o with kernel N. Then (RG), is a commutative
ring if and only if one of the following conditions holds:

(i) N is an abelian group and (G\ N)? =1;

(i) N2 (z,y|2*=1, > =2% y lay=2"1) x E and

G=(x,y,g|at=1 1y =a22=¢* 2¥V=0"1 29 =21, v =y) x E,
where E is an elementary abelian 2-group;

(791) char(R) =4 and G is a Hamiltonian 2-group.
5. Symmetric units

In this section we gather results concerning Lie-identities and nilpotence of the set of
symmetric units, Us(RG), and when these properties are transferred to the whole unit
group U(RG). On the relation between group and polynomial identities Hartley made the
following conjecture

Hartley’s conjecture (1980). If the units group U(RG) of the group algebra RG of a
torsion group G over a field R satisfies a group identity, then RG satisfies a polynomial
identity.

An affirmative answer was proved first by Giambruno, Jespers, Sehgal and Valenti for
infinite fields R in [9, 11] and next for finite fields by Liu in [20]. Passman [25] and Liu
and Passman in [21] characterized when U(RG) satisfies a group identity for R a field of
characteristic 0 and G a torsion group.

We can ask if the identities at the unit level are also controlled by symmetric elements.
We have the analogue of Hartley’s conjecture:

Theorem 5.1. [11] Let R be an infinite field of characteristic # 2, let G be a torsion group
and let x be the classical involution. If U.(RG) satisfies a group identity then RG satisfies
a polynomial identity.

In fact, one can say more. In the following theorem Giambruno, Sehgal and Valenti
characterized when the set of symmetric units, U, (RG), satisfies a group identity when R
is a infinite field and G is a non abelian torsion group.

Theorem 5.2. [11] Let R be a infinite field and G a nonabelian torsion group. If char(R) =
0, U.(RQG) satisfies GI if and only if G is a Hamiltonian 2-group. If char(R) = p > 2, then
U (RG) satisfies GI if and only if RG satisfies PI and G has a p-abelian subgroup of finite
index and one of the following conditions holds:

(i) Qs € G and G’ is of bounded exponent p*,
(1i) Qs C G and the p-elements of G form a subgroup P and G/P is a Hamiltonian
2-group, or
(#i1) Qs C G and G is of bounded exponent 4p*.

The nilpotence of U,(RG) was characterized in terms of the group G by Lee in [17],
dependent on whether or not Qg is contained in G.

Theorem 5.3. Let R be a field of characteristic p # 2 and G a torsion group.
(1) If Qs € G, then U.(RQG) is nilpotent if and only if U(RG) is nilpotent.
(#7) If Qs C G then U.(RQG) is nilpotent if and only if either
a) p>2and G= Qs X E x P where E is an elementary abelian 2-group and P
i$ a finite p-group or
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b) p=0 and G = Qs x E where E is an elementary abelian 2-group.
As a consequence of this result and Theorem 2.5 we have the following corollary.

Corollary 5.4. Let R be a field of characteristic p # 2 and G a torsion group. Then
U.(RQG) is nilpotent if and only if (RG). is Lie nilpotent.

Now we are left with the most simple property, the commutativity. When one wants to
characterize the commutativity in the set of symmetric units one needs to construct these
units. This is a very difficult task.

Under some additional condition on the group G and the ring R, and when * is the
classical involution on G, we have the following result which gives us, in a very simple
manner, how to construct symmetric units.

Lemma 5.5. [7] Let G be a torsion group, R a commutative ring with unity of prime char-
acteristic p # 2 and x the classical involution on G. Assume that U.(RG) is commutative.
Then:

(i) If g is a 2-element of G then g+ g~ € U.(RG).

(ii) If p# 3 and g is a 2-element of G then 1+ g+ g~* € U.(RG).

(i73) If p#5 and g is a 2-element of G then 1+ g+ g~ 1+ g% + 972 € U.(RQG).

Recall [3] that a ring R is called G-favourable if for any g € G, of finite order |g|, there
is a nonzero ay € R such that 1 — a_‘qg‘ is invertible in R. Notice that every infinite field is
G-favourable. When the ring R is G-favorable, Bovdi in [3] showed that (g — ay) (97! — )
is a symmetric unit in the context of the classical involution. This idea was generalized by
Jespers and Ruiz in [14] for arbitrary group involutions and by Broche and Polcino in [8]
for oriented involutions. These generalization is resumed in the following lemma.

Lemma 5.6. Let G be a torsion group with involution ¢ and non-trivial orientation homo-
morphism o with kernel N. Let R be a G-favorable integral domain. Let g € G and ag € R

such that (1 — a‘gg‘) € U(R). Define

u{ (g—ag)(gso_ag) ngEN
(9+ag)(ag—g°) ifg & N
Then u € L{w(RG),

The construction of these units is an essential step in the proof of the necessary condition
of the following theorem.

Theorem 5.7. [8, 14] Let G be a torsion group, R be a G-favourable integral domain and 1)
an oriented involution. Then, Uy (RG) is commutative if and only if (RG)y is commutative

(or, equivalently, Uy, (RG) is a subgroup of U(RG) if and only if (RG)y is a subring of RG).

Notice that if the orientation ¢ is trivial then 1 is the group involution ¢ extended
R-linearly to the whole group ring RG.

Now we study the commutativity of the set of symmetric units when * is the classical
involution. For this involution Bovdi and Parmenter [5] proved the following result for
integral group rings.

Theorem 5.8. [5] If U.(ZG) is a subgroup in U(ZG), then the set t(G) of elements of G
of finite order is a subgroup in G, every subgroup of t(G) is normal in G and t(G) is either
abelian or a Hamiltonian 2-group. Conversely, suppose that the group G satisfies the above
conditions and G/t(G) is a right ordered group. Then U.(ZG) is a subgroup in U(ZG).

Notice that if G is not a torsion group then additional conditions are needed to obtain
the converse in Theorem 5.8. This also happens in other contexts and the reason is that
very little is known about the units in the torsion free part. Indeed the following appears
as Problem 10 in [27]:



Lie identities in symmetric elements in group rings. A survey 9

If G is torsion free then all units U(RG) are trivial.

The benefit of working with integral group rings is that quite a number of strong results
on the unit groups U(ZG) are known. In particular, if u is a non-trivial bicylic unit then
Marciniak and Sehgal [22] have shown that the group (u,u*) is free. Clearly uu*, u*u €
U.(ZG) but they do not commute. This latter fact is an essential step in the proof of the
previous theorem.

That the group (u,u*) is a nonabelian free group for u a bicyclic unit is not always true.
For instance when x* is the involution introduced by Novikov (4.1) Li in [19] characterized
when (u,u*) is a nonabelian free group.

The following theorem characterized when the set of symmetric units form a multiplica-
tive group when * is the classical involution and the characteristic of the ring R is different
from 2. When the characteristic of R is 2 still remains an open problem.

Theorem 5.9. [7] Let G be a nonabelian torsion group, let R be a commutative ring of
characteristic 0 or p # 2 and * the classical involution on G. Then, U,(RG) form a
multiplicative group if and only if G is a Hamiltonian 2-group.

Notice that in the case in which char(R) = 0, Theorem 5.9 follows from Theorem 5.8.
As a consequence of the previous result and Theorem 2.3 we have the following corollary.

Corollary 5.10. Let G be a torsion group, let R be a commutative ring with unity of prime
characteristic p # 2 and x be the classical involution on G. Then U.(RG) is an abelian
group if and only if (RG). is a commutative ring.

Notice that the previous result is not true when the group is torsion free. Indeed if G is
a torsion free nilpotent group and R an infinite field, then the group algebra RG has only
trivial units. Since G has no elements of order 2, the symmetric units commute (1 is the
only symmetric unit), but the symmetric elements (RG), do not necessarily commute.
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