Show simple item record

dc.contributor.authorNavarro Lorente, Pedro Javier 
dc.contributor.authorFernández Andrés, José Carlos 
dc.contributor.authorBorraz Morón, Raúl 
dc.contributor.authorAlonso Cáceres, Diego 
dc.date.accessioned2019-05-06T06:57:18Z
dc.date.available2019-05-06T06:57:18Z
dc.date.issued2016-12
dc.identifier.citationNavarro, Pedro J et al. “A machine learning approach to pedestrian petection for autonomous vehicles using High-Definition 3D Range Data.” Sensors (Basel, Switzerland) vol. 17,1 18. 23 Dec. 2016, doi:10.3390/s17010018es_ES
dc.identifier.issn1424-8220
dc.description.abstractThis article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).es_ES
dc.description.sponsorshipThis work was partially supported by ViSelTR (ref. TIN2012-39279) and cDrone (ref. TIN2013-45920-R) projects of the Spanish Government, and the “Research Programme for Groups of Scientific Excellence at Region of Murcia” of the Seneca Foundation (Agency for Science and Technology of the Region of Murcia—19895/GERM/15). 3D LIDAR has been funded by UPCA13-3E-1929 infrastructure projects of the Spanish Government. Diego Alonso wishes to thank the Spanish Ministerio de Educación, Cultura y Deporte, Subprograma Estatal de Movilidad, Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016 for grant CAS14/00238.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherEd. Molecular Diversity Preservation International (MDPI)es_ES
dc.relation.urihttps://www.mdpi.com/1424-8220/17/1/18es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleA machine learning approach to pedestrian detection for autonomous vehicles using High-Definition 3D Range Dataes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.subject.otherLenguajes y Sistemas Informáticoses_ES
dc.subjectPedestrian detectiones_ES
dc.subject3D LIDAR sensores_ES
dc.subjectMachine visiones_ES
dc.subjectMachine learninges_ES
dc.identifier.urihttp://hdl.handle.net/10317/7745
dc.contributor.investgroupDivisión de Sistemas en Ingeniería Electrónica (DSIE)es_ES
dc.identifier.doi10.3390/s17010018
dc.identifier.urlhttps://www.mdpi.com/1424-8220/17/1/18
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.subject.unesco1203.23 Lenguajes de Programaciónes_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España