Show simple item record

dc.contributor.authorValero Conzuelo, Laura Luz 
dc.date.accessioned2016-09-07T09:13:38Z
dc.date.available2016-09-07T09:13:38Z
dc.date.issued2015-10
dc.descriptionMención Europeo / Mención Internacional: Concedidoes_ES
dc.description.abstract[SPA] En esta tesis se describe la síntesis electroquímica de películas gruesas de polipirrol/DBS. Las películas se despegan del electrodo y se usan como electrodos autosoportados, para construir bicapas (pPy/DBS-cinta adhesiva) o tricapas (pPy/DBS-cinta-pPy/DBS). El comportamiento electroquímico de la película polimérica, utilizada como electrodo autosoportado, es caracterizado mediante diferentes técnicas electroquímicas. Repitiendo la caracterización variando ahora la concentración del medio, la temperatura de trabajo o la corriente de oxidación/reducción se investigó y cuantificó la capacidad de las reacciones del material para sentir (capacidad sensora) las condiciones de trabajo. Se realiza la caracterización electroquímica y del movimiento de bicapas pPy/DBS-cinta (músculo artificial de bicapa), que es registrado en video. De los video-frames se obtiene la evolución del ángulo descrito por el músculo con el potencial aplicado o con la carga consumida. Se confirma así que la reacción que provoca el movimiento en el rango completo de potenciales estudiados origina la expulsión de cationes desde el polímero conductor durante su oxidación y su entrada durante la reducción. El actuador polimérico es un motor faradaico controlado por la reacción electroquímica que origina del movimiento: la velocidad angular es una función lineal (control sencillo de la velocidad) de la corriente eléctrica aplicada y el ángulo descrito por el movimiento es una función lineal de la carga consumida (también provee otro control sencillo del desplazamiento). A potenciales muy catódicos se produce algo de hidrógeno, provocando un desplazamiento (creeping) del movimiento en cada ciclo: hay que evitarlo porque complica el control lineal del desplazamiento. Los desplazamientos angulares del músculo consumiendo la misma carga en disoluciones acuosas de sales con distintos cationes permitió cuantificar el número de moléculas de agua intercambiado por unidad de reacción (o por catión) durante la reacción. La evolución del potencial muscular y de la energía eléctrica consumida durante la reacción siente las condiciones energéticas de trabajo: energía química (concentración del electrolito), energía térmica (temperatura de trabajo) o energía eléctrica (corriente aplicada). El motor polimérico siente, mientras trabaja, sus condiciones de trabajo. El dispositivo imita a los músculo hápticos de los seres vivos. Las curvas de calibración para los diferentes sensores han sido obtenidas. Las tricapas (pPy/DBS-cinta-pPy/DBS) también se comportaron como músculos faradaicos que sienten, mientras trabajan, las condiciones térmicas, químicas, mecánicas o eléctricas. En un dispositivo trabajan, simultáneamente, un motor y cuatro sensores. Toda la información actuadora (corriente y carga) y sensora (potencial y energía eléctrica) está contenida, simultáneamente, en los dos únicos cables de conexión. El sistema potenciostato-cables-músculo-celda electroquímica actúa como el sistema natural celebro-nervios-músculos. [ENG] Over the past decade scientific research has been looking for new biomimetic materials able to imitate human organs behaviour, in such a way that is possible to apply them on different technologies: low cost ones, scalable ones, low energy consumption ones and on those with high potentialities in areas such as health, robotics, artificial nerves and muscles, among others. Most of the studied materials mimic the extracellular matrix (ECM) of living cells and its physical functions. Now, and for the first time, conducting polymers, and other electroactive materials exchange ions and water through electrochemical reactions: the material becomes a dense electroactive gel. The content of mentioned gel and the reactions happening in it mimic, by the first time in the history of science, the composition (in its simplest expression) and reactions taking place in the reactive intracellular matrix of the functional cells of living beings. During the chemical reactions (oxidation or reduction) the gel relative composition (polymer-ion-water) shifts, in a reversible way, by several orders of magnitude. Along with it several composition-dependent properties of the material change simultaneously. The reversible variation of the material volume driven by the reactions mimics the natural muscles behaviour: artificial polymeric muscles, or polymeric electrochemical actuators, based on this property are being developed. With the material composition the consumed energy change as a function thermal, chemical or mechanical conditions. This fact is used for the development of sensors and biosensors. The material volume and the material potential shift, simultaneously, during the reaction. Here the possibility to develop dual sensing-actuators is explored: two elements working concurrently in the same, physically uniform, device mimicking haptic muscles. In this thesis the electrochemical synthesis of thick polypyrrole/DBS films is described. The electrochemical behaviour of the polymer film, used as a self-supported electrode, is characterized assuming the exchange of cations during its oxidation/reduction. For the electrochemical characterization of biomimetic films of polypyrrole/DBS, different electrochemical techniques are used and under different experimental conditions with the view to understanding the sensing potentialities of the material reactions. The study and electrochemical characterization of the motion of pPy/DBS//tape bilayer bending actuators corroborates that the reaction is driven by the expulsion of cations from the conducting polymer to the electrolyte during oxidation and its entrance during reduction, in the full potential range studied. The actuator is a faradaic device controlled by the electrochemical reaction driving the movement: the rate of the angular movement is a linear function (easy control of the velocity) of the applied current and the described angle by the displacement is a linear function of the consumed charge (it also provides another easy control of the displacement) The evolution of the muscle potential and that of the consumed electrical energy during the reaction senses the energetic working conditions: chemical energy (electrolyte concentration), thermal energy (working temperature) or electric energy (applied current). The polymeric motor senses, while working, environmental conditions. The sensing calibration curves were attained for the different sensors. They have been constructed and characterized triple-layer artificial muscles pPy/DBS//Tape//pPy/DBS, corroborating again the exchange of cations during the reaction, the faradic nature of the device and the ability of the device to sense, while moving, its environmental working conditions mimicking natural haptic muscles. The actuator (current and charge) and sensing (muscle potential and involved energy) signals are simultaneously present in only two connecting wires, mimicking brain-muscle intercommunication. The study of polymeric materials with cationic and/or ionic exchange opens the possibility of working in a future, using also anion-exchange materials, to develop new soft, wet, biomimetic and multifunctional tools and robots. Ionic, chemical, thermal and mechanical signals can be transformed into electrical ones and the involved information is transported using just two wires, simplifying in that way their connection to computers: the design of devices and robots having them heralds a more efficient technology.es_ES
dc.description.abstract[ENG] Over the past decade scientific research has been looking for new biomimetic materials able to imitate human organs behaviour, in such a way that is possible to apply them on different technologies: low cost ones, scalable ones, low energy consumption ones and on those with high potentialities in areas such as health, robotics, artificial nerves and muscles, among others. Most of the studied materials mimic the extracellular matrix (ECM) of living cells and its physical functions. Now, and for the first time, conducting polymers, and other electroactive materials exchange ions and water through electrochemical reactions: the material becomes a dense electroactive gel. The content of mentioned gel and the reactions happening in it mimic, by the first time in the history of science, the composition (in its simplest expression) and reactions taking place in the reactive intracellular matrix of the functional cells of living beings. During the chemical reactions (oxidation or reduction) the gel relative composition (polymer-ion-water) shifts, in a reversible way, by several orders of magnitude. Along with it several composition-dependent properties of the material change simultaneously. The reversible variation of the material volume driven by the reactions mimics the natural muscles behaviour: artificial polymeric muscles, or polymeric electrochemical actuators, based on this property are being developed. With the material composition the consumed energy change as a function thermal, chemical or mechanical conditions. This fact is used for the development of sensors and biosensors. The material volume and the material potential shift, simultaneously, during the reaction. Here the possibility to develop dual sensing-actuators is explored: two elements working concurrently in the same, physically uniform, device mimicking haptic muscles. In this thesis the electrochemical synthesis of thick polypyrrole/DBS films is described. The electrochemical behaviour of the polymer film, used as a self-supported electrode, is characterized assuming the exchange of cations during its oxidation/reduction. For the electrochemical characterization of biomimetic films of polypyrrole/DBS, different electrochemical techniques are used and under different experimental conditions with the view to understanding the sensing potentialities of the material reactions. The study and electrochemical characterization of the motion of pPy/DBS//tape bilayer bending actuators corroborates that the reaction is driven by the expulsion of cations from the conducting polymer to the electrolyte during oxidation and its entrance during reduction, in the full potential range studied. The actuator is a faradaic device controlled by the electrochemical reaction driving the movement: the rate of the angular movement is a linear function (easy control of the velocity) of the applied current and the described angle by the displacement is a linear function of the consumed charge (it also provides another easy control of the displacement) The evolution of the muscle potential and that of the consumed electrical energy during the reaction senses the energetic working conditions: chemical energy (electrolyte concentration), thermal energy (working temperature) or electric energy (applied current). The polymeric motor senses, while working, environmental conditions. The sensing calibration curves were attained for the different sensors. They have been constructed and characterized triple-layer artificial muscles pPy/DBS//Tape//pPy/DBS, corroborating again the exchange of cations during the reaction, the faradic nature of the device and the ability of the device to sense, while moving, its environmental working conditions mimicking natural haptic muscles. The actuator (current and charge) and sensing (muscle potential and involved energy) signals are simultaneously present in only two connecting wires, mimicking brain-muscle intercommunication. The study of polymeric materials with cationic and/or ionic exchange opens the possibility of working in a future, using also anion-exchange materials, to develop new soft, wet, biomimetic and multifunctional tools and robots. Ionic, chemical, thermal and mechanical signals can be transformed into electrical ones and the involved information is transported using just two wires, simplifying in that way their connection to computers: the design of devices and robots having them heralds a more efficient technology.es_ES
dc.formatapplication/pdfes_ES
dc.language.isospaes_ES
dc.publisherLaura Luz Valero Conzueloes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleCaracterización de músculos artificiales con capacidades sensores/actuadores e intercambio mayoritario de cationeses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.contributor.advisorFernández Otero, Toribio 
dc.contributor.advisorMartínez Gil, José Gabriel 
dc.date.submitted2016-02-10
dc.subjectPolímeroses_ES
dc.subjectMateriales plásticoses_ES
dc.subjectFísica de polímeroses_ES
dc.identifier.urihttp://hdl.handle.net/10317/5468
dc.contributor.departmentArquitectura y Tecnología de la Edificaciónes_ES
dc.identifier.doi10.31428/10317/5468
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.description.universityUniversidad Politécnica de Cartagenaes_ES
dc.subject.unesco2206.10 Polímeroses_ES
dc.subject.unesco2210.90 Química-Física de Polímeroses_ES
dc.description.programadoctoradoPrograma Oficial de Doctorado en Electroquímica. Ciencia y Tecnologíaes_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España