Show simple item record

dc.contributor.authorCánovas Peña, José Salvador 
dc.date.accessioned2009-06-11T11:12:54Z
dc.date.available2009-06-11T11:12:54Z
dc.date.issued1999
dc.identifier.citationCANOVAS, J.S. On topological sequence entropy and chaotic maps on inverse limit spaces. Acta Mathematica Universitatis Comenianae, LXVIII (2): 205-211, 1999. ISSN 0862-9544es
dc.identifier.issn0862-9544
dc.description.abstractThe aim of this paper is to prove the following results: a continuous map f : [0; 1] ! [0; 1] is chaotic if the shift map of : lim ([0; 1]; f) ! lim ([0; 1]; f) is chaotic. However, this result fails, in general, for arbitrary compact metric spaces. f : lim ([0; 1]; f) ! lim ([0; 1]; f) is chaotic i there exists an increasing sequence of positive integers A such that the topological sequence entropy hA( f ) > 0. Finally, for any A there exists a chaotic continuous map fA : [0; 1] ! [0; 1] such that hA( fA) = 0:es
dc.description.sponsorshipThis paper has been partially supported by the grant PB/2/FS/97 (Fundación Séneca, Comunidad Autónoma de Murcia). I wish to thank the referee for the proof of Proposition 2.1 and the comments that helped me to improve the paper.es
dc.formatapplication/pdf
dc.language.isospa
dc.publisherInstitute of Applied Mathematics Faculty of Mathematics, Physics and Informatics Comenius Universityes
dc.rightshttp://www.emis.de/journals/AMUC/_vol-68/_no_2/_canovas/canovas.htmles
dc.titleOn topological sequence entropy and chaotic maps on inverse limit spaceses
dc.typeinfo:eu-repo/semantics/articlees
dc.subjectSecuencia de Entropía topológicaes
dc.subjectMapa caóticoes
dc.subjectEntropía topológicaes
dc.subjectCaoses
dc.subjectTopological sequence entropyes
dc.subjectChaotic mapses
dc.subjectChaoses
dc.subjectTopological Entropyes
dc.subject.otherMatemática Aplicadaes
dc.identifier.urihttp://hdl.handle.net/10317/1026
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess


Files in this item

This item appears in the following Collection(s)

Show simple item record