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Abstract: In this paper, we simultaneously use two different scales in the analysis of ordinal patterns to
measure the complexity of the dynamics of heartbeat time series. Rényi entropy and weighted Rényi
entropy are the entropy-like measures proposed in the multiscale analysis in which, with the new
scheme, four parameters are involved. First, the influence of the variation of the new parameters in
the entropy values is analyzed when different groups of subjects (with cardiac diseases or healthy) are
considered. Secondly, we exploit the introduction of multiscale analysis in order to detect differences
between the groups.
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1. Introduction

Entropy-like measures are a powerful tool in the study of time series. The encoded information in
a time series has turned out to be a valuable source of information. Since the seminal paper of Bandt and
Pompe in 2002 [1], permutation entropy (PE) has been used to measure the complexity of different types
of processes, since the order relation established in the time series allows finding patterns linking with the
complexity of the system; see [2] for a review about permutation entropy and its applications. In particular,
biomedical time series have been the focus of great interest, including neuronal signals and heart rate
series [3]. Nevertheless, new variants of entropy-like measures have arisen in the last years, considering
the nature of the series that is object of study [4], since differences appear when we consider different
versions of entropy and different values of the parameters. Therefore, the analysis of the behavior of each
of them, taking into account the final purpose that has been fixed, is relevant.

A natural approach to the study of possible cardiac problems is the analysis of heartbeat series.
The activity of human beings influences heartbeat series, causing non-stationary series in healthy
subjects. Cardiac diseases should be revealed in heartbeat series though significant changes in complexity.
Difficulties in measuring that complexity have been considered and preliminary results can be found in
different papers where the idea of extracting information from the time series is presented. Thus, Pincus
and collaborators use approximate entropy (AE) in several papers to quantify the complexity and the
regularity of biological time series [5,6]. In [7], symbolic dynamics and renormalized entropy were used to
detect abnormalities in heart rate variability (HRV) in patients that had been classified as low-risk using
traditional methods. In 2002, [8] a sample entropy analysis of neonatal heart rate variability was considered,
taking into account the abnormal heart rate characteristics appearing in neonatal sepsis. Atrial fibrillation
(AF) is a common cardiac arrhythmia in which irregular patterns of electrical activation are usually found
in the atria [9]. Cammarota and Rogora (2005) studied the independence of non-stationary heartbeat series
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during atrial fibrillation (AF) comparing two methods, one using a linear Gaussian state space model and
the other using symbolic permutation [10].

In [11], a complexity analysis of heart period variability under two different approaches was
considered. The typification of complexity in short heart period variability series was done using Shannon
entropy (SE) and conditional entropy (CE), the work concluded that the study of complexity can be very
useful in the diagnosis of arrhythmias.

Entropy measures, approximate entropy (AE), sample entropy (SamE), fuzzy entropy (FE),
and permutation entropy (PE) were computed for short EGG series in [12] in order to separate healthy
patients and patients with congestive heart failure. In [13], Zunino and collaborators used permutation
min-entropy (PME) in order to discriminate patients with AF. Recently, in 2018, permutation entropy and
min-entropy in a heartbeat time series were applied to detect changes in the emotional states of subjects [14].

The quantification of the regularity in time series is the basic idea that underlies in this framework.
The advantages of permutation entropy as a good measure of regular behavior and the simple,
fast, and easy implementation and robustness and invariance with respect to non-linear monotonous
transformations, see [1], makes it a valuable tool to analyze time series. Nevertheless, it is not clear what
the best entropy-like measure to incorporate it is. The number of different entropy-like measures and
the nature of the heartbeat series means that the election of an entropy-like measure good enough for
measuring the complexity of the dynamics is non-trivial. Thus, Costa [15] highlighted that multiple time
scales are inherent in healthy physiologic dynamics, and multiscale entropy can be adapted to study
these types of processes. In particular, in [15] multiscale sample entropy is applied. On the other hand,
other parameters should be taken into account to establish critical points in different groups of subjects for
a more accurate discrimination. In fact, the delay parameter is in many situations fixed as 7 = 1 and is not
included in the analysis, but this parameter can be non-trivial when we are considering heartbeat interval
series, as has been highlighted in [13].

Our approach is aimed at analyzing different types of heartbeat series of 24 h for patients of three
different groups (a congestive heart failure (CHF) group, healthy (H) group, and atrial fibrillation (AF)
group) using multiscale analysis and discarding additional information with additional delay using Rényi
permutation entropy (RPE), since this entropy-like measure has reported the best results in some biological
processes [16], as well as weighted Rényi entropy. This means that two parameters are added to the
original entropy-like measure that needs two parameters, namely, the embedding dimension m and the
parameter associated with the Rényi parameter «, (recall that « < 1 privileges rare events while & > 1
does the same for frequent events). When the parameter « tends to 1, we obtain PE entropy. Summing up,
four parameters are involved in multiscale Rényi permutation entropy (MRPE): the scale s, the delay 7,
the embedding dimension m, and the Rényi parameter a. Analogously, weighted permutation entropy
provides more control between the differences in the patterns, thus we include weighted multiscale Rényi
entropy (WMRPE) parallel to (MRPE), as has been suggested in [17], where this scheme has been applied
to the analysis of economic series; in particular, the analysis was focused on the closing prices of financial
stock markets of different areas. Thus, we will simultaneously use two different scales in our analysis.

We consider the data freely available at http:/ /www.physione.org/challenge/chaos, where a challenge
entitled “Is the Normal Heart Rate Chaotic?” was launched and heart beat time series from 15 subjects
are provided. Five of them correspond to patients suffering congestive heart failure (CHF), five come
from subjects suffering atrial fibrillation (AF), and finally a group of five healthy subjects allows us to
compare the results (control group). Our efforts are aimed at assessing if it is worth introducing multiscale
analysis in heart time series. Hence, we will determine if any change and differences are detected when
a multiscale analysis is added.


http://www.physione.org/challenge/chaos
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2. Terminology and Notation: Ordinal Patterns

Although most of the notions are well known, we recall them for the sake of completeness.
The definitions that follow, with slightly differences, can be found in the literature; see for
instance [1,3,4,18,19]. The starting point is a real time series (Jcn),f=1 where ordinal patterns of length
m are considered. The length of the series must be big enough, since the procedure of reconstruction
of the attractor evaluating the associated probability distribution requires enough data. Following [20],
a required condition is T > 5m!.

Let m € N be a fixed natural number, S, be the group of permutations of length m,
and 7w = (r1,72,...,7m) € Sp. The vector (x1,xy,...,%,) € R™ is said to be rr-type if

Xpy S Xpy <00 Xy,

and
ri—1 <7,

if x,, | = x;, fori € {2,...m}. Observe that the number of possible ordinal patterns of length m is given
by the cardinality of Sy, that is |S,,| = m!.

The length of the patterns is called the embedding dimension. Following [1], low orders of m are
recommended for practical purposes. We will use m = 3,4, and 5.

The following definition, where delay parameter 7 is included, gives the relative frequency of the
pattern associated with the permutation 7t € Sy,.

Definition 1 ([1,4]). Let (x,)l_; be a time series, m € Nand 7t € Sy, then the relative frequency of 7, denoted
by p™ (), is given by

o AL, T=(m =17} (x), X0, Xjy2r, -+ Xjpm—1)7) * 18 Of T — type}
pr(m) = T—(m—1)71 '

Permutation entropy (PE) was defined by Bandt and Pompe [1]. Let (x,)_; be a real time series,
m, T € N. Then the permutation entropy (PE) is given by

PE(m, T, (x4) n 1) Zp )log(p*(m)),

where 7 € S and T € N. The Rényi entropy variant [21] generalizes the permutation entropy [22].
The definition follows; see for instance [4] (Definition 4).

Definition 2. Let (x,)_, be a time series, « # 1, m, T € N. Then, the Rényi permutation entropy of (x,)I_,
(RPE), is given by

1
RPE(w, 1,7, (x,)7_y) = — 17— log ( ) <pT<n>>“> ,
TESy
where p* () is given as in Definition 1. When the parameters are fixed, we write RPE for short.

Permutation entropy (PE), also called Shannon entropy (SE), is obtained when & tends to 1 in Rényi
permutation entropy. Liang [16] reported that the class of permutation entropy with the best results
when EEG during different anesthesia states are considered is Rényi entropy. Moreover, the choice of the
parameter is not a trivial question; see [23].
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The weighted version of Rényi entropy uses weighted frequencies in which not only the order is
considered but also the differences between the values of the pattern. The idea is illustrated in Figure 1.
Observe that (2,3,1) and (2.5,3,2) are the same pattern, namely (3,1,2), but the distance between the
values are different. The definition follows.

Definition 3. Let (x,)I_, be a time series, m € N and 7t € Sy, then the weighted relative frequency of 7,
denoted by pl, (1), is given by
T

 Yiermw())
Pao(m) = Yres, Liel(m w ()’

where () = {j € {1,..., T— (m—=1)t}: (X}, Xj10, X420/ -+, Xju(m—1)7) © 15 Of T — type} for each 7T € Sy,

and
m

. 1 —i7) 2
(i) = 5 X (602 =57

m,T __ 1 m
and X5 = ity Xjy(i-1)c

3F -
oy 3t .
2.5r .
2r . 2l A
1 « 3
1 2 3 1 2 3

Figure 1. The ordinal pattern (3,1, 2) is represented by two different vectors, (2,3,1) (left) and (2.5,3,2)
(right). The distance between the values is clearly different.

Now, weighted Rényi entropy (WRPE) is defined by

WRPE(a, m, T, (Xn)5_1) = —

- log ( Y (pL(N))"‘> . )
TESH

Normalized versions of entropy-like measures are obtained by dividing by log(m!), which is the
maximal possible value for PE and RPE. We will consider the normalized versions throughout the paper.

The multiscale process that we will follow has different steps. The description follows. Let (x,)!_; be
a time series and s € N the scale factor. The coarse-grained time series (x;,) is given by

ns

1
we=s Y wm @

for 1 < n < [L], where [I] denotes the integer part of I. We will consider for our analysis the
range 1 < s <20. Now, fixing the embedding dimension, m, the delay, 7, and the Rényi parameter,
«, the multiscale Rényi permutation entropy is given by

MRPE(s, a, m, T, (xn)zzl) = RPE(a,m, T, (x,(f))LTz/ls]). (3)
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whereas, the weighted multiscale Rényi permutation entropy (WMRPE) is given by

WMRPE(s, &, m, T, (xn)1_;) = WRPE(a, m, 7, (xS T/9]). )

n=1
Observe that if s = 1, then the MRPE (WMRPE) is simply the RPE (WRPE).

3. The Data

The data corresponds to a collection of 15 heart beat intervals (RR-interval) freely available on
Physionet (http://www.physionet.org/challenge/chaos). Time series nlrr, n2rr, n3rr, n4rr, and n5rr
correspond to healthy subjects, alrr, a2rr, a3rr, adrr, and a5rr are time series in atrial fibrillation, and finally
clrr, c2rr, c3rr, cdrr, and cSrr are time series in congestive heart failure. Time series are not filtered and were
obtained from continuous ambulatory (Holter) electrocardiograms. Each time series is about 24 h long
(roughly 100,000 intervals). More information about the recordings referring to healthy and congestive
heart failure subjects can be obtained on the web. No additional details about the time series in atrial
fibrillation are given. Figure 2 shows the data for a subject in each group. Although they are different,
in some cases is not easy to classify a subject only by visual inspection. One anonymous reviewer has
suggested the possibility of analyzing the differences between the groups when the images are similar
using a fuzzy technique of quantification of the distances in digital images using fuzzy divergence [24],
which is quite a different approach from this one.

nlrr data alrr data clrr data
RR interval (5) RRinterval (s) RR interval ()
20, 20 20

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000" 10000 20000 30000 40000 50000 60000 70000 "

Figure 2. Heart beat interval series n1 (left), al (middle), and c1 (right). In each figure, heart beat (RR)
intervals (in seconds) are plotted.

4. Numerical Analysis

A preliminary numerical approach computing PE gives us the general idea that entropy values from
a subject in the AF group are higher than the other groups (see Figure 3), where (PE) has been computed
for each subject, taking m = 3 and s = 1. The delay parameter T € N takes values in the range 1 < 7 < 100.
The CHF group has been drawn in blue, green has been used for the H group, and the values obtained
from the AF group have been represented in red. The deviation of the values of PE entropy with respect
to its mean for each subject in the AF group is smaller than the rest of the groups. A simple look at the
graphics reveals differences between the groups. We can also observe that entropy values that come from
the CHF group and the healthy group are mixed and are not easy to distinguish.

In [13] permutation min-entropy is used to analyze this data collection. Here, we will analyze these
series using normalized MRPE and WMRPE entropies. All procedures have been implemented with a code
“ad hoc”. First, we analyze the behavior of each group (the mean) for the embedding dimension m = 3,
m = 4, and m = 5, taking into account that when the value of m increases, so does the computational
time. We fix a = % and & = 2 as reference values. Regarding the scale factor s, it ranges over the interval
1 <5 <20 and 7 ranges over 1 < T < 100. The results are shown in Figures 4-14. In Figure 4, we have
fixed « = 4 and have computed the average of RPE and WRPE for the CHF group, considering the
embedding dimensions m = 3 (dark blue), m = 4 (light blue), and m = 5 (green) in the 3D graph. We can
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observe in the contour plots that changes in the values of the entropy, that is, changes in the complexity of
the dynamics, are presented for values close to the boundary, namely T = 1 and s = 1. When the value
of the embedding dimension increases, so does the rate at which the entropy decreases with respect to
parameter values T and s. We can see that the variability of the values of the entropy for & = 5 when ©
and s increase is greater when m grows, although the values of the entropy are lower. Finally, for a fixed 7,

changes in the values of the scale parameter s means changes in the values of the RPE and in the values of
the WRPE.

m=3, PE
e e s i e 0 L S S L O
ol sl L o T T
¥ it Bl |l T

098 N’ “ wul i oss} |

030 ‘ ‘ 096 J 1

04 | 094
20 40 60 80 IDOT T cl ¢2 ¢3 ¢4 ¢35 nl n2 n3 n4 n5 al a2 a3 a4 as

Figure 3. In the left, the permutation entropy (PE) for m = 3 and s = 1 is represented for each subject.
The blue color represents the congestive heart failure (CHF) group, green has been used for the healthy
(H) group, and red for the atrial fibrillation (AF) group. The delay parameter 7 has been represented
in the OX axis. In the middle, the same situation has been represented using box plots, grouping the
subjects belonging to the same group. Finally, in the right, we have taken the mean with respect to T when
1 < 7 <100 for each subject and have represented the corresponding box plot.

Av.ent,a=172. m=4. CHF

Figure 4. Average of Rényi entropy and average weighted Rényi entropy for the CHF group and a = %

We have fixed m = 3 (dark blue), m = 4 (light blue), and m = 5 (green). The top row is for the Rényi
permutation entropy (RPE) and the bottom one for the weighted Rényi entropy (WRPE). The projection of
the values (contour plot) of the entropy for each fixed embedding dimension for the CHF group have been
drawn in 2D graphs.

Regarding the relationship between the WRPE and the RPE for a fixed m and & = %, we can observe
that it depends on the scale value s; see Figure 5, where the RPE is drawn in blue and the WRPE in red.
This relationship can remain unnoticed if multiscale analysis is not involved. Thus, for s = 1 we can
observe that for T > 3, the WRPE is greater than or equal to the RPE. Nevertheless, when s = 2 the order
relation changes and there is no rule to determine if an entropy measure is greater than the other one.
For values of s > 3, the relationship turns around, and the RPE is greater than the WRPE. The limit case
T = 1 and close values of 7 to this gives a different behavior.
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m=3, a=1/2,s=1, CHF m=3, a=1/2, s=2, CHF m=3, a=1/2, s=3, CHF m=3, e=1/2, s=5, CHF
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Figure 5. Average Rényi entropy (RPE) (blue) and average weighted Rényi entropy (WRPE) (red) for the

CHF group with o = %, m = 3,and s = 1,2,3, and 5. Observe that for s = 1, the WRPE is higher than the

RPE for most values of 7. Nevertheless, for s > 3 the situation changes.

Fixing & = %, we compute the average of the RPE and WRPE for the H group. We have drawn RPE in
the top row for m = 3 (dark blue), m = 4 (light blue), and m = 5 (green) and the contour plots for each
value of the embedding dimension m; see Figure 6. The bottom row shows the results obtained for the
WRPE. Again, roughly speaking, as m increases the values of Rényi entropy decreases. We can see that the
behavior with respect to the projections for the CHF and H groups are different. Moreover, in the case of
the H group, the values of the weighted Rényi entropy are lower than those of the Rényi entropy for most
values of T, even for the case of s = 1, compared to what happened in the case of CHF group; see Figure 7.
We recall that the CHF group and the H group were not easy to distinguish. and all the differences must
be taken into account.

Av.ent.a=1/2, m=4. H group. Av.ent a=1/2.m=S. H group

100

Figure 6. Average Rényi entropy in the top row and average weighted Rényi entropy in the bottom row
for the H group and a = % We have fixed m = 3 (dark blue), m = 4 (light blue), and m = 5 (green).
The projections of the entropy for each fixed embedding dimension for the H group have been drawn in

2D graphs.
m=3, a=1/2,s=1,H m=3,a=1/2,s=2,H m=3, a=1/2,s=3,H m=3,a=1/2,5=5,H
ent ent ent ent
1.00] — e, oy = e
= G = [7 S
099 “.‘ b “r’ 0.99 ( 0sssf ™
{
1|
08| ossll 098 0990}
| |
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Figure 7. Average Rényi entropy (blue) and average weighted Rényi entropy (red) for the H group and
N = %,m =3,ands =1,2,3,and 5.

Finally, we compute the RPE and WRPE for the AF group following the previous schedule. The results
are shown in Figure 8, and they are quite different from the results that were obtained for the previous
groups. The relationship between the values of RPE and WRPE for m = 3 are shown in Figure 9. Again,
for s = 1 we can see that there are values of T for which the WRPE is greater than the RPE, and the situation
changes when s increases. Thus, only the H group has a different behavior in respect to this fact.
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Figure 8. Average Rényi entropy in the top row and average weighted Rényi entropy in the bottom row
for the AF group and a = % We have fixed m = 3 (dark blue), m = 4 (light blue), and m = 5 (green).
The contour of the entropy for each fixed embedding dimension for the AF group has been drawn In
2D graphs.

The above computations are now made for « = 2, and we observe the behavior of each group for this
value, which is greater than 1. Results are shown in Figures 10-15.

m=3, @=1/2, s=1, AF m=3, @=1/2, s=2, AF m=3, @=1/2, s=3, AF m=3, e=1/2, s=5, AF
ent " ent ent ent
A o A A A b ~
09999} /T AR AR A, -
[ e p— I\ VA M /
099/ sy gmmll S Ve P U W v ossssl VoAV A
Q.99 09998 wy | ILJ ‘I\WV
by 09998 H; \\ 09996 i
09997 N il
9203 09997 WL \ 09994, \\
09994 09996 ! W i winN i m/\ Waa i 4
| }M‘ |1 a M W\
09993 [ 09992 W vy
I T I 4 : *

20 40 60 80 100 20 40 60 80 100 20 40 100 f 20 41] 64] 80 100

Figure 9. Average Rényi entropy (RPE) (blue) and average weighted Rényi entropy (WRPE) (red) for the
AF group and & = %, m=3,ands =1,2,3, and 5.

Figure 10. Average Rényi entropy in the top row and average weighted Rényi entropy in the bottom row
for the CHF group and a = 2. We have fixed m = 3 (dark blue), m = 4 (light blue), and m = 5 (green).
The projections of the entropy for each fixed embedding dimension for the CHF group have been drawn in
2D graphs.

For s = 1 and s = 2 there are values of T such that the WRPE is greater than the RPE. Figure 11 shows
the RPE (blue) and WRPE (red) results form =3 ands =1,5s =2,5s = 3,and s = 5.
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m=3, @=2, s=1, CHF m=3, @=2, s=2, CHF m=3, #=2,s=3, CHF m=3, @=2, s=5, CHF
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Figure 11. Average Rényi entropy (RPE, blue) and average weighted Rényi entropy (WRPE, red) for the
CHF groupand « =2, m = 3,and s = 1,2,3, and 5. Observe that for s = 1, the WRPE is higher for most
values of 7; nevertheless, for s = 5 the situation changes.

Av.ent.o=2, m=d. Hgrowp Av.ent. a=2, m=5. H group

ﬂ

av.efid3t
090}

Figure 12. Average Rényi entropy and average weighted Rényi entropy for the H group and &« = 2. We have
fixed m = 3 (dark blue), m = 4 (light blue), and m = 5 (green). The projections of the entropy for each fixed
embedding dimension for the H group have been drawn in 2D graphs.

m=3,a=2,s=1,H m=3, =2, 5=2, H m=3,¢=2,5=3,H m=3,0=2,5=5,H
ent 4 A K ent ent
wr e — o0 ~
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Figure 13. Average Rényi entropy (RPE, blue) and average weighted Rényi entropy (WRPE, red) for the H
groupand o =2, m =3,ands = 1,2,3,and 5.

nnnnn

o)

Figure 14. Average Rényi entropy in the top row and average weighted Rényi entropy in the bottom row
for the AF group and &« = 2. We have fixed m = 3 (dark blue), m = 4 (light blue), and m = 5 (green).
The contour plots of the entropy for each fixed embedding dimension for the AF group have been drawn in
2D graphs.
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m=3, a=2,s=1, AF m=3, a=2, s=2, AF m=3, e=2,s=3,H m=3,a=2,s=5,H
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Figure 15. Average of Rényi entropy (RPE, blue) and average of weighted Rényi entropy (WRPE, red) for
the AF group and & = %, m=3,ands =1,2,3, and 5.

Following the previous analysis, we have been able to observe some differences between them.
Now, we are interested in comparing the groups by analyzing what are the best parameter values to
differentiate the three groups. For that, we compute the entropies of each subject and take the maximum
and the minimum value in each group for each fixed parameter value. More concretely, fixing the
parameter values s, m, «, and 7, we say that two groups are differentiated by the entropy measure if the
intervals limited by their corresponding maximum and minimum values are disjoint, and the difference
between two groups is the minimum distance between any two values belonging to different groups.
Namely, fixing m, a, s, and T, we compute for a group G

Mg (s, a,m,T) = max{MRPE(s,a,m, T, (x,)L_;) : (xn)I_; € G},

me (s, &, m, T) = min{MRPE(s,a,m, T, (x,)_,) : (xs)I_, € G},
Mg (s, a, m, T) = max{WMRPE(s,a, m, T, (xn)gzl) : (xn),le € G},
m¥(s, o, m, T) = min{ WMRPE(s, &, m, T, (x4)]_1) : (xu)I_, € G}.

Fixing s, &, m, and 7, we say that group G; and group G; are differentiated by the MRPE
(resp. WMRPE) if

[mg, (s,a,m,T), Mg, (s,a,m, T)| N [mg,(s,a,m,T), Mc,(s, &, m,T)] = O,

(resp. [sz"l (s,a,m,T), Mzé’l (s,,m, T)] N [mg2 (s,a,m, T),ME‘;’2 (s,a,m, T)] = QD).

We will investigate the existence of parameter values in which the three groups are differentiated
simultaneously. It means that a relationship of order G1 > G2 > G3 should be given. In addition, in those
situations we will compute the difference between G1 and G2 and the difference between G2 and G3,
and we will compute the minimum of both. This value will be called the difference between the three
groups. We are interested in finding the parameter values by which the groups are differentiated and
the difference is maximal. Observe that although the number of subjects is small, a negative answer
to this question also gives valuable information. For this, we fix « and consider three different cases:
m = 3, m = 4, and m = 5. Figure 16 shows the results for « = 1. In 3D graphs (Figure 16), the OX axis
represents the parameter s, where 1 < s < 20, in the OY axis is represented the parameter 7,1 < 7 < 100,
and finally in the OZ axis is represented the difference between the three groups, when the groups are
differentiated by MRPE. The 2D graphs show the values (s, T) for which the three groups are disjoint in
the sense described above. Whereas in the 3D plots we can see not only the parameter values in which
the three groups are disjoint but also the difference between them. When m changes, the shape of the
distribution of the points (s, T) is similar although the number of points increases, namely for m = 3 there
are 168 points, for m = 4 there are 283 points, and for m = 5 there are 348 points. The maximum difference
increases with the parameter m, as we can see in Figure 16. The difference attains its maximum values
when T = 1. The relation of order between the three groups is, in all cases, AF > H > CHEFE. More details

are given in Table 1, where the results for m = 3 and a = % are shown.
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When we compute the WMRPE instead of the MRPE, the results are different. The values that
appear in Table 2 show that in general terms, the WMRPE is worse than the MRPE for differentiating the
three groups.

m=3, a=1/2 m=4, a=1/2 m=5, a=1/2

Figure 16. For « = %, values of s and 7 for which the three groups are separated by the multiscale Rényi
permutation entropy (MRPE). In the 3D graphs, the OX axis represents the parameter s, where 1 < s < 20,
in the OY axis is represented the parameter 7, 1 < 7 < 100, and finally in the OZ axis is represented the
difference between the three groups, when the groups are differentiated by the MRPE.

Table 1. Form =3 and & = %, values of s and T for which the three groups are disjoint.

S T

1 5,78,910,11,12,13,14,15,16,17, 18,19, 20, 21, 22, 23, 24, 26, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57,58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,70,71,72,73,74,75,76,77,78,79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100

2 3,456,7,8,910,11, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47,48,49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62

3 2,34,5,6,19,20, 23, 24, 25, 26,27, 28, 29
4 2,3,4,5/19,20,21

5 2,3,4,15,16,17,79

6 1,2,3,13
7

8

9

1,2,11

1,2,10

1,2
10 1,2
11 1

—_
6]
e
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Table 2. Fixing a = %, values for the parameters m,s,7 € N in the ranges3 < m < 5,1 < s < 20,

and 1 < 7 < 100 such that the CHF group, H group, and AF group are disjoint. The difference is included,
as well as the order relation between them.

m s T Difference Relation

3 1 3 0.000111612 CHF > AF >H
4 1 3  0.000111612 CHF > AF >H
5 1 3 0.000111612 CHF > AF > H
5 11 1 0.0018635 AF > H > CHF
5 6 2 0.00249138 AF > H > CHF

Now we consider a fixed value of « greater than 1; we follow with the reference value « = 2. Figure 17
shows the results. The shape and the distribution of the points (s, T) for a fixed embedding dimension is
similar to the results obtained for & = %, but we can observe that the maximum difference is greater than
the one obtained in the above case.

For « = 2, when the weighted version is considered, we obtain the points and the differences that
have been collected in Table 3, taking 3 < m < 5,1 <s <20,and 1 < v < 100.

m=3, a=2 m=4, a=2 m=5, a=2
T T T
100 100 100
80 80 80

Figure 17. Fixing & = 2, values of s and 7 for which the three groups are separated by the MRPE are shown.
In the 3D graphs, the OX axis represents the parameter s, where 1 < s < 20, in the OY axis is represented
the parameter 7, 1 < 7 < 100, and finally in the OZ axis is represented the difference between the three
groups, when the groups are differentiated by the MRPE.

Following the previous results, we see that the maximum value has been attained for s = 8and 7 = 1.
To see the influence of the parameter «, we set s = 8 and 7 = 1, and we compute the RPE values in the OY
axis for each value of « (represented in the OX axis); see Figure 18. We can see that when « increases, the
entropy values tend to a limit value.

For s = 1, we can observe that there is a large quantity of values of T for which the three groups are
differentiated, although the differences in these values are significantly lower than in the previous case.
For s = 1, we simply get RPE with delay, 7, that now runs over a set of cardinality equal to 100. This means
that for a fixed m, we have two parameters « and 7. Fixed the embedding dimension m = 3, we compute
the Rényi entropy for T € N taking values in the interval 1 < 7 < 100. Figures 19-21 show the results for
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n = %, a =2, and a = 100, respectively. We can see that the AF group has a different behavior from the
healthy and CHF groups. It is possible to find values of T for which the three groups can be differentiated.
More details are included in the Appendix A (Tables Al and A2), where different values of « have been
considered for m = 3 and s = 1. It is observed that when « decreases, the entropy values of the different
groups are closer.

Table 3. Fixing « = 2, values for the parameters m,s,7 € Nin theranges 3 < m < 5,1 <5 < 20, and
1 < 7 <100 such that the CHF group, H group, and AF group are disjoint. The difference and the order
relation between them are also included.

m s 1T Difference Relation
3 1 3 0.000435339 CHF > AF>H
4 11 1 0.00213423 AF > H > CHF
4 6 2 0.00461844 AF > H > CHF
4 1 3 0.000435339 CHF > AF>H
5 11 1 0.00213423 AF > H > CHF
5 6 2 0.00461844 AF > H > CHF
5 9 1 0.0105166 AF > H > CHF
5 10 1 0.00585264 AF > H > CHF
5 5 2 0.00935592 AF > H > CHF
5 1 3 0.000435339 CHF > AF>H
) m=3, s=8, 7=1 ) m=4, s=8, 7=1 ) m=5, s=8, t=1
Rlélgl ent Rlé_l(])yl ent Rﬁ]}yl ent
0.9L _ 094N
03& N——
0.7@ 0.7f
06 Uﬁg
05 0.5k
04 04f
20 40 60 80 100 20 40 60 80 100
m=3, s=8, 7=1
Rényi ent
1.00 Femee
0.99f
0.98F
097F
096 ‘ ) ) ‘ -
0.1 0.2 03 0.4 0.5

Figure 18. The top row shows the RPE for s = 8, T = 1 and m = 3 (left), m = 4 (middle), and m = 5 (right).
In red is the AF group, in green is the H group, and the CHF results are in blue. The OX axis represents
a € [2,100]. and the RPE is represented in the OY axis. The bottom graph shows the results for m = 3,
s=28 and T =1fora € (0,0.5).
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Figure 19. Rényi entropy for a = % and embedding dimension m = 3. We have drawn the Rényi entropy for

the CHF group in blue, for the healthy group in green, and for the AF group in red, on the left. A zoomed-in

view of the right figure is shown in the middle, where the differences between the three groups when 7 runs

over the range can be appreciated. Finally, box plots for each group have been represented on the right.

i @=2 =2 =2, Rényi ent
Rénoyl ent
14 100 e
W_— 0 il
W ot
08 A
osst|[| H ||
0.6 ‘
04 090
02
085t
0 20 40 60 80 100 ] 20 40 60 80 1007 T

Figure 20. Rényi entropy for « = 2 and embedding dimension m = 3. We have drawn the Rényi entropy

for the CHF group in blue, for the healthy group in green, and for the AF group in red on the left.

. =100, m=3 =100, m=3 =100, Rényi ent
RFBchm Rlélg)yicm 1.0 e TR W TR T TS i
k ._ ik = ‘rrllh, 1“”“"‘II'.‘IMIHHH “ il )
osl] [hZ 0 R
o [ e LTI
1 - [\]'”‘M” mljlmm.u w H”“”“““Ih
o8 it A o
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07
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Figure 21. Rényi entropy for & = 100 and embedding dimension m = 3. We have drawn the Rényi

entropy for the CHF group in blue, for the healthy group in green, and for the AF group in red on the

left. A zoomed-in view of the right figure is shown in the middle, where the differences between the

three groups when T runs over the range can be appreciated. Finally, box plots for each group have been

represented on the right.

5. Conclusions

In this paper, we propose a multiscale analysis with RPE and WRPE to analyze heartbeat time series,

where four parameters are considered in the study of the behavior of a heartbeat time series. Our purposes
are twofold. On the one hand, we have considered the behavior of the entropy measure when parameters
change in a range. The introduction of new parameters makes the analysis more difficult and more
expensive in computational terms, but on the other hand, when we add new parameters, this allows a
better fit to the research objective. From this point of view, it is natural to ask if the introduction of two
additional scales gives non-redundant information. In this direction, numerical analysis shows differences
between the three groups considered, namely a congestive heart failure (CHF) group, healthy (H) group,
and atrial fibrillation (AF) group. Moreover, an additional characteristic for the healthy group is obtained,
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as we can see that this group has a different behavior in the relationship between the RPE and WRPE
when s changes. On the other hand, we compare the results obtained for the RPE and WRPE, and we
find the values for which the three groups can be differentiated using segments limited by the minimum
and maximum values that have been attained in each group. The groups are called differentiated if the
intervals are disjoint. In addition, we compute the values of s and T that simultaneously differentiate the
three groups, taking the two reference values of & = % and & = 2 and embedding dimensions m = 3,4 and
5. The numerical approach shows that even the RPE is better to differentiate than the WRPE.

The results look promising in the sense that they show that the introduction of multiscale analysis
of Rényi entropy reveals more details about the behavior of each group and highlights non-redundant
differences between them. The results that have been obtained are a first step in the idea that multiscale
analysis should be taken into account to obtain an adequate interpretation of ordinal patterns in
physiological terms, in order to consider all of the potential information that they can reveal.
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contributed to improving and clarifying this manuscript.

Conflicts of Interest: The author declares no conflict of interest.



Entropy 2019, 21, 583

Appendix A

Table A1. PE form =3 and 1 < T < 100.

clrr c2rr c3rr c4rr cbrr
s Mean o Mean o Mean o Mean o Mean o
1 0.565761 | 0.0266769 | 0.559309 | 0.0290653 | 0.567659 | 0.0230525 | 0.544987 | 0.0357687 | 0.540677 0.0379
25 | 0.565925 | 0.0263007 | 0.559512 | 0.0288102 | 0.567692 | 0.0233685 | 0.54487 0.0355832 | 0.540604 | 0.0382577
50 0.56497 | 0.0270585 | 0.559621 | 0.0286887 | 0.567367 | 0.023753 | 0.544424 | 0.0354137 | 0.544424 | 0.0354137
75 0.56529 | 0.0264484 | 0.559033 | 0.0284339 | 0.567506 | 0.0236121 | 0.544782 | 0.0354761 0.53852 | 0.0398734
100 | 0.564318 | 0.0265197 | 0.559584 | 0.029156 | 0.567742 0.02381 0.543665 0.036225 0.541077 | 0.0363404
nlrr n2rr n3rr n4rr nbrr
S Mean o Mean o Mean o Mean o Mean o
1 0.543486 | 0.036892 | 0.544803 | 0.0366675 | 0.54408 | 0.0362984 | 0.554415 | 0.0322511 | 0.528802 | 0.040533
25 | 0.543122 | 0.0371364 | 0.54011 0.037032 | 0.545062 | 0.036156 | 0.554613 | 0.01318338 | 0.528907 | 0.040142
50 | 0.543282 | 0.0373946 | 0.54417 0.037435 | 0.544899 | 0.0359118 | 0.554543 | 0.0317886 0.52937 | 0.0405128
75 | 0.543006 | 0.038461 0.54417 | 0.0382501 | 0.545281 | 0.035161 | 0.554957 | 0.0314647 0.52946 | 0.0405214
100 | 0.543139 | 0.0380009 | 0.542742 | 0.0385849 | 0.544892 | 0.0355305 | 0.553622 | 0.0321451 | 0.528615 | 0.040817
alrr a2rr alrr adrr abrr
S Mean o Mean o Mean o Mean o Mean o
1 0.573109 | 0.0199455 | 0.574673 | 0.0185836 | 0.575351 | 0.0180058 | 0.574673 | 0.01885836 | 0.574673 | 0.0185836
25 | 0.573017 | 0.0196502 | 0.574934 | 0.0181619 | 0.575338 | 0.0179431 | 0.574934 | 0.0181619 | 0.574934 | 0.0181619
50 | 0.573126 | 0.0196991 | 0.575128 | 0.0174678 | 0.575286 | 0.0178132 | 0.575128 | 0.0174678 | 0.575128 | 0.0174678
75 | 0.572824 | 0.0199265 | 0.574989 | 0.0190529 | 0.575573 | 0.0172598 | 0.574989 | 0.0190529 | 0.574989 | 0.0190529
100 | 0.573328 | 0.0188351 | 0.574735 | 0.0175133 | 0.575098 | 0.0183671 | 0.574735 | 0.0175133 | 0.574735 | 0.0175133

16 of 19
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Table A2. Mean and standard deviation for Rényi entropy taking m = 3 and 1 < 7 < 100 for different values of «.

Rényi Entropy m=3,1 < 7 < 100

T

T

a=3 a=3 0= X =10 X = 100
Mean o Mean o Mean o Mean o Mean o
cl | 0.99375 0.0016742 0.995901 0.00108809 0.997573  0.000639407 | 0.998799 0.000314675 0.999881 0.0000310164
c2 | 0.992373 0.00440852 0.994975 0.00288105 0.997013 0.00170015 0.998518 0.00083924 0.999853 0.0000829394
c3 | 0.995505 0.00135784 0.997034  0.000876451 | 0.998235  0.000512168 | 0.999123 0.000250985 0.999913 0.0000246431
c4 | 0.997599 0.00231847 0.998417 0.00151459 0.999059  0.000893696 | 0.999533 0.000441177 0.999954 0.0000436064
c5 | 0.996863 0.00300583 0.997932 0.00197033 0.998771 0.00116577 0.99939 0.000576648 0.999939 0.0000570993
nl | 0.998866 0.00217053 0.999249 0.00143686 0.999552  0.000856727 | 0.999777 0.000426199 0.999978 0.0000424152
n2 | 0.998122 0.00255504 0.99876 0.00168197 0.999262  0.000998495 | 0.999633 0.000495129 0.999963 0.0000491351
n3 | 0.99842 0.00220677 0.998955 0.00145612 0.999377  0.000865973 0.99969 0.000429973 0.999969 0.0000427177
n4d | 0.99882 0.00108625 0.999219  0.000717013 | 0.999535  0.000426684 | 0.999768 0.000211997 0.999977 0.000021077
n5 | 0.998207 0.00337506 0.998817 0.00221474 0.999296 0.00131093 0.99965 0.000648507 0.999965 0.0000642098
al | 0.999883 0.0000746988 | 0.999922  0.0000496687 | 0.999953 0.0000297382 | 0.999977 0.0000148454 0.999998  1.48239 % 10~°
a2 | 099982  0.0000692071 | 0.99988  0.0000460782 | 0.999928 0.0000276183 | 0.999964 0.0000137984 0.999996  1.37888 % 10~°
a3 | 0.999918 0.0000260503 | 0.999945 0.0000173427 | 0.999967 0.0000103941 | 0.999984 5.19273 x 1076 | 0.999998 5.18886 x 10~7
a4 | 0.999821 0.0000319789 | 0.999881  0.0000213546 | 0.999929  0.0000128298 | 0.999964 6.42139 x 1076 | 0.999996 6.42724 x 10~7
a5 | 0.999809 0.0000419525 | 0.999873  0.0000279582 | 0.999924  0.0000167702 | 0.999962 8.38334 x 1070 | 0.999996 8.38178 x 10~7
w=2 a=3 a=>5 a=10 a =100
Mean o Mean o Mean o Mean o Mean o

cl | 0.971488 0.00810825 0.954373 0.0131568 0.919262 0.022572 0.857684 0.0325554 0.782297 0.0321941
c2 | 0.96679 0.0200377 0.948698 0.0309635 0.915286 0.049456 0.864263 0.072046 0.800394 0.0849372
c3 | 0.980388 0.00696758 0.969188 0.0117617 0.945976 0.0220604 0.90024 0.0384958 0.82708 0.0428283
c4 | 0.989489 0.0106662 0.983489 0.0166264 0.970898 0.0267743 0.941862 0.0390777 0.871617 0.0415113
c5 | 0.986294 0.0134194 0.978577 0.0205494 0.962802 0.0320426 0.928468 0.0437329 0.85563 0.0435773
nl | 0.995255 0.00885824 0.992754 0.0129209 0.987708 0.0191147 0.975157 0.0261347 0.918917 0.0280182
n2 | 0.991919 0.0109831 0.987451 0.0164899 0.978208 0.0251411 0.955622 0.0341087 0.887612 0.0347691
n3 | 0.993263 0.00924895 0.989563 0.0136436 0.981805 0.0203264 0.961995 0.0276005 0.896366 0.0297364
n4d | 0.994969 0.00465057 0.992169 0.00711745 0.98615 0.011609 0.970086 0.0179958 0.907732 0.0205302
n5 | 0.992308 0.0144336 0.988136 0.0209432 0.979637 0.0296429 0.958767 0.0378302 0.892409 0.0385716
al | 0.999529 0.00030556 0.99929 0.000464605 | 0.998802  0.000792727 | 0.997539 0.00164017 0.980157 0.00615212
a2 | 0999274  0.000280116 | 0.998906  0.000423513 | 0.998161  0.000716948 | 0.996254 0.00148206 0.974081 0.00573953
a3 | 0.999669  0.000105529 0.9995 0.000159653 | 0.999158 0.00027073 0.998272 0.00056533 0.984414 0.00439242
a4 | 0.999277  0.000126117 | 0.998908  0.000187545 | 0.998155  0.000307843 | 0.996192 0.000600026 0.972335 0.00283459
a5 | 0.999225  0.000168423 | 0.998827  0.000253341 | 0.998015  0.000424909 | 0.995882 0.000865272 0.970802 0.00409266




Entropy 2019, 21, 583 18 of 19

References

1.  Bandt, C.; Pompe, B. Permutation entropy, a natural complexity measure for time series. Phys. Rev. Lett. 2002,
88,174102. [CrossRef] [PubMed]

2. Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation Entropy and its Main Biomedical and Econophysics
Applications: A Review. Entropy 2012, 14, 1553-1577. [CrossRef]

3. Amig6, ].M,; Keller, K.; Unakafova, V.A. Ordinal symbolic analysis and its applications to biomedical recordings.
Phil. Trans. R. Soc. A 2015, 373, 20170091. [CrossRef] [PubMed]

4. Keller, K.; Mangold, T.; Stolz I.; Werner, J. Permutation entropy: New ideas and challenges. Entropy 2017, 19, 134.
[CrossRef]

5. Pincus, S.M.; Gladstone, .M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit.
1991, 7, 335-345. [CrossRef]

6.  Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: what does regularity quantify? Am. J. Physiol.
1994, 266, 1643-1656. [CrossRef]

7. Kurths, J.; Voss, A.; Saparin, P.; Witt, A.; Kleiner, H.].; Wessel, N. Quantitative analysis of heart rate variability.
Chaos 1995, 5, 88-94. [CrossRef]

8. Lake, D.E.; Richman, ].S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability.
Am. . Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789-R797. [CrossRef]

9. Zeng, W,; Glass, L. Statistical properties of heartbeat intervals during atrial fibrillation. Phys. Rev. E 1996,
52,1779-1784. [CrossRef]

10. Cammarota, C.; Rogora, E. Independence and symbolic independence of nonstationary heartbeat series during
atrial fibrillation. Phys. A 2005, 353, 323-335. [CrossRef]

11. Porta, A.; Guzzetti, S.; Montano, N.; Furlan, R.; Pagani, R.; Malliani, A.; Cerutti, S. Entropy, Entropy Rate, and
Pattern Classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng.
2001, 48, 1282-1291. [CrossRef] [PubMed]

12.  Graff, B. Entropy measures of heart rate variability for short ECG datasets in patients with congestive heart
failure. Acta Phys. Pol. B Proc. Suppl. 2012, 5, 153-158. [CrossRef]

13.  Zunino, L.; Olivares, F.; Rosso, O.A. Permutation min-entropy: An improved quantifier for unveiling subtle
temporal correlations. EPL 2015, 109, 10005. [CrossRef]

14. Xia, Y;; Yang, L.; Zunino, L.; Shi, H.; Zhuang, Y.; Liu, C. Application of Permutation Entropy and Permutation
Min-Entropy in Multiple Emotional States Analysis of RRI Times Series. Entropy 2018, 20, 148. [CrossRef]

15. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series.
Phys. Rev. Lett. 2002, 89, 068102. [CrossRef] [PubMed]

16. Liang, Z.; Wang, Y.; Sun, X,; Li, D.; Voss, L.J; Sleigh, ].W.; Hagihira, S.; Li, X. EEG entropy measures in anesthesia.
Front. Comput. Neurosci. 2015, 9, 00016. [CrossRef] [PubMed]

17.  Chen, S.; Shang, P.; Wu, Y. Weighted multiscale Rényi permutation entropy of nonlinear time series. Phys. A
2018, 496, 548-570. [CrossRef]

18. Canovas, J.S.; Guillamén, A.; Ruiz, M.C. Using permutations to detect dependence between time series. Phys. D
Nonlinear Phenom. 2011, 240, 1199-1204. [CrossRef]

19. Canovas, J.S.; Garcia-Clemente, G.; Mufioz-Guillermo, M. Comparing permutation entropy functions to detect
structural changes in times series. Phys. A 2018, 507, 153-174. [CrossRef]

20. Amigo, ].M.; Zambrano, S.; Sanjudn, M.A.F. Combinatorial detection of determinism in noisy time series. EPL
2008, 83, 60005. [CrossRef]

21. Rényi, A. On measures of entropy and information. Proc. Fourth Berkeley Symp. Math. Stat. Probab. 1961,

1, 547-561.


http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://www.ncbi.nlm.nih.gov/pubmed/12005759
http://dx.doi.org/10.3390/e14081553
http://dx.doi.org/10.1098/rsta.2014.0091
http://www.ncbi.nlm.nih.gov/pubmed/25548264
http://dx.doi.org/10.3390/e19030134
http://dx.doi.org/10.1007/BF01619355
http://dx.doi.org/10.1152/ajpheart.1994.266.4.H1643
http://dx.doi.org/10.1063/1.166090
http://dx.doi.org/10.1152/ajpregu.00069.2002
http://dx.doi.org/10.1103/PhysRevE.54.1779
http://dx.doi.org/10.1016/j.physa.2005.01.030
http://dx.doi.org/10.1109/10.959324
http://www.ncbi.nlm.nih.gov/pubmed/11686627
http://dx.doi.org/10.5506/APhysPolBSupp.5.153
http://dx.doi.org/10.1209/0295-5075/109/10005
http://dx.doi.org/10.3390/e20030148
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://www.ncbi.nlm.nih.gov/pubmed/12190613
http://dx.doi.org/10.3389/fncom.2015.00016
http://www.ncbi.nlm.nih.gov/pubmed/25741277
http://dx.doi.org/10.1016/j.physa.2017.12.140
http://dx.doi.org/10.1016/j.physd.2011.04.010
http://dx.doi.org/10.1016/j.physa.2018.04.101
http://dx.doi.org/10.1209/0295-5075/83/60005

Entropy 2019, 21, 583 19 of 19

22.  Zunino, L.; Pérez, D.G.; Kowalski, A.; Martin, M.T.; Caravaglia, M.; Plastino, A.; Rosso, O.A. Brownian motion,
fractional Gaussian noise and Tsallis permutation entropy. Phys. A 2008, 387, 6057-6068. [CrossRef]

23. Tsallis, C. Generalized entropy-based criterion for consistent testing. Phys. Rev. E 1998, 58, 1442-1445. [CrossRef]

24. Versaci, M.; La Foresta, F.; Morabito, EC.; Angiulli, G. A fuzzy divergence approach for solving electrostatic
identification problems for NDT applications. Int. ]. Appl. Electrom. 2018, 57, 133-146. [CrossRef]

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1016/j.physa.2008.07.004
http://dx.doi.org/10.1103/PhysRevE.58.1442
http://dx.doi.org/10.3233/JAE-170043
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Terminology and Notation: Ordinal Patterns
	The Data
	Numerical Analysis
	Conclusions
	
	References

