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Abstract: Compact double notch coplanar and microstrip bandstop filters are described. They are
based on a version of the open interconnected split ring resonator (OISRR) integrated in microstrip
or coplanar waveguides. The OISRR introduces an RLC resonator connected in parallel with the
propagating microstrip line. Therefore, this resonator can be modeled as a shunt circuit to ground,
with the R, L and C elements connected in series. The consequence for the frequency response of
the device is a notch band at the resonant frequency of the RLC shunt circuit. The number of notch
bands can be controlled by adding more OISRRs, since each pair of rings can be modeled as a shunt
circuit and therefore introduces an additional notch band. In this paper, we demonstrate that these
additional rings can be introduced in a concentric way in the same cell, so the size of the device does
not increase and a compact multi-notch bandstop response is achieved, with the same number of
notch bands as pairs of concentric rings, plus an additional spurious band at a higher frequency.

Keywords: coplanar technology; notch filter; microstrip technology; split ring resonator

1. Introduction

Multi-notch bandstop filters for emerging wireless applications are an important topic
of research due to the need for low cost compact solutions that decrease the complexity and
size of implementation of communication systems [1]. In this sense, planar technologies
such as microstrip or coplanar lines are the preferred options for most applications that
do not demand very high-power handling capability. A review of the published literature
shows that many solutions have been published for dual-band and tri-band bandpass
filters (BPFs). However, most of these designs have relatively large size and high insertion
losses, because they are based on several elements inserted in series in the propagation
line. Examples of these designs include cascaded stepped-impedance resonators [2–4],
open stubs filters [5], open loop resonators [6,7], T-shaped resonators [8], and cascaded
split-ring resonators [9]. Several design techniques for controlling the resonances by means
of even and odd mode analysis [10,11], or the frequency response by using an analysis of
the transfer function [12,13], have been proposed. Defected ground structures (DGSs) have
also been applied to the design of filters [14,15] to introduce additional resonances and
to improve their frequency responses. Analogous situations to the design of multi-band
BPFs can be described for multi-notch bandstop filters (BSF) [16–22], which find important
applications in the suppression of spurious signals in communication systems. In the
case of the BSF, the insertion losses are lower in the passband as compared to their BPF
counterparts. This is due to the resonances of the BSFs taking place in the stopband, rather
than in the passband as in the BPFs.

In this paper, we add new concentric rings to a basic open interconnected split ring
resonator (OISRR), to achieve additional notch frequencies, thus resulting in a multi-notch
response and a simpler design than those proposed in [16–22]. The open split ring resonator
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(OSRR) was firstly studied [23,24] and then modified to include interconnected rings [25,26].
Previous works were limited to a pair of rings, but in this paper, we demonstrate that for
each new ring that we introduce, a new resonance appears, therefore creating a new notch
frequency band. In [27], an example of a three open interconnected split ring resonator
(3OISRR) in microstrip technology is described. This design is modified to implement
a multi-notch bandstop filter in coplanar technology, thus showing the ability of this
resonator to be applied to different planar technologies unlike the other designs presented
in [16–22]. Moreover, losses omitted in previous works are now taken into account in
the proposed equivalent circuit model. Each new notch band can be modeled by a shunt
RLC circuit to ground with a coupling coefficient that takes into account for the mutual
inductance between rings. Hence, the proposed approach allows for the design of multi-
notch responses without increasing the size of the device.

We have performed electromagnetic simulations (with HFSS) and circuit simulations
(with ADS) of structures with 3OISRR in both microstrip and coplanar waveguides, such as
those shown in Figure 1a,b. The 3OISRR cell consists of three open rings of different radii
interconnected at a common point of the microstrip or coplanar waveguide. In the case of
the microstrip line, an open window is etched on the ground plane to reduce capacitive
coupling between the resonator and the ground plane. On the other hand, in the case of the
coplanar waveguide, the window is etched on one of the two lateral ground planes, where
the 3 rings are placed. As we will see in this article, the three rings of this cell produce
two main resonances and a spurious resonance. The first two resonances can be tuned
by controlling the dimensions of the rings and they generate the rejection bands of the
device. We will describe how these notch bands are influenced by the dimensions of the
circuit elements, which can be modeled by a simplified equivalent circuit. Finally, the
proposed structures will be fabricated, and their performance will be compared with the
electromagnetic simulations to demonstrate the feasibility of the proposed 3OISRR cell.
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2. Double Notch Filters Using a 3OISRR Cell in Microstrip and Coplanar Technologies
2.1. Structure

The structure of the proposed single cell with three interconnected open split ring
resonators and how it is incorporated in a microstrip line or coplanar waveguide is depicted
in Figure 1. Since the connection between the three rings and the microstrip or coplanar
waveguide is performed at a common point, we can conclude that the insertion of this
cell is done in parallel. The dimensions of the different elements of the cell are marked
in Figure 1a,b. They are the radii of the external (r1), central (r2), and internal rings (r3),
the width c of the rings, the separation s1 and s2 between rings, and the length of the
sides of the window (D1 × D2) etched in the ground plane. The two ground planes of
the coplanar waveguide (Figure 1b) are interconnected with via-holes in order to avoid
parasitic couplings and the excitation of the even mode of the coplanar waveguide. The
width W of the coplanar line is kept constant, while in the case of the microstrip line, the
width W is adjusted in order to compensate for the etched window in the ground plane
and approximately maintain the same value of characteristic impedance Zc as in the rest of
the line.

2.2. Simplified Equivalent Circuit Model

The circuit model for both the coplanar and microstrip cells is shown in Figure 2.
Because of the connection to a common point of the three rings, a parallel connection can
be assumed in order to derive the circuit model of the filter. Each pair of rings is modeled
by a shunt RLC resonant circuit with the resistive, inductive, and capacitive elements in
series. A third RLC shunt branch to ground is added to model the spurious rejection band
that appears at higher frequencies. Each shunt resonant circuit is connected to ground
through a resistance R, which considers the ohmic and radiation losses of the 3OISRR cell
in each resonance. The three RLC resonant circuits are placed between the two portions of
the propagation line of length d that model the section of the guided wave between points
P1 and P2 in the structures of Figure 1. Finally, an additional path L1 of propagation line is
included to model the transmission lines between the input and output ports and points P1
and P2, respectively. Note that this equivalent circuit does not take into account higher-
order couplings and interactions involved in both structures, and it must be considered as
a simplified model that can be used to predict the notch frequencies of the response. An
equivalent LC circuit can also be defined by using the approach proposed in [28].
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structures shown in Figure 1.

We will call f0,1 and f0,2 the resonant frequencies of the pairs of rings (Figure 1) formed
by the external and central rings ( f0,1) and the central and internal rings ( f0,2), while the
spurious frequency will be f0,3. The three rings of the 3OISRR cell produce two main notch
bands centered at f0,1 and f0,2, and a spurious notch band fixed at f0,3. Each notch band
is modeled by one of the three branches of shunt series RLC circuits shown in Figure 2. A
mutual inductance parameter M is introduced to take into account the interaction between the
external and internal pair of rings. In order to calculate the values of the parameters of the
inductances and capacitances of the circuit model shown in Figure 2, we have proposed an
element transformation rule [25] between the open interconnected split ring resonators (OISRR)
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used in this work and the open split ring resonators (OSRR) of a previous publication [23].
According to this rule, we define the impedance scaling factor γi as:

γi =
1

4× i

(
∆ fOSRR, i

∆ f 0,i

)
, (1)

where the index i = 1, 2 refers to the external (i = 1) or internal (i = 2) pair of rings. ∆ fOSRR
or ∆ f0 are the 3 dB bandwidths of the corresponding resonant bands obtained in the
electromagnetic simulations for the OSRR and the OISRR equivalent structures. It is worth
to note that for the OSRR structure, the resonant band will be a passband, while for the
OISRR equivalent structure, the resonance produces a stopband. Hence, once the value of
γi is determined, the values of the inductances and capacitances associated to the OISRRs
are calculated from the corresponding values of the same parameters for the equivalent
OSRR structure according to the following equations:

Li = γiLOSRR,i, (2)

Ci = COSRR,i/γi. (3)

The values of inductance LOSRR,i and capacitance COSRR,i for the OSRR structure are
calculated from its geometrical dimensions in the following way. LOSRR,i is the inductance
of a closed ring of radius equal to the average of the ith and (i + 1)th rings, i.e., ro,i = ri −
c − s/2, and the same width c as the considered rings. On the other hand, COSRR,i is
the distributed capacitance of the ith slot between the ith and (i + 1)th rings, which are
separated by a distance si. If we call Cpul,i to the capacitance per unit length of the
mentioned slot, then the value of the capacitance is related to the average radius by the
equation: COSRR,i = 2πro,iCpul,i. Once the values of LOSRR,i and COSRR,i of the equivalent
OSRRi circuit [23] have been calculated from the previous considerations, Equations (1)–(3)
give us the corresponding values of the OISRR circuit model and only the value of the
mutual inductance M remains to be calculated. The value of M is given by the equation:

M = k
√

L1L2, (4)

where k is an empirical coupling coefficient.
The shunt series R3L3C3 branch is responsible of modeling the spurious frequency

notch band. The value of L3 can be calculated from the 3 dB bandwidth of the spurious
stopband ∆ f0,3 obtained from the electromagnetic simulations by assuming a 50 Ω termi-
nated two port network and neglecting the effects of the two other shunt circuits. In such
case, the following relation can be applied:

x3/50 = f0,3/(2 ∆ f0,3)⇒ L3 = 50/(4 π ∆ f0,3), (5)

where x3 = ω0,3L3 is the reactance. The value of the capacitance C3 follows by simple
application of the resonant condition ω2

0,3 = 1/(C3L3), and 50 is the reference impedance
of the ports.

Finally, the resistance Ri that connects each shunt series LC resonant circuit to ground
can be computed by means of electromagnetic simulations of the 3OISRR cell using the
return loss |S11| f0,j

(obtained at the frequency of resonance fO,j) and the unloaded quality
factor Qu,j:

Qu,j =
2π f jLj

Rj
=

f0,j

∆ f0,j

(
1− |S11| f0,j

) , (6)

where the index j = 1, 2, 3 refers to one of the three resonances of the 3OISRR cell.
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2.3. Analysis

Figures 3 and 4 present the electromagnetic and circuit simulations of the S11 and S21
parameters for a 3OISRR cell excited by means of microstrip and coplanar waveguides.
The geometrical dimensions of the 3OISRR cell are: r1 = 2.2 mm, r2 = 1.65 mm,
r3 = 1.1 mm, c = 0.3 mm, and s1 = s2 = 0.25 mm both for the microstrip and coplanar
structures. The dimensions of the open window are, respectively, D1 × D2 = 9× 9 mm2

and D1 × D2 = 9 × 6.5 mm2 for the microtrip and coplanar waveguides. Values of
other parameters needed for the simulations are: copper thickness t = 17.5 µm, substrate
thickness h = 0.635 mm, substrate permittivity εr = 10.2, L1 = 5.5 mm, W1 = 0.594 mm,
W2 = 0.794 mm, W = 0.374 mm, S = 0.163 mm, and Zc = 50 Ω. Analogous simulations
for equivalent OSRR structures give the values of ∆ fOSRR,i, which allow to calculate the
factor γi of Equation (1). These values and the elements LOSRR,i and COSRR,i calculated as
explained before are summarized in Table 1. It should be noted that the data and the factor
γi included in Table 1 for the first and second resonators are the same for the microstrip and
coplanar waveguides. Once the factor γi is known, the values of Li and Ci for the first and
second resonators can be calculated from Equations (2) and (3). The factor k that appears in
the mutual inductance of the Equation (4) was empirically obtained by an optimization
procedure between circuit and electromagnetic simulations, resulting in the value k = 0.51.
The values of the elements of the equivalent circuit for the spurious resonator have also
been calculated following the procedure presented above. Finally, the value of the quality
factor Qu,j of each resonator for microstrip and coplanar waveguides has been computed by
means of the Equation (6) and from the values fO,i and ∆ fO,i obtained from electromagnetic
simulations (Figures 3 and 4). Data and the equivalent circuit elements of Figure 2 for
microstrip and coplanar waveguides are presented in Tables 2 and 3, respectively. It should
be noted in these tables that the element values of the equivalent circuit for the first and
second resonators are the same for the microstrip and coplanar structures, since they only
depend on the geometry of the 3OISRR cell. However, the element values of the third
(spurious) resonator are different when the cell is inserted in the microstrip or coplanar
waveguide. This is due to the influence of the surrounding elements (ground plane, via
holes, etc . . . ) on the frequency of this spurious resonance.
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Table 1. Data and factor γi.

Parameter of Resonator 1
(for Microstrip and CPW)

Parameter of Resonator 2
(for Microstrip and CPW)

LoSRR,1 (nH) 7.3 LoSRR,2 (nH) 4.6
CoSRR,1 (pF) 0.7 CoSRR,2 (pF) 0.6

∆ foSRR,1 (GHz) 2.15 ∆ foSRR,2 (GHz) 3
∆ f0,1 (GHz) 0.025 ∆ f0,2 (GHz) 0.15

γ1 21.5 γ2 2.5
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Table 2. Electromagnetic simulation results and element values of the equivalent circuit (Figure 2)
for the microstrip structure.

Microstrip

f0,1 2 f0,2 3.9 f0,3 5.8
|S11| f0,1

−4.2 |S11| f0,2
−1.4 |S11| f0,3

−6.4
Qu,1 173 Qu,2 174 Qu,3 19
R1 11.4 R2 1.6 R3 12.6
L1 156.9 L2 11.5 L3 6.6
C1 0.032 C2 0.24 C3 0.11

where f0,i , |S11| f0,i
, Ri , Li , and Ci (i = 1, 2, and 3) are respectively in GHz, dB, Ω, nH, and pF.

Table 3. Electromagnetic simulation results and element values of the equivalent circuit (Figure 2)
for the coplanar structure.

Coplanar

f0,1 2 f0,2 3.9 f0,3 5.1
|S11| f0,1

−0.5 |S11| f0,2
−0.8 |S11| f0,3

−3.6
Qu,1 1191 Qu,2 295 Qu,3 37
R1 1.6 R2 0.95 R3 8.5
L1 156.9 L2 11.5 L3 9.9
C1 0.032 C2 0.24 C3 0.09

where f0,i , |S11| f0,i
, Ri , Li , and Ci (i = 1, 2, and 3) are respectively in GHz, dB, Ω, nH, and pF.

As it can be seen in Figures 3 and 4, a reasonable agreement is obtained between the
electromagnetic and circuit simulations. We observe that both the microstrip and coplanar
structures present the first two resonances at exactly the same frequencies: fO,1 = 2 GHz
and fO,1 = 3.9 GHz. Hence, it is concluded that these resonances depend only on the
geometry of the 3OISRR cell. The narrow bandwidth of these resonances indicates that they
are notch bands. The coplanar structure presents quality factors (Table 3) higher than the
microstrip structure (Table 2). These values are higher than 173 for the first two resonances
in both structures. With regard to the third (spurious) resonance, it appears at a different
frequency for the microstrip ( fO,3 = 5.8 GHz) and coplanar ( fO,3 = 5.1 GHz) structure.
Its 3 dB bandwidth (∆ f0,3 = 0.6 GHz for the microstrip line and ∆ f0,3 = 0.4 GHz for
the coplanar waveguide) is much higher than for the notch bands. Additionally, consid-
ering the low values of the return losses (|S11| f0,3

= −6.4 dB for the microstrip line and
|S11| f0,3

= −3.6 dB for the coplanar waveguide) and that this resonance is observed at ap-
proximately two times the frequency ( f0,1 + ( f0,2 − f0,1)/2), all this information indicates
that it is a spurious resonance.

The responses of the microstrip and coplanar structures exhibit three transmission
zeros at the resonant frequencies of the 3OISRR cell, since an electric short to ground
occurs at these frequencies, which reflects the injected power back to the source. The
microstrip and coplanar structures loaded with the 3OISRR cell behave as three shunt
series RLC resonant circuits embedded between two microstrip and coplanar line sections.
In addition to these resonances, anti-resonances (Figure 3) also appear. The microstrip
structure (Figure 3a) has two anti-resonances around fO,1 and a third one above fO,2. The
first anti-resonance below fO,1 is as a consequence of the matching between the 3OISRR
cell and the ports, while the second and third ones above fO,1 and fO,2 occur due to the
anti-resonant behavior of the effective permittivity of the 3OISRR cell [29]. On the other
hand, in the case of the coplanar structure (Figure 3b), only the anti-resonances above fO,1
and fO,2 can be observed. This is because the width W of the coplanar line is not adjusted
to compensate the etched window in the ground plane. Therefore, the ports do not show
a frequency of perfect match below fO,1. At each anti-resonance above fO,1 and fO,2, the
microstrip and coplanar structures loaded with the 3OISRR cell behave as a shunt parallel
RLC resonant circuit. The differences between the circuit and electromagnetic simulations
are due to the fact that the equivalent circuit presented in Figure 2 does not consider higher-
order couplings and interactions that occur in both structures. The equivalent circuit must
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be used as a simplified model to obtain the response trends of the microstrip and coplanar
structures loaded with a 3OISRR cell and to predict the notch frequencies.

In order to analyze these resonances in more detail, we have studied the current
distributions by means of electromagnetic simulations at representative frequencies for
both microstrip and coplanar structures. The first frequency (Figure 5a) is inside the pass
band ( f = 1 GHz). At this frequency, the 3OISRR cell does not resonate, and the signal is
transmitted from the input to the output port. At the second frequency (Figure 5b), inside
the notch band corresponding to the first resonance ( f0,1 = 2 GHz), we observe a strong
resonance between the central ring and the external and internal rings. This resonance
completely blocks the transmission of the signal between the input and output ports. The
third simulation frequency (Figure 5c) is inside the notch band, corresponding to the second
resonance ( f0,2 = 3.9 GHz). In this case, the simulations show that the resonance occurs
between the central and inner rings, which avoids the transmission of the signal between
the input and output ports. The fourth frequency (Figure 5d) corresponds to the spurious
band ( f0,3 = 5.8 GHz for the microstrip structure and f0,3 = 5.1 GHz for the coplanar
structure). As remarked above, this band can be recognized by its larger bandwidth. In
Figure 5d, we also see that the resonance is weak and some signal passes through the
structure. This can also be appreciated in Figures 3 and 4, where the electromagnetic
simulations (dash lines) show a much less pronounced maximum for the S11 parameter
(or minimum for S21) at the spurious frequencies. The fifth frequency (Figure 5e) is the
anti-resonance below f0,1 for the microstrip structure, which occurs at f = 1.7 GHz. The
simulation displays a residual current on the first half of the external ring, and the signal is
transmitted from the input to the output port (due to a perfect matching condition with the
ports). Finally, the sixth (Figure 5f) and seventh (Figure 5g) frequencies correspond to the
anti-resonances above f0,1 ( fa,1 = 2.5 GHz for the microstrip structure and fa,1 = 2.07
GHz for the coplanar structure) and f0,2 ( fa,2 = 4.5 GHz for the microstrip structure and
fa,2 = 4.3 GHz for the coplanar structure). In Figure 5f,g, we observe that the 3OISRR cell
resonate for both anti-resonances. However, unlike the cases of the first (Figure 5b) and
second (Figure 5b) resonances, the signal is transmitted between the input and output ports,
thus showing that at these resonant frequencies the microstrip and coplanar structures
loaded with the 3OISRR cell no longer behave as a shunt series RLC resonant circuit but
rather as a shunt parallel RLC resonant circuit.

We can summarize the electromagnetic and circuit simulation results by remarking
that the 3OISRR cell performs as a double notch filter for the first two resonant frequencies,
whose values do not depend on whether the structure is inserted in a microstrip or coplanar
waveguide. These two notched bands are achieved by means of a simple 3OISRR cell
without cascading several stages of stepped-impedance resonators stub-loaded resonators,
Hilbert-fork resonators, or hexagonal split ring resonators, a significant advantage when
compared with previous work with multi-notch filters [16–21]. Instead of cascaded stages,
our novel structure achieves the same effect with a single cell of three open rings of different
radii interconnected to a common point of the microstrip or coplanar waveguide. The first
two resonances can be controlled by adjusting the radii of the 3OISRR cell as described
in the previous sub-section. If we analyze the electric size of the cell at the two resonant
frequencies, we observe that at the first resonance ( fO,1 = 2 GHz), the 3OISRR presents
half the electric size of the equivalent SRR cell. At the second resonance ( fO,2 = 3.9
GHz), the guided wavelengths in the microstrip and coplanar waveguides are, respectively,
λ = 30 mm and λ = 34 mm which have been calculated from the corresponding effective
permittivity εre f = 6.4 and εre f = 5. In comparison, the length D1 of the proposed
3OISRR structure is only 9 mm, which is less than λ/3, thus confirming that the proposed
3OISRR is more compact than a conventional resonator with a length of λ/2.
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3. Fabrication and Results

In order to experimentally demonstrate the feasibility of the proposed concept, we
have fabricated the structures of Figure 1 using a substrate of Arlon material (AD1000)
with the following parameters: εr = 10.2, tgδ = 0.0023 at 10 GHz, thickness h = 0.635
mm, and copper metallization thickness t = 17.5 µm. A laser prototyping system (LPKF
Protolaser S) was used for the manufacturing of the structures, and the results of these
fabrication processes are shown in Figure 6. The experimental testing was carried out by
means of a Rohde & Schwarz ZVA network analyzer and a test fixture Anritsu 3680K. The
calibration and measurements were done in the frequency range between 0.01 and 6 GHz.

Figures 7 and 8 depict, respectively, the measurements of the S11 and S21 parameters
for both microstrip and coplanar structures. The results of the electromagnetic simula-
tions are also added for validation. As it can be seen, a reasonable agreement between
electromagnetic simulations and measurements is achieved. For easy comparison with the
electromagnetic simulation results (Tables 2 and 3), we present the measurement results in
Tables 4 and 5. These tables also include the insertion losses |S21| f0,j

in the stop bands for the
first, second, and third (spurious) resonances. In the same way as with the electromagnetic
simulated results, the quality factor decreases as the resonant frequency increases. For
both structures, their values are higher than 132, 78, and 50 for the first, second, and third
resonance, respectively. Higher quality factors are obtained with the coplanar notch filter.
However, the insertion loss in the pass bands is better for the microstrip filter. For example,
at 2.5 GHz, the passband insertion loss for the microstrip filter is 0.06 dB, while it is 0.35 dB
for the coplanar filter. As it can be seen in Figures 7 and 8, the spurious band appears above
5 GHz for both microstrip and coplanar structures. The 3OISRR cell opens the possibility
to generate compact bandstop responses with two notched bands without increasing the
size of the circuit, just by adding a new ring to the OISRR cell. Hence, the number of main
resonances, and therefore notch bands, is the number of rings minus one, since the spurious
band cannot be controlled independently from the main resonances with the parameters of
the rings.
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Table 4. Measurement results for the microstrip structure.

Microstrip

f0,1 2.11 f0,2 3.96 f0,3 5.8
∆ f0,1 0.04 ∆ f0,2 0.3 ∆ f0,3 0.5
|S11| f0,1

−4.4 |S11| f0,2
−1.6 |S11| f0,3

−2.3
|S21| f0,1

−8.3 |S21| f0,2
−17.2 |S21| f0,3

−14.5
Qu,1 132 Qu,2 78 Qu,3 50

where f , ∆ f , and |S| are respectively in GHz, GHz, and dB.

Table 5. Measurement results for the coplanar structure.

Coplanar

f0,1 2.04 f0,2 3.85 f0,3 5.1
∆ f0,1 0.04 ∆ f0,2 0.6 ∆ f0,3 0.5
|S11| f0,1

−2.5 |S11| f0,2
−0.7 |S11| f0,3

−1.9
|S21| f0,1

−11.2 |S21| f0,2
−23.6 |S21| f0,3

−15.7
Qu,1 204 Qu,2 83 Qu,3 52

where f , ∆ f , and |S| are respectively in GHz, GHz, and dB.

Finally, Table 6 compares different multi-band bandstop filters with the proposed
double notch filters. In this table, fi, FBWi, and RLSi represents, respectively, the central
resonant frequency of the ith-stopband, the 3 dB fractional bandwidth of the ith-stopband,
and the maximum rejection level at the central ith-stopband. λ0 corresponds to free-space
wavelength at the central frequency of the multi-band bandstop filters. It is defined
to assess the 2D size of the different filters. As it can be seen in Table 6, the proposed
filters present some of the lowest resonant frequencies at the first stopband, except for the
designs presented in [16,17] (Figure 8), although these ones have a very large fractional
bandwidth (FBWi > 50%). The structures defined in [20,22] have a fractional bandwidth
and a maximum rejection level similar to the proposed filters. However, both structures
present a second transmission zero very close to the first one. In addition, their maximum
rejection levels at the second stopband are worse than the proposed structures. In terms
of size, the proposed double notch filters are more compact than any other design. The
proposed 3OISRR cell has significant advantages compared with previous works [16–22],
which require complex structures or cascading several stages. Its structure is simpler and
versatile, since the transmission zeros are controlled by adjusting the radii of the rings and
it can be connected to different planar technologies (microstrip, coplanar). Moreover, it
is easier to introduce an additional notch. It is enough to add an additional ring in the
same cell.

Table 6. Comparison of the proposed double notch filters with other reported multi-band bandstop filters.

Ref. f1/f2/· · ·
(GHz)

FBW1/FBW2/· · ·
(%)

RLS1/RLS2/· · ·
(dB)

2D Size
λ0×λ0

[16] Figure 5a 1.57/3.16 56.7/28.2 46/54 0.198× 0.198
[17] Figure 7 2.89/5 4.8/5 28/16 0.394× 0.223
[17] Figure 8 1.16/3.5 50/14.3 29/28 0.269× 0.203
[18] Figure 4 3.6/5.9/8 2.9/3.7/2.3 15/15/10 0.353× 0.196
[19] Figure 6 2.36/3.48/5.19 3.6/2.5/2.8 14.4/26.3/34.63 0.267× 0.115

[20] Figure 10 6.1/6.9/7.6 2.3/5.2/1.7 15/14/13 1.023× 0.279
[21] Figure 14b 3.5/5.2/7.4 15.6/7.8/8.9 35.6/28.2/24.9 0.509× 0.218

[22] Figure 4 5.2/5.8/8 1.8/2.3/2.1 17/16/15 0.4× 0.266
This work Figure 8a 2.11/3.96 1.9/7.6 8.3/17.2 0.102× 0.102
This work Figure 8b 2.04/3.85 1.9/15.6 11.2/23.6 0.1× 0.1

4. Conclusions

We have presented compact bandstop filters with two-notched bands in coplanar
and microstrip technologies based on the concept of adding multiple rings to an open
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interconnected split ring resonator (OISRR) cell. In particular, the proposed structures
use a 3OISRR cell with 3 open rings of different radii connected to a common point of the
microstrip or coplanar waveguide. The frequency response of these filters presents two
main resonances and a spurious resonance at higher frequencies. There are no significant
differences between the coplanar and microstrip structures in the main resonance frequen-
cies. Both structures present insertion loss and 3 dB notch bandwidth for the first resonance
lower than 8.3 dB and 0.04 GHz, while for the second resonance these are, respectively,
lower than 17.2 dB and 0.6 GHz. The best results are achieved for the coplanar structure,
since the experimental measurements show unloaded quality factors higher than for the
microstrip structure. The proposed 3OISRR cell have a reduced size (< λ/3) as compared
with λ/2 conventional resonators. Therefore, these multi-notch bandstop filters can be
expected to be of interest to reduce unwanted signals in future communication systems.
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