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ABSTRACT Wind power plants are becoming a generally accepted resource in the generation mix of
many utilities. At the same time, the size and the power rating of individual wind turbines have increased
considerably. Under these circumstances, the sector is increasingly demanding an accurate characterization
of vertical wind speed profiles to estimate properly the incoming wind speed at the rotor swept area and,
consequently, assess the potential for a wind power plant site. The present paper describes a shape-based
clustering characterization and visualization of real vertical wind speed data. The proposed solution allows
us to identify the most likely vertical wind speed patterns for a specific location based on real wind speed
measurements. Moreover, this clustering approach also provides characterization and classification of such
vertical wind profiles. This solution is highly suitable for a large amount of data collected by remote
sensing equipment, where wind speed values at different heights within the rotor swept area are available for
subsequent analysis. The methodology is based on z-normalization, shape-based distance metric solution
and the Ward-hierarchical clustering method. Real vertical wind speed profile data corresponding to a
Spanish wind power plant and collected by using a commercial Windcube equipment during several months
are used to assess the proposed characterization and clustering process, involving more than 100000 wind
speed data values. All analyses have been implemented using open-source R-software. From the results,
at least four different vertical wind speed patterns are identified to characterize properly over 90% of
the collected wind speed data along the day. Therefore, alternative analytical function criteria should be
subsequently proposed for vertical wind speed characterization purposes.

INDEX TERMS Clustering algorithms, Wind power generation, Patterns clustering

l. INTRODUCTION provide greater flexibility and energy efficiency, convering
OST developed countries are now promoting large- power ratings between 4.5 MW and 7 MW [5]. At the same
scale integration of Renewable Energy Sources into time, the increase in both the hub height and the area swept

power systems [1]. Among these renewables, wind power is by the blades has drawn interest to better understanding the

considered the most efficient and developed energy source structure of the vertical profile of the horizontal wind [6].

[2]. Indeed, it is expected that 323 GW of wind energy Furthermore, since the power extracted by a wind turbine is
capacity will be installed in Europe by 2030, covering more highly dependent on the wind speed, an accurate estimation
than 30% of the electricity demand [3]. In fact, during recent of vertical wind speed profiles v (the horizontal wind speed
decades, current wind turbine size has evolved from less than at height H) is required by the sector [7]. To determine
100 kW to 3500 kW [4]. Full converter wind turbines can the horizontal wind speed at hub height, two methods have
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been widely used in the wind sector: (i) direct methods and
(44) indirect methods.

Direct methods are implemented by installing meteorolog-
ical towers equipped with conventional wind speed meters
at a suitable height or, more recently, by remote sensing
such as SODAR (Sonic Detection And Ranging) or LiDAR
(Light Detection and Ranging) systems. The most commonly
used speed meters are based on anemometers and windmills.
Cup anemometers are formed by three or four cups equidis-
tant from each other and coupled to a vertical rotational
axis. Windmills are usually composed by four blades. Both
anemometers and windmills have an error of around +2%,
and collect horizontal wind speed values at only one height.
Therefore, it should be required to estimate other wind
speed values at the rotor swept area. SODAR and LiDAR
are based on the Doppler effect, receiving the reflection of
sound and light, respectively. Apart from their significant
accuracy (98% for SODAR and 99.6% for LiDAR), they can
collect wind speed data at different heights without needing
a meteorological tower [8], which is an important advantage
in comparison to the previous solutions. Moreover, LiDARs
can also be used to obtain three-dimensional wind mea-
surements [9]. Several studies can be found in the specific
literature comparing these techniques or addressing different
assessment analysis [10]. A comparison between LiDAR and
cup anemometers was performed in [11], obtaining a high
availability of 98% at the hub height in line with previous
contributions [12]. A particular study in the Arctic middle
atmosphere is described in [13], where mean wind speed
values from LiDAR observations are compared to two dif-
ferent databases (ECMWF and HWMO07). The results show
that below A < 55 km the differences are smaller than 2 — 5
m/s. Recent contributions focused on optimizing LiDAR for
wind turbine control can be found in [14], [15]. Regarding
SoDAR solutions, suggested in [16], they can present root-
mean-square errors of around 2% compared to mast-mounted
cup anemometers. In [17], the results between SoDAR and
the cup anemometer show some differences mainly due to
the measurement field campaigns, which were conducted in
different locations. A comparison between LiDAR, SoDAR
and mast-mounted cup anemometer was carried out in [18].
Although a successful correlation level was found, both Li-
DAR and SoDAR collected lower wind speed values than the
cup anemometers. According to [19], the SODAR is highly
dependent on temperature variation in the atmosphere, which
is a substantial drawback compared to LiDAR solutions.
However, a cost analysis reveals that SODAR equipment is
cheaper than the LiDAR [17].

Indirect wind speed estimation methods consist of mea-
suring horizontal wind speed at a lower height and applying
an extrapolation model to estimate the vertical wind speed
profile. The most commonly used models are the power law,
see (1), and the logarithmic law, see (2), [20].

H (e}
VH = Uref * (.E[f) (1)

szu*wn(H), ®)

k 20

where vy is the horizontal wind speed at height H, v,
the horizontal wind speed at the reference height H..r, o
the Hellmann’s exponent depending on roughness of the
underlying terrain, u. the surface friction velocity, &k the
von Karman’s constant and z( the surface roughness length.
These approaches present substantial drawbacks, since pa-
rameters such as « and zg may vary significantly according
to the year, month, hour of the day, or depending on wind
direction and speed values. In this sense, [21] discusses the
diurnal variation of o and the monthly variation of 2y for
three different locations in Italy. Recent empirical equations
derived by applying the power law to the relationship be-
tween the increase of wind speed and fetch lengths at 1-5
km con be found in [22]. An alternative function is known
as the Deaves and Harris model (D-H model), see (3). This
solution proposes a more realistic and complex expression to
consider the atmospheric boundary layer physics [23],
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where vy, Uy, k and zg are the same parameters as in (2), h is
the equilibrium boundary layer height, determined from (4),
f is the Coriolis parameter and B = 6 an empirical constant
estimated from observed wind speed profiles [24].

A comparison between the D-H model and the power law
based on real collected data is discussed in [25]. From the
results, the authors affirm that the suitability of the selected
model is highly dependent on atmospheric conditions: un-
stable, neutral or stable. A comparison between collected
vertical wind speed profiles and these three indirect mod-
els was conducted in [26]. In this case, the averaged real
wind speed profiles agree with the D-H and the logarithmic
models below 200 and 100 m respectively. However, no
similarities were found between the power law approach and
the measured profiles. A similar study was performed in
[27], where the D-H model provided the best estimations
in comparison with measured data. Recently, new models
have been proposed in the specific literature. In [28] a neuro-
fuzzy model is provided to estimate vertical wind profiles up
to 100 m by using measurements at 10, 20, 30 and 40 m.
A method based on Wind Atlas Analysis and Application
Program (WAsP) to improve vertical wind speed estimations
by least squares (LES) methodology is described in [29].
Two different proposals using artificial neural network are
described in [30], estimating vertical wind speed values up
to 100 m from measures at 10, 20 and 30 m. A time series
model of wind speed for day ahead forecasting is developed
in [31], based on linear and nonlinear autoregressive models
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TABLE 1: Review of previous studies.

Ref. Methodology used Year
[13] Comparison between LiDAR and two databases | 2017
(ECMWF and HWMO07)
[17] Comparison between SoDAR and cup anemometer | 2017
[21] Power law applied to anemometer measurements 2011
[25] Comparison between D-H model and power law 2017
[32] Revised power-law model 2018
[26] Anemometers at different heights 2010

[27] Comparison between LiDAR and data collected in | 2013
a nearby place

[28] Adaptive neuro-fuzzy method 2011

[30] Artificial neural network 2017

[33] Comparison between power law, logarithmic law | 2015
and real data

[34] Power law for low speed conditions (prevailing air | 2017

and thermal pollution)

with and without exogenous variables. A review of method-
ologies used in some of the previously mentioned studies is
summarized in Table 1.

According to the specific literature, most contributions
are thus focused on proposing different expressions to es-
timate vertical wind speed profiles from data provided by
anemometers. Indeed, it is very common their application in
the wind energy sector along the decades [35]-[37]. How-
ever, and assuming the power density (PD) —defined as the
ratio between rated power output and rotor’s swept area (in
W/m?)— as a relevant indicator of the power wind turbine
[38], several studies conclude that the wind speed at hub
height is not representative for the whole area. Moreover,
it leads to inconsistencies in power curve measurements for
large wind turbine [39]. For this reason, recent works affirm
that it is preferable to take measures at two or three levels, for
one period at least six months [40]. Post processing methods
should be then applied on these collected raw data to extract
explanatory information of most likely vertical wind speed
profiles. Under this scenario, there is a lack of contributions
devoted to characterizing a large amount of real wind speed
data. Moreover, solutions to identify common vertical wind
speed patterns and, consequently, make both representation
and characterization easier are more and more required by
the sector to analyze a location and the corresponding vertical
wind resource in detail. Therefore, a characterization of raw
wind power data is needed to estimate properly the wind
power capable to produce energy and subsequently to allow
us new proposals of vertical wind speed profile modeling,
since nowadays there is no uniform analytic expression valid
for all wind stability conditions [41]. The main contributions
of this paper are then summarized as follows:

« A novel wind speed analysis to identify vertical wind
speed patterns from a large amount of collected wind
speed data is proposed and assessed.

o A shape-based clustering analysis is evaluated to pro-
vide most likely vertical wind speed patterns along the
day based on real wind speed data collected with a
LiDAR system.

o The proposed solution, implemented in the open-source
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R-software with unrelevant computational time cost,
can be adapted to different locations from the cor-
responding raw data and the field-measurement cam-
paigns.

This work is in line with previous contributions by the
authors, where the aggregated wind power generation was
characterized based on Weibull mixtures [42]. The rest of the
paper is organized as follows: Section II discusses the time-
series clustering techniques used to characterize wind speed
profiles; Section III describes the proposed methodology; the
results are described and discussed in Section IV; and, finally,
the conclusions are presented in Section V.

Il. FUNCTIONAL CLUSTERING: BACKGROUND AND
RELATED WORK
A. GENERAL OVERVIEW

Clustering is one of the most commonly used data mining
techniques to find homogeneous subgroups of entities de-
picted in a set of data [43], [44]. A cluster analysis involves
sorting data objects into groupings (labeled as clusters) based
on similarity [45]. Although the notion of ’cluster’ is not
unique [46], the global goal is that the objects of a group are
similar to one another and different from the ones in other
groups [47]. According to [48], various clustering algorithms
can be found in the specific literature:

o Hierarchical methods: Clusters are determined by recur-
sively partitioning the instances. There are two types:
agglomerative hierarchical clustering (objects are con-
sidered as clusters that are merged successively) and
divisive hierarchical clustering (all objects belong to one
cluster that is divided successively into sub-clusters).

« Partitioning methods: The objects are relocated by mov-
ing them from one cluster to another, starting from an
initial partitioning. There are two methods: error mini-
mization algorithms —these find a clustering structure
that minimizes a certain error criterion. This measures
the *distance’ of each object to its representative value—
and graph-theoretic clustering —determining clusters
via graphs—.

o Density-based methods: It is assumed that the points
that belong to each cluster are drawn from a specific
probability distribution.

o Model-based clustering methods: Optimizing the fit be-
tween given data and some mathematical models.

A large number of functional clustering applications can
been found in the literature review [49], mainly focused on
life sciences [50]. Nevertheless, a number of authors have
proposed the use of functional clustering approaches for
power system purposes. A comparison of various unsuper-
vised clustering algorithms to group customers with similar
electrical behavior is provided in [51]. In [52], a functional
clustering procedure is used to classify the daily power load
curves of four separated periods, providing a short-term peak
load forecasting methodology. A clustering methodology
able to improve short-term functional time series forecasts
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of household-level electricity demand is presented in [53].
A forecasting model for day-ahead and hour-ahead load
predictions is developed in [54] based on artificial neural net-
works and clustering. A novel clustering-based fuzzy wavelet
neural network model is also proposed in [55]. Data mining
techniques have been also proposed to analyze SCADA
measurements collected on onshore wind power plants, but
focused on power curve analysis [56]. In our specific study,
and taking into account the efficiency issue of hierarchical
clustering, which can be applied to most types of data [57],
the agglomerative hierarchical clustering is selected. This ap-
proach usually involves higher computational time costs than
partitional clustering, but requires non-predefined parameters
[58]. Specifically, Ward’s hierarchical clustering method is
used to estimate the different clusters, which is carried out in
a multivariate Euclidean space [59].

B. DISSIMILARITY MEASURES

With regard the time-series clustering, different algorithms
have been developed in the specific literature considering a
wide set of dissimilarity or distance measures [60]. One of
the most popular and field-tested similarity measures is the
Dynamic Time Warping (DTW) distance, based on the opti-
mum warping path between time-series [61]. DTW has been
widely used in many areas and is a popular automatic speech
recognition (ASR) method [62]. Indeed, it is a flexible and
much more robust distance measure, allowing similar shapes
to be matched even if they are out of the phase in the time axis
[63]. Given two discrete time-series X = (z1,22,...,%n)
and Y = (y1,92,...,Ym) With n,m € N, we define the
cross-distance matrix (M € R™") as follows:

mi; = d(i,5) = f(xi,y;) > 0. 5)

The most common choice is to assume the Euclidean distance
m;; = d(i,j) = (z; — y;)*. The algorithm then finds
the alignment path through the low-cost areas of the cross-
distance matrix. It is typically subjected to the following con-
straints: boundary conditions, continuity and monotonicity
[64]. A warping path that minimizes the distance between
both time-series can then be estimated by [65]:

K
DTW(X,Y) =min | Y mpx = d(k, k) = f(xx,ue) | ,

k=1

(6)
where max(n,m) < K < m + n + 1. Further information
and some examples of DTW technique can be found in [66]-
[68]. In addition, Fig. 1 shows an example of the DTW
technique application and a comparison to the Euclidean
distance approach for two random trajectories. The dtw—
function is applied by using the dtw R-software package
[69].

DTW approach can also be extended to measure the
similarity between two N-dimensional sequences [70]. An
example of a multi-dimensional Dynamic Time Warping
(msDTW) approach can be found in [71]. According to some
authors, and assuming that DTW is a major solution in the
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field of time series classification problem, it has quadratic
space and time complexity that might lead to memory prob-
lems under long time series data [72]. As a faster alternative
to the DTW algorithm, the Shape-Based Distance (SBD)
metric was proposed by [73]. It is based on coefficient-
normalized cross-correlation. It is used in the present work
as an improved methodology of DTW metric solutions. To
provide scale invariance and remove inherent distortion in
the collected data, we implement the z-normalization of the
horizontal wind speed values. This z-normalization is based
on the standard (0,1) statistical normalization: vectors are
linearly transformed by subtracting their feature means and
dividing by their standard-deviations [74],
5= BT HX )
2D
All analyses have been conducted using open-source R-
software [75]. The dtwclust R-package is used for the
SBD metric estimation [76].

lll. METHODOLOGY

Taking into account both the SBD algorithm and Ward’s hi-
erarchical clustering method previously discussed in Section
II, a characterization methodology to identify wind speed
profile patterns and visualize most common tendencies is
now described in detail. This approach allows us to char-
acterize large amounts of wind speed data collected in real
locations by means of clustering and pattern identification.
The solution is thus highly suitable for data collected by
remote sensing equipment, where wind speed values at dif-
ferent heights are available to be analyzed. Fig. 2 shows
schematically the data structure and an example of horizontal
wind speed data for the different heights and by considering
a specific day (Day;) and hour (Houry).

The proposed methodology is firstly based on a filtering
real data stage. With this aim, a preliminary data analysis
was carried out to remove non-expected and/or wrong data.
Subsequently, wind speed curves with missing data or more
than 50% of the wind speed values below 4 m/s were not
considered. Most wind turbines currently have a minimum
starting wind speed range over 4 m/s. Recent contributions
focused on dynamic data filtering for LiDAR wind speed
measurements can be found in [77]. After this initial filtering
process, and based on previous studies from collected data
on on-shore Spanish wind power plants, it was detected that
some of the v — H curves were discordant. Indeed, it was
even found that some of them were not functions at all,
having two or more H values for just one v. To solve this
problem, the author propose an axis rotation. H — v curves
are thus obtained, solving aforementioned the problem. It is
worth noting that this drawback, mainly related to real data
collected at different heights in on-shore wind power plants,
has not been widely discussed in the specific literature, being
neglected by most previous contributions. The filtered wind
speed data are then fulfilled by using the aspline function
with the objective of defining a unique and homogeneous
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FIGURE 1: Dynamic Time Warping (DTW) technique example.
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FIGURE 2: General data scheme and example of horizontal wind speed data. General overview

height interval: from 40 to 160 m. Fig. 3 shows examples
of wind speed collected data and their corresponding filtered
and fulfilled values by the aspline function. Real data were
collected for three months at a Spanish wind power plant
located in the southeast of Spain. The wind speed data
collected at different hours are summarized in the figure.

From these homogeneous groups of wind speed profiles,
an interpolation process is then applied on a common grid,
providing a positive power length of 2. In our case, a total of
512 points are estimated, being a 2 potential (2?). The Ak ima
R-software package is used for this interpolation process.
Further information about this package can be found in [78].
Fig. 4 describes schematically the proposed axis rotational
and spline process and the corresponding interpolated verti-
cal wind speed profiles.

As was previously discussed in Section II, and aiming to
provide scale invariance and remove inherent distortion in the
data, a z-normalization process is applied to the spline values.
Each wind speed curve is linearly transformed by subtracting
their feature means and dividing by their standard-deviations.
Fig. 5 shows an example of z-normalization process from real
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wind speed data previously filtered and splined. The SBD
metric is then applied on the z-normalized data, providing
an estimation of distances between the wind speed curves.
These curves are divided into different hours of the day and,
subsequently, distances among these curves correspond to
those curves collected within the same hour. Finally, Ward’s
hierarchical clustering method was applied to estimate the
most likely wind speed profile patterns for each time interval.
Fig. 6 describes schematically the wind speed data structure
and the selection process for a specific hour (Hourg). The
clustering application usually involves a visual inspection
of the clustering in terms of deciding the optimal number
of clusters. Other approaches propose different decision cri-
teria for the optimal cluster number [79]. In our opinion,
this optimal number of clusters is outside the scope of the
present contribution and subsequently, the optimal number of
clusters is then considered as a user-decision. From the cor-
responding wind speed patterns, a suitable and summarized
visualization of a large amount of real collected data through
a reduced number of profiles is then provided. Indeed, these
wind speed patterns give an accurate and precise prelimi-
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FIGURE 7: Proposed clustering and analysis methodology.

nary analysis about the possibilities of proposing different
analytical functions to characterize real wind speed curves.
Moreover, the proposed visualization and characterization
solution of real data also provides additional information to
study collected data in detail and characterize the available
wind resource. Fig. 7 summarizes the methodology proposed
in this work.

IV. RESULTS
A. PRELIMINARIES

Wind speed data were collected at two Spanish wind power
plants connected to the grid and located in the south of Spain.
Different field measurement campaigns were carried out by
using LiDAR equipment. More specifically, a commercial
WindCube was installed in these locations to collect wind
speed data over three months. Fig. 8 shows the equipment
used for the field measurement campaigns. Wind speed
curves were measured and collected with a 10 minute sample
time interval. The height range of measurements was from 40
m to 200 m. Nevertheless, and with the aim of maximizing
the number of data used for clustering purposes, wind speed
heights were limited from 40 to 160 m since a significant
amount of data at 200 m corresponded to wrong values or
not-a-number values, as was mentioned in Section III. A
total amount of 110230 data were initially analysed. After
the filtering process, a total wind speed values of 61551
were selected, corresponding to 6839 vertical wind speed
profiles. By considering this initial group of vertical wind
speed values, a subsequent characterization process is thus
required by the sector to visualize the most likely vertical

8

FIGURE 8: WindCurbe LiDAR equipment: example of field-
test campaign (Albacete, Spain).

wind speed patterns.

Fig. 9 shows an example of the wind speed variability for
a specific wind power plant and location, taking into account
both maximum and minimum wind speed values based on
the collected data at different heights —40, 52, 62, 72, 85,
95, 110, 140 and 160 m—. As can be seen, there are relevant
oscillations within the same hour for each day. Wind speed
data are then z-normalized to estimate their corresponding
wind speed curve patterns for each hour. Subsequently, a
clustering process is applied on each hour to determine the
most likely patterns throughout the day for the different
hours.

B. FUNCTIONAL CLUSTERING CHARACTERIZATION.
ANALYSIS

From the z-normalized wind speed data, and after dividing
into different hours throughout the day, the SBD metric solu-
tion was applied to determine distances between splined ver-
tical wind speed curves. According to the proposed method-
ology and as was previously discussed, the Ward’s hierar-
chical clustering method involves a visual inspection of the
results to determine a suitable number of clusters. Note that
hirarchical clustering results are graphically represented on
dengrograms. Fig. 10 depicts some dendrogram examples for
different hours. Under these results, the number of 9 clusters
was selected since it was considered suitable by the authors
in order to characterize vertical wind speed profile variability
across the different hours. Further information about a semi-
supervised hierarchical clustering framework based on ultra-
metric dendrogram distance can be found in [80].
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located in Albacete, Spain).
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FIGURE 10: An illustrative examples of hirarchical clustering dendrograms.
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Assuming a number of 9 clusters as a suitable classification
of the different vertical wind speed groups for each hour,
Fig. 11 summarizes the percentage of each cluster according
to the hour of the day. As can be seen, night-time hours
can be characterized by a lower amount of clusters in com-
parison to daylight hours. Indeed, 3 clusters accounts for
over 75% of the vertical wind speed profiles for the night-
time hours. However, daylight hours require a higher number
of clusters to be characterized properly. As an example, 5
clusters are needed to account for 75% of the vertical wind
speed data between 12:00 and 12:55 Hour. This results are
in line with other clustering techniques, such as partitional
process. Aiming to compare both approaches Fig. 12 shows
the percentages for each hour when partitional clustering
process is applied on the collected data. According to both
methodologies, different vertical wind speed patterns are
thus required to characterize the collected data, presenting
a relevant heterogeneity in the vertical wind speed profiles.
The rest of analysis is conducted according to the Ward’s
hierarchical clustering results, by considering the percentage
of clusters summarize in Fig. 11.
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Fig. 13 summarizes the classification of the collected ver-
tical wind speed profiles according to the different clusters
for data gathered between 4:00 and 4:55 hour. In addition,
the vertical wind speed patterns are also included in the
figure, as well as the percentage of data corresponding to each
cluster by considering the percentage of clusters for each
hour depicted in Fig. 11. From these results, the proposed
characterization process allows us to identify the most likely
vertical wind speed patterns by considering the gathered data
in a specific location and attending to the different hours.
Moreover, a comparison between the vertical wind speed
patterns for different hours are also available from these
results. With this aim, Fig. 14 compares the most represen-
tative vertical wind speed patterns for different hours. In
this case, these results include vertical wind speed patterns
representing around 90% of the collected wind speed data for
the different hours —percentages included in the legend—
, and based on the percentages depicted in Fig. 11. As
can be seen, these averaged vertical wind speed patterns
differ significantly among them, and thus, a relevant loss of
information —in terms of vertical wind speed profiles and
wind resource estimation—- would be then assumed if these
patterns were reduced to only one representative wind speed
curve. This is a relevant contribution of the paper, being
thus required an alternative set of anaylitical functions to
characterize real vertical wind speed data for different hours
and locations. Under these assumptions, some extrapolation
model functions are thus required to represent the collected
wind speed profiles in an accurate and suitable way. This
analysis is in line with the indirect method discussed in
Section I. Nevertheless, it is outside the scope of the present
work, but is currently one of the authors’ fields of interest.

As an additional contribution of the paper, and in order
to reduce significantly the data to be stored, the authors
propose saving the most representative patterns for each
hour. Consequently, only means, standard-deviations and the
corresponding cluster from the collected vertical wind speed
data are stored. From this reduced information, it is possible
to estimate any vertical wind speed v — H data for a specific
hour of the day and location. Aiming to validate this addi-
tional proposal, Fig. 15 compares the estimated and collected
wind speed v— H profiles for the most representative clusters
between 15:00 and 15:55 hour. This figure also includes
correlation frequency histogram graphs, as a measure of
estimation accuracy. By considering the frequency histogram
grphs, the estimated v — H wind speed profiles are very close
to their corresponding real collected data. Therefore, the
vertical wind speed clustering patterns are able to represent
not only the most representative wind speed data, but also
the collected v — H wind speed profiles. This additional
proposal allows the stored data to be significantly reduced
after intensive field-test campaign measurements. Moreover,
it allows a more comprehensive data structure, since each of
the most representative patterns can be stored with its corre-
sponding means and standard-deviation values, providing a
direct estimation of the v — H wind speed data.
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V. CONCLUSION

A novel methodology to estimate vertical wind speed patterns
from collected wind speed data is described and assessed.
The proposed methodology uses a Shape-Based Distance
metric to characterize wind speed similarity groups. A Ward
hierarchical clustering method is applied to determine the
most likely vertical wind speed patterns at each hour for a
specific location. The proposed solution is assessed through
real wind speed data collected with a LiDAR system over
three months at a Spanish wind power plant, accounting for
more than 100000 wind speed values. A preliminary filtered
and homogenized process is proposed to provide scale invari-
ance and remove inherent distortion in the initial data. From
the results, at least four different vertical wind speed patterns
are needed to characterize over 90% of the 6839 collected and
filtered vertical wind speed profiles. Moreover, significant
differences among patterns are found and subsequently, new

12

analytical function criteria should be proposed as vertical
wind speed value extrapolation models. All analyses were
implemented using open-source R-software. The R code is
available from the authors upon request. Further analysis of
alternative extrapolation model functions to characterize in
detail the incoming wind speed at the rotor swept area is
currently a relevant topic for future works.
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