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Abstract	

Designers and engineers have been dreaming for decades of motors sensing, 

by themselves, working and surrounding conditions, as biological muscles do 

originating proprioception. Here bilayer full polymeric artificial muscles 

were checked up to very high cathodic potential limits (-2.5 V) in aqueous 

solution by cyclic voltammetry. The electrochemical driven exchange of ions 

from the conducting polymer film, and the concomitant Faradaic bending 

movement of the muscle, takes place in the full studied potential range. The 

presence of trapped counterion after deep reduction was corroborated by 

EDX determinations giving quite high electronic conductivity to the device. 

The large bending movement was used as a tool to quantify the amount of 

water exchanged per reaction unit (exchanged electron or ion). The potential 

evolutions of self-supported films of conducting polymers or conducting 

polymers (polypyrrole, polyaniline) coating different microfibers, during its 

oxidation/reduction senses working mechanical, thermal, chemical or 

electrical variables. The evolution of the muscle potential from 

electrochemical artificial muscles based on electroactive materials such as 

intrinsically conducting polymers and driven by constant currents senses, 

while working, any variation of the mechanical (trailed mass, obstacles, 

pressure, strain or stress), thermal or chemical conditions of work. One 

physically uniform artificial muscle includes one electrochemical motor and 

several sensors working simultaneously under the same driving reaction. 

Actuating (current and charge) and sensing (potential and energy) 

magnitudes are present, simultaneously, in the only two connecting wires 

and can be read by the computer at any time. From basic polymeric, 

mechanical and electrochemical principles a physicochemical equation 

describing artificial proprioception has been developed. It includes and 

describes, simultaneously, the evolution of the muscle potential during 

actuation as a function of the motor characteristics (rate and sense of the 

movement, relative position, and required energy) and the working 

variables (temperature, electrolyte concentration, mechanical conditions 

and driving current). By changing working conditions experimental results 

overlap theoretical predictions. The ensemble computer-generator-muscle-

theoretical equation constitutes and describes artificial mechanical, thermal 
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and chemical proprioception of the system. Proprioceptive tools and most 

intelligent zoomorphic or anthropomorphic soft robots can be envisaged. 
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List	of	acronyms	and	symbols	

α Angle 
α’ Electrochemical symmetry factor 
α0 Initial angle 
λ Length of an elemental polymeric chain 
η Oxidation overpotential 
ηc  Applied reduction overpotential related to the 

closing potential 
τ  Time constant 
τ0  Pre-exponential factor of the relaxation time 
κ  Constant characteristic of every electrolyte 
ν Scan rate 
ω Angular rate 
Λm  Molar conductance 
Λm0  Molar conductance at a very low concentration 
Δ Variation 
[A-] Concentration of anions 
[Pol*] Concentration of active centres 
A Area of the polymer film 
A- Anion 

active Relative to the active part 
AFM Atomic force microscopy 
APS Ammonium persulfate 
ATP Adenosine triphosphate 
ATR Attenuated total reflectance 
C+ Cation 
C1 and C2 Impedance constant 
CE Counterelectrode 
CP Conducting polymer 
D Diameter 
d Reaction order related with the concentration of 

anions is solution 
DBS Dodecylbenzenesulfonate 
E Electrical potential 
e Reaction order related with the concentration of 

active centres in the polymer 
e- Electron 
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E0 Standard potential 
Eini Initial potential 
ECM Extracellular matrix 
EDX Energy dispersive X-ray spectroscopy 
ESCR 
model 

Electrochemically stimulated conformational 
relaxation model 

EQCM Electrochemical quartz crystal microbalance 
F Faraday constant (F=96485 C mol-1) 

film Relative to the full CP film. 
FTIR Fourier transform infrared spectroscopy 

gel Gel 
H Energy of the system in absence of any electric fields 
h Thickness 

H2O Relative to water molecule 
I Constant electrical current 
i Electrical current 
i0  Initial current 

 
ICM Intracellular matrix 
id Diffusion current 
iEDL Electrical double layer current 

if At the interface 

ion Relative to the ion 
IR Infrared 
ir Relaxation current 
K Constant, relationship between angle and consumed 

charge for bending artificial muscles 
k Reaction’s rate constant or rate coefficient 
K0 Pre-exponential factor 
l Length 
LiTFMS Lithium trifluoromethanesulfonate 
LSM Laser scan micrometre 
M Monomeric unit 
m Mass 
M●+ Radical cation 
MA- Macroanion 
MSA Methane sulfonic acid 
N Number of counterions 
n Number of charges 
n’ Relative number of solvent molecules 
N0  Number of oxidation nuclei 
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NA Avogadro’s number (NA=6.022x1023 mol-1) 
PANI Polyaniline 
P Pressure 
pn(t) Unitary pulse function 
Pol0 Neutral polymer chains 
Pol* Active centres on polymeric chains 
PPy Polypyrrole 
PPy-DBS Polypyrrole-dodecylbenzenesulfonate 
PU Polyurethane 
PU/PPy Polyurethane/polypyrrole 
Q Total consumed charge 
Qd Diffusion charge 
Qr Relaxation charge 
R Universal gas constant (R=8.314 J K-1 mol-1) 
r Reaction rate 
R0 Initial curvature radius 
R∞ Curvature radius at the equilibrium 
S Solvent molecules 

s Solid 
SEM Scanning electron microscope 
T Temperature 
t Time 
U Electrical energy 
UV-vis Ultraviolet-visible spectroscopy 
V Volume 
WE Working electrode 
x vertical displacement 
Y Young’s modulus 
Z Impedance 
z Valence 
zc Charge consumed to compact one mole of polymeric 

segments 
zr Charge required to relax of one mole of polymeric 

segments  
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Objectives	

During reaction, conducting polymers immersed in solution change their 
composition in a reversible way. Such changes promote variations in several 
biomimetic properties (volume, conductivity, colour…). Some of them may 
change simultaneously announcing new multi-functional biomimetic 
devices: several tools working simultaneously under reaction control in one 
device. A new field is open here, where only one physically uniform device is 
needed to perform several simultaneous actions. This possibility is explored 
here using electro-chemo-mechanical actuators mimicking the consecutive 
events occurring in natural muscles. While they produce a mechanical 
effect, they will sense, simultaneously, working physical and chemical 
conditions. The study and clarification of such simultaneous actuating-
sensing (proprioceptive) properties will allow the development of simpler, 
cheaper and more reliable systems. In order to be able to attain a general 
acceptance and use of these novel multi-functional devices, a better 
understanding of the processes occurring in the material under influence of 
different variables and the development of reliable models is required. 
These are the aims of this thesis.  

Specific objectives of this thesis are: 

 To update the state of the art (kind of actuators, sensors and models). 
 To study how the composition evolves during actuation in actuators 

constituted by different families of conducting polymer.  
 To study how the ion exchanged by the conducting polymer during 

reaction driven actuation influences the polymer volume changes. 
 To study how the conductivity evolves during mechanical actuation in 

conducting polymers in the full operating range. 
 To check how peripheral elements such as the metallic background 

present nowadays in most of actuators influence both, actuation and 
lifetime.  

 To check how the temperature affects the actuating and 
electrochemical responses from conducting polymers. 

 To develop a model able to explain the electrochemical behaviour of 
conducting polymers at different temperatures. 

 To check how the electrolyte concentration affects the actuating and 
electrochemical responses from conducting polymers. 

 To develop a model able to explain the electrochemical behaviour of 
conducting polymers in different electrolyte concentrations. 
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 To check how the applied current affect the actuating and 
electrochemical responses from conducting polymers. 

 To develop a model able to explain the electrochemical behaviour of 
conducting polymers after applying different constant currents. 

 To check how the mechanical conditions affect the actuating and 
electrochemical responses from conducting polymer actuators. To 
check bilayer artificial muscles carrying different attached masses. 

 To develop a model able to explain the electrochemical behaviour of 
conducting polymer actuators carrying different attached masses. 

 To check how the initial state of the conducting polymer affects its 
electrochemical responses. 

 To develop a model able to explain the electrochemical behaviour of 
conducting polymers from different initial states. 

 To establish the basics of a full model able to explain the full 
electrochemical behaviour of conducting polymers originating multi-
functionality. 

 To check the validity of such model with new materials. 
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State	of	the	art	

Designers and engineers have been dreaming for decades of motors sensing, 
by themselves, working and surrounding conditions, as biological muscles 
do. Thus, one physically uniform device must include one actuator and 
several sensors working simultaneously. In this case, the information from 
the sensors must be contained in the same two connecting wires used for the 
actuator feeding: both, actuating and sensing information should be 
simultaneously read/applied by the computer at any time. Using this 
technology, simpler systems with fewer connections and faster responses 
can be designed. A lower number of components and connections means 
cheaper and more reliable systems [1,2].  

Present	automatic	control	systems	

In the control process-engineering field, a process is a set of interrelated 
tasks that, together, transform inputs into outputs. Such processes 
(transformations) can be carried out by actuators using resources [3]. An 
actuator is a device able to transform one kind of energy into a different one 
to modify a process. Thus, mechanical actuators, as those treated in this 
work, transform the input energy (electrical, chemical, electrochemical, 
optical, magnetic, and so on) into mechanical energy output. Actuators can 
be people (worker), nature (i.e. sun for heating), or machines. Those 
processes where only machines are employed are automatic processes. 
Actuators are used in a huge number of applications in our everyday life [4]. 

The introduction of the assembly lines was a remarkable milestone in the 
history of industry. It allows large productions of standardized commodities 
saving money and increasing the quality of the products. Very specialized 
and repetitive processes are the basic elements where human errors can 
produce waste of incomes [5]. Automatic processes decrease or eliminate 
such errors with parallel increase of the productivity and quality of the 
commodities. They use machines to perform the repetitive work without any 
direct human intervention. In this case, human work is only needed for 
high-level supervision tasks [3].  

Thus, the simple process of keeping a comfortable temperature in a room 
can be considered as a reference. This can be done by a person who turns 
the heater on and off according to his own feelings or without the direct 
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be any (not the desired one), depending on, besides in input, the 
disturbances. 

Such possible disturbances typical of real systems (someone opening the 
door of the room, for example) can be corrected considering the real output. 
This is possible through the inclusion of sensors/transducers able to 
quantify variables in the systems and convert them to make them 
understandable by the rest of the components in the system [7]. If there is a 
temperature sensor in the room, the value of such temperature is relevant 
information that can be used for the system to perform a better control. 
Thus, the control system becomes a closed-loop control system, Figure 2, 
where the output (room’s temperature) has an effect in the process (energy 
consumed by the heater). In this way, if the temperature is lower than the 
desired value, a greater energy can be applied to the heater to compensate 
such difference. 

In this kind of systems, the input is the desired output (or a signal 
equivalent to it, understandable for the controller). The real output, 
quantified and adapted by a sensor is compared with the desired output 
resulting in an error signal (difference between the desired output and the 
real one). The controller tends to minimize such errors using the available 
actuators in the system. If the error is null, the actuators do nothing. 
Closed-loop systems are less sensitive to errors in the design, noise, 
disturbances and changes in the environment than open-loop systems as 
they are able (if they are properly designed) to correct them by themselves. 
Besides, it is not needed to know the process as well as in the case of open-
loop systems where everything needs to be known. In fact, there are some 
techniques that allow, using some very primitive models, to obtain a model 
able to fulfil the imposed control requirements from some very easy 
experiments [8]. However, they also have some disadvantages, being closed-
loop systems usually more expensive and complex, containing more 
elements than open-loop systems with the subsequent increment in costs 
and probability of failures. 
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On the other hand, materials mimicking the processes occurring in the 
inner part of the living cells (intracellular matrix, ICM) are aimed to be 
successfully imitated. The reactions occurring in the ICM are responsible for 
their actuation, sensing (proprioception) and self-repairing properties. They 
involve reactive macromolecules, conformational movements, ionic exchange 
and solvent [59]. Recently it has been proposed that new reactive materials 
(most as gels) can be considered, during reactions, as biomimetic material 
models mimicking, in its simplest expression, the ICM [60,61]. They are 
available from different carbon based materials such as conducting 
polymers, porphyrines, carbon nanotubes or graphenes. When they are 
immersed in solution, they are capable of react reversibly. Such reaction 
makes them soft and wet biomimetic materials, including polymer chains 
(macromolecules), ions and solvent that reacts and changes their 
composition and properties in a continuous way for several orders of 
magnitude when the reaction evolves. This thesis is focused in the study of 
bio-mimetic proprioception (dual sensing-actuating properties) with reactive 
bio-mimetic conducting polymers. A change from dry materials which 
composition is constant to wet reactive materials would allow the 
development of more efficient systems. 

Electrochemical	reaction:	The	origin	of	biomimetic	
properties	and	devices	

The reversible oxidation/reduction reactions involving conducting polymer 
materials include reactive macromolecules, conformational reaction driven 
chain movements, ionic and solvent exchange (as in the ICM). For CPs 
exchanging anions it can be written in a very simplified version as [62]: 

      (1) 

where the different sub-indexes mean: s, solid; sol, solution; Pol* represents 
the active sites on the neutral polymer film, understood as those points on 
the conducting polymer chains where a positive charge will be present after 
removing electrons from the neutral chains during oxidation; A- represents 
the anions exchanged between the film and the electrolyte to keep the 
electroneutrality inside the material; S represents solvent molecules 
exchanged for osmotic pressure balance forming a dense polymeric gel 
(indicated by the sub index gel) and n represents either: the number of 
electrons (e-) removed from each of the polymeric chains during oxidation 
(injected during reduction) or the number of monovalent anions (A-) 

           * ox n

ms sol nred gel
Pol n A m S Pol A S ne
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penetrating from (or expelled to, during reduction) the solution to keep the 
electroneutrality in the gel. 

Other families of conducting polymers exchange cations during 
oxidation/reduction reactions [63]: 

 

           (2) 

where MA- represents any macroscopic anion (organic, polymeric or 
inorganic) trapped inside the CP material during its polymerization and C+ 
represents a cation required to balance the charge of the trapped macro-
anion. 

In both cases, the gel composition (polymer-ions-solvent relative content) is 
given at any time by the value of n (number of electrons extracted during 
oxidation). The value of n is given by the consumed charge during 
oxidation/reduction (forward/backward) reactions (1) or (2): 

           (3) 

being Q the consumed charge (C), NA=6.022x1023 mol-1 is the Avogadro’s 
constant and F is the Faraday’s constant (F=96485 C mol-1). 

Different values of n result in different gel composition that means different 
materials, each of them with different properties. The composition change is 
one, among several biomimetic properties from the CP, the value of which 
changes in a continuous and reversible way driven by reactions (1) or (2): 
composition dependent properties. Those reversible changes in the 
biomimetic properties allow the development of biomimetic actions, organs 
(biomimetic artificial devices) and other artificial devices collected by table 1 
[64].  

  

               0 n

mn n n sol metalgel gel
Pol MA C S Pol MA n C m S n e              

AN
n Q

F






Conducting	polymer	actuators:	From	basic	concepts	to	proprioceptive	systems.	

 
 

during electrochemical reactions (1) or (2). This fact can be used for the 
development of new multi-functional devices where two, or more tools, work 
simultaneously by exploiting the simultaneous change of two or more 
composition dependent properties.  Some preliminary empirical results have 
been advanced in this field as dual sensor-actuators: artificial muscles 
sensing chemical working conditions[96–100], muscles sensing thermal 
conditions[96,98,100,101], muscles sensing mechanical conditions as trailed 
masses [96,97] or the presence of obstacles giving tactile muscles[102]; Vidal 
et al. have reported the development of dual electrochromic (UV-vis or IR) 
artificial muscles [103].  

From now on this thesis will be focused on the study, control and modelling 
of the simultaneous volume (giving mechanical actuators, artificial muscles 
or polymeric motors) and the muscle potential variation (giving mechanical, 
chemical, thermal or electrical sensors) driven simultaneously by the 
electrochemical reaction, or reactions, of the CP film (or films) constituting 
the sensing-muscle. The final aim is the construction of artificial devices 
mimicking haptic muscles and one of its most fascinating properties: 
proprioception.  

Focussing now on reaction (1) reversible volume variations are originated 
and controlled by the reversible CP oxidation/reduction [similar concepts 
can be applied to reaction (2)]. The flow of an anodic current through the 
material immersed in an electrolyte originates the extraction of electrons 
from the polymeric chains generating radical-cations (polarons) along the 
chains. Electrostatic repulsion forces between neighbour polarons generate 
conformational movements of the polymeric chains getting free volume. 
Instantaneously the new volume will be occupied by counterions (A-), in 
order to keep the material electroneutrality (polaron-anion), and solvent in 
order to keep the osmotic pressure balance in the resulting dense gel. The 
final result is conformational and macroscopic volume variations driven by 
reaction (1), figure 4. Summarizing: an electronic pulse promotes an 
electrochemical reaction driving chain conformational movement, ionic and 
aqueous exchange and film volume variations.  
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field. In electromechanical actuators, the polymeric chains do not 
participate in any chemical reaction during actuation; only physical 
effects are present reorganizing the physical structure of the 
material. 

 Electrochemomechanical actuators [61,99]: they are based on reactive 
materials, as conducting polymers, which dimensions change driven 
by chemical reactions involving the polymer chains as reactants. 
Under electrochemical driven reactions the dimensional variations of 
the material are produced (and perfectly controlled) by the 
electrochemical reaction [as reactions (1) or (2)].   

This thesis is focused on electrochemomechanical actuators based on 
conducting polymers. From now on, the terms artificial muscles, actuators 
or polymeric motors refer to electrochemomechanical actuators based on 
reactions (1) or (2). The electrochemical reaction shifts simultaneously the 
magnitude of different material properties (Table 1). The development of 
simultaneous actuating and sensing properties will be here studied broadly 
in order to explore the possibility of getting and modelling dual sensing-
actuators mimicking haptic muscles. 

A conducting polymer film itself (free-standing film) is the simplest 
actuator. Electrochemical reactions (1) or (2) promote volume variations 
(along each of the three dimensions, figure 4). By focusing on the variation 
of only one of the three dimensions, linear actuators are obtained [118–121].  

In order to study and characterize the CP oxidation/reduction [reactions (1) 
or (2)] driven actuation, different electrochemical techniques such as: 
potential sweeps (cyclic voltammetry) [122–125], square potential steps 
(chronoamperometry) [122,126–128] or square current steps 
(chronopotentiometry) [129,130] have been used. Volumetric and 
dimensional variations also are being characterized by the simultaneous (to 
the electrochemical) use of different techniques as: in situ AFM [131–134], 
laser scan micrometres [135] to study thickness variations, universal 
mechanical test machines to study length variations (or strains and stresses 
produced by the polymer) [122–125,129,130], or lasers [136–138] to measure 
small displacements. 

Experimental results reveal that the reaction driven [by reactions (1) or (2)] 
volume changes depend on different factors such as: the used conducting 
polymer, the dopant [138–140], the conditions used during the CP synthesis 
[63] or the electrolyte and solvent [141] used during the actuator control, 
among others. Different strategies were used to improve the properties of 
such kind of primitive actuators as optimization of the CP synthesis 
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conditions [63], by including metal (sputtered) layers in the actuator trying 
to increase its electronic conductivity [142], by obtaining (by extrusion) 
fibres of conducting polymers [124] or covering any background fibre with a 
conducting polymer by chemical polymerization [143].  

Dimensional variations of actual linear actuators are still quite low, suitable 
for microscopic devices but not applicable to real macroscopic devices.  

One of the simplest ways to convert the small local volume changes suffered 
by the conducting polymer during reactions (1) or (2) into macroscopic 
movement is through multilayer bending structures. The simplest one is a 
bilayer structure (figure 5). The device is composed by two layers: one active 
layer (conducting polymer) changing its volume under control of the 
electrochemical reaction and a passive (non-reactive) layer keeping constant 
its volume, both properly adhered to avoid glissades, peel-off and efficiency 
loss. Thus, electrochemically induced local length variations in the active 
layer promote a stress gradient between the two layers and subsequently a 
bending motion. The direction (clockwise or anticlockwise) of the movement 
depends on the sense of the conducting polymer film length variation during 
reaction due to the prevalent ionic exchange (anions or cations). Conducting 
polymers with a prevalent exchange of anions [following reaction (1)] swell 
by oxidation, pushing the non-reactive layer towards the concave side of the 
bending motion. Conducting polymers with prevalent cation exchange 
[following reaction (2)] shrink during oxidation, pulling the non-reactive 
layer towards the convex side of the bending movement. Having the same 
relative position of the active and passive layer actuators exchanging anions 
or cations move in opposite sense (i.e. clockwise vs anticlockwise) during the 
CP oxidation. Opposite movement is attained during the active layer 
reduction in both cases: polymers exchanging anions shrink, trailing the 
non-reactive layer, while polymers exchanging cations swell pushing the 
non-reactive layer. Different passive layers have been used: commercial 
available tapes [94,95,144,145], sputtered metals [146–148], a piece of paper 
[149,150], plastic films [151] or solid electrolyte membranes [152,153].  
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Bending	beam	method	

The analogy existing between a bending artificial muscle and a solid-state 
bending beam can be used to attempt modelling the mechanical behaviour of 
bending bilayer and multilayer artificial muscles from conducting polymers 
[159,160]. 

This mechanical model assumes several characteristics related with the 
study of traditional mechanical bending beam: (I) the thickness of the beam 
is small compared to the minimum radius of curvature, (II) a linear 
relationship exists between stress and strain of the material and (III) the 
Young’s modulus, Y, and the actuation expansion coefficient of the 
conducting polymer, keep constant: they do not depend on spatial location 
inside each layer. 

The actuator curvature radius (R∞ is the radius at the equilibrium and R0 is 
the initial radius) is related to either, the Young’s modulus (Y) and the 
thicknesses (h) of the conducting and non-conductive films (indicated by 
subscripts 1 and 2 respectively), and to the volume changes locally produced 
at the interface between both films ΔVif [106,161,162]: 

 
   

if
22 2

0 1 1 2 2

1 2
1 2 1 2 1 2

61 1

4

V

R R Y h Y h
h h

YY h h h h




 


 



      (4) 

The basis of this model has been used to improve its features. 
Christophersen et al. [163] expanded the model by including strain and 
modulus variations along the direction of film thickness. Actuator’s position, 
rate of the movement and force generated by the actuator [154,164] were 
simulated and applied to the design of biomimetic device (propulsion fins) 
[165]. Du et al. [166] have developed a general model for a multilayer 
system to link the actuation strain of the actuator to the bending curvature.  

Finite	elements	method	

The finite elements methodology is a well know mathematical treatment for 
engineering designs [167] that can be applied to solve the movement of the 
artificial muscles. Alici et al. [168,169] developed a model based on a 
lumped-parameter mathematical model for actuators employing the analogy 
between thermal strain and the real strain (due to the insertion/extraction 
of ions inside the polymeric film) in polypyrrole actuators actuating in air. 
An optimization of the geometry was required, in order to obtain the greater 
output properties from a determined input voltage. Shapiro et al. [170] 
developed a two dimensional model (along a full area) to obtain curvature 
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and angular moment of the actuators. Thus, they combined the results from 
the previous method (bending beam method) with finite element method to 
attain a solution. Another example of the employment of this method was 
carried out by Gutta et al. who applied it to study the movement of a 
cylindrical ionic-polymer metal composite actuator [171]. 

Equivalent	transmission	line	model 

Electrochemical systems, as many other systems, can be studied as 
equivalent systems of a different nature. Thus, they can be studied as 
equivalent electrical circuits and electrochemomechanical actuators have 
been treated by the equivalent transmission line method. This resource is a 
practical tool due to the great number of facilities available for the study of 
electrical circuits through different steps or modules. Such treatments are 
employed by engineers and physicists, or electrochemists, in order to explain 
the claimed capacitive behaviour of CP [172–174]. Ren et al. [175] proposed 
equivalent electrical circuits to model the electron transport and electron 
transfer in composite polypyrrole-polystyrenesulfonate films based on 
Albery’s works. Fang et al. [176,177] have developed a scalable method 
including dynamic actuation performance under a given voltage input, 
joining three different modules for different aspects of the actuator: 
electrochemical dynamics, stress-generation by charge and mechanical 
dynamics. Shoa et al. [178] developed a dynamic electromechanical method 
for electrochemically driven conducting polymer actuators based on a 2-D 
impedance model using an RC transmission line equivalent circuit to predict 
the charge transfer during actuation. In addition, a mechanical model 
(based on the bending beam model) is considered after the equivalent circuit 
that simulates ion “diffusion” through the thickness and electronic 
resistance along the length [179]. If the angular movement is not linear 
along the full geometry of the actuator, the bending beam method has to be 
modified, for example for cantilever type conducting polymer actuators 
[180]. 

In order to successfully achieve the imposed requirements for the control of 
an actuator, it is possible to use one or several of the mentioned models 
[181]. 

Faradaic	behaviour	of	conducting	polymer	actuators	

Unlike the models previously exposed here, based on analogies with 
different kinds of systems, this one is based on the device electrochemical 
nature under driving reactions (1) or (2). When the flow of a constant 
electrical current, I, is imposed through a bilayer artificial muscle, the 
reaction induced volume variations in the conducting polymer promote a 
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macroscopic bending movement because strain and stress prompted across 
the bilayer interface. Gel volume and ionic gel composition (number of 
exchanges ions, equation (3)) are controlled by the number of electrons 
extracted from the neutral polymeric chains. This number of electrons 
determines the charge consumed charge during reactions (1) or (2) and, 
through the charge, equation (3),  the number of counterions exchanged to 
keep the gel electroneutrality and the number of solvent molecules 
exchanged to balance the osmotic pressure. The number of exchanged 
solvent molecules must be proportional to the ionic concentration gradient 
between the film and the solution: a linear relationship should be expected 
between the consumed charge and the volume (ions plus solvent) variation. 
That means that the same charge gradient should give the same angular 
displacement, totally independent of the fact that the charge gradient is 
applied to a neutral polymer film or to a partially oxidized polymer film. 

Empirical results corroborate the linear relationships between the described 
angle and the charge consumed by a bending bilayer artificial muscle device 
[99,182–184]: 

0 KQ              (5) 

where α is the described angle, α0 is the initial angle, Q is the consumed 
charge and K is a constant depending on the system (conducting polymer, 
electrolyte, passive polymer, attachment between layers). Equation (5) 
corroborates the Faradaic nature of bending movement in artificial muscles. 
According with the Faraday’s law the charge controls the number of 
exchanged ions and solvent molecules, thus the volume variation, the 
transversal stress gradient variation and the angular displacement. 
Equation (5) is followed by bending artificial muscles working under 
different driving currents, for different electrolyte concentrations, in 
different electrolytes, working at different temperatures for conducting 
polymers exchanging anions  or cations  during reactions [99,182,183].  

Equation (5) states that bending artificial muscles are electro-chemo-
positioning devices: any new position requiring an angular displacement α is 
attained by imposing the flow of a charge Q=α/K [185] through the muscle. 

By differentiating equation (5) a linear relationship is obtained between the 
angular rate (ω) and the applied current (i): 

 d d d dQ
KQ K Ki

dt dt dt dt

      
 
      (6) 
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Equation (6) describes that the angular rate of the bending movement is 
under linear control of the applied current. The sense of the bending 
movement can be reversed by reversing reactions (1) and (2) (from forwards 
to backwards and vice versa) changing the anodic constant current flow by a 
cathodic constant current flow. 

Equations (5) and (6) are much simpler than any of the complex equations 
attained with the rest of the models. In addition those linear equations 
describe a perfect actuation control: the rate and sense of the angular 
movement is controlled by the value of anodic or cathodic applied currents 
and the muscle relative position is full characterized by the consumed 
charge. 

In addition, those actuators are very robust and fully reproducible. The 
faradaic control persists whatever the muscle geometry or the mass of the 
active polymer working in the muscle is [182,183] and for polymers 
exchanging anions [183] or cations [99] during reaction. Thus, the 
electrochemomechanical behaviour of any artificial muscle moving in the 
same electrolyte, the muscle constituted by the same material whatever the 
geometry of the device is (shape, thickness, surface area, length, width, etc.) 
can be predicted. Experiments from only one muscle are required in order to 
obtain its electrochemomechanical characteristics (constant K from 
equations (5) or (6)), whatever its configuration, mass and shape. Once 
attained, the behaviour of different muscles can be modelled.  

Conformational	movements	suffered	by	the	polymeric	chains	
influence	the	material	electrochemical	response:	Electrochemically	
Stimulated	Conformational	Relaxation	(ESCR)	model	

Conformational movements of the constituent polymer chains driven by 
electrochemical reactions (1) or (2) are the origin of volume changes 
(actuation), figure 4. Such conformational movements in the gel promote 
during its oxidation/reduction different macroscopic basic structural 
processes: oxidation-relaxation, oxidation-swelling, reduction-shrinking, and 
reduction-packing of gels exchanging anions [reaction (1)] and oxidation-
shrinking, oxidation-compaction, reduction-relaxation and reduction 
swelling for gels exchanging cations [reaction (2)].  

During reduction, reaction (1) backwards, counterions are expelled from the 
oxidized and swollen film, under diffusion kinetic control, towards the 
solution: the gel film shrinks and the polymer chains become closer and 
closer. The average distance between neighbour polymeric chains is high 
enough to allow the diffusion of counterions and solvent molecules across 
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the polymeric gel. The reduction rate is fast, expending low energy (at low 
overpotential) under diffusion control. Going on the gel reduction, reaction 
(1) backwards, the average distance between the polymeric chains becomes, 
at the closing potential, smaller than the diameter of the moving counterion 
units (probably solvated counterions). The fast reaction rate under diffusion 
control finish and a slow reduction rate goes on, now under kinetic control of 
the slow conformational movements that allows the counterions (and 
solvent) to find its way through the rising conformational packed structure 
towards the solution. The reaction rate is much slower and consuming rising 
amounts of energy. Similar reaction induced conformational phenomena, 
named allosteric, occur in biological systems [186–188]. 

Such conformational effects influence, and were detected from, the shape of 
the gel electrochemical responses during reaction (1) [189]. The reaction 
driven conformational effects have been theoretically described by the 
Electrochemically Stimulated Conformational Relaxation (ESCR) model 
[190–202]. The transition from the faster reduction-shrinking rate, under 
diffusion kinetic control, to the slower reduction-compaction under 
conformational kinetic control is clearly visualized from the slope of the 
charge consumed during voltammetric experiments (coulovoltammetric 
responses) [200,203]. Any film begins its oxidation after reduction and 
conformational compaction by oxidation-relaxation of the packed 
conformational structure starting by relaxation-nucleation (visualized from 
electrochromic films) at those points of the film/electrolyte interface having 
a higher mobility of the chains [204,205]. 

Thus, the involved energy during the polymeric reactions includes, 
according with the ESCR model three different structural components, for 
conducting polymers exchanging anions [reaction (1)]: 

 the energy variation of the system in absence of any electric fields, 
ΔH, or electrochemical reaction as for any gel material; 

 the energy variation due to the conformational compaction by 
reduction of one mole of polymeric segments (zcηc, where zc is the 
charge consumed to compact one mole of polymeric segments and ηc is 
the applied reduction overpotential related to the closing potential) 
with expulsion of a number of balancing ions defined (Faraday’s law) 
by the consumed charge: the conformational compaction molar 
energy; 

 the energy required to relax by oxidation-nucleation one mole of 
compacted polymeric segments (zrη, zr is the charge required to relax 
one mole of polymeric segments and η is the oxidation overpotential) 
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with entrance of a number of balancing ions defined by the consumed 
charge: the conformational relaxation molar energy. 

Different experimental ways allow getting different, and each of them in a 
very reproducible way, conformational packed states of the conducting 
polymer film starting every time from an oxidized and swollen state. Rising 
conformational compacted states are obtained by gel reduction at increasing 
cathodic overpotentials (beyond the closing potential) each potential applied 
for a constant time [190,193,206,207]. Alternatively rising conformational 
compacted states, starting from the same oxidized and swollen state every 
time, are got by gel reduction at the same cathodic overpotential (enough to 
achieve the closing of the polymeric structure) applied for rising reduction 
times [201,208]. Similar results are got by submitting the gel electrode to  
potential cycles until a different cathodic potential limit every time 
[190,194,197,199]. 

Similar methodologies and concepts can be applied to those conducting 
polymer families where reaction (2) prevails, but taking into account that 
here the conformational gel structure relaxes and swells during reduction, 
shrinking and packing during the gel oxidation. In addition a new slope 
change during coulovoltammetric reduction responses has revealed the 
existence of a new reaction driven structural processes, not totally clarified 
yet [203]. 

Experimental	variables	affect	the	electrochemical	
reaction	

Among the different gel properties changing simultaneously with the gel 
composition driven by the reactions (1) or (2), table 1, here we will focus on 
the gel potential, which has allowed the development of sensors and 
biosensors [14,87–93,209–214] and the volume variation, which has led to 
the development of artificial muscles [94,95].  

In accordance with the Le Chatelier’s principle [215], any variable acting on 
a chemical reaction affects its equilibrium, modifying also the products of 
such reaction.  

In this thesis it is proposed that even outside the equilibrium (in the case of 
electrochemical devices based on conducting polymers, while a charge is 
consumed or a current is applied and the gel composition is varying) 
electrochemical reactions (1) and (2) are influenced by those experimental 
(physical and chemical) variables affecting the reaction rate. The existence 
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of this influence should be detected by different electrochemical responses 
for different values of the studied variable. So if any experimental variable 
affecting electrochemical reactions (1) or (2) is changed, a new and different 
electrochemical response should be expected. 

In this way, previous empirical results corroborate that, submitted to a 
constant current flow from the same initial oxidation level to the same final 
(different from the first one) oxidation level, the evolution of the gel 
potential or that of the consumed electrical energy change for different 
values of the working variables: temperature, electrolyte concentration, 
different salts, different solvents or mechanical conditions [216–220]. 
Similar results were got from films of carbon nanotubes or graphene [221–
224]. The most important empirical results related to this thesis is that the 
muscle potential evolution and the consumed electrical energy evolution 
during bilayer or trilayer muscles actuation sense, while moving, the 
influence of the same physical and chemical variables, giving sensing and 
tactile artificial muscles. The dual actuating-sensing property is observed 
from artificial muscles constituted by both families of conducting polymers: 
exchanging anions or cations [96,98,99,101,102]. Using the experimental 
setup shown in figure 5 the muscle potential response is recorded while a 
current is applied to the artificial muscle, producing a mechanical work. 
Under flow of a constant current (constant reaction rate) the achieved 
potential evolution is lower when a variable favouring the electrochemical 
reaction increases. This is the case for temperature [96,98–101] or 
electrolyte concentration [96–99,225]. On the other hand, the potential 
evolution shifts to higher values for rising values of those variables 
retarding the reaction rate (it needs more energy to happen): the muscle 
moves higher masses [99] or moving faster the same mass by applying now 
rising currents [98,100,184]. When a free muscle moves driven by a constant 
current and finds an obstacle in his way, the potential steps to higher values 
at the touching time: more electrical energy is required to move the obstacle. 
The potential increment reveals both, the obstacle contact time and the 
opposed mechanical resistance. If the muscle can develop a higher energy 
the obstacle is shifted. Related to this property, artificial muscles with 
tactile sensitivity have been developed [102]. 

Being the potential evolution a sensor of the working variables, the 
electrical energy (U) consumed by the device during actuation and obtained 
by integration:  

     U t E t I t dt           (7) 
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These proprioceptive properties are here studied deeply, studying new 
systems that present such properties and developing a model able to explain 
and quantitatively describe them. 
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Experimental	

Here, general experimental procedures used in most of the publications 
included in this thesis are presented. Specific experimental procedures will 
be developed in each of the involved publications, as specified by the 
regulations (Artículo 33 del Reglamento de estudios oficiales de máster y 
doctorado de la Universidad Politécnica de Cartagena, aprobado por Consejo 
de Gobierno el 13 de abril de 2011 y modificado en Consejo de Gobierno el 11 
de julio de 2012). 

Materials	

Pyrrole (Fluka or Sigma-Aldrich) and Aniline (Fluka) were purified before 
use by distillation at constant temperature (38 ºC) under vacuum using a 
diaphragm vacuum pump MZ 2C SCHOTT and stored at -10 ºC. 

Anhydrous lithium perchlorate salt LiClO4 (Aldrich), trisodium phosphate 
12-hydrate Na3PO4·12H2O (Panreac), disodium hydrogen phosphate 12-
hydrate Na2HPO4·12H2O (Panreac), sodium peroxodisulphate Na2S2O8 
(Panreac), sodium chloride NaCl (Panreac, Aldrich or Merck), sodium 
perchlorate NaClO4 (Sigma-Aldrich), sodium carbonate Na2CO3 (Merck), 
sodium nitrate NaNO3 (Merck), sodium iodide NaI (Sigma), polyurethane 
(Aldrich, average molecular weight of 1.2x105 g mol-1), ferric chloride 
(Aldrich), Lithium trifluoromethanesulfonate LiTFMS (Aldrich), silk fibroin 
meshes (provided by the Instituto Murciano de Investigación y Desarrollo 
Agrario, IMIDA), Ammonium persulfate APS (Fluka), Methane Sulfonic 
Acid MSA (Sigma-Aldrich), Lithium Bromide LiBr (Acros Organics) and 
sodium dodecylbenzenesulfonate NaDBS (Aldrich, Sigma or TCI Europe) 
were used as received. 

Acetonitrile (Panreac, HPLC grade), Hexafluoroisopropanol (Sigma) and 
Ethanol (Panreac) were used as received. Ultrapure water was obtained 
from Millipore Milli-Q equipment. 
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gradient at the WE/electrolyte interface. Through this electrode there is not 
current flow. 

Thick polypyrrole films were used in this thesis. For their electrogeneration, 
three stainless steel electrodes having a surface area of 6 cm2 were used, one 
of them as working electrode and the other two as counterelectrodes (in 
shortcut). The working electrode was placed in the middle of the 
counterelectrodes and parallel with them, separated by 1 cm, in order to 
create a uniform electric field over the working electrode during current 
flow. Typically, the electrogeneration was carried out from a 0.2 M pyrrole 
and 0.1 M LiClO4 acetonitrile solution having 1% water content. The films 
were electrodeposited by consecutive square potential waves from -0.322 V, 
kept for 2 s, to 0.872 V, kept for 8 s for the time required to achieve the 
desired polymerization charge (oxidation minus reduction charge). 
Consumption of different polymerization charges promotes the generation of 
conducting polymer films with different thicknesses. In the different works 
presented in this thesis, different charges were used (see each of the papers 
for the specific details) attaining films of different thicknesses. Results are 
very reproducible: by consumption of the same charge under the same 
electrochemical conditions the attained films have the same physical 
(thickness, mass, conductivity) and electrochemical (involved charge during 
oxidation/reduction reactions) properties. Once the electrogeneration was 
ended, the films were reduced at -0.322 V for 300 s, and next dried in air. 

Construction	of	actuators	(Bilayers)	

Bilayer actuators were always constructed from electrochemically generated 
polypyrrole (Figure 10a) through the same steps: 

1. The electrode borders of the electrogenerated polypyrrole film on the 
steel electrode are scraped (Figure 10b). The polypyrrole film is 
removed from the steel background electrode with help of a plane 
sharp surface (Figure 10c) to get the free-standing conducting 
polymer film (Figure 10d).  

2. Longitudinal strips are cut (Figure 10e) from the self-supported 
conducting polymer film, with the desired dimensions (Figure 10f). 
Each film is weighed and its dimensions are determined. One of those 
strips is used as the working electrode for some of the papers included 
in this thesis: the electrical connection is produced through a metal 
clamp at the electrode top (step 5) and a transversal strip is painted 
below the clamp (step 6) in order to avoid direct contact between the 
clamp and the electrolyte by capillarity. This self-supported 
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conducting polymer film is used as the working electrode by 
immersion in the electrolyte, the transversal painted strip remaining 
above the electrolyte border.   

3. One of the polypyrrole free-standing film strips is adhered to a 
flexible thin commercial tape (Figure 10g) by applying mechanical 
pressure with a cylindrical dipstick (Figure 10h) to guarantee the 
proper attachment. Any tape can be used as passive layer, but 
choosing a proper tape (as much flexibility as possible, with lower 
mass and stickier as possible) allows getting bigger displacements.  

4. To cut the uncovered borders of the tape (Figure 10i) and to remove 
the rest of the non-attached parts (Figure 10j) getting a bilayer 
artificial muscle (Figure 10k). 

5. To ensure with a metallic clamp the electrical contact between the 
bilayer artificial muscle and the electrical pulses generator 
(potentiostat-galvanostat) (Figure 10l). 

6. To paint a transversal strip around the bilayer artificial muscle and 
below the clamp in order to avoid the electrolyte ascension by 
capillarity, its direct contact with the metallic clamp and its 
electrochemical reactions (Figure 10m). The selected paint must be 
insoluble in the cell electrolyte. Here, nail paint soluble in acetone 
was used. Let the paint dry. 

7. To set the electrochemical cell for the experiments (Figure 10n), 
including a reference electrode to set a reference for the potential and 
a counter electrode to close the electrical circuit, see electrochemical 
characterization section.  
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characteristic of their structure, related with the strength of their bonds. 
When a molecule is under influence of an electromagnetic light having a 
specific frequency (the same of a vibrational frequency of a chemical bond in 
the molecule), absorption is observed at the concomitant frequency.  

By using this technique, it is possible to analyse and identify macroscopic or 
microscopic samples with very high accuracy and selectivity without 
destroying the sample in only a few minutes.  

For the experiments performed during this thesis, attenuated total 
reflectance (ATR) accessory was used. It allows characterizing solid or liquid 
samples without further preparation (also polymeric gels). In this case, the 
infrared beam is directed onto an optically dense crystal with a high 
refractive index at a certain angle. The beam, once reflected, arrives to the 
sample (in contact with such dense crystal) and absorption bands are 
observed at the vibrational frequency of the polymeric bonds. 

During this thesis, a Nicolet 5700 FTIR spectrometer (Thermo Electron 
Corporation) with smart orbit accessories (ATR technology) was used for the 
characterization of the different materials. 

Scanning	electron	microscope	(SEM)	

The scanning electron microscope is also a widely used technique nowadays 
[228]. 

A scanning electron microscope is a kind of microscope that produces images 
of a sample by scanning it with a focused beam of electrons. In such 
microscopes, the electrons are accelerated in the presence of an electric field. 
Once properly accelerated, the electrons are directed to the sample and 
interact with its atoms. Such interactions promote changes in the electrons 
that can be detected by the microscope. 

During this thesis a Scanning Electron Microscope Hitachi S-3500 was used 
for the characterization of the different materials. 

Electrochemical	characterization	

Electrochemical reactions (1) or (2) can be promoted through different ways: 
applying a potential difference between the working electrode and the 
reference electrode which induces a current flow to achieve a new 
equilibrium state (such current flow changes the polymeric gel composition 
and properties to a new specific oxidation/reduction state); or applying a 
current between the working electrode and the counterelectrode promoting 
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a variation in the potential of the working electrode (compared with the 
reference electrode) promoting the variation of the gel composition at a 
controlled rate. 

Different electrochemical techniques such as cyclic voltammetry, 
chronoamperometry and chronopotentiometry were used for the 
experiments presented in this thesis. 

Cyclic	voltammetry	

Using this technique, a potential sweep between a cathodic potential limit 
(most negative potential set for the experiment) and an anodic potential 
limit (most positive potential set for the experiment) is applied. The 
potential is varied at a constant rate. Once a potential limit is achieved, the 
potential sweep goes on in the opposite way to the other potential limit at 
the same rate (symmetrical triangular potential wave), figure 11a. This is 
repeated as many times as necessary. 

During the potential sweep, the current flowing at any time is recorded, 
figure 11b, and usually presented as a function of the applied potential. The 
current recorded during both, anodic (from the cathodic potential limit to 
the anodic one) and cathodic (from the anodic potential limit to the cathodic 
one) sweeps are usually presented over the same potential axes giving, in 
many cases (when the study is in the steady state) a closed loop, figure 11c.  
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Figure 11: Cyclic voltammetry. (a) Symmetrical triangular potential wave applied to the 
working electrode. (b) Measured current when the potential wave in (a) is applied. (c) Cyclic 
voltammogram. 

Coulovoltammetry	

This technique is based on results from the previous one (cyclic 
voltammetry). It consists of the study of the consumed charge during the 
potential sweeps. It is possible to get the consumed charge directly 
integrating the current from the voltammetric results (figure 11b): 

         (9) 

where Q is the consumed charge, t is the elapsed time and i is the current. 

However, it is not usual to have these results but rather the voltammogram 
(figure 12a). In order to get the consumed charge directly from the 
voltammogram, it is of interest to consider the relationship between time 
and potential, E(t): 

  iniE t E t            (10) 

 with Eini the initial potential, t the elapsed time and ν the scan rate. 
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         (11) 

Thus, from equations (9) and (11) it is possible to obtain the consumed 
charge (coulovoltammogram, figure 12b) during the voltammetric 
experiment just numerically integrating the voltammogram and dividing 
the result by the scan rate. 

 

Figure 12: Coulovoltammetry. (a) Cyclic voltammogram. (b) Coulovoltammogram. 

Chronoamperometry	

This electrochemical technique consists of applying a constant potential to 
the working electrode (referred to the reference electrode) during a constant 
time. In this thesis this time it is usually enough to achieve a very low 
current (the material has achieved a stationary oxidation/reduction state). 
Once the specified time is elapsed, the potential difference between the 
reference electrode and the working electrode is stepped to a new value, 
figure 13a. The number of steps can be different every time. While the 
potential steps, the current flow is recorded and presented versus the 
elapsed time as the result of the chronoamperometric experiment, figure 
13b. 
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Figure 13: Chronoamperometry. (a) Potential applied to the working electrode (referred to 
the reference electrode). (b) Measured current flowing through the working electrode during 
potential steps shown in (a). 

Chronopotentiometry	

When instead of applying square potential waves, square current waves are 
applied, it is called chronopotentiometry. A constant current is passed 
through the working electrode during a constant time and then step the 
current to a different value. During current flow the potential evolution 
between the working electrode and the reference electrode is recorded. In 
this thesis a constant current, I, through the electrode during a time, t, 
needed to consume a fixed value of charge, Q has been fixed. Such time can 
be calculated from the current definition, equation (9): 

         (12) 

Once such value of charge had been consumed, the same current during the 
same time was passed through the electrode, but into the reverse direction 
so a square current wave was applied to the working electrode, so as the 
same charge was consumed during oxidation and reduction processes, the 
same initial and final oxidation/reduction (same composition of the 
polymeric gel) is attained. Such square current wave can be repeated as 
many times as needed, figure 14a. The potential evolution (referred to the 
reference electrode) is measured and presented versus the elapsed time, 
figure 14b. 
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Figure 14: Chronopotentiometry. (a) Applied current versus time. (b) Measured potential 
evolution versus time when current from (a) was applied. 

Mechanical	characterization	of	the	actuators	

Some techniques have been used to characterize the mechanical properties 
of the actuators such as their movement, the force produced or the volume 
variations in the conducting polymer itself. The technique most used during 
this thesis was the video recording of the movement of actuators during 
electrochemical experiments. The other techniques will be developed in each 
of the articles where used. 

Video	recording	of	actuators’	movement	

Usually, the movement of bilayer actuators during electrochemical 
experiments already mentioned was video recorded employing a video 
camera EVI-D31/B (Sony) connected to a computer through a Matrox 
Meteor II video acquisition card controlled by home-made software [229]. 
Such software is able to get an image every second, so it is possible to relate 
every acquired frame with the moment of the experiment, with the 
subsequent video and electrochemical results relationships. 

Different angles were measured between the horizontal line between the 
electrolyte border and the line joining the actuator end and the actuator 
contact with solution as indicated in figure 15. 
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Publications	

The results of this thesis have been published in different international 
journals. Among those papers the most significant for the objectives have 
been selected for this thesis. Now an abstract of those papers with some 
specific experimental details and the most significant scientific 
achievements attained, in the context of the general aims of this thesis, will 
be presented.  

	‘Biomimetic	electrochemistry	from	conducting	polymers.	
A	review.	Artificial	muscles,	smart	membranes,	smart	
drug	delivery	and	computer/neuron	interfaces’		

Toribio F. Otero, Jose G. Martinez and Joaquin Arias-Pardilla.  

Published in Electrochimica Acta, year 2012, volume 84, pages 112-128. 
(IF: 4.086, Q1 in Electrochemistry). 

Experimental		

No new experimental work was performed for this work. 

Results	and	achievements	

This paper is a review. A careful revision of the state-of-the-art in basic 
electrochemistry of conducting polymers and their main applications as soft, 
wet and reactive materials was performed, fulfilling the first of the 
objectives of this thesis.  

Electrochemical reactions (1) and (2) presented in the introduction part and 
similar for different conducting polymers based materials with different 
doping mechanisms and processes involved were reviewed here. Each 
electron extracted from the polymeric chains promotes a new polymeric gel 
with a new composition (counterions and solvent content). Such reaction 
driven composition changes originate parallel changes in some composition 
dependent properties of the conducting polymer materials. Changes in 
volume, colour, stored charge, porosity or permselectivity, stored chemicals, 
wettability and so on open the way to new applications mimicking similar 
property changes in organs from living beings. They are reversible, allowing 
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the construction of electrochemical devices mimicking biological processes in 
cells. 

The change under electrochemical control of each of those properties is 
being exploited to develop several biomimetic reactive and soft devices. 
Here, the revision was focused on artificial muscles (sensing-actuators) 
including models and developed applications, smart membranes, smart drug 
delivery systems and computer/neuron interfaces, and their ability to sense 
surroundings during actuation as corresponds to the main aim of this thesis. 
Working under constant current (driving signal), the evolution of the device 
potential or the evolution of the consumed electrical energy (sensing signals) 
gives quantitative information about (senses) any experimental variable 
acting on the reaction rate.  

Examples of the tools and products, start-up companies, increasing 
evolution of the scientific literature and patents and scientific and 
technological challenges are also considered. 

	‘Artificial	Muscles:	A	Tool	To	Quantify	Exchanged	Solvent	
During	Biomimetic	Reactions’	

Toribio F. Otero and Jose G. Martinez.  

Published in Chemistry of Materials, year 2012, volume 24, pages 4093-
4099. (IF=8.535, Q1 in ‘Materials science, Multidisciplinary’ and ‘Chemistry, 
Physical’). 

Experimental	

The go and back described angle (the bending movement was video 
recorded) from bilayer (polypyrrole/tape) artificial muscles submitted to 
square current waves immersed in electrolytes containing the same cation 
(Na+) and different anions (Cl-, I-, NO3-, ClO4-, S2O82-, HPO42- and PO43-) was 
studied.  

In order to get a good reproducibility and comparable results from different 
muscles the mass of each polypyrrole film was obtained using a balance 
with a precision of 10-6 g. The electroactive polypyrrole mass, (mPPy)active, 
below the paint strip inside the solution was estimated from the total mass 
of the reduced film, (mPPy)film, the length of the film, lfilm, and the length of 
active (immersed) film, lactive below the paint strip inside the solution: 
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        (13) 

The reproducibility of the experiments from different muscles was 
characterized in 0.5 M NaClO4 through five consecutive potential cycles 
between -0.7 V and 0.5 V vs Ag/AgCl at 10 mV s-1 to ensure stationary 
voltammetric responses. The charges consumed during the full cyclic 
voltammetry were directly attained from GPES software and the specific 
charge (by unit of mass, equation (13)) was calculated. When the specific 
charge differs over 5% from that of the reference muscle, the bilayer was 
discarded and a new one was employed to go on the experiments. Thus a 
reproducible electroactivity between each of the studied muscles was 
ensured. 

In addition a good reproducibility (< 8%) was corroborated for the amplitude 
of the bending movement under consumption of constant anodic and 
cathodic specific charges of 25 mC mg-1, by flow of a constant current of 1 
mA mg-1 during 25 s, through the bilayer artificial muscles. For larger 
deviations the bilayer was discarded and substituted by a fresh one to go on 
with the experiments. 

Once the reproducibility (electroactivity and actuation) was guaranteed, the 
amplitude of the bending movement by consumption of the same anodic and 
cathodic specific charges was determined in aqueous solutions of different 
salts (NaCl, NaI, NaNO3, NaClO4, Na2S2O8, Na2HPO4, Na3PO4) while 
recording the concomitant chronopotentiometric responses. 

After characterization of the muscle bending movement in each of the 
studied electrolytes, the electrochemomechanical reproducibility of the 
bilayer was checked in the reference electrolyte (NaClO4) by cyclic 
voltammetry. If both, the bilayer voltammetric response (peak current and 
oxidation or reduction charges) and described angle deviation, related to the 
previous controls, differ less than 5% from those of the previous controls, the 
same muscle was used for the study of a new electrolyte. When the 
difference was greater than 5 % a new actuator was prepared and its 
reproducibility was checked to go on with the experimental series. 

Results	and	achievements	

In this work, bilayer artificial muscles are used as a tool to determine the 
number of solvent molecules exchanged during biomimetic reaction (1) per 
unit of charge involved. The solvent exchange plays an important role 
during actuation of artificial muscles based on conducting polymers, as a 
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With the number of exchanged ions, N, the change of volume in the CP film 
required to lodge those counterions is attained using the crystallographic 
ionic volume, Vion: 

          (15) 

Nevertheless volume variations due to the ionic exchanges cannot explain 
the experimental angles described by actuation of the same bilayers in 
different electrolytes (different values of K) consuming the same specific 
charge. A parallel exchange of water (solvent) molecules (different in each 
electrolyte) is required to explain the empirical results. Under this 
assumption the relative number of solvent molecules, n’, can by calculated 
from the experimental described angle and the volume variation due to the 
exchange of N counterions, taking as reference the electrolyte showing the 
lowest angular displacement, Cl- here:  

 
 

2

'

x
Cl

H O

anion V
V

Cl z
n

V







 
        (16) 

where α(anion) is the angular displacement in a specific electrolyte, α(Cl) is 
the described angle in the reference electrolyte (NaCl), VCl is the Cl- 
crystallographic volume, Vx is the crystallographic volume of the counterion 
present in the studied solution, and VH2O is the volume of the solvent 
molecule (water in this case). 

Thus, the number of solvent molecules exchanged between the polymeric 
membrane and the electrolyte at the same time that each counterion 
(apparent solvation number) or when an electron was extracted from the 
polymer chains (apparent hydration number) during reaction was calculated 
for the different electrolytes. The highest number of exchanged water 
molecules per ion was attained for the electrolyte showing the largest 
angular displacement for the same consumed charge, NaNO3 that 
exchanged 4.91 water molecules per anion, followed by Na2HPO4 (3.22 water 
molecules per anion), Na3PO4 (1.47 water molecules per anion), NaClO4 
(1.07 water molecules per anion), NaI (0.71 water molecules per anion), 
Na2S2O8 (0.16 water molecules per anion) and NaCl (0.00 water molecules 
per anion).  

During actuation the chemical nature of the film changes and the 
intermolecular forces between the different chemical species in the CP film 
change. The attained results constitute the basis for the accumulation of 
experimental results for future modelling of the variation of the 

ionV NV 
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intermolecular forces (polymer-polymer, polymer-solvent, polymer-anion, 
anion-solvent, cation-polymer, and cation-solvent) inside a polymeric film 
along reaction (1). Developed models could be extended to similar biological 
processes originating health and diseases. 

	‘Ionic	exchanges,	structural	movements	and	driven	
reactions	in	conducting	polymers	from	bending	artificial	
muscles’	

Toribio F. Otero and Jose G. Martinez.  

Published in Sensors and Actuators B: Chemical, year 2014, volume 
199, pages 27-30. (IF=3.840, Q1 in ‘Chemistry, analytical’, ‘Electrochemistry’ 
and ‘Instruments & instrumentation’). 

Experimental	

Free-standing polypyrrole films and bilayer (polypyrrole/tape) artificial 
muscles were attained as stated in the experimental part. Length variations 
suffered by free-standing polypyrrole films were obtained, under constant 
load, by using a universal test frame machine, MTS Qtest, with a special 
electrochemical cell designed and developed in our own laboratory. It allows 
in-situ characterization of the mechanical response (length variation) from 
films immersed in solution during oxidation/reduction processes [129,130],  
figure 17. The polypyrrole film, under a constant force of 0.1 N, was oxidized 
and reduced in 0.1 M LiClO4 aqueous solution by imposing the flow of five 
consecutive square current waves (±0.4 mA) following, simultaneously, film 
length variations. The original dimensions of the polypyrrole film in absence 
of any applied load were 7.32 mm x 1.94 mm x 34 μm. 
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From that point of view the bending movement from a bilayer (PPy/tape) 
muscle gives a very large amplitude of the bending movement during a 
similar electrochemical experiment. This reversible bending movement was 
video recorded during potential cycles from a very high cathodic potential 
limit (-2.5 V vs Ag/AgCl) until an anodic potential limit of 1.0 V at a scan 
rate of 5 mV s-1. Simultaneously voltammetric and coulovoltammetric 
responses from the muscles were recorded. From the coulovoltammetric 
results and the angle described by the muscle at each potential the coulo-
dynamic responses were attained. 

The closed loop coulovoltammetric response indicates that only reversible 
PPy oxidation/reduction processes are present. The film volume decrease 
driven by consumption of reduction charges is present in the full studied 
potential range: from the coulovoltammetric maximum, going to -2.5 V and 
at the beginning of the anodic sweep until the coulovoltammetric minimum. 
The film volume increase driven by consumption of oxidation charges is 
present between the coulovoltammetric minimum and its maximum. If  
irreversible reactions, such as hydrogen release, are present: the 
coulovoltammetric response would show open parts. These results point to 
reaction (1) with exchange of anions as origin of the observed movements.  

Abrupt slope changes are observed from the coulovoltammograms during 
both oxidation and reduction processes. The slope represents the reaction 
rate and changes of the reduction reaction rate mean the presence of a new 
structural change in the film driven by the reaction. Through such changes 
it is possible to study the different structural processes affecting the 
electrochemical responses [235] that can be explained through the ESCR 
model. At the coulovoltammetric maximum the PPy film presents an open 
and swollen structure. Going through the cathodic potential sweep a fast 
reduction-shrinking is observed. Around -0.75 V vs Ag/AgCl, the slope 
changes to a slower reduction rate: the distance between polymeric chains 
has decreased during reduction-shrinking and now free space between 
chains is too low to allow the free expulsion of the counterions and solvent 
(the closing potential), and the expulsion of counterions by film reduction-
conformational compaction goes on more slowly under conformational 
kinetic control. During oxidation, at the beginning the polymer opens its 
structure (oxidation-relaxation) and then it is oxidized faster (oxidation-
swelling) until the coulovoltammetric maximum. 

The coulodynamic responses corroborate both, the faradaic nature of the 
bending movement and that reaction (1) drives the exchange of anions in 
the full studied potential range. Those results contradict some results 
published for Electrochemical Quartz Crystal Microbalance (EQCM) 
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[86,219,230–234] indicating the presence of cation exchanges at the most 
cathodic potential limits. The presence of a metal between the PPy film and 
the quartz crystal originate hydrogen evolution in that region.   

Summarizing coulovoltammetric and coulodynamic responses are excellent 
tools to clarify and quantify ionic exchanges, structural reaction driven 
processes and the Faradaic nature of the polymeric motor driven by reaction 
(1). 

‘Structural	Electrochemistry:	Conductivities	and	Ionic	
Content	from	Rising	Reduced	Polypyrrole	Films’	

Toribio F. Otero and Jose G. Martinez. 

Published in Advanced Functional Materials, year 2014, volume 24, 
pages 1259-1264. (IF=10.439, Q1 in ‘Materials science, multidisciplinary’, 
‘Nanoscience & nanotechnology’, ‘Physics, applied’, ‘Chemistry, 
multidisciplinary’, ‘Chemistry, physical’ and ‘Physics, condensed matter’). 

Experimental	

Polypyrrole-Dodecylbenzenesulfonate (PPy-DBS) films were prepared at 
room temperature (20±2ºC) in dark conditions in a one-compartment 
electrochemical cell using 50 mL of an aqueous solution containing 0.2 M 
dodecylbenzenesulfonic acid and 0.2 M pyrrole monomer. The working 
electrode was a stainless steel plate having a surface area of 10 cm2 on each 
side. Deposition was performed on both sides of the immersed part of the 
electrode having an area of 6.6 cm2 on each side. Two large stainless steel 
electrodes having an area of 13.75 cm2 were used as counterelectrodes. They 
were symmetrically placed at a distance of 1 cm from the working electrode 
to obtain a uniform electric field. A standard Ag/AgCl (3M KCl) electrode 
from Metrohm® was used as reference electrode. The PPy-DBS film was 
electrogenerated by applying a constant anodic current density of 0.75 mA 
cm-2 for 100 minutes. 

Free-standing polypyrrole films synthesised as described above in the 
general experimental part and free-standing PPy-DBS films were cut in 
narrow longitudinal strips getting several working electrodes from the same 
pristine film. Each self-supported electrode was submitted to consecutive 
potential sweeps. After attaining steady state voltammetric response the 
last potential sweep was stopped at a different potential for each of the 
studied films in order to get a different redox state (ionic composition) of 
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electrode. The higher expected concentrations correspond to oxidized 
polypyrrole (PPy), according with reaction (1), or to the reduced polypyrrole-
dodecylbenzenesulfonate (PPy-DBS), according with reaction (2): The lower 
expected ionic concentrations should correspond to the most reduced and 
conformational packed state: PPy film after reduction up to the cathodic 
potential limit and PPy-DBS films after oxidation up to the anodic potential 
limit.  Two intermediate redox states were also attained for each of the 
materials. 

Each of the films, after water rinsing and drying, was analysed by Energy 
Dispersive X-ray Spectroscopy (EDX) at the SEM microscope. When 
electrons interact with atoms from the sample, they produce specific X-rays. 
EDX is based on the separation and analysis of such X-rays allowing the 
detection and relative quantification of the different sample elements. EDX 
is a semi-quantitative technique which is able to detect the presence of the 
different elements in each of the prepared samples and its relative content.  

A Bruker AXS Microanalysis probe located in the previously mentioned 
scanning electron microscope (SEM-Hitachi S-3500N) was used with this 
aim. 

The solid-state electronic conductivity of the different samples was also 
determined. Measurements were performed using an Agilent digital 
multimetre attached to a computer allowing to record I-E curves controlled 
by home-made software, having a precision of 1 picoampere. Each sample 
was washed with ultrapure water, dried and kept in dry nitrogen 
atmosphere in order to avoid its oxidation by the air oxygen. Conductivity 
measurements were performed in a glove box (MBraum) containing less 
than 1.2 parts per million of oxygen. The two points methodology was used, 
following the evolution of the current as a function of the applied potential 
gradient ranging between – 5 V and + 5 V. These measurements were 
performed at the ‘Instituto de Ciencia Molecular’ (IcMol) in Valencia, where 
the equipment is set and used every day.  

Results	and	achievements	

As stated in the previous paper, ionic exchanges during redox reaction (1) 
determine the actuating properties of the conducting polymer materials. 
This paper tries to verify the ionic composition changes there described by 
the coulodynamic responses. On the other hand different models from the 
literature are trying to explain the evolution of the electronic conductivity 
and ionic content in conducting polymers as a function of the oxidation 
state. The conducting-insulator transition model and the percolation model 
[236–257] claim the full reduction of every polymeric chain taking part at 
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reaction (1) describes the only oxidation/reduction reactions occurring in the 
film. In addition, it was not possible getting a deep reduced PPy film free of 
counterions.  

Parallel electronic conductivities (measured in absence of oxygen to avoid 
oxidation in air) show decreasing values from rising reduced and 
conformational packed states. Samples reduced at -1.5V for 30 minutes still 
present a relatively high conductivity (0.0025 S cm-1) according with the 
content of counterions and balanced polarons. Those conductivities are far 
from the insulator state expected from the conducting-insulator transition 
or the percolation models. 

A similar study was repeated for PPy-DBS films that are expected to follow 
reaction (2), thus exchanging cations during redox reactions. In this case 
each PPy-DBS film was submitted to two consecutive voltammetric cycles in 
0.1 M NaCl aqueous solutions at 1 mV s-1 between -1.50 and 0.65 V vs 
Ag/AgCl. During the second cathodic potential sweep, the potential was 
stopped at a different potential for every film: -1.50 (reduced and swollen 
material), -0.50 V (closing potential), or 0.50 V (oxidized and packed 
material). A more oxidized state was attained using a different film by 
keeping the final potential of 0.50 V for 30 minutes. EDX results show 
increasing concentrations of Na+ for deeper reduced films, corroborating the 
entrance of cations during film reduction as expected from reaction (2). 
Nevertheless, after the closing potential, now taking place at anodic 
potentials, increasing amounts of Cl- are detected in deep oxidized (and 
supposedly packed) films. A mixed exchange of the ions present in solution 
(anions and cations) for the material at high oxidized states (the more 
packed states) is observed. Such detected anions does not influence the 
movement of bilayers [184]. Probably they are exchanged to compensate 
positive charges on deep oxidized PPy chains not compensated by DBS-.  

Again, the conductivity of these films was in the range of semiconductors 
and conductors for the different studied states (from 0.36 to 12.35 S cm-1). In 
this case, after oxidation at 0.5 V for 30 min. the conductivity decreases up 
to 5.10 S cm-1 indicating that a partial polymeric degradation (overoxidation) 
occurred during this polarization [260,261]. The attained values for the 
electronic conductivity are always in the conductor-semiconductor range 
allowing the subsequent re-oxidation of the film without any requirement of 
a back metal support in solution. 

In both materials experimental conductivities and the ionic content were far 
from the expected for an insulator material. Thus, even for very reduced 
films, the conductivity is high enough to support currents of tenths of mA 
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cm-2. Consequently, free-standing polypyrrole films can support consecutive 
oxidation/reduction cycles. After reduction at high cathodic potentials the 
conductivity of the material is high enough to allow its re-oxidation not 
requiring any back metal inside the solution to support this electronic 
conductivity.  

Thus, here it was clarified how both, the ionic content and conductivity in 
the polymeric gel changes along the different redox states during actuation 
according with reactions (1) or (2). 

	‘Effect	of	the	Electrolyte	Concentration	and	Substrate	on	
Conducting	Polymer	Actuators’	

Jose G. Martinez, Toribio F. Otero and Edwin W. H. Jager.  

Published in Langmuir, year 2014, volume 30, pages 3894-3904. (IF=4.384, 
Q1 in ‘Materials science, multidisciplinary’, ‘Chemistry, multidisciplinary’ 
and ‘Chemistry, physical’). 

Experimental	

The influence of the presence of a metallic background and the electrolyte 
concentration  on the actuating properties in conducting polymers has been 
studied employing a novel equipment recently developed at Linköping 
University (LiU) [135].  

Sodium chloride (NaCl, from Merck) and Sodium dodecylbenzenesulfonate 
(NaDBS, from TCI Europe for electrogeneration and Aldrich for 
characterization) were used as received. Pyrrole (Sigma-Aldrich) was 
distilled before use under vacuum and stored at -18 ⁰C in the refrigerator 
under nitrogen atmosphere. Ultrapure water was obtained from Millipore 
Milli-Q equipment. 

Gold (Ø 0.5 mm) and platinum (Ø 1 mm) wires from Good-fellow were used 
as the working electrodes. The wires were electrically insulated with an 
electrically insulating heat-shrink polymer, but letting a length of 10 mm in 
the middle of the wire uncoated. Each of those wires was used for the 
polypyrrole electrodeposition. The counter electrode was a cylindrical gold 
coated plastic film, ensuring a uniform electrical field around the working 
electrode and thus a uniform polypyrrole coating. The gold counter electrode 
was constructed by first depositing a chromium layer, 3 nm thick, onto an 
acetate sheet. On this adhesion layer a gold film, 200 nm thick, was then 
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deposited. This flexible material was cut into the right shape to fit the 
electrochemical cell. 

For the electrogeneration, a cylindrical electrochemical cell with a diameter 
of 2 cm was used. The working electrode was set in the centre of the cell, 
surrounded by the counter electrode. A silver/silver chloride (Ag/AgCl) 
electrode from BASi was used as the reference electrode located very close to 
the upper part of the working electrode. Every potential in this work is 
referenced to this electrode. The PPy-DBS coating was obtained in 8 mL of 
0.1 M NaDBS and 0.1 M pyrrole aqueous solution by applying a constant 
potential of 0.55 V versus Ag/AgCl, during the time required to consume a 
constant charge of 140 mC. The procedure was repeated obtaining 
reproducible films: 6.12±1.08 µm thick and 0.23±0.06 mg on gold and 
3.12±0.51 µm thick and 0.21±0.03 mg on platinum. 

After generation the coated electrode was immersed in water during 20 
seconds and then was dried for 3 minutes in air. The thickness of the 
polymer films were determined by difference between the diameter of the 
coated and uncoated wire, both measured with a Laser Scan Micrometre 
(LSM), keeping the position of the electrode constant. Then the polypyrrole 
coated electrode was weighed and the PPy-DBS mass was obtained by mass 
difference between coated and uncoated electrode using a Sartorious 
BP210D balance (precision 10-5 g). 

The electrochemical characterization and parallel determination of the 
induced dimensional variations, i.e. the expansion of the PPy-DBS layer, 
was performed in a transparent plastic cell of 50 mL with a rectangular 
cross-section. A flat and rectangular platinized titanium electrode was used 
as counter electrode. The reference electrolyte was 0.1 M NaDBS aqueous 
solution (NaCl aqueous solutions were used for the study of different 
electrolyte concentrations), which was filtrated through a 0.2 µm filter to 
remove any potential particulate matter than could interfere with the LSM. 

The LSM used here is from Mitutoyo (Mitutoyo LSM-501H) controlled 
through a display unit (Mitutoyo LSM-6100). From these diameter 
variations the diametrical (out-of-plane or perpendicular) expansion and 
strain of the conducting polymer could be calculated with a precision of 0.1 
μm. To obtain dynamic measurements, the output signal of the LSM 
(diameter of the working electrode) was fed to the potentiostat-galvanostat 
(for this work, Autolab PGSTAT-20) allowing a simultaneous record of 
electrochemical and optical responses [135], figure 19.  
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coulovoltammograms were attained, indicating the existence of irreversible 
charge consumed by hydrogen evolution at the metal/electrolyte interface 
[235]. The irreversible charge and the concomitant hydrogen evolution was 
always much more important from the gold wire. 

Similar voltammetric and coulovoltammetric experiments were performed 
using PPy-DBS coated gold or platinum wires. Two cathodic potential limits, 
-1 V or -0.8 V, were investigated.  The cathodic current at those limits was 
quite low compared with the overall current passing through the electrode 
during electrochemical reactions (2). Coulovoltammetric responses from the 
PPy-DBS coated gold wire up to -1.0 V still reveal some irreversible 
reduction charge (hydrogen evolution). After 150 cycles, voltammetric 
currents and reversible film oxidation/reduction charges from the 
coulovoltammetric closed loop decrease indicating and important decrease of 
the PPy-DBS electroactivity. The diameter variation per cycle also decreases 
after the 150 cycles in a similar proportion to the diminution of the film 
electroactivity. 

When the PPy-DBS coated platinum electrode was cycled until a cathodic 
potential limit of -0.8 V the coulovoltammetric response is a closed loop: only 
reversible reactions (2) occur in the studied potential range. After 150 cycles 
the film electroactivity remains constant showing overlapping 
coulovoltammetric loops and giving a constant film actuation measured as 
diameter variation per cycle. 

Thus, any parallel reaction (as hydrogen evolution or overoxidation) to those 
driving the mechanical actuation (reactions (1) or (2)) influences the 
electroactivity, actuating properties and lifetime of the conducting polymer 
actuator. Parallel irreversible reactions promote the polymer degradation, 
decreasing its electroactivity, actuating properties and life-time. By using 
different metals and adjusting the potential range, such parallel reactions 
and associated degradation can be avoided with the concomitant increase of 
the actuator lifetime. 

The electrochemical and electro-chemo-mechanical properties of the PPy-
DBS coated metals were then studied in NaCl aqueous solutions with 
different electrolyte concentrations (0.0375 M, 0.075 M, 0.15 M, 0.3 M, 0.6 
M, 1 M, 2 M and 3 M) avoiding  the parallel generation of hydrogen, or the 
material overoxidation, by using a Pt substrate cycled between -0.8 and 0.0 
V. 

Voltammetric and coulovoltammetric responses show that the film redox 
charge increases for rising electrolyte concentrations up to 0.15 M or 0.3 M 
(measured values are very close) then decreasing for higher concentrations.  
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A parallel evolution was observed for the PPy-DBS film actuation (diameter 
variation). The maximum actuation was also found in 0.3 M NaCl aqueous 
solution. This maximum was attributed to the number of molecules of water 
exchanged per exchanged ion in every electrolyte concentration during the 
film redox reactions. When the electrolyte concentration increases, the film 
reduction rate and the amount of consumed charge (applying the same 
overpotential) is greater, as the number of solvent molecules increases. The 
easier conformational movements due to the presence of a higher content of 
water inside the film allow a deeper film oxidation and reduction: the 
average number of oxidation charges per chain increases with the 
electrolyte concentration. Nevertheless, going ahead by increasing the 
electrolyte concentration, the percentage of free solvent molecules in 
solution decreases (it takes part of the solvated ions, salting effect). 
Apparently, when the salt concentration is higher than 0.3 M, the 
concentration of free solvent is so low that starts to influence the reaction 
rate. Lower concentrations of free solvent give lower reaction rates, lower 
solvent penetrates in the film (lower actuation), the plasticity decreases and 
the reaction is harder, so applying the same overpotential, the reaction is 
not fully completed. 

Whatever the ionic concentration the variation of the film diameter follows a 
linear dependence of the consumed charge: As bending muscles, linear 
actuators (diameter variation) are Faradaic motors. Higher consumed 
charges (Q) promote larger wire diameter variation (D):  

D K Q               (5’) 

where K is a constant depending on the system (conducting polymer, 
electrolyte, back metal). 

	‘Biomimetic	Dual	Sensing‐Actuators	Based	on	Conducting	
Polymers.	Galvanostatic	Theoretical	Model	for	Actuators	
Sensing	Temperature’	

Toribio F. Otero, Juan J. Sanchez and Jose G. Martinez.  

Published in The Journal of Physical Chemistry B, year 2012, volume 
116, pages 5279-5290. (IF=3.377, Q2 in ‘Chemistry, physical’). 
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Experimental	

Polypyrrole films were electrogenerated by consumption of 28 C 
(polymerization charge). Average final thickness of rinsed and dried films 
was 13 μm, measured using an electronic micrometre having a precision of 1 
μm. The mass of the immersed polypyrrole film (1.6026 mg) was calculated 
by extrapolation from the immersed film area.  

Consecutive square current waves were applied to the material, ±0.75 mA, 
200 s period (0.75 mA flow for 100 s followed by -0.75 mA flow for 100 s) in 
the background electrolyte (0.1 M LiClO4 aqueous solution) until stationary 
responses (4 cycles). Symmetrical square current waves guarantee 
transitions between the same two oxidation states (initial reduced and final 
oxidized for the oxidation reaction by consumption of the same charge) every 
time. 

For experiments at different temperatures, the electrochemical cell 
temperature was maintained constant during each experiment by means of 
a Julabo F25 cryostat (±0.1 ºC). 

Theoretical simulations were performed using MATLAB 7.7.0.0471 
(R2008b) software. 

Results	and	achievements	

Once the faradaic nature of the actuators under influence of different 
variables was corroborated the next challenge in this thesis is the study of 
the simultaneous presence and description of actuating and sensing 
properties: that means if the reacting material can sense by itself the 
working conditions. The development of a theoretical description is here 
initiated by a quantitative description of the chronopotentiometric responses 
from self-supported conducting polymer films cycled under different 
experimental temperatures. Related to the previous paper here the 
experimental conditions are selected to give only reversible slow redox 
reactions in conducting polymer films during the electrochemical kinetic 
control. 

The material oxidation/reduction control is performed by electrochemical 
methodologies. It should be expected that the attained electrochemical 
responses could be described from basic electrochemical models. The 
electrochemical kinetics from complex reactions involving two or more 
reactants during electron transfer and having reactions order different than 
1, as reaction (1), were described during  the past century [262]. For the 
oxidation, reaction (1) forwards (equations for the reduction reaction can be 
found in the paper also): 
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        (17) 

where r represents the polymer oxidation rate, k is the oxidation rate 
constant, or the rate coefficient, superscripts d and e are the reaction orders, 
[A-] is the concentration of anions in solution, [Pol*] is the concentration of 
active centres in the polymeric film, and V is the volume of the polymeric 
film. In this initial stage concentrations are used instead of the most correct 
magnitude: activities. 

Including Buttler-Volmer equation into equation (17): 

   0*
0

1 '
exp

d e nF E E
i FVk A Pol

RT

   
        

   
     (18) 

where E is the electrode potential, E0 is the standard potential, α’ is the 
electrochemical symmetry factor, k0 is the pre-exponential factor, R is the 
universal gas constant (R=8.314 J K-1 mol-1), and T is the working 
temperature. 

From equation (18), it is possible to get the potential, E: 

   
*

0 0ln ln ln ln
1 ' initial

RT i it
E t E d A e Pol k

nF FV FV
                          

 (19) 

with [Pol*]initial being the initial concentration of active centres in the film, 
which will decrease during the oxidation reaction as (it/FV), being it=Q, the 
oxidation charge. 

Equation (19) provides a mathematical relationship between the material 
potential at any oxidation time and each of the different experimental 
variables (temperature, electrolyte concentration, applied current). 
Regarding the experimental temperature influence, for a constant value of 
the other experimental variables, equation (19) describes a linear 
dependence of the material potential after a constant oxidation time from 
the same initial state. This relationship is in good agreement with 
experimental results attained from different families of conducting 
polymers.  

Similar relationships can be attained for the consumed electrical energy by 
integration of the chronopotentiometric results: 

   U t I E t dt   
         (20) 

*d ei
r k A Pol

FV
        
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In reaction (1) the n electrons lost by chain are not equivalent. Considering 
the polymer science every chain has a first, second, third… ionization 
potential: the electrons are extracted one by one at different energies. 
Assuming a monodisperse film (film constituted by ideal chains of the same 
length) every chain loses n electrons under flow of anodic current through n 
consecutive oxidation steps of one electron per step: 

             

(21) 

Each of the electrochemical equilibria presented as equation (21) has 
increasing equilibrium potentials, as an extra energy is needed to extract an 
additional electron from the polymeric chain. The potential increment 
between that required to extract the last ith electron from chains and that 
required to extract the first (i+1)th electron is assumed to be constant (ΔE). 
Under those conditions, the theoretical stair function describes a high slope 
for the chronopotentiograms far from an almost constant potential expected 
if the n electrons were equivalent. 

This can be introduced into the model through a stair function [263]: 

   (22) 

where En(t) is given by equation (19) and pn(t) is the unitary pulse function, 
being pn(t)=1 if the nth electron is being extracted from every polymeric 
chain and pn(t)=0 if other electron different than nth is being extracted under 
current flow. 

The model was employed to simulate the responses at different 
temperatures. A good agreement was obtained between experimental 
(obtained using the experimental setup shown in figure 9) and theoretical 
results for both, the achieved potential at any time and the consumed 
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electrical energy during chronopotentiometric experiments. Sensing 
calibration curves were attained for both (based on potential and based on 
the consumed electrical energy) temperature sensors while working. 
Potential based sensors had a temperature sensitivity of −4.05 mV K−1 for 
the oxidation and 3.71 mV K−1 for the reduction (average values). Energy 
based sensors sensitivity depends on the experimental time, as described by 
equation (19).  

Equation (22) also simulates the fast empirical potential increase observed 
after oxidation of the active centres in the polymeric film, as expected after 
any oxidation (faradic) completion.  

Equations (19) and (22) were obtained from basic electrochemical and 
polymeric principles. If the oxidation/reduction of conducting polymers sense 
the working temperature that means that any device based on those 
reactions (artificial muscles, actuators or polymeric motors; smart widows, 
mirrors or filters; batteries and supercapacitors; smart membranes; smart 
drug delivery devices, and so on) will sense the working temperature while 
working. All of them will be, simultaneously, temperature sensors. The 
device actuation signal (current) and the sensing magnitude (potential or 
consumed electrical energy) are present, simultaneously, in the only two 
connecting wires.  

‘Biomimetic	Dual	Sensing‐Actuators:	Theoretical	
Description.	Sensing	Electrolyte	Concentration	and	
Driving	Current’	

Jose G. Martinez and Toribio F. Otero.  

Published in The Journal of Physical Chemistry B, year 2012, volume 
116, pages 9223-9230. (IF=3.377, Q2 in ‘Chemistry, physical’). 

Experimental	

As in the previous work, chronopotentiometric results from free-standing 
polypyrrole films were attained. In this case, repeating experiments from 
the same initial oxidation state to the same final state varying only one 
variable at a time: electrolyte concentration or applied current. 

For the study of the influence of the electrolyte concentration, stationary 
(after 5 cycles) voltammograms were attained from every free-standing 
polypyrrole electrode in 0.1 M LiClO4 aqueous solution between -1.0 and 0.6 
V vs Ag/AgCl at 5 mV s-1. The potential cycling was stopped every time at 
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the cathodic potential limit. Then, the chronopotentiometric responses were 
obtained by applying five consecutive square current waves (0.75 mA for 30 
s, then -0.75 mA for another 30 s). The procedure was repeated for every 
studied electrolyte concentration. The last (the fifth one) 
chronopotentiogram was used to validate the model. As in the previous 
paper, this procedure guarantees transitions between the same two 
oxidation states (initial reduced and final oxidized for the oxidation reaction 
by consumption of the same charge) every time, as required by the 
theoretical development. Experiments, under different current flow, 
between the same initial and final redox states, were guaranteed by keeping 
constant the consumed charge (2.25 mC): varying the time of current flow 
(equation (12)). 

Theoretical simulations were also performed using MATLAB 7.7.0.0471 
(R2008b) software. 

Results	and	achievements	

In order to simulate chronopotentiometric responses from conducting 
polymers immersed in different electrolyte concentrations or under flow of 
different constant currents through the working electrode (self-supported 
conducting polymer film or any device based on them), it was needed to 
include in the model a detailed description of the relationship between the 
electrochemical cell impedance (resistance and capacitance) with the 
electrolyte concentration and the applied current. An increment of the 
potential is expected because of the impedance of the electrochemical cell: 

          (23) 

with Ez is the potential increment due to the cell impedance and Z is the cell 
impedance. Usually, the electrochemical characterization of conducting 
polymers is performed in electrochemical cells containing a volume of 
electrolyte high enough to accept that the concentration in the bulk remains 
constant during film oxidation/reduction reactions. Thus, it is possible to 
model the conductivity of any electrolyte as a function of the concentration 
of ions in solution as [215]:  

         (24) 

where Λm (S cm-1 mol-1) is the molar conductance, Λm0 (S cm-1 mol-1) is the 
molar conductance at a very low concentration and the constant κ is a 
characteristic of every electrolyte. 

zE iZ

0
m m A      
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The contribution of the electrolyte concentration [A-] to the system 
impedance becomes: 

          (25) 

where C1 and C2 are constants. 

Thus, the potential evolution is: 
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  (26) 

Again, equation (26) is a dual sensing-actuating equation. In this case, the 
relationship is not as easy as in the case of the temperature as it is possible 
to find the same variables in different places.  

However, looking carefully at the value of the variables, it was possible to 
observe that in the case of the flow of different currents, the term iZ is much 
more important (two orders of magnitude) than the rest of the terms where 
the current is present, so an almost linear relationship is expected between 
the applied current and the achieved potential. Similar concepts are applied 

to the terms where [A-] is present.  has a very significant influence 

on the response and an almost semilogarithmic relationship is expected 
between the electrolyte concentration and the achieved potential. 

Similar relationships are obtained from the consumed electrical energy in 
the paper. 

As in the previous paper good agreements were finally attained between 
simulated and experimental results for both, the material potential 
evolution during reactions and the evolution of the consumed electrical 
energy. 

Again, the concentration and current sensing calibration curves were 
attained during charge consumption (actuation). Sensitivities of the current 
sensor are 0.58 and 0.59 V A−1, for the theoretical and experimental, 
respectively, anodic currents and −0.52 or −0.54 V A−1 for the theoretical 
and experimental, respectively, cathodic currents. Sensitivities of the 
concentration sensor are −62.20 and −59.20 mV M−1 from the theoretical 
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and experimental, respectively, anodic chronopotentiograms and 48.40 and 
49.40 mV M−1 from the theoretical and experimental, respectively, cathodic 
chronopotentiograms. Again, sensitivities of the sensors, taking the 
consumed energy as sensing magnitude, depend on the experimental time.  

‘Mechanical	awareness	from	sensing	artificial	muscles:	
Experiments	and	modeling’	

Jose G. Martinez and Toribio F. Otero.  

Published in Sensors and Actuators B: Chemical, year 2014, volume 
195, pages 365-372. (IF=3.840, Q1 in ‘Chemistry, analytical’, 
‘Electrochemistry’ and ‘Instruments & instrumentation’). 

Experimental	

Bilayer (polypyrrole/tape) bending artificial muscles were constructed as 
specified in the experimental part (figure 10). The bilayer electrochemical 
behaviour was controlled in 0.5 M LiClO4 aqueous solution by cyclic 
voltammetry between -0.7 and 0.4 V versus Ag/AgCl at 5 mV s-1 (5 
consecutive cycles to get stationary responses). The charge consumed during 
voltammetric experiments was attained by integration of the voltammetric 
branches. This is the maximum that the actuator can support under 
reversible behaviour. Outside this limit degradation processes start. Around 
70 % of such charge was used for the chronopotentiometric experiments 
resulting in the application of five consecutive square current waves: 
oxidation by flow of 2 mA for 100 s (200 mC consumed charge), then 
reduction by flow of -2 mA for 100 s. Stationary chronopotentiometric 
responses were attained after two consecutive square current waves. The 
same displacement of the bilayer (angle, figure 15) was observed and video 
recorded during each cycle. This procedure was repeated trailing different 
steel masses attached to the muscle bottom, figure 20. The fourth of the 
oxidation and reduction chronopotentiometric responses were used to check 
the validity of the theoretical description.  
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d) touch and shift an obstacle. 
e) produce, or respond to, any change of internal or external pressure, 

strain or stress applied to the device while working. 

Having here in consideration the three initial (a-c) components, equation 
(26) becomes: 

  (28) 

where YPolx is the force required to bend the polymer layer following Hooke’s 
law being YPol the Young’s Modulus of the conducting polymer film and x the 
vertical displacement produced by the bending movement; Ytapex is the force 
required to bend the tape being Ytape its Young’s modulus; mg is the force 
required to elevate the mass m of those two layers plus any other object 
attached to the bilayer for a vertical distance x, being g the gravimetric 
acceleration (g=9.81 m s-2); α, equation (5), is the angle described during the 
movement and l is the length of the bilayer bending inside the electrolyte. 

Thus, considering the different components of the mechanical work involved 
in the muscle actuation the chronopotentiometric responses from artificial 
muscles pushing different masses attached to their bottom between the 
same initial and final positions were simulated. Theoretical results fit 
experimental results for bilayer artificial muscles carrying different 
attached masses. 

Equation (28) describes the full multi-sensing actuating (proprioceptive) 
equation. It includes the different experimental variables sensed while the 
electrochemical device is working (a charge is being consumed). It predicts a 
linear relationship between the mass (muscle mass + attached mass) and 
the muscle potential for a constant actuation time. This equation was 
developed for a muscle driven by reaction (1) forwards. Similar results are 
attained for reaction (1) backwards-driving reaction [96] or from reactions 
(2). Equation (27) is a full proprioceptive equation including actuating 
(charge, current, through equations (5) and (6)) and sensing (potential) 
physical (temperature, trailed mass) and chemical (electrolyte 
concentration) variables was attained. 

Equation (28) was attained from basic electrochemical, polymeric and 
mechanical concepts applied to reaction (1) forwards and backwards. Thus, 
any device based on conducting polymers driven by the same reaction will 
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behave as dual and simultaneous sensing (physical, chemical or 
mechanical)/actuators described by the same equations. 

Again, the evolution of the consumed electrical energy with the actuation 
time follows similar relationships with the mechanical conditions of work.  

As in the previous cases, the calibration curves of the mechanical sensor, 
taking the muscle potential as sensing magnitude sensitivities are 1.00±0.10 
mV mg-1 for the oxidation process and 0.67±0.09 mV mg-1 for the reduction 
process. Sensitivities from sensors based on the consumed energies depend 
on the experimental time. 

Also, a study of the energetic efficiency was carried out. Efficiencies up to 
7.59%, depending on the trailed mass, were attained, higher than those 
reported on the literature [126,128,265,266]. 

The model developed in this and previous works is able to simulate and 
explain the biomimetic behaviour conducting polymer gel and the dual 
actuating-sensing (proprioceptive) behaviour of conducting polymers.  

‘Structural	Electrochemistry.	Chronopotentiometric	
Responses	From	Rising	Compacted	Polypyrrole	
Electrodes:	Experiments	and	Model’	

 Jose G. Martinez and Toribio F. Otero.  

Published in RSC Advances, year 2014, volume 4, pages 29139-29145. 
(IF=3.708, Q1 in ‘Chemistry, multidisciplinary’). 

Experimental		

Free-standing polypyrrole films were attained as specified in the 
experimental part. The electrochemical behaviour was controlled in 0.5 M 
LiClO4 aqueous solution by potential sweeps (20 consecutive cycles to 
ensure stationary responses) between -0.5 and 0.5 V vs Ag/AgCl at 5 mV s-1. 
Next, in the same solution the reproducible initial conformational state for 
each experiment was attained through potential steps: -0.5 V for 60 s, 
stepping then to 0.5 V for 60 s. Then the potential was stepped to the 
cathodic potential of reduction and conformational compaction (different for 
each experiment to get different reduction/compaction states) kept for 60 s, 
getting the chronoamperometric responses (figure 21) as in many other 
works [207,267,268]. After this reduction-packing the free-standing 
polypyrrole film was oxidized by applying a constant current, usually 0.5 
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mA (figure 21c) and the chronopotentiogram was attained (figure 21d). This 
experimental procedure was repeated by changing only one of the 
experimental variables, reduction potential, electrolyte concentration or 
oxidation current, every time. The influence of the applied current was 
studied for a constant oxidation charge (by changing the time of current 
flow) as in the previous works.  

 
Figure 21: Experimental procedure followed to obtain the experimental responses: (a) In 
order to erase any previous structural memory, the free-standing electrode was submitted a 
potential of -0.5 V for 60 s, then the potential was stepped to 0.5 V kept during 60 s and 
then the potential was stepped again to the reduction-compaction potential (usually -0.9 V) 
for 60 s. (b) Chronoamperometric responses to those potential steps. Finally, a constant 
current of 0.5 mA was applied (c) during 100 s to obtain the chronopotentiometric responses 
(d). 

Again, mathematical simulations were performed employing Matlab 
R2008b. 

Results	and	achievements	

The Electrochemically Stimulated Conformational Relaxation (ESCR) model 
was developed to describe the effect of the initial conformational compacted 
states on the subsequent voltammetric, chronoamperometric or 
coulovoltammetric responses from conducting polymers [189,196,199,200]. 
Here the goal is to expand that theoretical description to the effect of the 
initial conformational packed states on the chronopotentiometric responses 
attained when rising packed states of the material are oxidized by flow of a 
constant current.  The theoretical equation must describe the influence of 
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each of the different experimental variables on the chronopotentiometric 
response. 

Using as initial state a reduced and partially packed conformational 
polymeric structure, the subsequent polymeric oxidation includes two 
components: first the oxidation starts the conformational relaxation of the 
packed structure in order to allow the insertion of counterions and solvent 
consuming the relaxation charge, Qr. Then, the open polymeric structure 
allows the free diffusion of counterions and solvent through the polymeric 
swollen structure until oxidation completion: the oxidation-swelling is 
completed under diffusion kinetic control consuming the diffusion charge, 
Qd. Thus, Qr should be considered null if the applied cathodic potential is 
lower than the closing potential: neither the conformational compaction nor 
the subsequent relaxation occur because the structure is already relaxed 
allowing the free diffusion of counterions and solvent. Beyond the closing 
potential, polymeric structure starts packing and subsequent relaxation 
charge could be attained from the evolution of coulovoltammogram at those 
potentials. 

This has been already described for chronoamperometric experiments as 
[198]: 

  

          (29) 

where ir(t) is the current fraction employed to relax and open the polymeric 
structure in order to open the structure so there is enough free space to 
allow the subsequent penetration of balancing counterions and solvent; id(t) 
is the current consumed during oxidation-swelling completion under 
diffusion kinetic control of the counterions; iEDL(t) is the current employed to 

charge the electrical double layer (EDL);  with N0 

the number of oxidation nuclei, λ the length of an elemental polymeric 
chain, τ0 the pre-exponential factor of the relaxation time, A the area of the 
polymer film, ΔH the variation of the conformational energy in absence of 
electric field, Qr the charge consumed to relax and open the polymeric 
structure; Qd is the charge consumed during oxidation-swelling completion; 
i0 is the initial current; τ is the time constant. 

Thus, from equations (29) and (26): 

             2
02 exp exp 1 expr d EDL r d

ti t i t i t i t aQ t at bQ bt i 
          

 
2

0
2
0

2exp
N Ha RTA

 


 



102 
 

 

           (30) 

where Ez is the potential due to the cell impedance and Q=Qr+Qd+QEDL is 
the total consumed charge. 

Experimental and theoretical chronopotentiometric responses obtained from 
films reduced at high cathodic potentials as specified in the experimental 
part (figure 21) present an initial peak attributed to the increment of energy 
required for the relaxation of packed conformational polymeric structures: 
this is a structural electrochemical response. After reduction at a lower 
cathodic potential than the closing potential this initial peak is not present: 
a continuous increase of the potential is observed during oxidation, getting a 
very similar response from those chronopotentiograms shown in the 
previous works. However, starting from rising conformational packed initial 
states, increasing initial chronopotentiometric peaks are observed. Beyond 
the peak the potential drops trying to recover the potential evolution from a 
reduced and non-closed structure.  

The experiments were repeated, from the same conformational packed 
initial state in different concentration of electrolyte or by flow of different 
anodic currents. Theoretical chronopotentiograms from equation (30) fit the 
experimental chronopotentiometric responses under influence of each of the 
studied variables. It is worth to mention that whatever the conformational 
packing, the sensing properties keep working for the variables studied in 
the previous papers and it was possible to obtain the sensing calibration 
curves. A new step in the proprioceptive model was achieved in this work, 
being able to simulate the effect of conformational effects in complex gels 
including polymeric chains, ions and solvent mimicking living cell content. 

‘Physical	and	chemical	awareness	from	sensing	polymeric	
artificial	muscles.	Experiments	and	modeling’	

Toribio F. Otero and Jose G. Martinez.  

Published in Progress in Polymer Science, year 2014, DOI: 
10.1016/j.progpolymsci.2014.09.002. (IF=26.854, Q1 in ‘Polymer science’). 
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Experimental		

No new experimental work was performed for this work. 

Results	and	achievements	

This paper is a critical review of the state of the art of polymeric and 
multifunctional sensing-motors driven by electrochemical reactions, in 
which mechanical consistence is kept during actuation. Simultaneously a 
general revision is presented of the model developed from electrochemical, 
mechanical and polymeric principles for the description of polymeric motors 
sensing while working under mechanical, chemical, thermal and electrical 
conditions.   

The term artificial muscle has been used in the literature to name almost 
any family of actuators. The term mechanical actuator (or usually just 
actuator) is applied to any transducer from any kind of energy to mechanical 
energy. We are concerned with electrical actuators. Here electrical artificial 
muscles have been differentiated between electromechanical (the transducer 
is based on a physical property: electrostriction, piezoelectricity, coulombic 
migration, electro-osmosis, electrophoresis) and electro-chemo-mechanical 
(the transducer is based on an electrochemical reaction) actuators. This 
review concerns the sensing properties of the electro-chemo-mechanical 
actuators, from a molecular motor (a single polymer chain) to nanoscopic, 
microscopic or macroscopic devices. 

The origin of the actuating properties is the Faradaic volumetric variation 
driven by reactions (1), (2) or others (p-doping, n-doping, anion exchange or 
cation exchange). The result is that both, bending and linear actuators are 
Faradaic motors: the movement rate follows a linear dependence of the 
driving current, equation (5) [99,182–184]. 

The muscle displacement,  (degrees) is under linear control of the 
consumed specific charge, equation (4). 

After re-formulation of the Le-Chatelier principle [215] for devices working 
under current flow, the general actuating-sensing equations (19), (20) and 
(22) are reconsidered here. By substituting there i and Q obtained from 
equations (5) and (6) the attained equations include, for a physically 
uniform device, the movement rate, position and sense of the movement at 
any time of an actuator sensing simultaneously mechanical, thermal, 
chemical and electrical conditions of work. Summarising: one actuator, a 
mechanical sensor, a thermal sensor, a chemical sensor and an electrical 
sensor work simultaneously in a physically uniform device. Actuating 
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(current and charge) and sensing (potential and electrical work) signals are 
present, at any time, in the two connecting wires and can be read by the 
computer. Any parallel device does not exist in present technologies. Only 
biological evolution presents some similarity: haptic muscles. They send to 
our brain simultaneous information about the weight of a grasped object, 
the relative position of our hand at any time, the energy required to move it. 
This information treated by our brain produces mechanical proprioception. 
All this information is included by equation (19) for artificial muscles: 
equation (19) describes a primitive artificial proprioception.  

As a first step the very simple linear or semilogarithmic sensing equations 
for the dual devices: artificial muscle-mechanical sensor, artificial muscle-
chemical sensor, artificial muscle-thermal sensor and artificial muscle-
electrical sensors were attained and checked with experimental results from 
previous papers getting the concomitant sensing calibration curves. Once 
again the good correlation between theoretical and experimental results is 
underlined.  

In addition the model also describes the reaction end and the concomitant 
muscle potential step, allowing for the specific discrimination between 
capacitive and faradic assignment of the consumed charges. 

Both the reproducibility and the robustness of those artificial muscles 
described by equation (5) and (6) are highlighted. The Faradaic nature 
described by equations (5) and (6) is kept for different muscles having 
different geometries or including different amounts of conducting polymers 
and for both artificial muscles based on conducting polymers exchanging 
anions or based on conducting polymers exchanging cations. 

Finally, challenges are presented: the study of new materials bearing 
proprioceptive properties, the development of more intelligent 
proprioceptive robots and the open window to quantitatively describe new 
behavioural and psychological concepts as proprioception, thinking, memory 
or consciousness by physico-chemical equations. The concepts, principles, 
theoretical descriptions and experimental methodologies presented here 
could be extended in the next future to similar materials, artificial or 
biological, and devices or organs based on electrochemical or chemical 
reactions. 
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‘Polyurethane	microfibrous	mat	template	polypyrrole:	
Preparation	and	biomimetic	reactive	sensing	capabilities’	

Yahya A. Ismail, Jose G. Martinez and Toribio F. Otero.  

Published in Journal of Electroanalytical Chemistry, year 2014, 
volume 719, pages 47-53. (IF=2.871, Q2 in ‘Chemistry, analytical’ and 
‘Electrochemistry’). 

Experimental	

Polyurethane microfibrous mats were supplied by one of our collaborators, 
Dr. Yahya A. Ismail. It was put into a solution containing 0.01 M each of 
Lithium Trifluoromethanesulfonate (LiTFMS) and Pyrrole in 50 mL of 2:1 
(v/v) mixture of water and ethanol for 2 hours at 5 ºC. Then 25 mL of a 0.015 
M FeCl3 (oxidant) aqueous solution was slowly added to the previous 
solution at a rate of 2 mL/minute. The polymerization reaction was carried 
out at a temperature of 5 ºC for a period of 4 hours. After this time the 
reaction mixture was maintained at 0 ºC for 20 hours more. The hybrid 
Polyurethane/polypyrrole (PU/PPy) microfibrous mat was taken out from 
the solution and washed thoroughly with distilled water and then with 
ethanol, after which was dried in air at room temperature. 

SEM and FTIR results were attained as specified in the general 
experimental part. 

A sample of a microfibrous mat of length 14.2 mm and 0.7 mm width having 
a mass of 171 μg was stabilized by recording the voltammetric results for up 
to 10 consecutive cycles between -0.5 and 0.5 V versus Ag/AgCl at 20 mV s-1 
in 1M NaCl aqueous solution in order to get stationary voltammetric 
responses. The last cycle is the one studied. Then, chronopotentiometric 
results were obtained by submitting the sample to consecutive square waves 
changing one of the experimental variables: electrolyte concentration, 
working temperature or applied current every time, maintaining the rest 
constant (room temperature, 25 ºC, 1 M NaCl aqueous solution, ±0.2 mA 
kept for 120 s each). 

Results	and	achievements	

Free-standing conducting polymer films or artificial muscles constituted by 
conducting polymers act, as proved in previous papers, as reactive sensors 
or as dual actuator-sensors. In order to improve different physical, chemical 
or biocompatible properties new composite and blend materials based in 
CPs are emerging very fast. The question here is if those materials still keep 
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the reactive sensing properties of the basic conducting polymers. In this 
work, polypyrrole coated polyurethane microfibrous mat was obtained by in 
situ chemical polymerization of pyrrole from aqueous solution using 
tetrafluoromethane sulfonate as dopant and a polyurethane microfibrous 
mat produced by electrospinning of a polyurethane solution as a template.  

A common characterization of this new material was performed including 
common techniques as SEM or FTIR. SEM images showed homogeneous 
growth of nanostructured polypyrrole interpenetrated with the external part 
of each fibre of the polyurethane microfibrous mat. A uniform material with 
very high specific area (due to the great porosity of the polyurethane 
microfibrous mat) was attained. 

A full electrochemical characterization was also performed, showing (for 
voltammetric experiments) an oxidation peak at 0.22 V and a reduction 
peak at -0.08 V pointing that the electroactivity of the material is given by 
polypyrrole. Besides, the process is diffusion controlled up to 100 mV s-1 and 
the results are very stable during cycling.  

The sensing properties of the material were studied under constant currents 
flow (chronopotentiometry) varying each of the experimental variables every 
time: temperature, electrolyte concentration or applied current. The 
calibration sensing curves of the electrical energy sensor of: the electrolyte 
concentration, the temperature or the applied current were attained. 
Concentration sensitivities of -1.91 mJ M-1 for the material oxidation and 
1.37 mJ M-1 for the material reduction (concentration sensor), -7.91 x 10-2 
mJ K-1 for the oxidation and -3.49 x 10-2 mJ K-1 for the reduction 
(temperature sensor) and 15.57 mJ A-1 for oxidation and -13.99 mJ A-1 for 
the reduction (current sensor) were attained.  

The proprioceptive equation developed in previous papers also describes the 
reactive sensing abilities of very thin conducting polymer films coating 
polyurethane microfibers getting sensing calibration curves with correlation 
coefficients (r2) higher than 0.95 for all the studied variables.  

The voltammetric responses also are influenced by changes of the 
experimental variables: higher concentrations and higher temperatures give 
more visible oxidation and reduction peaks and at lower anodic and cathodic 
potentials respectively. 
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‘Fibroin/Polyaniline	microfibrous	mat.	Preparation	and	
electrochemical	characterization	as	reactive	sensor’	

Yahya A. Ismail, Jose G. Martinez and Toribio F. Otero.  

Published in Electrochimica Acta, year 2014, volume 123, pages 501-510. 
(IF: 4.086, Q1 in Electrochemistry). 

Experimental	

Silk fibroin microfibrous mesh was supplied by our collaborators from 
IMIDA (Instituto Murciano de Investigación y Desarrollo Agrario, Murcia). 
It was prepared as stated in [269]. 

To get the Silk fibroin/PANI hybrid microfibrous mat, the silk fibroin 
microfibrous mesh was put into 50 mL of 0.005 M aniline, 1 M 
methanesulfonic acid (MSA) aqueous solution for 2 hours at 5 ºC. 50 mL of 
0.0065 M Ammonium persulfate (APS), 1 M MSA aqueous solution was 
slowly added to the previous solution (containing the silk fibroin mesh) at a 
rate of 2 mL/minute with gentle stirring. The polymerization reaction was 
carried out at 10 ºC for 4 hours after which the temperature was kept at 5 ºC 
for over 18 hours. The microfibrous mat was then washed with deionized 
water thoroughly and dried in air at room temperature. By repeating the 
full procedure the thicker and most uniform polyaniline coats were attained. 
Two consecutive chemical polymerization processes were enough to ensure a 
uniform polyaniline coating of the silk fibroin mesh. 

Electrical conductivity was measured by two point probe method using an 
Agilent 34410 multimetre at room temperature. Two metallic clamps were 
used to ensure the electrical contact and to keep the distance between them 
constant. Lengths were measured using a digital calliper (COMECTA, ±10 
μm) and the thickness was measured using an electronic micrometre (±1 
μm). 

SEM and FTIR results were attained as specified in the general 
experimental part. 

In this case, voltammetric, coulovoltammetric and chronopotentiometric 
results were obtained for the study of the sensing properties and thus, to 
check the model developed in the previous papers for the new materials. 
Again, before getting chronopotentiometric results, the microfibrous mat 
was stabilized by recording the voltammetric results for up to 10 consecutive 
cycles between -0.15 and 0.80 V versus Ag/AgCl at a scan rate of 10 mV s-1 
at 27 ºC in order to get a stationary voltammetric response. The last cycle is 
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the one studied. Then, chronopotentiometric results were obtained for 
different electrolyte concentrations, working temperature or applied 
current, changing only one variable every time from the standard 
experimental conditions (room temperature, 25 ºC, 1 M MSA aqueous 
solution, ±0.3 mA). 

Results	and	achievements	

In this work, another example of a new material having dual actuating-
sensing properties is presented. In this case, microfibrous silk fibroin mats 
were coated with polyaniline through in situ chemical polymerization. 

The voltammetric characterization shows the two characteristics peaks of 
the polyaniline corroborating that the electroactivity of the mats is imparted 
by the polyaniline component. In the studied potential range, the consumed 
charge during cyclic voltammetry is reversible (the same charge was 
consumed to oxidize and to reduce the material), indicating that only 
reversible polyaniline oxidation/reduction reactions occur there. The current 
of the anodic and cathodic peaks increases linearly as a function of square 
root of the scan rate up to 200 mV s-1 indicating that the electrode process is 
diffusion controlled up to that scan rate. 

Sensing properties of the mats were also studied employing the 
experimental procedure used during the model development: 
chronopotentiograms were recorded in different experimental conditions, 
varying only one experimental variable every time, keeping constant the 
applied charge (same initial/final redox states). Electrolyte concentration, 
pH, temperature and driving current are sensed by the material during 
electrochemical reaction following the same relationships stated by the 
model developed in the previous point: semilogarithmic relationships 
between the consumed electrical energy and the electrolyte concentration 
(and pH) was obtained, while linear relationships were attained between the 
consumed electrical energy and the temperature or the applied current. 
Thus, the model developed in previous works is also followed by the new 
material. 

The reversible charge consumed during cyclic voltammetry also senses the 
reaction experimental conditions acting on the conformational movements 
getting deeper oxidation states for rising energetic working conditions. 

This is a first report on sensing reactive properties of polyaniline based 
materials. 
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Conclusions		

New soft, wet, ionic and reactive artificial dense gels based on CPs mimic 
the content of the intracellular matrix (ICM) in living cells. During 
electrochemical reactions in liquid electrolytes the ionic content in the film 
changes under Faradaic reversible control. The magnitude of different 
concentration dependent properties also changes in a reversible way: 
volume, colour, stored charge, porosity, ionic or solvent content (stored 
chemicals), material potential, wettability, etc. Those properties are the 
basis of new exciting devices mimicking the behaviour of biological organs 
and biological functions, such as artificial muscles, smart membranes, smart 
drug delivery systems, sensors and biosensors and computer/neuron 
interfaces. A revision of the state of the art related to the different 
biomimetic properties and devices was performed at the beginning of this 
thesis.  

One of the key points for the development of the different devices in order to 
get industrial products is whether full polymeric devices can be developed or 
metallic supports are required to guarantee its reversible 
oxidation/reduction during any device actuation. Most of the literature 
supports that reduced polymer films are insulators requiring metal 
supports. Here we have proved that, according with the literature the 
electronic conductivity and the parallel ionic content decrease for both, 
rising reduced CPs films exchanging anions or for rising oxidized CPs films 
exchanging cations. Nevertheless after reduction, for polymer films 
exchanging anions, at high cathodic potentials for 30 min or after deep 
oxidation, for CP films exchanging cations, over 15% of the balancing 
counterions remain trapped giving electronic conductivities around 10-3 S 
cm-1, in the semiconductors range, and allowing the subsequent cycling 
when reverse currents are applied. That means that under usual working 
conditions the lower conductivity of the materials is high enough to allow 
the development of full polymeric devices not requiring back metal 
electronic conductors. In addition it has been proved that those back metals 
support irreversible electrochemical reactions from moisture traces that 
promote the material and device degradation. Those results are in 
accordance with the ESCR model: the polymer reduction drives its 
shrinking, closing (trapping over 30% of the involved counterions) and 
packing its conformational structure. Getting very deep reduced states 
showing lower electronic conductivities than 10-3 S cm-1 becomes a very 
difficult task taking very long (days) reduction times at high potentials. 
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The film reaction driven ionic exchange for charge balance and solvent 
exchange for osmotic balance originates reversible film volume variations, 
which are responsible for the material actuation in artificial muscles. Here 
bilayer muscles studied up to -2.5 V corroborate that the CP film reduction 
with expulsion of anions goes on up to a high cathodic potential. The 
faradaic nature of the movement (the charge controls the muscle 
displacement and the current controls the movement rate) was corroborated 
from the coulodynamic responses in the full potential range.  Slopes from 
the coulovoltammetric responses differentiate each of the reaction driven 
structural processes:  reduction-shrinking, reduction-compaction, oxidation-
relaxation and oxidation-swelling. Thus, artificial muscles are useful tools to 
characterize both, ionic exchanges and structural processes driven by the 
CP film reaction. 

During the CP reaction each of the intermolecular forces acting inside the 
film (polymer-polymer, polymer-anion, polymer-solvent, solvent-anion) 
change. The result is the exchange of balancing ions and solvent. 
Voltammetric, coulovoltammetric and coulodynamic responses from bilayer 
muscles in aqueous solutions of different anions also become suitable tools 
for a quantitative determination of the number of water molecules 
exchanged (associated with each anion) per reaction unit: pseudo ion 
solvation or pseudo polymer hydration number. From linear actuators 
checked in a large range of ionic concentrations it was corroborated that the 
actuation amplitude depends on both the ion concentration and the free 
water concentration giving a maximum. At high concentrations most of the 
water in solution solvates ions, decreasing the water exchanged per ion and 
the actuation amplitude. 

The next basic question related to the polymer ionic content variation allows 
the development of reacting sensors. Under chemical equilibrium conditions 
the Le Chatelier principle and the Nernst equation describe chemical 
sensors. Under reaction we have reformulated the Le Chatelier principle: 
any energetic (mechanical, thermal, chemical, electrical) perturbation 
during the material reaction shifts the reaction energy adapting it to new 
energetic conditions. 

 For electroactive materials, as conducting polymers, being oxidized and 
reduced by square current waves any variation of the electrolyte 
concentration (chemical energy), temperature (thermal energy), driving 
current (electrical energy) or mechanical conditions (mechanical energy) 
must be detected by the evolution of the material potential.  
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Responses from self-supported polypyrrole films (exchanging anions), from 
PPy-DBS films (exchanging cations), from polypyrrole coating polyurethane 
microfiber or from polyaniline films coating fibroin microfibers corroborate 
the sensing ability of the driving reaction. 

The CP chemical reaction drives through the flowing current and the 
consumed charge the artificial muscle actuation and the same reaction 
drives, through the material potential evolution, mechanical, chemical, 
thermal and electrical sensors. Based on the simultaneity of both processes 
in artificial muscles the next goal was checking the dual and simultaneous 
actuating-sensing capability of the muscle.  

Using bending bilayer muscles the dual nature: actuator-mechanical sensor, 
actuator-thermal sensor, actuator- chemical sensor and actuator-electrical 
sensor was corroborated. One uniform device works simultaneously as 
actuator and sensor. Both, actuating (I and Q) and sensing (E and U) 
signals are present simultaneously in the two connecting wires. It does not 
exist in any parallel dual device in today’s technologies. Only haptic muscles 
from biological beings should present some similarity. Based on haptic 
muscles brain from humans and animals have developed proprioception. 

From basic electrochemical (Buttler-Volmer kinetic equation), polymeric (n 
electrons are extracted or injected in a polymer chain through n consecutive 
energetic steps each involving one electron) and mechanical (bending and 
gravimetric energies) a basic multifunctional equation was developed. It 
describes one actuator (movement, position and consumed energy), a 
mechanical sensor, a thermal sensor, a chemical sensor and an electrical 
sensor working simultaneously (driven by the same reaction) in a physically 
uniform device. Theoretical results overlap experimental results for the 
above dual devices. 

The attained multifunctional equation includes all the basic components of 
the human mechanical proprioception (weight of a trailed object, rate and 
sense of the movement, position related to a relative initial one, energy 
required to move it, moreover working temperature and chemical conditions 
or muscle fatigue): it describes the artificial mechanical proprioception. 

More advanced, simpler and proprioceptive tools and robots can be 
developed from dual sensing-actuators. 

The door is now open for, selecting from table 1, two or three different 
properties to develop new two, three or four tool devices. An enlarged 
proprioceptive equation should require the quantitative description of each 
of the new composition dependent property and tool. 
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Proprioception is considered as a psychological mechanism. Its theoretical 
description by a physicochemical equation opens the possibility, through the 
development of neuronal interfaces and electro-chemo-conformational 
memories, to a physicochemical quantification of other brain functions as 
memory, thinking or consciousness.    
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