
1 
 

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 

"Visual control of the Parrot drone with OpenCV, 
Ros and Gazebo Simulator." 

 
 

12.06.2016 
 

Artur Banach  

 

 

 

 

 

 

 

 

 

 



2 
 

 

 

 

 

 

  

 

 

 

Table of contents 

1. Introduction ........................................................................................... 3 
2. ROS ........................................................................................................ 4 
3. Parrot ..................................................................................................... 5 
4. Gazebo simulator ................................................................................... 6 
5. OpenCV and drone movement - code analysis ..................................... 10 
6. Results of work ..................................................................................... 21 
7. Summary .............................................................................................. 22 
8. Bibliography ......................................................................................... 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

 

 

 

1. Introduction 

 Drones are becoming more and more popular these days. There are multiple 

tasks and ideas that can be implemented to them. One of them is the idea described 

in that work. 

 The aim of the project was creating a software in C++ in ROS that will control 

the Parrot Drone simulated in Gazebo Simulator. The drone movements are 

stimulated by the orange ball movements in front of the camera (the picture below).  

As it is presented on the diagram below, there were needed: Ardrone Autonomy 

Package (drone driver), Gazebo Simulator, Tum Simulator (connection of two 

previous ones), and cv_bridge in OpenCV  library, which converts ros image messages 

to OpenCV objects. Then the objects can be modified in OpenCV library.   

 The evaluation of project had two main phases. First of them was to configure 

Ardrone Autonomy driver and Gazebo Simulator. Second step of that phase was to 

connect two previous ones by configuring TUM Simulator. Second main phase was to 

write a program that converts ros image messages frome the camera into openCV 

images, analyzes them and depending on the movement of the ball controlls the 

drone movement. 

 The target was achieved and the drone is being controlled by the ball in front 

of the camera. 

 

 

 

 

 
Picture 1 - general idea 



4 
 

 

 

 

 

 

2. ROS 

 Robot Operating System (ROS) is a collection of software frameworks for 

robot software development. ROS provides standard operating system services such 

as hardware abstraction, low-level device control, implementation of commonly used 

functionality, message-passing between processes, and package management.  

 First step in the project was to install ROS on Linux OS. [1] The installed 

version was ROS Indigo. Installation tutorial is provided on the website: 

http://wiki.ros.org/indigo/Installation/Ubuntu.  

 After installing ROS software with the command: 

sudo apt-get install ros-indigo-desktop-full 
 

 

it was necessary to create a ROS Workspace, which as the name implies, is the area 

of computer memory where all the files connected to ROS projects are stored. It was 

done with commands: 

mkdir -p ~/catkin_ws/src 

cd ~/catkin_ws/src 

catkin_init_workspace 

 

 Then it was possible to build workspace. It is important because later after 

every change in your program we need to use that command to compile it: 

cd ~/catkin_ws/ 

catkin_make 

 

  When the workspace is created, it is needed to create Catkin Package. This is a 
 package where all the files connected to the one specific project are stored. The 
 recommended method of working with catkin packages is creating it inside of catking 
 workspace. For a package to be considered a catkin package it must meet a few 
 requirements:  

 The package must contain a catkin compliant package.xml file.  
 The package must contain a CMakeLists.txt which uses catkin.  
 There can be no more than one package in each folder.  

 To create Catkin Package it was needed to  write: 

 cd ~/catkin_ws/src 

catkin_create_pkg <package_name> [depend1] [depend2] [depend3] 

https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Inter-process_communication
http://wiki.ros.org/catkin/package.xml
http://wiki.ros.org/catkin/CMakeLists.txt


5 
 

 

 All the dependencies for the package are stored in package.xml. In the picture 

below, we can see the code from that file with all needed dependencies.  

 

 
 

 It is very important to understand basic parts of ROS as node, topic and 

message. Node is an executable file within ROS package. ROS nodes use ROS client 

library to communicate with other nodes. Nodes can publish or subscribe a topic, 

while messages are data types used when subscribing or publishing the topic.  

 After a detailed tutorial introduction to ROS and obtaining basic knowledge 

how to use it, it was possible to install Ardrone Autonomy package, Gazebo Simulator 

and finally TUM simulator. Details are explained in next chapters. 

 

3. Parrot 

  Parrot AR.Drone is a remote controlled flying quadcopter built by the French 
 company Parrot. The drone is designed to be controlled by mobile or tablet operating 
 systems such as the supported iOS or Android  within their respective apps or the 
 unofficial software available for Windows Phone, Samsung BADA and Symbian 
 devices. In the picture below there is Parrot AR.Drone presented. 

 

https://en.wikipedia.org/wiki/Remote_controlled
https://en.wikipedia.org/wiki/Quadcopter
https://en.wikipedia.org/wiki/Parrot_%28company%29
https://en.wikipedia.org/wiki/IOS_%28Apple%29
https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/Windows_Phone
https://en.wikipedia.org/wiki/Samsung_bada
https://en.wikipedia.org/wiki/Symbian


6 
 

 
Picture 2 - Parrot Ardrone 

 

 

 The heart of the drone is ARM Cortex A8 1 GHz 32-bit processor and RAM DDR2 1 

GB at 200 MHz. Operation system is Linux 2.6.32. The drone has USB 2.0 interface, 

gryroscope with accuracy of 2,000⁰/second, accelerometer with accuracy of +/- 50 mg, 

magnetometer with accuracy of 6⁰, pressure sensor with accuracy of +/- 10 Pa, altitude 

ultrasound sensor and vertical camera QVGA 60 FPS to measure the ground speed. There is 

also embeded HD Camera 720p 30fps. When it comes to propulsion there ar 4 brush-free DC 

motors with 14.5 watts and 28,500 rev/min. The weight if the whole drone is around 420 g. 

The drone is usually equipped with 1 1000 mAh battery. There is also AR.FreeFlight mobile 

aplication provided that saves photos, navigation data and videos from the drone. 

 To simulate that specific drone it was necessary to install ROS Ardrone 

Autonomy package, which is a driver for Parrot drone. To install that package it is 

needet to use commands:  

 cd ~/catkin_ws/src 
 git clone https://github.com/AutonomyLab/ardrone_autonomy.git -b indigo-devel 

 cd ~/catkin_ws 

 rosdep install --from-paths src -i 

 catkin_make 

 

 

 

 

 

4. Gazebo simulator 

 Next step was to install Gazebo Simulator, which is a 3D dynamic simulator 

with the ability to simulate various robots in indoor and outdoor environments. 

While similar to game engines, Gazebo offers physics simulation at a much higher 

degree of fidelity, a suite of sensors, and interfaces. In the picture below there is 

presented how it looks like while simulating the Parrot drone in Gazebo Simulator. 

 



7 
 

 
  

Picture 3 - Gazebo simulator with Parrot Ardrone 

 

 

 There are specific system requirements: 

 Linux OS (Ubuntu Trusty or later) 

 A dedicated GPU (Nividia cards work well) 

 A CPU that is at least Intel i5, or equivalent 

 0.5 GB of free disk space 

 

  Installation of Gazebo Simulator was done with the command [3]: 

sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-

gazebo-ros-control 

 

 Gazebo interface consists of multiple sections. First of them - scene is the 

main part of the simulator. This is where the simulated objects are animated and 

interact with the environment. Second section are panels. 



8 
 

 
 

Picture 4 - Gazebo interface 

 

 

 The left panel appears by default when you launch Gazebo. There are three tabs 
 in the panel: 

 WORLD: displays the models that are currently in the scene, and allows you 
to view and modify model parameters, like their pose  

 INSERT: The Insert tab is where you add new objects (models) to the 
simulation.  

 LAYERS: The Layers tab organizes and displays the different visualization 
groups that are available in the simulation.  

 The right panel is hidden by default. It is used to interact with the mobile parts of a 
 selected model (the joints). If there  are no models selected in the Scene, the panel 
 does not display any information. 

  Third section are two toolbars. One of them is located above the Scene and 
 one below. The upper toolbar is a main one and includes most-used options: select, 
 move, rotate, scale, create shape, copy and paste: 

 

SCENE 



9 
 

 

Picture 5 - Gazebo Toolbox 

 

 The Bottom Toolbar is useful during the simulation. It displays simulation 

time, real time and Real Time Factor, which is a relationship between two previous 

ones.  The state of the world in Gazebo is calculated once per iteration. You can see 

the number of iterations on the right side of the bottom toolbar. Each iteration 

advances simulation by a fixed number of seconds, called the step size. [4] 

 

 This is not the end of installing software. What is needed more is to connect 

the Parrot driver and Gazebo Simulator. It can be achieved by installing TUM 

Simulator, which is an implementation of Gazebo Simulator and Ardrone Autonomy 

package. Installing that package allows to run the drone in an artificial world in 

Gazebo Simulator (as shown in the picture above). TUM Simulator installation was 

made with commands[5]: 

# cd into ros root dir 

roscd 

 

# clone repository 

git clone https://github.com/tum-vision/tum_simulator.git 

 

# add to ros path (if required) 

export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:`pwd`/tum_simulator 

 

# build package 

rosmake cvg_sim_gazebo_plugins 

rosmake message_to_tf 

 

 Now when there was TUM Simulator installed, it was possible to run the 

drone in the Gazebo Simulator. It was done with the following command: 

roslaunch cvg_sim_test 3boxes_room.launch 

 



10 
 

 To see how it moves it was necessary to develop the program, which is 

described in the next chapter. 

 

 

5. OpenCV and drone movement - code analysis 

 

 Firts of all it is important to explain how the ROS file organization works. In 

this project the package was called "drone". Inside of the package there is a folder 

"src", where you can create main file that will be executed during the compilation.  

 

 

 
Picture 6 - Ros package 

 

 

 

In the file CMakeList.txt it should be stated which cpp files should be executed. In 

that project the executed file is "main.cpp". In the picture below there is code from 

CMakeList.txt presented. First there are written names of packages that need to be 

found. Then are declared c++ file that are going to be compiled with every 

"catkin_make" . The main.cpp is given with name "main" (useful when running the 

program). The "key" program was just a trial program. Then specific libraries are 



11 
 

linked to executable program. In our case they are standard " catkin_LIBRARIES" and 

"OPENCV_LIBRARIES". 

 

 

 
Picture 7 - CMakeList.txt 

 

 

 Now it is time to analyze the code from main.cpp file. The code consists of 

three parts.  

 First one is the drone-movement part. There are stated all the function that 

publish messages to the simulation node to move the drone. As it is presented on the 

printscreens below, every function is publishing another topic with different message 

(different velocity in different direction). It stimulates in which direction and how fast 

the drone will move. 

 In the beginning there are defined topics. 4 of them are to publish and one is a 

service. Their functions are explained later. 



12 
 

 Then the first function is being defined. It is a function of class 

geometry_msgs::Twist, and the message msg_vel (inside) is of the same type, which 

means it is going to change velocities of the drone movement. 

 The next function calls flattrim service that allows the drone to fly with 

stability on one height. 

 Function takeoff() is responsible for starting the drone. There is created a 

message  "empty" of type std_msgs::Empty. Then again a message msg_vel is being 

created. Topic topictakeoff is being published with an empty message (this is how to 

start the drone). Then the topic with geometry message is being published and it 

stops the drone in the air. 

 

 

 
Picture 8 - main.cpp, drone movement functions 

 

 

  In the function land() just the topic topiclanding (defined later in main 

function) with an empty message is being published. That is enough to land the drone. 

  Now we are getting to moving the drone in the air. First function responsible 

for the movement forward is called forwardx() and as every next function has 3 steps. First 

one is creating a message msg_vel (as the name implies it contains information about 

velocities). Second step is changing velocity with the function changeTwist(). When number  



13 
 

appears as a first argument of that function it means drone will move in x direction, if as a 

second argument  -> y direction, if as third argument -> z direction and if the fourth then the 

drone will rotate. So in the function forwardx() 1 appears as a first argument. Then the topic 

cmd_vel is being published with the msg_vel message. Analogically things happen in every 

following function. When the direction needs to be reversed then the argument is simply 

negative. 

 

 

 
Picture 9 - main.cpp, drone movement functions 

 

 

 

 

  Second part of the program is the image analysis and drone control. Here the 

most important things happen. The whole image analysis is based on cv_bridge that 

converts ROS images into OpenCV images. Details how to use cv_bridge are available 

on website:http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetween 



14 
 

ROSImagesAndOpenCVImages. After declaring all necessary class objects and 

defining constuctor, the callback function of the camera begins. 

 The image operations begin with HSV transform. It is done with OpenCV 

cvtColor () function, which converts an image from one color space to another. 

 

 

 

 

void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0 ) 

Parameters: 

 src – input image: 8-bit unsigned, 16-bit unsigned,  or single-precision 
floating-point. 

 dst – output image of the same size and depth as src. 
 code – color space conversion code (see the description below). 
 dstCn – number of channels in the destination image; if the parameter 

is 0, the number of the channels is derived automatically from src and 
code. [6] 

 

   

 Hue, Saturation, Value or HSV is a color model (used in that project) that describes 
colors (hue or tint) in terms of their shade (saturation or amount of gray) and their 
brightness (value or luminance). The HSV color wheel may be depicted as a cone or cylinder.  

 Hue is expressed as a number from 0 to 360 degrees representing hues 
of red (starts at 0), yellow (starts at 60), green (starts at 120), cyan 
(starts at 180), blue (starts at 240), and magenta (starts at 300). 

 Saturation is the amount of gray (0% to 100%) in the color. 
 Value (or Brightness) works in conjunction with saturation and describes 

the brightness or intensity of the color from 0% to 100%. [7] 

 

 Then the mask is created with cvCreateMat() function, which creates a matrix 

header and alocates the data: 

 

cvCreateMat(int rows, int cols, int type) 

Parameters: 

 rows – Number of rows in the matrix 
 cols – Number of columns in the matrix 
 type – The type of the matrix elements in the form CV_<bit 

depth><S|U|F>C<number of channels> , where S=signed, U=unsigned, 
F=float. For example, CV _ 8UC1 means the elements are 8-bit unsigned 
and the there is 1 channel, and CV _ 32SC2 means the elements are 32-

http://desktoppub.about.com/od/glossary/g/Color.htm
http://desktoppub.about.com/od/glossary/g/Value.htm


15 
 

bit signed and there are 2 channels. [8] 

 

 

 Then inRange function, which checks if array elements lie between the elements 

of two other arrays is executed. Saying it more simply,  that function saves to the mask 

only the objects with the colors that are in range of the parameters given inside of 

the function: 

 

void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst) 

 

Parameters: 

 src – first input array. 
 lowerb – inclusive lower boundary array or a scalar. 
 upperb – inclusive upper boundary array or a scalar. 
 dst – output array of the same size as src and CV_8U type. 

 

   Next step is morphological closing and opening that make the detected image 
 more  uniform. They consist of dilation and erosion,  the most basic morphological 
 operations, that are used to: 

 Remove noise 
 Isolateof individual elements and join disparate elements in an 

image. 
 Find intensity bumps or holes in an image 

   Dilation consists of convoluting an image A with some kernel B, which can 
 have any shape or size, usually a square or circle. The kernel B has a defined anchor 
 point, usually being the center of the kernel. As the kernel B is scanned over the 
 image, we compute the maximal pixel value overlapped by B and replace the image 
 pixel in the anchor point position with that maximal value. As you can deduce, this 
 maximizing operation causes bright regions within an image to “grow” (therefore the 
 name dilation).[9] 

 

   void dilate(InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-
1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& 
borderValue=morphologyDefaultBorderValue() ) 

Parameters: 
 src – input image; the number of channels can be arbitrary, but the 

depth should be one of CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. 
 dst – output image of the same size and type as src. 



16 
 

 element – structuring element used for dilation; if element=Mat() , a 3 x 
3 rectangular structuring element is used. 

 anchor – position of the anchor within the element; default value (-1, -
1) means that the anchor is at the element center. 

 iterations – number of times dilation is applied. 
 borderType – pixel extrapolation method (see borderInterpolate() for 

details). 
 borderValue – border value in case of a constant border (see 

createMorphologyFilter() for details). 

  Erosion is the sister of dilation. What this does is to compute a local minimum 
 over the area of the kernel. As the kernel B is scanned over the image, we compute 
 the minimal pixel value overlapped by B and replace the image pixel under the 
 anchor point with that minimal value. 

  void erode(InputArray src, OutputArray dst, InputArray kernel, Point 
 anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const 
 Scalar& borderValue=morphologyDefaultBorderValue() ) 

 

 

Parameters: 

 src – input image; the number of channels can be arbitrary, but the 
depth should be one of CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. 

 dst – output image of the same size and type as src. 
 element – structuring element used for erosion; if element=Mat() , a 3 x 

3 rectangular structuring element is used. 
 anchor – position of the anchor within the element; default value (-1, -

1) means that the anchor is at the element center. 
 iterations – number of times erosion is applied. 
 borderType – pixel extrapolation method (see borderInterpolate() for 

details). 
 borderValue – border value in case of a constant border (see 

createMorphologyFilter() for details). [10] 

 

  Next the gaussian blur is being put (to avoid wrong circles detection). 

Gaussian blurring is highly effective in removing gaussian noise from the image: 

 

 void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, 

double sigmaY=0, int borderType=BORDER_DEFAULT ) 

 

http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=dilate#int%20borderInterpolate%28int%20p,%20int%20len,%20int%20borderType%29
http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=dilate#Ptr%3CFilterEngine%3E%20createMorphologyFilter%28int%20op,%20int%20type,%20InputArray%20kernel,%20Point%20anchor,%20int%20rowBorderType,%20int%20columnBorderType,%20const%20Scalar&%20borderValue%29
http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=dilate#int%20borderInterpolate%28int%20p,%20int%20len,%20int%20borderType%29
http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=dilate#Ptr%3CFilterEngine%3E%20createMorphologyFilter%28int%20op,%20int%20type,%20InputArray%20kernel,%20Point%20anchor,%20int%20rowBorderType,%20int%20columnBorderType,%20const%20Scalar&%20borderValue%29


17 
 

Parameters: 

 src – input image; the image can have any number of channels, which 
are processed independently, but the depth should be CV_8U, CV_16U, 
CV_16S, CV_32F or CV_64F. 

 dst – output image of the same size and type as src. 
 ksize – Gaussian kernel size. ksize.width and ksize.height can differ but 

they both must be positive and odd. Or, they can be zero’s and then 
they are computed from sigma . 

 sigmaX – Gaussian kernel standard deviation in X direction. 
 sigmaY – Gaussian kernel standard deviation in Y direction; if sigmaY is 

zero, it is set to be equal to sigmaX, if both sigmas are zeros, they are 
computed from ksize.width and ksize.height ,to fully control the result 
regardless of possible future modifications of all this semantics, it is 
recommended to specify all of ksize, sigmaX, and sigmaY. 

 borderType – pixel extrapolation method (see borderInterpolate() for 
details).[11] 

 

   Next  Hough transform is used to detect all the circles in the mask. The Hough 
 transform is a feature extraction technique used in image analysis, computer vision, 
 and digital image processing. The purpose of the technique is to find imperfect 
 instances of objects within a certain class of shapes by a voting procedure. This voting 
 procedure is carried out in a parameter space, from which object candidates are 
 obtained as local maxima in a so-called accumulator space that is explicitly 
 constructed by the algorithm for computing the Hough transform. The classical 
 Hough transform was concerned with the identification of lines in the image, but 
 later the Hough transform has been extended to identifying positions of arbitrary 
 shapes, most commonly circles or ellipses [12]. 

 

 void HoughCircles(InputArray image, OutputArray circles, int method, double dp, 
double minDist, double param1=100, double param2=100, int minRadius=0, int 
maxRadius=0 ) 

Parameters: 

 image – 8-bit, single-channel, grayscale input image. 
 circles – Output vector of found circles. Each vector is encoded as a 3-

element floating-point vector. 
 circle_storage – In C function this is a memory storage that will contain 

the output sequence of found circles. 
 method – Detection method to use. Currently, the only implemented 

method is CV_HOUGH_GRADIENT. 
 dp – Inverse ratio of the accumulator resolution to the image resolution. 

For example, if dp=1 , the accumulator has the same resolution as the 
input image. If dp=2 , the accumulator has half as big width and height. 

 minDist – Minimum distance between the centers of the detected 
circles. If the parameter is too small, multiple neighbor circles may be 

http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=gaussianblur#int%20borderInterpolate%28int%20p,%20int%20len,%20int%20borderType%29
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Parameter_space
https://en.wikipedia.org/wiki/Line_%28mathematics%29


18 
 

falsely detected in addition to a true one. If it is too large, some circles 
may be missed. 

 param1 – First method-specific parameter. In case of 
CV_HOUGH_GRADIENT , it is the higher threshold of the two passed to 
the Canny() edge detector (the lower one is twice smaller). 

 param2 – Second method-specific parameter. In case of 
CV_HOUGH_GRADIENT , it is the accumulator threshold for the circle 
centers at the detection stage. The smaller it is, the more false circles 
may be detected. Circles, corresponding to the larger accumulator 
values, will be returned first. 

 minRadius – Minimum circle radius. 
 maxRadius – Maximum circle radius.[13] 

 

 The following loop draws circumferences around all detected circles. This is 

how the tracking works.  

 From this point there is image analysis connected to the drone movement. 

The algorythm works that way: 

 if the ball is to close (circumference of the circle is bigger than 40 units) to the 

drone, it goes back, if it is too far (circumference of the circle is less than 20 

units)  the drone goes forward 

 if the distance is apropriate (around 40cm), then the vertical position is being 

analyzed and the drone moves up or down 

 if the vertical position is apropriate (center), then the horisontal position is 

being analyzed and the drone moves left or right. 

 

  The last part is the main function. Ros::init() function must be called before 

 using any other part of the ROS system. It needs to see argc and argv so that it can 

 perform any ROS arguments. NodeHandle is the main access point to 

 communications with the ROS system. The first NodeHandle constructed will fully 

 initialize this node, and the last NodeHandle destructed will close down the node. 

 Then the definitions of topictakeoff, topiclanding and msg_vel are presented. They 

 are used in movement functions when the drone is taking off, landing or the velocity 

 is being changed and it is needed to publish one of these topics.  Calling 

 ardrone/flattrim  inside service without any parameter will send a "Flat Trim" request 

 to AR-Drone to re-calibrate its rotation estimates assuming that it is on a flat surface. 

 Do not call this service while drone is flying or while the drone is not actually on a flat 

 surface. The drone takes off. Ros::init() function has to be called once again, because 

 we are going to use ImageConverter class. Then the object of that class is being 

 created and the callback is being executed in a loop. Additionally if sb pushes escape 

 button for 30ms the program ends. 

 

http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=houghcircles#void%20Canny%28InputArray%20image,%20OutputArray%20edges,%20double%20threshold1,%20double%20threshold2,%20int%20apertureSize,%20bool%20L2gradient%29


19 
 

 
 
 
 

 
 

 



20 
 

 

 
 

    

 Picture 10  - main.cpp, image conversion and control algorithm. 

 



21 
 

 
Picture 11 - main.cpp, main function. 

 

6. Results of work 

 As it is presented in the picture below, an orange ball is being detected and 

position of the bal stimulates the direction of drone's movement. The results are 

presented in printscreens below. In the first picture the drone is flying up, because 

the ball is in upper position, analogically the drone flies down when the ball in lower 

position.  

 

    

 
 

Picture 12 - drone goes up. 

 

 

 



22 
 

 In the second picture the drone is flying backwards because ball is close to the 

camera. Analogically the drone flies forwards when ball is far away. 

 

     

 

 
 

Picture 13 - drone goes back. 

 

 In the third picture the drone goes left because the ball is on the left side of 

the camera. Analogically the drone flies right when the ball is on the right side of 

the camera. 

 

 

 
 

Picture 14 - drone goes left. 

 

7. Summary 

 To sum up, the target has been reached and the drone is following the ball.     

There were little problem with the HSV transform and adjusting the color of the ball. 

In the end it detects also human skin so thats why the person moving the ball should 

be covered with clothes. As we can see ROS and OpenCV have very wide range of 

applications and are very helpful in robotics. Huge amounts of functions in these 

libraries allows the user to experiment with many different objects and to create a 



23 
 

device that will manage many difficult tasks. A very big advantage of such type of 

projects is that it can be modified in many different ways, which could make the 

drone much more independent and "intelligent" device. 

 

 

 

 

8. Bibliography 

[1] http://wiki.ros.org/indigo/Installation/Ubuntu 

[2] http://ardrone-autonomy.readthedocs.io/en/latest/installation.html 

[3] http://gazebosim.org/tutorials?tut=ros_installing 

[4] http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b2 

[5] http://wiki.ros.org/tum_simulator 

[6]http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformation

s.html 

[7] http://desktoppub.about.com/od/glossary/g/HSV.htm 

[8] http://docs.opencv.org/2.4/modules/core/doc/old_basic_structures.html 

[9] http://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html 

[10]http://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_di

latation.html 

[11]http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=dilate 

[12] https://en.wikipedia.org/wiki/Hough_transform 

[13]http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highli

ght=houghcircles 


