
3200 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 12, DECEMBER 2003

Green’s Functions in Lossy Layered Media:
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Abstract—This paper presents an efficient technique for eval-
uating Green’s functions associated to layered media, when for-
mulated as Sommerfeld integrals in the space domain. The key
step in the formulation is that Sommerfeld integrals are computed
choosing a suitable integration path which is closed through the
imaginary axis of the complex spectral plane. It is shown that with
this original choice of the integration contour, the numerical effort
usually involved in the evaluation of Sommerfeld integrals can be
greatly reduced, specially when large source-observer distances are
involved. One asset of this technique is that it can be easily incorpo-
rated into integral equation based CAD packages for the efficient
analysis of complex printed microwave circuit and antennas. In ad-
dition, the theoretical developments needed to set up the numerical
algorithm throw a new light on the asymptotic behavior of the lay-
ered media Green’s functions for large source-observer distances.

Index Terms—Asymptotic behavior, integral equation, multilay-
ered Green’s functions, printed antennas, printed circuits.

I. INTRODUCTION

PRINTED antennas and associated circuits have been ex-
tensively investigated in the last decades. Among the cur-

rently used models, methods based on integral equation tech-
niques, formulated both in the spectral and in the space domain,
are specially attractive, since they provide excellent accuracy
and good computational speed. Details of space domain integral
equations techniques applied to the analysis of infinite multilay-
ered printed structures can be found for instance in [1]. Of para-
mount relevance in this formulation is the concept of Green’s
function, defined as the fields or potentials created by a point
unit source embedded in a layered medium (Fig. 1).

The developments in this paper are based on previous works
by one of the authors [2]–[4]. In those works, the relevant spatial
domain Green’s functions were formulated as Sommerfeld in-
tegrals of the corresponding spectral domain counterparts, and
the accurate numerical evaluation of these Sommerfeld integrals
was shown to be a critical point.

For the numerical evaluation of Sommerfeld integrals several
approaches have been developed in the past. Traditionally, in-
tegration through the real axis combined with pole extraction
techniques and averaging methods has been employed, leading
to very efficient algorithms [3]. The original Sommerfeld inte-
gration path along the real axis has also been successfully closed
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Fig. 1. General multilayered structure analyzed in this paper.

at infinity, thus reducing the whole integration path to the con-
tributions of the poles and branch cuts of the spectral domain
Green’s functions [5]–[7]. In addition, other authors have de-
formed the real axis into a path going through the upper half
complex plane to avoid the poles of the spectral domain Green’s
functions, using rectangular contours [8], or alternatively el-
liptic integration paths [9].

While all these techniques are indeed efficient for relatively
small source-observer distances, they usually require the inte-
gration of functions exhibiting abrupt variations and fast os-
cillating behaviors when large source-observer distances are
involved [2], [10]. However, many current practical problems
involve distances of several tens or even hundreds of wave-
lengths. This is the case when computing mutual coupling
inside large arrays [11], [12], or when modeling cavity backed
antennas by using space images respect to the cavity’s lateral
walls [13].

To solve this problem, analytical techniques have been de-
veloped in the past to express the Green’s functions in closed
form expressions which are valid for large source-observer dis-
tances [14], [15]. More recently, these results have been used
in the study of the coupling between two dipole antennas in
[12]. In that work the analytical formulation of the Green’s func-
tions in surface and space waves allowed to get insight into the
coupling mechanisms occurring between two printed dipoles,
when the basic substrate parameters (thickness and dielectric
constant) are varied. While these techniques are indeed accu-
rate and efficient, however, they are only valid for particular
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layered structures, and new expressions must be developed for
new layered configurations, hence with loss of generality. An
alternative and very popular technique to obtain the spatial do-
main Green’s functions in closed form is the so called complex
image technique first developed in [16]. The approach is based
on representing the spatial domain Green’s functions as the sum
of three contributions, namely, a quasistatic images term dom-
inating in the near field region, the surface waves contribution,
and a contribution from the so called complex images which is
related to leaky waves. Due to the exponentially decaying part
of the complex image series, the convergence behavior of the
technique is excellent [17], [18].

Another interesting technique for the numerical evaluation of
the Sommerfeld integrals was derived in [2], and it consisted
on a new choice of the integration contour which was closed
through the imaginary axis of the spectral plane. However, the
imaginary axis algorithm developed in [2] is only valid for loss-
less layers. Related to this technique, it is interesting to mention
the work derived in [10], which utilized the imaginary axis al-
gorithm to develop a series representation of the Green’s func-
tions, by using the Bessel function argument-multiplication the-
orem. An additional advantage of the technique in [10] is that the
dependence with the source-observer distance () is extracted
from the basic Sommerfeld integrals, so that numerical integra-
tion need not to be repeated for all’s. The technique derived in
[10], although efficient, remains valid only for lossless layers,
since it is based on the original technique described in [2].

In this paper the basic technique described in [2] is extended
and generalized to the case of lossy dielectrics. Once the for-
mulation is derived, all the advantages of the imaginary axis
integration method can be effectively set up to work for the
analysis of circuits and antennas printed on complex stratifi-
cation configurations, containing an arbitrary number of lossy
dielectrics. The theoretical developments needed to set up the
numerical algorithm throw a new light on the asymptotic be-
havior of the multilayered media spatial Green’s functions. In
this paper, a thorough discussion on this asymptotic behavior
is included together with the numerical results obtained for the
Green’s functions using the developed approach. A very inter-
esting and somewhat complementary discussion on the asymp-
totic behavior of Green’s functions can be found in [12], but
derived in the specific context of the mutual coupling between
two printed dipole antennas.

II. BASIC THEORY

A general form for a Green’s function (Sommerfeld integral)
associated to the problem of Fig. 1 is [3]

(1)

where is the Bessel function of order, and a generic
spectral Green’s function which can be obtained analytically for
a layered medium [3].

To solve (1), traditional integration techniques along the real
axis define the branch cut of with the typical hyperbolic

cuts described in [2]. If the selected integration path is a pure
real axis contour, then the residue theorem leads to the following
integral decomposition for (1) [2]

(2)

with . In above expression is the th pole of
the spectral domain function, its residue, and the bar in the
integration symbol indicates that the integral is to be considered
as a Cauchy principal value. Moreover, the first termis an
improper integral, extended to the unbounded interval [0,],
of a function involving the highly oscillatory Bessel function

. It is clear that the oscillating behavior makes quite difficult
the numerical evaluation of this integral, and this situation
worsens when the transverse distance increases as recognized
in [2], [10].

The principal value in this term can be numerically han-
dled with techniques such as thefolding around the polemethod
[2]. Alternatively, the integration path can be brought out of the
real axis by contour deformation, using for instance an elliptic
path [9]. This strategy avoids the poles [termin (2)] which
then do not need to be computed.

An alternative way of computing the Sommerfeld integral
was derived in [2], and it consisted on closing the integration
path through the imaginary axis. The formulation presented
in [2], however, is only valid for lossless dielectric layers,
and expresses the Sommerfeld integral in the following three
terms:

(3)

This expression used explicitly the fact that for lossless media
the spectral Green’s function is purely real in the real axis
for . However, in a lossy case is complex every-
where.

In the present work we have extended the work derived in [2]
so that lossy layers can be accounted for in the formulation. To
do so, the integration contour has been modified as shown in
Fig. 2, so that now the path is closed through both the positive
and negative imaginary axis. Using the new integration contour,
Sommerfeld integral can be written as follows:

(4)
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Fig. 2. Complex spectral plane showing the alternative integration contours through the imaginary axis for the evaluation of Sommerfeld integrals.

where is the spectral domain Green’s function in the
real axis above the branch cut, and is the spectral do-
main Green’s function in the real axis below the branch cut (see
Fig. 2).

In a lossless situation, the spectral domain Green’s function
satisfies the following two relations:

(5)

and the star symbol is used to denote complex conjugate. If
above relations are introduced in (4), then the original formula
(3) for lossless layers is obtained.

III. N UMERICAL DETAILS

Based on the formulation of (4), efficient computer codes can
be built for the evaluation of the Sommerfeld integral for large
source-observer distances. To demonstrate this fact, we will now
explore some numerical techniques which have been applied to
the evaluation of all three terms shown in (4).

The first term is an integral over the bounded interval [0,
] of a function without singularities in the integration interval.

Since the integration interval is bounded, the evaluation of this
term presents, in principle, no difficulties from the numerical

point of view. The only minor problem is due to a removable
singularity in , originated by the presence of the branch
point at . In Fig. 3(a) we present a typical function to be inte-
grated showing smooth behavior, but which exhibit a singularity
in the derivative near due to the branch point. Knowing

that the branch point is due to the term , the weak
singularity introduced can be easily removed by making a well

known change of variables involving the sine function [19], thus
obtaining the following alternate expression:

(6)

and now the function to be integrated is shown in Fig. 3(b). It is
clear that the singularity has been effectively extracted, and that
the behavior of the function to be integrated is smoother around
the branch point .

Finally, the last numerical difficulty concerning this term
is due to the oscillating nature of the Hankel function, and to
the fact that the integrand oscillates faster for larger source-
observer distances. However, since the integration interval is
finite, an efficient numerical algorithm can be constructed based
on the quasiperiodicity of the Hankel function. In this study
we have observed that good numerical precision is achieved
taking seven points per “period” of the Hankel function. Fol-
lowing this rule, the final number of integration points for a
given source-observer distanceis computed with the following
direct calculation:

(7)

Next, the term is an improper integral extended to the un-
bounded interval [0, ] along the imaginary axis of the complex

plane. It is important to note that the function to be integrated
does not exhibit an oscillatory behavior. In consequence, stan-
dard numerical techniques based on oscillating functions such
as the weighted average method [2], [3] will not work for this
integral. However, thanks to the fast decaying behavior of the
modified Bessel function it is expected that simple numerical
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(a)

(b)

Fig. 3. Function to be integrated for the evaluation ofT . The structure
contains three layers:� = 9:0, h = 4:0 mm, � = 7:0, h = 3:0 mm,
� = 5:0, h = 1:0 mm. Losses are:tan � = 0:02 for all layers and
frequency is 10 GHz. (a) No singularity extraction and (b) with singularity
extraction.

techniques converge very fast. To evaluate this integral a tech-
nique based on the reduction of the unbounded interval [0,]
to the unitary interval [0, 1] is employed. The main advantage of
this method is that the resulting integral is extended over a finite
interval, and thus, it can be computed using standard numerical

techniques. The method starts by splitting the whole unbounded
interval into two subintervals: , so that
the integral is expressed as

(8)

where is an arbitrary value. The following two changes of
variables are then applied, respectively, to the first and second
integrals in (8)

(9a)

(9b)

so that (8) transforms into (10), shown at the bottom of the
page. Equation (10) can now be solved using standard Gauss–
Legendre quadrature formulas in the interval [0, 1]. It is also
interesting to note that the technique will be efficient only if

tends to zero faster that the rest of the function tends to in-
finity when . This will be certainly the case since the
asymptotic expression of the modified Bessel functionfor
large arguments contains a decaying exponential of the type

, which largely compensate for the singularity of
the term appearing in (10).

Another interesting aspect of this method is that the term ()
is part of the argument to the modified Bessel function, and
it is convenient to take a constant value for all possible spatial
distance values. In consequence an auxiliary parametercan
be defined, so that in each case the suitable value of the interval
parameter is computed with the following direct calculation:

(11)

For the practical implementation of this technique several values
of the auxiliary parameter have been tried, observing good nu-
merical convergence of the algorithm for an optimum value of
in the range: . With all these cautions, the numerical
accuracy obtained with this technique is very satisfactory.

Finally, the term is expressed as a sum of surface wave
contributions directly linked with the poles of the spectral do-
main Green’s functions. The computation of poles in a general
lossy multilayered structure is a delicate task, but can be ac-
complished accurately by using the analytical properties of the
spectral Green’s functions [20]. In this work an efficient algo-
rithm has been developed. First the poles are located on the real
axis for the lossless case. Then they are tracked as they pene-
trate into the lower half complex plane (Fig. 2) reacting to the
introduction of losses. The whole procedure is a straightforward
generalization of the technique described in [2].

(10)
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IV. A SYMPTOTIC BEHAVIOR

In addition to provide an interesting way for numerically
computing the Green’s functions, the decomposition of any
Sommerfeld integral into the three terms of (4) gives us some
useful theoretical insights concerning the behavior of Green’s
functions in the near and far field regions.

Although we have found convenient for numerical purposes
to make a distinction between termsand , it is evident that
the combination represents the integration along the tra-
ditional hyperbolic cuts, as can be easily demonstrated by con-
tour deformation [7]. The relevant fact is that (Hankel inte-
gral) contains the branch point contribution, and therefore, cor-
responds to the space wave, while(Modified Bessel integral)
including the point at infinity is associated with a quasistatic
behavior [2]. Traditionally, the combination of and has
been known as the continuous-spectrum field. More precisely,

alone (lossless case) or combined with(lossy case) shows
the typical asymptotic behavior of a grounded semi-infinite free
space, and thus, a scalar potential will behave as () for high
values of . On the other hand, is always the dominant term
in the near field, as already pointed out in [2], and becomes in
a lossless case a pure real quantity. It is also interesting to note
that the continuous-spectrum field behaves as ( ) for
small observation distances, and then evolves to the asymptotic
( ) behavior for large distances. This should be expected,
since close to the source the quasistatic behavior, which is ()
for the potentials, must be dominant.

Finally, the sum referred as corresponds to the set of sur-
face waves generated by the multilayered medium. Their prop-
agation constants are directly given by the values of the poles in
the spectral plane, and they can interfere giving rise to sharp os-
cillations in the value of the Green’s functions, as a function of
the distance. It is currently said that surface waves are the dom-
inant contribution in the far field region, but this is only true for
strictly lossless structures. A non zero loss tangent will push the
poles away from the real axis, and will introduce a small expo-
nentially decreasing behavior in the Hankel functions appearing
in . As a result, the surface wave behavior ( ) dominates
only until a given distance. Then the terms devoid of exponen-
tial attenuation takes over, and the overall Green’s function de-
creases as ( ).

All the phenomena discussed above are clearly seen in
Fig. 4(a) and (b), where the modulus of a typical scalar poten-
tial multilayered Green’s function is depicted together with the
partial contributions and , as a function of the radial
distance, for both the lossless and the lossy cases, respectively.
In the lossless case the global behavior of the Green’s function
for ( ) is ( ) because the surface waves () are
dominant. For the lossy case, however, the surface waves are
dominant only until a given distance, and then the sum
takes over resulting in a global behavior of ( ).

It is also interesting to see the behavior of the partial contribu-
tions of the surface wave poles excited in these structures. At the
frequency of analysis there are three surface waves excited, and
Fig. 5(a) presents the contribution of each one to the total poten-
tial. It can be seen that in all cases the behavior is of ( ) type,
and the interferences between them give rise to the sharp peaks

(a)

(b)

Fig. 4. Example of an electric scalar potential obtained for a lossless and a
lossy structure using the new approach. In the lossy case the behavior for very
large distances is (1=� ). � = 4:4, h = 10:0 mm, frequency 10 GHz.
(a) Lossless case: tan� = 0:00. (b) Lossy case: tan� = 0:02.

an oscillations in the response shown in Fig. 4(a). Furthermore,
Fig. 5(b) presents the same surface wave contributions for the
lossy substrate. It can be seen that for source-observer distances
greater than ( ), the negative exponential dominates
the behavior of the surface wave terms, so that they exhibit a
fast decaying behavior. This effect results in the overall ( )
dependence of the potential due to the term, which takes
over for very large source-observer distances.

There are special cases, however, where the continuous-spec-
trum field does not decay as ( ) in the far field.
This can occur when there is a surface wave pole very close to
the branch point . For the structure shown in Fig. 4(a) this
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(a)

(b)

Fig. 5. Contribution of each surface wave pole to the finalT term, for the
structure shown in Fig. 4. The lossy case clearly shows the strong attenuation
effect on the surface waves for distances greater than (k � = 100). (a) Lossless
case and (b) lossy case.

happens at a frequency where a pole lies at
. Fig. 6(a) presents the different contribu-

tions of the imaginary axis formulation for this particular situa-
tion. It can be seen that the quasistatic termstarts decreasing
as ( ) for small source-observer distances, and then it shifts to
a ( ) dependence in the far field region. This transition from
a ( ) dependence to a ( ) dependence occurs around the
distance ( ). On its side, the term also experiences
a transition, but this time from a ( ) dependence to a ( )
dependence. The transition occurs, as for theterm, around
the distance ( ). It can also be observed that the whole

(a)

(b)

Fig. 6. Imaginary axis decomposition applied to the structure in Fig. 4 when
there is a surface wave pole very close to the branch point. (a) Lossless case and
(b) lossy case.

continuous-spectrum field varies as ( ) for very large source-
observer distances, and it is essentially due to the term(space
wave term), since the term (quasistatic term) is negligible in
comparison to the former.

An even more interesting situation can be observed for the
lossy substrate, and when a surface wave pole is closed to the
branch point. The imaginary axis decomposition for this case is
shown in Fig. 6(b). It can be seen that now the space wave
integral behaves in the far-field region exactly like the surface
waves term ( ), including the exponential decaying behavior
due to the losses in the substrate. In fact, due to the proximity
of a surface wave pole to the branch point, the space wave term
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Fig. 7. Imaginary axis decomposition applied to an elementary dipole
radiating in an unbounded free space medium.

associated to this branch point is now controlled by the surface
wave pole. Interestingly, the contributions of both and
terms combine together to give a total potential with ( ) vari-
ation for large source-observer distances as shown in Fig. 6(b).
It is also important to notice that the magnitude of bothand

terms are greater than the magnitude of the overall final po-
tential. When they combine, their respective phases produce the
required cancellation, therefore giving rise to a final potential
with lower magnitude as clearly indicated in Fig. 6(b).

The behavior of the continuous-spectrum field in the loss-
less case can be consider of free-space type since a similar sit-
uation occurs for an elementary dipole radiating inside an un-
bounded free space medium (no ground plane). In this case,
since there are no surface waves, the whole scalar potential be-
haves as ( ). If the imaginary axis decomposition is used two
different waves appear, namely the contribution of the space
wave term behaving as ( ), and the contribution of the

integral which behaves in the far field region as ( ). This
fact is shown in Fig. 7 where we present the total scalar po-
tential Green’s function together with the partial contributions

and . Also, in Fig. 7 we can observe that the contribution
due to the term is only dominant in the static near field re-
gion ( ). As the source-observer distance increases, the
contribution is soon overcome by the space wave term,
thus resulting in the well known global behavior of ( ). If we
compare the and contributions obtained in the free-space
configuration and in the inhomogeneous case [Fig. 6(a)], we can
observe that they are very similar, and in particular the depen-
dence with the radial distance is in both cases of the same type.
For the inhomogeneous case, however, the global behavior of
the potential is of ( ) type due to the presence of two ad-
ditional surface waves which are not present in the unbounded
free space structure.

All above properties of the continuous spectrum field can be
considered as the normal behavior for a source radiating in the

(a)

(b)

Fig. 8. Imaginary axis decomposition applied to an elementary dipole
radiating in a grounded semi-infinite free space, for two different heights of
the dipole with respect the ground plane. (a)h = 1mm (� =30). (b) h =
20mm (2� =3).

presence of an infinite ground plane. To show this we can take an
elementary dipole inside a grounded semi-infinite free space en-
vironment. We know that in this case the total scalar potential be-
haves as ( ) due to the interaction of the dipole and its image
(and due to the absence of surface wave terms). If the new de-
composition is used, the contributions associated to the terms
and behave in the far field region as ( ) and ( ), re-
spectively, where and are factors dependent on the electrical
height of the dipole with respect the ground plane. The behavior
in this case is clearly indicated in Fig. 8, where we show the total
scalar potential together with the partial contributionsand
for a dipole at 1 and 20 mm distance from the ground plane.
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TABLE I
ASYMPTOTIC SPATIAL BEHAVIOR OF THE DIFFERENTCOMPONENT OFGREEN’S FUNCTIONS

In the first case the contribution due to the termis closed
to the space wave term, and thus, produces sharp oscillations in

. The sum of the two, however, gives in the far field region a
smooth behavior with the well known ( ) dependence. As re-
gards the second case, the termis only dominant in the static
near field region. As the source-observer distance increases, the
term takes over and becomes the essential contribution to
the total Green’s function. As a summary, all these interesting
spatial domain Green’s functions asymptotic behaviors are col-
lected in Table I, together with the partial contributions, ,
and introduced by the imaginary axis Sommerfeld integral
decomposition.

V. CONCLUSION

In this paper an efficient method has been developed for the
evaluation of Sommerfeld integrals. The method is based on
choosing appropriate integration path contours which are closed
through the imaginary axis of the complex plane. Following the
proposed approach, the time consuming improper integrals in-
volving highly oscillating Bessel functions along the real axis
are transformed into improper integrals involving the fast de-
caying modified Bessel function along the imaginary axis.
Due to this fast decaying behavior, the resulting integrals con-

verge very fast, and can, therefore, be computed with less nu-
merical effort.

The usefulness of the technique developed as a practical nu-
merical tool resides on the ability of accurately locate the poles
of the involved spectral Green’s functions. For this purpose a
general pole search algorithm has also been developed, and its
general strategy briefly described.

With the developed approach, the special decomposition of
the whole Green’s functions in three partial terms has allowed
to numerically study the asymptotic behavior of these Green’s
functions for large source-observer distances. Interesting new
phenomena have been observed, specially in the lossy case. The
proposed approach is expected to be very valuable in integral
equation based CAD packages for the analysis and design of
microstrip antennas and circuits.
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