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ABSTRACT

This research is focused on determining the contribution to the precession of the Earth’s equator due to the mass redistribution
stemming from the gravitational action of the Moon and the Sun on a rotating solid Earth. In the IAU2006 precession theory, this
effect is taken into account through a contribution of −0.960 mas cy−1 for the precession in longitude (with the unspecific name of non-
linear effect). In this work, the revised value of that second-order contribution reaches −37.847 mas cy−1 when using the Love numbers
values given in IERS Conventions, and −43.945 mas cy−1 if those values are supplemented with the contributions of the oceanic
tides. Such variations impose a change of the first-order precession value that induces relative changes of the Earth’s dynamical
ellipticity of about 7.3 and 8.5 ppm, respectively. The corresponding values for the obliquity rate are 0.0751 and 0.9341 mas cy−1,
respectively, in contrast to 0.340 mas cy−1 considered in IAU2006. The fundamentals of the modeling have been revisited by giving
a clear construction of the redistribution potential of the Earth through the corresponding changes in the Earth tensor of inertia. The
dynamical problem is tackled within the Hamiltonian framework of a two-layer Earth model, introduced and developed by Getino
and Ferrándiz. This approach allows for the achievement of closed-analytical formulae for the precession in longitude and obliquity.
It makes it possible to obtain numerical values for different Earth models once a set of associated Love numbers is selected. The
research is completed with a discussion on the permanent tide and the related estimation of the variation of the second degree zonal
Stokes parameter, J2, and also the indirect effects on nutations arising from the relative change of the Earth’s dynamical ellipticity.
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1. Introduction

Most of the theoretical contributions to the precessional rate
of the Earth’s equator, included in the current IAU2006 theory
(Capitaine et al. 2003, 2005), were taken from previous works
by Williams (1994) and Mathews et al. (2002). The effect of the
tidal deformations on the precession rates in longitude and obliq-
uity – the main scope of this work – is included in the IAU2006
set of contributions with the unspecific name of non-linear effect,
and it is established as −0.960 mas cy−1 for the precession rate in
longitude, and 0.340 mas cy−1 in obliquity.

A recent publication by Liu & Capitaine (2017) has evalu-
ated the possibility of upgrading IAU2006 precession theory. In
that process, the updated values of the non-linear effect to be
considered would be −0.124 and 1.844 mas cy−1, as reported in
Lambert & Mathews (2008). Liu & Capitaine (2017) designate
those contributions as an effect of the second-order torque on
precession rates.

In a previous study by the authors (Baenas et al. 2017), the
revision of such components of the secular motion of the equator
was initiated, and it was shown that the second-order lunisolar
contribution changes significantly when the assumed rigid Earth
model is replaced by a two-layer one that incorporates some
of the effects of the deformation one (achieving a difference of
−8.51 mas cy−1 in the precession in longitude with respect to the
IAU2006 reference value).

In this study, the IAU2006 contributions arising from the
variations of the Earth’s gravitational potential induced by
the deformations resulting from the action of the lunisolar

gravitational potential (also known as tidal potential or tide-
raising potential) are revisited. The physical phenomenon is
referred to as tidal deformation (Love 1906, Sect. 185) or bodily
tide (Jeffreys 1976, Chap. 7), and the additional term in the grav-
itational energy of the system is known as redistribution tidal
potential (as it is caused by a mass redistribution). We show that
the changes of the precession rates are not negligible when real-
istic hypotheses about the Earth’s rheology and dynamics are
assumed. The resulting contributions are numerically compara-
ble to some of the components of the current precession theory,
displayed, for example, in Table 2 of Baenas et al. (2017).

The effects of the redistribution potential on Earth
nutation and precession have been partially discussed by
Souchay & Folgueira (2000), Escapa et al. (2003, 2004),
Ferrándiz et al. (2012), and Baenas (2014), within a Hamil-
tonian framework. Another approach to the problem, based
on an application of modified SOS (Sasao et al. 1980) equa-
tions, can be found in Lambert & Capitaine (2004) and
Lambert & Mathews (2006, 2008). Krasinsky (1999) and,
recently, Williams & Boggs (2016), computed the obliquity
rate from the vectorial Euler equations. In the works by
Lambert & Capitaine (2004) and Souchay & Folgueira (2000),
a simplification of the problem, consisting in considering only
the zonal contribution of the redistribution tidal potential,
was performed. This hypothesis must be improved since the
other harmonic contributions of the potential, the tesseral and
sectorial terms, are of the same magnitude. The formalism
used in Lambert & Mathews (2006, 2008) does not provide
simple analytical formulae that allow for the recomputing of
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the precession and nutation due to the redistribution of mass
when the Love numbers model is changed. That is the case, for
example, when considering a Love numbers set that includes,
in addition to the ocean load, the ocean tide direct effect on
the redistribution (Williams & Boggs 2016 and this work).
That inclusion produces significant differences with respect to
the values provided in Lambert & Mathews (2006, 2008) as is
shown in Sect. 4.

The works by Escapa et al. (2003, 2004), Ferrándiz et al.
(2012) and Baenas (2014) constitute a progressive line that leads
to the present article, in which the problem of the redistribu-
tion of mass in the evolution of the Earth’s rotation will be thor-
oughly studied by means of the Hamiltonian formalism and the
use of canonical perturbation methods, allowing an analytical
approach. With these tools, closed-analytical formulae for the
precession rates will be obtained, which enables a simple numer-
ical evaluation of the redistribution effects under different elastic
responses of the Earth (or rheologies), characterized by means
of the Love numbers formalism.

The effects of the mass redistribution are particulary rele-
vant in the Earth’s precession modeling, due to its connection
with the Earth’s dynamical ellipticity1 Hd = 1 − A/C (expres-
sion for an axial symmetric Earth, A and C being the princi-
pal moments of inertia, equatorial and polar, respectively). It
should be remarked that, in spite of the simplified notation, A
is taken in most of the theories (including IAU2000) as the
mean (A + B)/2 of the equatorial moments of inertia. This
simplification suffices for this paper, although it is pertinent to
cite that the triaxial problem has been treated in many differ-
ent papers; some examples are Chao et al. (1991), Getino et al.
(2000), Escapa et al. (2002), Shen et al. (2007), Chen & Shen
(2010), Bizouard & Zotov (2013), and Chen et al. (2015).

Independently of the symmetry assumed in the background
model, the Hd parameter is inferred from the precession rate in
longitude adjusted from astronomical observations at an epoch,
pA (general precession in longitude). Hence, it must be read-
justed when some of the smaller components of pA, which
are treated in the process like known constants, are modified.
Besides, corrections to the dynamical ellipticity indirectly affect
the nutation amplitudes at the tens of µas level, through a con-
sistency factor (Hd + δHd)/Hd (Escapa et al. 2016).

The structure of the paper is as follows. In Sect. 2, the funda-
mentals of the Earth redistribution potential theory are described,
with special emphasis in the process leading to its analytical for-
mulation and its generalization through Love numbers formal-
ism. In Sect. 3, the analytical formulae for the precession rates
are obtained by means of the Hamiltonian approach. Section 4 is
composed of the computation of the precession rates for different
Earth models, given by the corresponding Love numbers sets. In
Sect. 5, the main implications of the numerical results derived
formerly are discussed. They refer to the permanent tide, the
change in the dynamical ellipticity of the Earth, and its effects
on the nutations. We also draw some of the fundamental conclu-
sions of this research. Finally, two appendices have been added
for clarifications and additional material.

2. Earth redistribution tidal potential

2.1. Basic hypothesis

The external gravitational potential energy of an extended body
can be expanded in a series of spherical harmonics (e.g.,
1 Other common denominations are dynamical flattening or mechani-
cal ellipticity.

MacMillan 1958, Sect. 172). That procedure is especially suit-
able when both the geometry and the mass density functions of
the body are not far from the spherical symmetry, or when the
potential energy is evaluated at great distances compared with
the dimensions of the body.

From the point of view of continuum mechanics, the spheri-
cal harmonics expansion depends only on the volume of the body
and its volumic mass distribution2. This fact is neatly appreciated
when the expansion is written in terms of the inertial integrals
(Ibid, Sect. 204) given by∫

B
xl

1xm
2 xn

3 ρ (r) d3r, l,m, n = 0, 1, 2, . . . (1)

In this expression, r = (x1, x2, x3)t are the Cartesian coordinates
of a material particle of the extended body with volume B and
volumic density function ρ (r), and d3r stands for the volume ele-
ment. Since the effects to be investigated are small, it is enough
to consider just the second degree terms in the expansion of the
external gravitational potential energy.

The relationships of the Ii j matrix elements of the inertia ten-
sor of the body3,

Ii j=

∫
B
ρ (r)

(
r2δi j − xix j

)
d3r, (2)

with the second degree inertial integrals (l + m + n = 2) lead
to the well-known expression of the second degree terms in
the multipolar expansion of the external gravitational potential
(MacCullagh’s formula, MacCullagh 1844; Peale 1973)

V
(
rp

)
= −

Gmp

2r5
p

3∑
i, j=1( j≥i)

Ii j

[
r2

pδi j −
(
3 − 2δi j

)
xi,px j,p

]
. (3)

Here rp =
(
x1,p, x2,p, x3,p

)t
and rp =

∣∣∣rp

∣∣∣ represent the posi-
tion vector and the modulus of a material particle of mass m,
labeled as p, where the gravitational potential energy is evalu-
ated, and G is the gravitational constant.

Possible temporal dependence has not been made explicit in
the previous formulae. The matrix of inertia, I =

(
Ii j

)
, or the iner-

tial integrals, Eq. (1), might depend on time, inducing a sim-
ilar dependence on the expansion of the external gravitational
potential. In turn, they can also depend on time due to an explicit
temporal variation of rp. Whereas the second situation does not
present special difficulties, it is not the case for the first one, so
it will be analyzed with some detail.

In such a case, time dependence in I can be due to two facts.
First, the reference system employed in the computation of the
matrix of inertia can be animated with a motion independent of
that of the extended body. Second, the extended body can experi-
ence changes of shape and volume (redistribution of mass). Both
situations would make the volume and volumic density of the
extended body time dependent, B = B(t) and ρ = ρ (r, t), how-
ever, they have a quite different nature. The first one has a kine-
matical origin, while the second one is due to the deformable
character of the extended body. A convenient way to separate, to
some extent, those two facts is to attach in some prescribed way
a reference system to the extended body.

2 In a general situation, other mechanisms can also contribute to the
gravitational potential of an extended body like surface mass distribu-
tions, and loads. However, their inclusion does not change the funda-
mentals of the present exposition, so, for the sake of simplicity, they
will not be considered here.
3 Here, δi j stands for the Kronecker delta symbol.
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The procedure is best appreciated if the case in which a rigid
extended body is first considered. Since by definition the dis-
tances between its material particles must keep constant (invari-
able form and shape), all the time dependence in B(t) and ρ (r, t)
emerges as a consequence of the motion of the reference sys-
tem used in their description. Alternatively, the extended body
temporal evolution is a rigid motion given by a combination of a
translation of the barycenter of the body O, and a rotation around
it.

It entails that there exist reference systems, or body figure
axes, where I is independent of time. Among them, it is espe-
cially convenient to employ the principal axes system, Oxyz,
because I is a diagonal matrix in it (for specific problems,
another choice of the reference system might be more suitable
in order to simplify the formulation of the rotational dynamics
problem.).

In this way, the motion of the extended body can be com-
pletely identified with the motion of the reference system Oxyz
and vice versa, that motion referred to another reference system,
OXYZ, not necessarily inertial but with known time evolution.
In the study of the rotation of the Earth, those other reference
systems are also assumed to be geocentric like, for example, the
one defined by the ecliptic of date.

The question is more complex for deformable bodies as was
early recognized in Tisserand (1891, Tome II, Sect. 213). Fol-
lowing a similar procedure to that used in the case of the rigid
body, first a reference system Oxyz can be linked to the extended
body. It will induce a rigid motion common for all its material
particles.

However, since the body is deformable, in general there will
exist other part of the motion not described by that of Oxyz, and
depending on each material particle. This will be referred to as
deformation. In this way, the motion of the extended body is split
into two components: a rotation around O (rigid motion) plus a
deformation.

It allows the unambiguous definition of the rotation of a
deformable body through the rotation of Oxyz relative to OXYZ
(see, e.g., Escapa 2011). In contrast to the rigid case situation,
however, the tensor of inertia I will depend on time due to the
deformation component of the motion, even when it is described
from Oxyz (which entails a variation of the relative distance
among the material particles of the body).

The main problem with this approach is that the decom-
position of the motion is not unique. Different criteria can be
employed in order to define the rigid and deformable compo-
nents (Munk & MacDonald 1960, Chap. 3, Sect. 2).

From the point of view of establishing the dynamics
of the extended body, the prescription of the well-defined
direct orthonormal Oxyz reference system called the Tisserand
system is especially suitable (Ibid., Moritz & Mueller 1986;
Kinoshita & Sasao 1977; see Escapa 2011 for clarifications on
the equivalence of the different definitions).

In the Tisserand system4, the position r′ of every material
particle in the deformed body (or deformed state of the body),
with integration domain B′, will be obtained by means of a trans-
formation defined by a Lagrangian particle displacement vector
field, u (r), given by

r′ = r + u (r) . (4)

The modulus of u (r) vectors will be assumed to be small
enough to admit a first-order deformation theory, where any

4 From now on, all the primed symbols refer to the deformed state and
the non-primed ones to the undeformed or reference state.

related magnitude is linear in the components of the displace-
ment vector or its spatial derivatives. The Jacobian of the change
of variable r′ (r) related to the previous transformation, in the
linear elasticity limit, is given by (Landau & Lifshitz 1959,
Chap. 1)

det
(
∂r′

∂r

)
= 1 + ∇u (r) , (5)

being the divergence of u known as volume dilatation, as it
stands for the relative volume change in the deformation between
volume elements, d3r′ = [1 + ∇u (r)] d3r. Besides, by means of
the displacement field, the volumic density function ρ′ (r′) in the
deformed state can be also linked to its counterpart distribution
in the undeformed domain (Moritz & Mueller 1986, Chap. 4),

ρ′
(
r′
)

= ρ (r) − ρ (r)∇u (r) . (6)

The last result is not only a consequence of the definition of
u (r), but of the continuity equation in the case of an Eulerian
change of density due to an instantaneous deformation, δρ (r′) ≡
ρ′ (r′) − ρ (r′) = −∇

[
ρ (r) u (r)

]
(Backus 1967).

Equations (4)–(6) can be used to perform the calcula-
tion of the inertial integrals over the deformed state B′,∫

B′ x′l1 x′m2 x′n3 ρ′ (r′) d3r′, and consequently the matrix elements
of the inertia tensor of the deformed body, through an integration
over the undeformed volume B. This is achieved by means of a
first-order Taylor expansion of the product x′l1 x′m2 x′n3 induced by
the transformations x′i = xi +ui and the smallness of ui in the lin-
ear elasticity limit, so that the following expression is obtained:∫

B′
x′l1 x′m2 x′n3 ρ′

(
r′
)

d3r′ =

∫
B

xl
1xm

2 xn
3 ρ (r) d3r

+

∫
B

xl
1xm

2 xn
3

(
l
u1

x1
+ m

u2

x2
+ n

u3

x3

)
ρ (r) d3r.

(7)

The application of this result to the integrals of I′i j ele-
ments (given by Eq. (2)), with primed variables in the case of
a deformed extended body, allows us to decompose them into
two parts: the matrix elements of the undeformed state, Ii j, and
the perturbation due to the deformed one, ∆Ii j, performed over
the undeformed B volume, namely,

I′i j = Ii j + ∆Ii j, i, j = 1, 2, 3. (8)

where (see, e.g., Chandrasekhar 1969, Sect. 15, or Wahr 1981)

I′i j =

∫
B′
ρ′

(
r′
) (

r′2δi j − x′i x
′
j

)
d3r′,

Ii j =

∫
B
ρ (r)

(
r2δi j − xix j

)
d3r,

∆Ii j =

∫
B
ρ (r)

[
2 (u · r) δi j −

(
uix j + u jxi

)]
d3r. (9)

In matrix form, Eq. (8) will be written as I′ = I + ∆I.
The substitution of Eq. (9) into Eq. (3) leads to a simi-

lar decomposition for the external gravitational potential of the
extended body

V′
(
rp

)
=V

(
rp

)
+Vt

(
rp

)
, (10)

with

V
(
rp

)
= −

Gmp

2r5
p

3∑
i, j=1( j≥i)

Ii j

[
r2

pδi j −
(
3 − 2δi j

)
xi,px j,p

]
,

Vt

(
rp

)
= −

Gmp

2r5
p

3∑
i, j=1( j≥i)

∆Ii j

[
r2

pδi j −
(
3 − 2δi j

)
xi,px j,p

]
. (11)
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The additional term Vt

(
rp

)
in the potential energy is the

redistribution potential, since it arises from the redistribution of
mass associated with the deformation field u (r). As it is derived
from Eqs. (9) and (12), the form of Vt

(
rp

)
is determined once

u (r) is known. For example, in the case of the bodily tide of
the Earth, it would be necessary to find the displacement vec-
tor field produced on its body by the attraction of the Moon
and the Sun. The way of constructing the redistribution poten-
tial shown here is a generalization of the method proposed in
Getino & Ferrándiz (1990, see also Escapa 2011).

Another widespread procedure to obtain Vt

(
rp

)
is by solv-

ing directly the elastic problem, since the dynamical equations of
motion of the displacement vector field must be supplemented
with the Poisson equation for the redistribution potential. This
is the approach followed by classical works on the bodily tide
like, for example, those of Love (1906), Takeuchi (1950), and
Alterman et al. (1959), leading to the introduction of Love num-
bers. This method allows the use of Eq. (3) in reverse: from
the known form of the redistribution potential it is possible to
obtain the variation of the inertia matrix due to deformation (e.g.,
Jeffreys 1976, Chap. 7, Peale 1973; Sasao et al. 1980).

2.2. Earth redistribution tidal potential for SNREI models

The SNREI (seismology acronym, Dahlen 1968) model refers to
an (oceanless) Earth assuming a Spherical, Non-Rotating, Elas-
tic and Isotropic body, in the undeformed state. SNREI Earth
models have also been considered when determining the bodily
tide (e.g., Love 1906; Takeuchi 1950). Although the real Earth
departs from the SNREI model, those theories provide reason-
able results for the tidal deformations (Wahr 1982), which makes
them suitable to study the effects that the bodily tides have on
other motions of the Earth.

It is the case when determining the effects of the tidal defor-
mations on the Earth rotation (e.g., Jeffreys & Vicente 1957;
Sasao et al. 1980; Getino & Ferrándiz 1995, or Escapa 2011).
Since the variations of the Earth rotation, the displacement vec-
tor field associated with the tide, and the deviations of the SNREI
Earth model with respect to the real Earth are small, ignoring rota-
tional and elliptical effects on the bodily tide leads to a very good
first approximation when studying Earth rotation5. This fact has
been explicitly confirmed by theories of the Earth rotation that
include first-order rotational and elliptical effects in the deforma-
tions, as it is stated in the very elucidating notes by Wahr (1982).

The features of a SNREI model imply the following assump-
tions. Firstly, the deformation is purely elastic, which implies
instantaneity and reversibility6, both properties consistent with
the discussion made in the previous section. Moreover, rotational
and elliptical effects are not considered on the Earth’s deforma-
tion. In order to perform the ∆Ii j integrals given by Eq. (9), the
density function in a SNREI model is assumed to be isotropic or
spherical, ρ (r) = ρ (r).

In this situation, the case of a deformation induced by an
external (gravitational) potential, proportional to solid spherical
harmonics (of second degree), U2, was studied by Love (1911)
and Takeuchi (1950). In fact, let

(
rq, θq, φq

)
be the spherical coor-

5 Basically, in those works the effects of the rotation and the deforma-
tion are separated, the deformation ones being considered for a spheri-
cally symmetric non-rotating Earth (e.g., Wahr 1982; Moritz & Mueller
1986, Chap 4, or Kinoshita & Sasao 1977).
6 We refer the reader to the illuminating material “Continuum mechan-
ics. A celestial-mechanician’s survival kit”, provided in the extended
version of Efroimsky (2012a).

dinates of a perturber q, the tidal (or tide-raising) degree-2 poten-
tial due to the gravitational action of the perturber q on a point
(r, θ, φ) of the Earth is given by the well-known expression

U2

(
r, rq

)
= −G

mq

rq

(
r
rq

)2

P2 (cos γ) , (12)

where γ is the angular separation between vectors rq and r, and
P2 is the second degree Legendre polynomial. Then, the acceler-
ation derives from the potential in the form −∇U2. The solution
for the displacement field is given by (Love 1911, Sect. 109),

u (r) = −F2 (r)∇U2 −G2 (r)U2r, (13)

with F2 and G2 being some functions of r only7. We note that
the toroidal component (proportional to r × ∇U2) is null in
this model. Therefore, using the addition theorem for the un-
normalized degree-2 spherical harmonic (Whittaker & Watson
1950, Sect. 15.7) in Eq. (12),

U2

(
r, rq

)
= −G

mq

rq

(
r
rq

)2

×

[
C20C20,q

+
1
3

(
C21C21,q + S21S21,q

)
+

1
12

(
C22C22,q + S22S22,q

)]
,

(14)

is obtained, C2m and S2m functions being real surface spherical
harmonics of second degree, C2m (θ, φ) = P2m (cos θ) cos (mθ),
S2m (θ, φ) = P2m (cos θ) sin (mθ), and P2m the associate Legen-
dre function. In Eq. (14) the arguments of the spherical harmon-
ics have been omitted, for the sake of simplifying the notation.
We note that those with q subscript are related to the spherical
coordinates of the perturber.

Taking intoaccount thepreviousconsiderations, the integralof
the perturbation ∆Ii j to the inertia matrix elements (Eq. (9)) can be
performed. This requires a rewriting of the Cartesian coordinates
ui of the displacement vector in spherical ones, given by

ur = −

[
2

F2 (r)
r

+ G2 (r) r
]
U2,

uθ = −
F2 (r)

r
∂U2

∂θ
, (15)

uφ = −
F2 (r)
r sin θ

∂U2

∂φ
,

where the relation ∂U2/∂r = 2U2/r has been used, in addition to
the spherical expression of ∇U2. Then, performing the integral
in the angular variables (θ, φ) , the following expression of the
perturbation of the matrix of inertia due to the perturber q is
obtained:

∆Iq = 2κt,q

(
aq

rq

)3
 C20,q −

1
2C22,q − 1

2S22,q −C21,q

− 1
2S22,q C20,q + 1

2C22,q −S21,q
−C21,q −S21,q −2C20,q

 ,
(16)

7 This approach is analogous to the classical separation of variables
technique of a scalar field. In this case, the displacement vector is sep-
arated as products of the unknown functions F2 and G2, and func-
tions derived from U2 that depend on r, θ and φ (see, e.g., Wahr 1982
or Moritz & Mueller 1986, Chap. 4). The substitution of Eq. (13) in
the original partial differential equations of the vibratory motion of an
SNREI model, and its boundary conditions, leads to a system of ordi-
nary differential equations in F2 and G2. It can be solved when supple-
mented with the Poisson equation (Takeuchi 1950; Getino 1993).
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with κt,q being a parameter describing the elastic response of the
SNREI Earth to the perturbation caused by the perturber, whose
integral form is

κt,q =
4π
15

Gmq

a3
q

∫ aE

0
r4ρ (r)

[
5F2 (r) + r2G2 (r)

]
dr. (17)

In Eqs. (16) and (17), the mean distance between the geocenter
and the perturber, aq, has been introduced by normalization con-
venience; aE is the Earth’s mean equatorial radius, used to define
the integral in the radial coordinate. Equation (16) is equiva-
lent to those of Peale (1973), Kubo (1991), Getino & Ferrándiz
(1990, 1995), or Lambert & Mathews (2006), but the parameters
describing the elastic behavior are different up to proportionality
factors.

However, the process that we have followed in their com-
putation is different. In those works Eq. (16) is obtained from
MacCullagh’s formula (3), since the redistribution tidal poten-
tial is known from the solution of the elastic problem. Here, we
construct the increment of the matrix of inertia through the dis-
placement vector. This approach provides an alternative deriva-
tion to that presented in Getino & Ferrándiz (1990). It should be
recalled that the trace (∆I) is null, due to a general result of lin-
ear elasticity (Rochester & Smylie 1974, generalizing Darwin’s
theorem, Darwin 1910, for a solenoidal deformation).

2.3. Expression of the redistribution tidal potential

MacCullagh’s formula, Eq. (3), allows the linking of the pertur-
bation of the inertia tensor to the additional gravitational poten-
tial energy related to the mass redistribution. Therefore, from
Eq. (11), the redistribution tidal potential energy,Vt;p,q, due to a
couple of perturbed (p) and perturbing (q) bodies is written as

Vt;p,q = −G
mp

2r5
p

3∑
i, j=1( j≥i)

∆Ii j,q

[
r2

pδi j − 3
(
2 − δi j

)
xi,px j,p

]
. (18)

Here rp =
(
x1,p, x2,p, x3,p

)
are the Cartesian coordinates of the

point where the gravitational potential is evaluated; in our appli-
cation, it will be the position of the perturbed body p. After some
algebra, introducing the ∆Ii j,q elements given by Eq. (16), and
taking into account that the solid spherical harmonics of the sec-
ond degree can be expressed as linear combinations of products
xi,px j,p, namely,

r2
pC20,p =

1
2

(
3x2

3,p − r2
p

)
,

r2
pC22,p = 3

(
x2

1,p − x2
2,p

)
,

r2
pC21,p = 3x1,px3,p, (19)

r2
pS21,p = 3x2,px3,p,

r2
pS22,p = 6x1,px2,p,

theVt;p,q potential becomes

Vt;p,q = −G
mp

a3
p

(
ap

rp

)3 (
aq

rq

)3

κt,q ×

[
6C20,pC20,q

+2
(
C21,pC21,q + S21,pS21,q

)
+

1
2

(
C22,pC22,q + S22,pS22,q

)]
.

(20)

It will be useful for the purpose of this study to link the κt,q
parameter with the Love number k2 (Love 1911, Sect. 59), due to

the widespread use of such formalism in the study of the Earth’s
deformability, as will be shown in the next sections. By defini-
tion, k2 Love number is given by the proportionality between the
additional redistribution potential at the (displaced) surface, aris-
ing solely from the redistribution of mass (Munk & MacDonald
1960, Chap. 5).

Therefore, in order to use Eqs. (14) and (20), the following
relation will be fulfilled, Vt;p,q

(
rp = aE

)
/mp = k2U2 (r = aE),

which simplifies to

k2 = 6
a3

q

mqa5
E

κt,q. (21)

Obviously, k2 is independent from the perturber q, and character-
izes the elastic response of Earth in a SNREI model. The well-
known form of the redistribution potential is then recovered,

Vt;p,q

mp
= k2

(
aE

rp

)5

U2

(
rp, rq

)
, (22)

with U2 given by Eq. (14). This general expression is used,
for instance, in Munk & MacDonald (1960), Peale (1973) or,
in recent works, by Efroimsky (2012a,b) or Williams & Boggs
(2016).

The tide-raising potential is commonly referred to the
Earth surface (e.g., Kaula 1964; Efroimsky 2012a,b, or
Williams & Boggs 2016). By writing rp = rpep and with the
aid of Eq. (14), we derive that

U2

(
rp, rq

)
=

(
rp

aE

)2

U2

(
aEep, rq

)
=

(
rp

aE

)2

U2

(
rq

)
, (23)

where we have introduced the abridged notationU2

(
aEep, rq

)
=

U2

(
rq

)
. In this way, we can write Eq. (22) in the form

Vt;p,q

mp
= k2

(
aE

rp

)3

U2

(
rq

)
. (24)

At the Earth surface rp = aE; the former equation provides
the Love number k2 as the constant of proportionality between
the redistribution potential and the tide-raising potential on the
spherical Earth surface. In what follows, the criterion given by
Eq. (24) will be adopted, due to its wider use.

From Eq. (17), an integral form for the k2 Love number in
the SNREI Earth model can be provided,

k2 =
8π
5

G
a5

E

∫ aE

0
r4ρ (r)

[
5F2 (r) + r2G2 (r)

]
dr. (25)

This expression allows a numerical integration in order to
obtain the k2 value for different Earth rheologies (within the
SNREI modeling). The Takeuchi (1950) computational proce-
dure to obtain F2 and G2 functions was followed, as an example
of a similar procedure, by Getino & Ferrándiz (1991)8 – with
Takeuchi’s Earth model – or Getino (1993) – with 1066A and
1066B Gilbert & Dziewonski (1975) models. However, this is
not the purpose of this research, and the numerical values of k2
(and those of its generalizations for more realistic Earth models)

8 The parameter κt,q is similar to that named D, or Dt, in
Getino & Ferrándiz (1990, 1995). However, in those works the formu-
lae defining D should appear without the term proportional to the radial
derivative of the density.
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will be considered instead, as inputs of the theory, as occurs with
the ephemeris describing the motion of the perturbers.

The time dependence of the redistribution tidal potential
(Eq. (20)) is due to that of the Love number and the relative
motion of the perturber q. It is better described in the frequency
domain. The dependence of k2 with the tidal forcing frequencies,
due to the relative motion of the perturber q in a SNREI Earth
model, is very weak at least when they are smaller than the free
elastic oscillations of the Earth model as is the case (e.g., Wahr
1982 or Moritz & Mueller 1986, Chap. 4). It means that when
deriving the expression of the displacement vector, it is possi-
ble to assume that the tide-raising potential is a constant func-
tion, that is, its forcing frequency equals zero. In other words,
the elastic response of the SNREI Earth model is an equilibrium
response giving rise to what is usually referred to as the static, or
quasi-static, approximation (Moritz & Mueller 1986, Chap. 4).
In entails that with those provisos the Love number k2 is
constant.

With respect to the part related to the perturber q, its result-
ing frequency set arises from a combination of the orbital evo-
lution features of q with the Earth rotational motion. This kind
of Fourier decomposition is common in tidal studies, leading to
tide generating potential (TGP) expansions, and can be accom-
plished from multiple approaches (e.g., Doodson 1922; Kaula
1964, or Kudryavtsev 2004).

For the purposes of this study, however, it is more convenient
to obtain the Fourier decomposition with the same method as that
introduced by Kinoshita (1977) when developing the disturbing
function in his theory of the Hamiltonian rotation of the rigid
Earth. In this way, all the considered perturbations on the Earth
rotation coming from the Moon and the Sun are developed from
an identical baseline expansion, which enhances the consistency
of the canonical approaches.

2.4. Generalization to the Earth redistribution potential

For the consideration of a more general elastic response of the
Earth, mainly two kinds of effects can be introduced within the
scope of the elastic-viscoelastic analogy9: the anelastic behav-
ior intrinsic to the rheological model, and the contributions of
the ellipticity and rotation to the deformation, both involving the
transition from the stationary Love number k2 to its dynamic ver-
sion (time dependent).

2.4.1. Anelastic response (rheological model)

The anelastic behavior implies thatVt;p,q andU2 in Eq. (24) are
not determined at the same time, but with delay (without loss of
reversibility). This fact can be written, with explicit arguments,
as (Efroimsky 2012b)

Vt;p,q (t)
mp

=

(
aE

rp

)3 ∫ t

−∞

k̇2
(
t − t′

)
U2

(
rq, t′

)
dt′, (26)

with k2 (t − t′) being the kernel of an integral representation of
the dynamic counterpart of the Love number (the dot represents
the time derivative), which acts as an operator mappingU2 onto
Vt;p,q. This formalism generalizes the classic idea of the constant
time lag for the description of the delayed response relative to
the perturbing potential, which is inconsistent in certain aspects
as discussed in Efroimsky & Makarov (2013). We note that if

9 Efroimsky (2012a) and references therein provide a comprehensive
discussion on the correspondence principle.

k2 (t − t′) = k2Θ (t − t′) (Θ being the Heaviside step-function),
Eq. (24) is recovered, describing an instantaneous reaction or, in
other words, a perfectly elastic response.

In such an approach, the frequency-dependent complex Love
functions, k̄2 (ω), are defined as Fourier transforms of k̇2 (t − t′)
by means of

k̇2
(
t − t′

)
=

∫ ∞

−∞

k̄2 (ω) eiω(t−t′) dω =

∫ ∞

−∞

∣∣∣k̄2 (ω)
∣∣∣ ei[ω(t−t′)+ε(ω)] dω,

(27)

where, in the second equality, the module-argument expression
of the Love function, k̄2 (ω) =

∣∣∣k̄2 (ω)
∣∣∣ eiε(ω), has been used.

2.4.2. Rotation and ellipticity (dynamical model)

The influence of rotation and ellipticity on the bodily tides
has been long studied, for instance, within the rheological
theories where the undeformed state is assumed to be ellip-
soidal (or oblate) and rotating. This implies forgetting the sim-
plifying hypotheses of the SNREI model. This is the case
for Smith (1974), Shen & Mansinha (1976), and Wahr (1981)
among others. Other approaches to the problem are those of
Mathews et al. (1995), Dehant et al. (1999), or its generalization
in the IERS Conventions (2010), both of them on the basis of
the Sasao et al. (1980) dynamical theory (known as SOS formal-
ism).

As these works show, such type of behavior can be built with
a frequency (or mode) dependence of the Love numbers or, more
precisely, Love functions (Efroimsky 2012b), which are intro-
duced in Eq. (26). Strictly speaking, this equation involves any
mass redistribution effect that can be formally described with a
2-degree U2-like potential, which can be incorporated into the
external tide-generating potential. This is the case, for instance,
for oceanic loads and tides (see, e.g., the Love number model for
an Earth with oceans in Williams & Boggs 2016, which will be
considered in Sect. 4.3).

In the presence of rotation and ellipticity there appear nor-
mal modes related to the Earth rotation (e.g., Escapa et al. 2001).
Those modes depend on the unperturbed rotation state and the
internal structure of the Earth. For example, for a two-layer Earth
model with a solid mantle and a fluid core, the most important
ones are the Chandler wobble (CW) and the retrograde free core
nutation (RFCN, or simply FCN). If we consider that the core
contains a solid part, the solid inner core, we have two additional
modes: the inner core wobble (ICW) and the prograde free core
nutation (PFCN).

Among all those modes the FCN has a particularly notable
effect on the Earth rotation. The reason is that its associated
frequency relative to the Earth system, also referred to as nearly-
diurnal free wobble (NDFW), is in the diurnal band10, as a con-
sequence of the value of the ellipticity in the core-mantle bound-
ary. Since there are also some frequencies of the tide-generating
potential in the same band, a resonance phenomenon appears.
Its presence has been modeled in different Earth rotation mod-
els (e.g., Poincaré 1910; Wahr 1981, or Getino & Ferrándiz 2001)
and its effects on the nutations observed (e.g., IERS Conventions
2010, Chap. 5).

10 The PFCN mode is also in the diurnal band. However, since the inner
core moments of inertia are small when compared with those of the fluid
core and the mantle, its effects are quite limited. This explains why, when
considering second-order effects on the Earth rotation like in this study,
or Lambert & Mathews (2006), it is enough to work with a two-layer
Earth model.
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The excitation of the FCN mode by the forcing frequencies,
related to the perturber q, couples with the Earth tidal deforma-
tion. It makes the Love number k2 resonant at the FCN frequency
(e.g., Jeffreys 1976, Chap. 7, Wahr 1982; Moritz & Mueller
1986, Chap. 4). That resonance of k2 in the diurnal band has
emerged in many studies using quite different approaches (e.g.,
Jeffreys & Vicente 1957; Sasao et al. 1980, or Wahr 1981).

The mechanisms entering into this process are complex and
lead to a resonance expansion of the Love number k2, as it is
explained in the comprehensive work by Mathews et al. (1995).
Recently, this problem has been revisited within the Hamiltonian
formalism by Baenas et al. (2017), achieving closed-analytical
formulae compatible with the previous works. That expansion
can be written in the general form (e.g., Mathews et al. 1995) in
the frequency domain as

k̄2 (ω) = L0 +
∑

i

Li

ω − ωi
, (28)

where the sum runs over the rotation normal modes of the Earth
model. The numbers L0 and Li are constant and ωi is the fre-
quency of the i normal mode relative to the Earth system. In the
context of this research, the most relevant contribution to that
resonance formula comes from the FCN mode.

The effects of rotation and ellipticity, by themselves, are con-
servative, so the numbers in Eq. (28) are real. However, if some
dissipative torque is incorporated into the Earth rotation model,
those constant numbers become complex. That induces a small
imaginary part in k̄2 (ω) or, equivalently, a phase ε (ω) as in the
anelastic situation. That is the case, for example, when consider-
ing a viscous-electromagnetic torque at the core-mantle bound-
ary (e.g., Getino & Ferrándiz 2001).

There are different resonance expansions generalizing
Eq. (28) according to the features of the Earth rotation model
under consideration. Typical examples are those provided in
Mathews et al. (1995) or in IERS Conventions (2010, Chap. 6).

2.4.3. Earth redistribution potential

Both effects described in Sects. 2.4.1 and 2.4.2 can be incor-
porated into a sole formalism for the Love functions by using
complex Love functions (similar to the complex compliances in
SOS formalism), within the language of complex Fourier expan-
sion of the involved potentials used by the IERS Conventions
(2010). Therefore, Eq. (24) can be written in terms of the Fourier
complex components of Vt;p,q and U2 in the frequency domain
as

V̄t;p,q (ω)
mp

= k̄2 (ω)
(

aE

rp

)3

Ū2

(
rq, ω

)
. (29)

Equation (27) and (29) come from a standard Fourier expan-
sion and details can be consulted in Efroimsky (2012b). In
our formalism, the concise notation ω for the excitation fre-
quency will be substituted by mωE ± n j, m being the frequency
band (spherical harmonics order), ωE the mean value of the
Earth’s angular velocity, and n j the j-th orbital frequency. These
frequencies are obtained from a Fourier-like expansion of the
orbital motion of the perturbing bodies, referred to the terrestial
reference system (Kinoshita 1977, see Appendix A). Complex
Love functions, usually named as complex Love numbers, will
be denoted as

k̄2m, j =
∣∣∣k̄2m, j

∣∣∣ eiε2m, j . (30)

It should be remembered that the frequency dependencies
k̄2m, j must be given by the addition of a rheological and a dynam-
ical model. Within a first-order theory, the solution offered by
both models is a known function of time. In other words, k̄2m, j
values and the related frequencies are not affected by their own
corrections on the Earth’s rotational motion, as happens with the
orbital motion of the perturbers.

It should be recalled that, by relying on Eq. (29), the redis-
tribution potential energy is therefore generalized by extracting
the real part of the complex V̄t;p,q function in Eq. (29). Then, the
following expression including arguments of the trigonometric
functions within the spherical harmonics holds:

Vt;p,q = −Gmpmq

∑
j

a5
E

r3
qr3

p
(31)

×
{∣∣∣k̄20, j

∣∣∣ cos ε20C20,p

(
θp, φp

)
C20,q

(
θq, φq

)
+

1
3

∣∣∣k̄21, j
∣∣∣  C21,p

(
θp, φp

)
C21,q

(
θq, φq − ε21, j

)
+S21,p

(
θp, φp

)
S21,q

(
θq, φq − ε21, j

) 
+

1
12

∣∣∣k̄22, j
∣∣∣  C22,p

(
θp, φp

)
C22,q

(
θq, φq −

ε22, j

2

)
+S22,p

(
θp, φp

)
S22,q

(
θq, φq −

ε22, j

2

) 
 .

We note that the complete expressions of the real spherical
harmonics also depend on the orbital frequencies, once they are
provided by some calculation of ephemeris (for perturbed and
perturbing bodies). This fact is implicit in Eq. (31). The total
redistribution potential energy, Vt, is the sum over p and q –
both representing either Moon or Sun – of terms Vt;p,q. Each
portion can be also partitioned in the sum of zonal (long-period,
m = 0), tesseral (diurnal, m = 1), and sectorial (semidiurnal,
m = 2) harmonic components of the tide-raising potential.

3. Precession formulae

Once the expression of the redistribution potential energy has
been derived in a quite general form (Eq. (31)), it is necessary
to quantify its contribution to the Earth precession rates in longi-
tude and obliquity. Although other approaches are possible, the
formulation of this problem in the Hamiltonian formalism of the
rotation of the non-rigid Earth (e.g., Getino & Ferrándiz 1995,
2001; Escapa et al. 2001, or Escapa 2011) presents some advan-
tages (e.g., Baenas et al. 2017).

Two of the most relevant are the achievement of a consistent
theory because all the effects are derived from a sole function,
the Hamiltonian of the system, and the suitability of this frame-
work to obtain analytical expressions even for the second-order
terms, that is, terms that are quadratic in the small parameters.
This is specially useful from our perspective, since the contribu-
tions of the redistribution of mass to the precession can be easily
recomputed for different rheologies and dynamical Earth mod-
els. Next, the main elements necessary for this construction will
be sketched. Further details can be found in two recent works by
the authors, Baenas et al. (2017) and Escapa et al. (2017), and
references therein.

3.1. Canonical formulation of the rotational problem of a
non-rigid two-layer Earth

An Andoyer-like set of canonical variables (Getino 1995)
{λ, µ, ν, λc, µc, νc; Λ,M,N,Λc,Mc,Nc} is used to describe the
rotation that transforms the non-rotating (OXYZ) system into the
(Oxyz) system linked – in Tisserand’s sense – to the Earth, which
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is referred to as a terrestrial system. The coordinates {λ, µ, ν}
and their conjugated moments {Λ,M,N} stand for the Andoyer
variables of the whole Earth, and the rest, with subscript c, for
the fluid outer core (FOC). The auxiliary angles σ (between
the angular momentum and the figure axis) and I (between the
angular momentum vector and the Z axis of the non-rotating
or quasi-inertial system) are defined through Λ = M cos I and
N = M cosσ. The order of magnitude of σ is about 10−6 rad
(Kinoshita 1977). More details on these variables within the
precession context can be found in Ferrándiz et al. (2004) or
Baenas et al. (2017).

The Hamiltonian of the problem is given by

H = T0 +V0 + E + Tt +Vt, (32)

where T0 is the kinetic energy corresponding to the rigid man-
tle case (Poincaré model, Getino & Ferrándiz 2001); V0 is the
degree-2 gravitational perturbation exerted by Moon (M) and
Sun (S ) (V0 = U2;M + U2;S );E is the non-inertial comple-
mentary term (due to ecliptic motion, Kinoshita 1977); Tt is the
redistribution kinetic energy (Getino & Ferrándiz 2001), andVt
is the redistribution potential energy, given in Sect. 2.4.3.

The precessional motion is caused by the secular part of the
Hamiltonian. This is obtained from Expression (32) by means of
the elimination of the periodic terms through a Lie-Hori canoni-
cal transformation (Hori 1966; Ferraz-Mello 2007), which leads
to the averaged Hamiltonian, responsible for the secular motion
of the equatorial plane.

The contribution of each term can be studied separately,
obtaining the final values of the precession rates from summing
up all the effects. The precession rate in longitude corresponding
to T0 +V0 +E (Poincaré model) was computed up to the second-
order of perturbation by Ferrándiz et al. (2004). The effect of the
mantle elasticity, introduced through the Tt term, was performed
by Baenas et al. (2017), which is a second-order effect11 in the
scope of the perturbation methods, and updates the value of the
general precession in longitude given by the previous work.

Therefore, this work’s aims are restricted to the secular
Hamiltonian

Hsec = Vt,sec, (33)

whose order of magnitude, O (Vt/T0) ∼ 1.7 × 10−12, allows the
use of a first-order perturbation method12.

The contribution ofVt,sec to the precessional motion is deter-
mined through the variation of the derivatives nλ = dλ/dt, for
the precession in longitude, and nI = dI/dt, in obliquity. We will
denote by δnλ and δnI the new additive contributions, stemming
from the application of the dynamical equations to the secular
Hamiltonian.

These equations are given by δ (d f /dt) = { f ,Hsec}, f being
a smooth function of the canonical set, while {−,−} stands for
the Poisson bracket written down in the Andoyer-like canonical
variables. In this case,

δnλ = {λ,Hsec} = −
1

M sin I
∂Vt,sec

∂I
,

δnI = {I,Hsec} = −
1

M sin I

(
cos I

∂Vt,sec

∂µ
−
∂Vt,sec

∂λ

)
, (34)

is obtained.
11 Tt Hamiltonian has no secular part, so its influence on the precession
arises from a second-order crossed effect with the periodic part ofV0.
12 It should be noted that O (Vt/V0) ∼ 10−5, then the Vt perturbation
can be considered a second-order one in the sense of magnitude.

It should be noted that the contributions δnλ and δnI are
strictly related to the angular momentum axis motion. Within
our order of approximation, those rates are the same as those of
the longitude and obliquity of the figure axis (Kinoshita 1977).
Besides, the commonly used astronomical longitude and obliq-
uity angles, ψ = −λ f and ε = −I f , will be henceforth employed
in this work to express the precessional rates, δnψ = −δnλ and
δnε = −δnI .

3.2. Canonical expression of the secular redistribution
potential

Considering Eq. (31), the real spherical harmonics must be
expressed in the Andoyer-like canonical set of variables of the
Earth, as a combination of spherical harmonics defined in the
OXYZ system. In this work, the Moon and the Sun are consid-
ered as the sole perturbing bodies. Although some planets have
an appreciable direct effect on Earth precession, as first demon-
strated by Vondrák (1982), their direct influence on the Earth’s
mass redistribution precession can be neglected within the cur-
rent accuracy threshold13.

In this way, when the orbital motions of the Moon and the
Sun are provided by some ephemeris (Kinoshita 1977), the redis-
tribution tidal potential energy can be re-expressed in terms of
Andoyer-like canonical variables. This process, at first order in
σ, is given in Eq. (A.1). The related expressions are applicable
to both perturbing and perturbed bodies, then a different notation
will be used in order to distinguish them: dummy indexes i, τ for
perturbed bodies, and j, ε for perturbing ones.

As the orbital motion of the perturbing bodies is consid-
ered to be decoupled from the Earth’s rotational motion, the
related Andoyer coordinates, λ̃, µ̃, ν̃, and the fundamental argu-
ment, Θ̃ j = Θ0 j − m5iλ̃ (defined in Appendix A), are not canon-
ical variables, but explicit time-dependent functions. The tilde
symbol (∼) will be used from now on to denote time-dependent
functions or, in other words, magnitudes depending on the vari-
ables or coordinates of the perturbers q.

The forcing orbital frequencies are given by ñ j = dΘ̃ j/dt.
The spherical harmonics expansion in such case (with the tilde
symbol) can be truncated at the zero order in σ̃ because of the
small magnitude of this angle as a function of time, and the fact
that it does not participate in the construction of the equations of
motion (e.g., Kubo 1991, appendix).

The secular part of the redistribution potential energy,Vt,sec,
is computed in order to be free from short-period terms, follow-
ing a similar procedure to that of Kinoshita (1977). This will be
achieved by making explicit the canonical variables in Eq. (31)
through Eq. (A.1), and then retaining only the terms whose fre-
quency vanishes. In this procedure, some canonical variables can
be substituted by their values in the steady rotation state. These
are (see, e.g., Escapa 2011)

λ = λ0, N = N0, M = M0, µ + ν = ωEt + (µ + ν)0 , (35)

where the subscript 0 stands for integration constants, N0 '

M0 = CωE, and consequently, I = I0, σ = σ0 ' 0 (note that the
remaining unperturbed solutions are not needed because they do

13 From Eq. (31), the order of magnitude of the redistribution caused
by a planet of mass mpl and geocentric distance rpl when compared with

that of the Sun can be characterized by the ratio
(
mpl/mS

)
×

(
rS /rpl

)3
.

This factor is less than 10−5 (Kinoshita & Souchay 1990, Table XIII).
So, its contribution to the precession is smaller than 0.01 µas cy−1 (see
Table 2 in Sect. 4 for typical values of the redistribution precession).
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not participate at the first order in σ, inasmuch as no derivatives
with respect to σ are present in the dynamical equations for the
precession).

Finally, the application of this technique results in

Vt,sec = V
(0)
t,sec +V

(1)
t,sec +V

(2)
t,sec, (36)

where the (0), (1), and (2) superscripts stand for the zonal,
tesseral, and sectorial contributions of the redistribution poten-
tial, respectively, and are given by

V
(0)
t,sec = −

9
4

CωE

∑
p,q=M,S

fqkp

∑
i, j;τ,ε∈I

∣∣∣k̄20, j
∣∣∣ Bi;pB̃ j;q

× cos
(
τΘi − εΘ̃ j + ε20, j

)
,

V
(1)
t,sec = −3CωE

∑
p,q=M,S

fqkp

∑
i, j;τ,ε∈I

∣∣∣k̄21, j
∣∣∣Ci;pC̃ j;q (37)

× cos
(
µ + ν − τΘi − µ̃ − ν̃ + εΘ̃ j + ε21, j

)
,

V
(2)
t,sec = −

3
4

CωE

∑
p,q=M,S

fqkp

∑
i, j;τ,ε∈I

∣∣∣k̄22, j
∣∣∣ kpDi;pD̃ j;q

× cos
(
2µ + 2ν − τΘi − 2µ̃ − 2ν̃ + εΘ̃ j + ε22, j

)
.

Here, I set has been defined for the summation conditions

I =
{
τ, ε ∈ {−1,+1} | τΘi − εΘ̃ j = 0

}
, (38)

equivalent to the aforesaid cancelation of the frequency of the
trigonometric arguments of Vt. In the previous expression and
hereinafter, j subscript of Love and Kinoshita’s functions refers
to an abridged notation for ε = ±1 and jth orbital frequency,
which in fact should be denoted with a different subindex. How-
ever, this abuse of notation is kept due to the absence of likeli-
hood of confusion.

The kp parameter is the one defined by Kinoshita (1977), and
the dimensionless fq parameter has been introduced for nota-
tional convenience, namely,

kp =
3Gmp

ωEa3
p

Hd,

fq =
mqa2

E

3CHd

(
aE

aq

)3

. (39)

3.3. Resulting precession formulae

Once Lie derivatives of Eqs. (34) have been computed, it is pos-
sible to identify the (µ, ν, λ) canonical variables with the

(
µ̃, ν̃, λ̃

)
time functions, given the coincidence between perturbed and
perturbing bodies. This fact involves identifying the arguments
Θi and Θ̃i likewise. The Kinoshita’s orbital functions, Bi, Ci , and
Di, can be evaluated at some epoch wherein I = Ĩ ≡ I0, keep-
ing Eq. (35) as a good approximation for this purpose (see, e.g.,
Escapa 2011). Finally, the precession rates read as

δnψ = −
1

sin I

∑
p,q=M,S

fqkp

∑
i, j;τ,ε∈I
m=0,1,2

∣∣∣k̄2m, j

∣∣∣ T (nψ)
i jpq,m cos ε2m, j,

δnε = −
1

sin I

∑
p,q=M,S

fqkp

∑
i, j;τ,ε∈I
m=0,1,2

∣∣∣k̄2m, j

∣∣∣ T (nε)
i jpq,m sin ε2m, j, (40)

where the following functions have been defined

T (nψ)
i jpq,m =

9
4
∂Bi;p

∂I
B̃ j;qδm0 + 3

∂Ci;p

∂I
C̃ j;qδm1 +

3
4
∂Di;p

∂I
D̃ j;qδm2,

T (nε)
i jpq,m = −

9
4

Bi;pB̃ j;qτm5iδm0 + 3Ci;pC̃ j;q (τm5i − cos I) δm1

+
3
4

Di;pD̃ j;q (τm5i − 2 cos I) δm2. (41)

In these expressions, the ∼ symbol has been kept, although
now it is strictly redundant.

Equations (40) and (41) are one of the main achievements
of this work. They allow the numerical computation of the pre-
cessional rates due to the redistribution of mass once given the
corresponding Love numbers of the model. In this way there is
no need to recompute the redistribution potential energy itself.

4. Redistribution precession for different Earth
Love numbers sets

In order to obtain numerical values for the precessional rates,
the dependence of the Love numbers on the forcing frequencies
is needed. In this research, some different models of Earth’s rhe-
ology have been considered.

The main parameters used to perform the calculations are
included in Table 1. In turn, Table 2 separately displays the con-
tributions coming from the different harmonic terms of the tidal
potential – zonal, tesseral, and sectorial – for each Earth model.

In the different models under consideration, the contribu-
tion of the time-independent part of the redistribution poten-
tial will be discounted (further details will be discussed in Sect.
5.1). From Eq. (16) –the form of ∆Iq– and Eq. (A.1), the time-
independent part in the Earth’s inertia tensor comes from the
zonal contribution and is given by

∆Cq = −2CHd fq
∣∣∣k̄20, j

∣∣∣ (aq

rq

)3

C̃20

= −6CHd fq
∑

j

∣∣∣k̄20, j
∣∣∣ B̃ j;q cos Θ̃ j, (42)

when Θ̃ j = 0 (zero frequency), or equivalently, with index j =
(0, 0, 0, 0, 0). The portion of the deformation coming from this
time-independent zonal contribution of the Earth’s inertia tensor
is named permanent tide.

The permanent tide contribution to precession in Table 2 has
been computed using the fluid (limit) Love number, k2 f = 0.94
(Burša & KarelPěč 1993, Sect. 4.9; Lambeck 1980, Sect. 2.4)
and k2 f = 0.30 = k2 for comparative purposes.

The fluid Love number arises from considering the Earth
response to forces that stay constant over very long periods
of the order of billions of years, not to tidal periodic ones.
It entails considering a completely fluid Earth model instead
of a typical SNREI Earth model, hence the difference in the
values of tidal-effective k2 and fluid14 k f Love numbers (e.g.,
Munk & MacDonald 1960, Chap. 5; Lambeck 1980, Chap. 2; or
Moritz & Mueller 1986, Chap. 3).

When making comparisons between different studies involv-
ing Earth parameters like its inertia moments, ellipticity, J2
Stokes coefficient, and others, it is very important to take into
account in what way the effects of the permanent tide have been
considered. It leads to the denominations zero-tide (including the

14 Munk & MacDonald (1960) also introduce the secular Love number
ks, discussing its relationship with k f .
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Table 1. Numerical parameters used in this work.

Parameter Value Source

ωE 7.292115 × 10−5 rd s−1 Luzum & Capitaine (2011)
I0(J2000) −84381.406 arcsec Luzum & Capitaine (2011)
λ0(J2000) 0 arcsec Luzum & Capitaine (2011)
Hd 3273795 × 10−9 IERS Conventions (2010)
kMoon 7567.870647 arcsec cy−1 Getino & Ferrándiz (2001)
kSun 3474.613747 arcsec cy−1 Getino & Ferrándiz (2001)
fMoon 5.66 × 10−8/Hd Derived from IERS Conventions (2010)
fSun 2.60 × 10−8/Hd Derived from IERS Conventions (2010)
k2 f 0.94 IERS Conventions (2010)
Orbital coefficients Escapa et al. (2017) Kinoshita & Souchay (1990)

Table 2. Redistribution potential contributions to precession rates (unit: mas cy−1).

Elastic Anelastic Anelastic Anelastic Anelastic
linear IERS k2m IERS k2m; j IERS +kOT

2m; j WB2016 k2m; j

Longitude rate
Zonal permanent tide with k2 f 136.5964 136.5964 136.5964 136.5964 136.5964
Zonal permanent tide with k2 43.5946 43.5946 43.5946 43.5946 43.5946

non-permanent (Znp) −4.1064 −4.1324 −4.1484 −4.1484 −4.5780
Tesseral (T) −66.4701 −66.0934 −60.7794 −60.7723 −64.6514
Sectorial (S) 26.9818 27.0736 27.0736 27.0736 25.2844
Total (Znp+T+S) −43.5946 −43.1522 −37.8543 −37.8472 −43.9450
(including permanent tide with k2 f ) (93.0018) (93.4442) (98.7422) (98.7492) (92.6514)
(including permanent tide with k2) (0.0000) (0.4424) (5.7403) (5.7474) (−0.3504)
Obliquity rate
Zonal non-permanent (Znp) 0.0000 0.0000 −0.0118 −0.0118 −0.0636
Tesseral (T) 0.0000 −0.0239 0.0456 0.0404 0.0948
Sectorial (S) 0.0000 0.0465 0.0465 0.0465 0.9030
Total (Znp+T+S) 0.0000 0.0226 0.0803 0.0751 0.9341

permanent tide) or tide-free (excluding the permanent tide) sys-
tems, recommended in IERS Conventions (2010, Chap. 1). The
zero-tide system is also known as the zero-frequency one (e.g.,
Burša & KarelPěč 1993, Chap. 4). Its use is recommended by
the Resolutions of the International Association of Geodesy, as
noted in the IERS Conventions (2010, Chap. 6).

In this regard, since tide-free values are unobservable and
the value of k f is uncertain, some authors prefer to consider the
parameters in the zero-frequency system (Burša 1995). In our
case, it would imply that the permanent tide contributions would
be contained in the values of the moments of inertia of the unde-
formed state. In Eq. (42) and Kinoshita’s constant, Eq. (39),
the dynamical ellipticity Hd is a zero-tide magnitude. The cor-
responding parameter of IAU2000 also includes the permanent
tide (Groten 2004).

4.1. SNREI Earth

The tidal response of a SNREI model constitutes a topic of the
literature that addresses the definition of Love numbers (e.g.,
Jeffreys 1976; Moritz & Mueller 1986, among many others).
For the purposes of this study, its features can be character-
ized by taking a single constant value for the Love number set,
k̄2m; j = k2, and it can be analytically proved (Krasinsky 1999;
Escapa et al. 2003, 2004; Lambert & Mathews 2006; Baenas
2014) that the contributions given by Eq. (40) to the precessional

motion are cancelled out, δnψ = δnε = 0. A succinct demon-
stration of this fact can also be found in Appendix B. The first
column in Table 2 shows numerically the cancelation of the har-
monic contributions of the secular rates, on the last row of the
table. It should be remarked that the cancelation is only achieved
by adding the contribution of the permanent tide, assuming the
same Love number as for the remaining tides, k2 f = k2 = 0.30.

As displayed in Table 2, the obliquity rate for this model
is zero. This result comes from Eq. (40), which show that this
effect is only present when the Love numbers are complex, with
any ε2m, j , 0. This is not the case for a perfect elastic, oceanless
Earth model.

4.2. IERS Conventions (2010) models for solid Earth tides

4.2.1. Constant Love numbers per frequency band

In order to progressively show the influence on the preces-
sional rates of the frequency dependence in the Earth’s anelas-
tic response, a model with a nominal, reference value of the
Love numbers for each harmonic order (or frequency band, long-
period, diurnal, and semidiurnal) m, will be considered, that
is, k̄2m; j = k̄2m (Col. 2 in Table 2). Basically, the band struc-
ture reflects the influence of rotation and ellipticity, whereas
the imaginary part is related to the anelastic Earth response.
This model is taken from Table 6.3 of IERS Conventions (2010)
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with k̄20 = 0.30190 − 0.00000i, k̄21 = 0.29830 − 0.00144i, and
k̄22 = 0.30102 − 0.00130i.

4.2.2. IERS Conventions frequency-dependent Love
numbers

In the IERS Conventions (2010), the frequency dependence in
the Love numbers set (related to the rotation and ellipticity and
the anelastic response of the mantle, Sect. 2.4) is introduced via
the resonance formulae (Ibid, Eq. (6.9)), which update and sum-
marize previous works by Wahr (1981), Mathews et al. (1995),
and Dehant et al. (1999), among others. The modeling takes into
account the retrograde free core nutation (FCN), the Chandler
wobble (CW), and the free inner core nutation resonance pro-
cesses in the diurnal band of frequencies for the solid Earth tides.
In a second step, an effective ocean tide contribution (OT), δkOT

21; j

related to k̄21; j, following Wahr & Sasao (1981), is considered.
This contribution incorporates the ocean load on the solid Earth
tides. The k̄21; j value is directly calculated from the nominal
k̄21 = 0.29830 − i0.00144 (Ibid., Table 6.3) and the tabulated
δk f ; j values (Ibid., Table 6.5a), which are defined as

δk f ; j =

L0 +

3∑
k=1

Lk

σ j − σk
− k21

 + δkOT
21; j,

k̄21; j = k21 + δk f ; j, (43)

with Lk being the complex constants of the resonance formula
for solid tides (Ibid., Eq. (69) and Table 6.4). In the zonal band,
the IERS Conventions (2010) provide the following model, due
to the mantle anelasticity (based in Wahr & Bergen 1986),

k̄20; j = 0.29525− 5.795× 10−4
{

cot
απ

2

[
1 −

(
σr

σ j

)α]
+ i

(
σr

σ j

)α}
,

(44)

where σ j is the excitation frequency (mωE − εñ j), σk and σr are
reference frequencies, and α = 0.15 (Ibid., Table 6.4). The k̄22; j
complex Love number can be accurately approximated by its
nominal value 0.30102− i0.00130 (Ibid., Table 6.3). The related
values of the precession rates components are shown in the third
column (resonance formula) and fourth column (including the
ocean load correction) of Table 2.

4.3. Williams & Boggs (2016) frequency-dependent Love
numbers for the Earth with oceans

Finally, the last column in Table 2 shows the secular rates val-
ues obtained by using the Love numbers model of the Earth with
oceans from Williams & Boggs (2016). This model is built over
the IERS Conventions (2010) one for solid Earth tides (previ-
ous section), and the ocean model FES2004 (Lyard et al. 2006),
giving a very complete description of the anelastic behavior
of the tide effect. The Love numbers set can be consulted in
Williams & Boggs (2016), Table 6, and the algorithm described
on page 105.

This model allows us to compare the results obtained for the
precessional rate in obliquity. Specifically, Williams & Boggs
(2016) got the value for the precessional rate in obliquity (Ibid.,
Eq. (29)). They used a quite different approach from that fol-
lowed here. In particular, they employed the Euler equations of
vectorial mechanics, and constructed the Fourier expansion of
the tide-generating potential with the same orbital ephemeris as

us, but without introducing canonical variables in their deriva-
tions. By means of that procedure, Williams & Boggs (2016)
derived a total tidal obliquity rate of 0.92 mas cy−1 (which is
split into −0.07 mas cy−1, 0.1 mas cy−1, and 0.89 mas cy−1 for
zonal, diurnal, and semidiurnal terms, respectively), while in
this work an obliquity rate of 0.9341 mas cy−1 (which is split
into −0.0636 mas cy−1, 0.0948 mas cy−1, and 0.9030 mas cy−1

for zonal, tesseral, and sectorial contributions, respectively) is
obtained, showing an excellent agreement between both studies.

These equivalent results for the obliquity rate suppose a
mutual validation of the procedures, due to them having been
achieved through quite different approaches. In particular, it sup-
ports the correctness of Eqs. (40) and (41). Williams & Boggs
(2016) do not provide a value for the longitude rate, as it is out
of the scope of their work.

Lambert & Mathews (2006, 2008) also computed precession
rates for a model close to that of Williams & Boggs (2016), but
using the ocean tide model CSR4. The discrepancies with their
numerical values are quite significant (see next section).

5. Discussion and conclusions

5.1. Contribution of the permanent tide

For the sake of convenience, the precession rate in longitude
given by Eq. (40) will be decomposed in two parts, δnψ =
pP + pP̄, pP being the contribution of the permanent tide (zonal
zero-frequency terms, i.e., those associated with B0;p function),
and pP̄, the remaining non-permanent part (the “p” standardized
notation is used for precession contributions). Therefore, from
Eqs. (40) and (41), pP can be written as

pP = −
1

sin I

∑
p,q=M,S

k2 f fqkp

∑
τ,ε=±1

9
4
∂B0;p

∂I
B̃0;q

=

 1
sin I

∑
p=M,S

kp
∂B0;p

∂I


−9k2 f

∑
q=M,S

fqB̃0;q

 . (45)

Here, the
∣∣∣k̄20,0

∣∣∣ parameter has been simplified by k2 f fluid
Love number, corresponding to permanent deformation. The
first bracket of the decomposition coincides with the first-order
lunisolar precession term, denoted as p′A in Souchay & Kinoshita
(1996) (an expanded form can be found in Kinoshita & Souchay
1990, Eq. (8.7)). The second one is related to the variation of the
Earth dynamic ellipticity due to the permanent tide.

In fact, considering the tide-free dynamic ellipticity of
a symmetric Earth (previous to tidal deformation), Hd,0 =
(C − A) /C, and its zero-tide counterpart, due to the permanent
variation of the inertia moments,

Hd,P =
C + ∆C − (A + ∆A)

C + ∆C
, (46)

a first-order expansion in the small magnitude ∆C/C leads to the
relation

Hd,P = Hd,0 + δHd,P = Hd,0

(
1 −

∆C
C

)
+

∆C − ∆A
C

· (47)

Therefore, the δHd,p following variation of the dynamic ellip-
ticity holds

δHd,P =
∆C

(
1 − Hd,0

)
− ∆A

C
=

∆C
C

(
3
2
− Hd,0

)
, (48)
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where, in the last equality, the relation ∆C + 2∆A = 0 has been
applied (Sect. 2.2). Recovering Eq. (42), with ∆C =

∑
q ∆Cq,

δHd,P

Hd,0
=

(
−9 + 6Hd,0

)
k2 f

∑
q

fqB̃0;q ' −9k2 f

∑
q

fqB̃0;q, (49)

which matches with the second bracket in Eq. (45). Hence,
within a first-order precession theory (i.e., proportional to Hd,p),
pP can be written as

pP = p′A
δHd,P

Hd,0
· (50)

It should be recalled that Hd,P is a primary parameter (Hd,P =
Hd,0 + δHd,P decomposition is not observationally distinguish-
able), while the tide-free Hd,0 is a derived one. Accordingly, the
pP contribution should not be considered in the zero-tide sys-
tem, since its effects are included within the Hd,P Earth dynamic
ellipticity.

However, the precession rate due to the non-permanent tides,
pP̄, must be taken into account in correcting the reference value
of Hd,P, as will be shown in the next section. In order to
have a numerical estimate, pP = 136.5964 mas cy−1 (Table 2),
and p′A = 5040684.593 mas cy−1 (obtained by subtraction in
Capitaine et al. 2005) can be considered, thus

δHd,P '
(
8.8716 × 10−8

)
k2 f . (51)

We note that the approximately equal sign has been used as
a reminder that the Hd,p value has been taken (Table 1) instead
of the unobservable tide-free Hd,0. Due to factor pP/p′A ∼ 10−5

and the smallness of δHd,P, this is an admissible approximation.
The second zonal Stokes parameter for a symmetric Earth,

J2,0 = (C − A) /
(
mEa2

E

)
, is also consequently sensitive to the

permanent tide. This effect has been previously studied, for
instance, in Burša (1995), solving a boundary-value problem
and leading to a numerical estimate of δJ2,P =

(
3.08 × 10−8

)
k2 f

(notation of this work).
In our case, by means of Eq. (50) it is only necessary to

link the δJ2,P variation with δHd,P, which can be performed
in a similar way to Escapa et al. (2017) (Eq. (16)) or combin-
ing Eqs. (48) and (50) with the definition of J2,0, Hd,0, and
δJ2,P = (∆C − ∆A) /

(
mEa2

E

)
. This relationship reads as

δJ2,P = J2,0

(
1 −

2
3

Hd,0

)−1 pP

p′A
'

(
3.1279 × 10−8

)
k2 f . (52)

Here, the zero-tide values for Hd,p and J2,P = 1082635.9 ×
10−9 (Groten 2004) have been used. This value can be consid-
ered in good agreement (a relative error of 1.5%) with that of
Burša (1995), taking into account the modeling differences and
the updating of physical parameters. In this sense, this fact also
confirms the suitability of Eqs. (40) and (41) to treat the effects
of the permanent tide.

5.2. Dynamical ellipticity variations due to non-permanent
tides

In the general precession in longitude, pA, the main component is
the first-order lunisolar precession p′A (see, for instance, Table 2
in Baenas et al. 2017). It is obtained by substraction of a set of
higher order contributions, denoted as pS , to the observed value
of the precession, that is, pA = p′A + pS . The p′A derived value

allows the determination of the Hd,P dynamic ellipticity, through
p′A =

∑
p kpB′0;p (I) / sin I, recalling Eq. (39) for the linear rela-

tionship between kp and Hd,P (see Kinoshita & Souchay 1990;
Fukushima 2003 or Escapa et al. 2016, for more details on this
procedure). The last expression will be formally and briefly writ-
ten as p′A = F (I) Hd,P.

If any change in the higher order part pS is performed with
respect to the reference value (in practice relative to IAU2006
precession one), the p′A must be compensated by an equal and
opposite change, and thus the Hd,P has to be recalculated. This
is the case, for instance, for the recomputation of previously
considered effects, like the second-order lunisolar precession
(Baenas et al. 2017), the geodesic precession (Fukushima 2003),
or the non-permanent pP̄ component due to the redistribution of
mass performed in this work, among others.

Let δpS be a correction of pS , the new value for the first-
order lunisolar precession will be p′A − δpS , and the variation the
dynamical ellipticity, δHd,δpS will be obtained from the equation
p′A − δpS = F (I)

(
Hd,P + δHd,δpS

)
. Using that F (I) = p′A/Hd,P,

this equation yields the general expression

δHd,δpS = −
δpS

p′A
Hd,p, (53)

pointed out, for instance, in Ferrándiz et al. (2012) or
Baenas et al. (2017).

Considering δpS = pP̄ = −37.8472 mas cy−1 (Table 2), the
deviation from the IAU2006 reference value (−0.960 mas cy−1,
Ibid.) has an associate δHd,δpS = 2.396 × 10−8, which implies
a relative Hd,P change of +7.3 ppm. Therefore, Hnew

d,P = Hd,P +

δHd,δpS = 0.00327381844 is obtained. This value is somewhat
higher if the Love numbers set for an Earth with oceans accord-
ing to Williams & Boggs (2016) is considered. In particular, we
have Hnew

d,P = 0.00327382240, with δHd,δpS = 2.792 × 10−8 and a
relative change of +8.5 ppm.

5.3. Indirect effects on nutation

Given a δpS correction of pS , the indirect effects on nutational
motion emerge from the changes in the value of the dynami-
cal ellipticity, δHd,δpS (Escapa et al. 2016). Computed in the lin-
ear approximation, these effects are obtained by multiplying the
nutation amplitudes by the factor

(
Hd,P + δHd,δpS

)
/Hd,P.

The main terms arising from factor δHd,δpS/Hd,P have
been displayed in Table 3, considering the corrections to the
dynamical ellipticity due to the second-order lunisolar pre-
cession (Baenas et al. 2017), and the redistribution potential
(this work). The original nutation terms have been taken from
Getino & Ferrándiz (2001).

The relative Hd,P change used in IERS2010 and WB2016
columns are those of the previous section. Some of the cor-
rections are in the tens of µas level, and so they are relevant
within the pursued accuracy of the current Earth rotation theo-
ries. Strictly speaking, these effects must be considered in the
reconstruction of the Earth rotation theory, refitting the basic
Earth parameters. However, the magnitudes provided in Table 3
are a clear indication that the effects of the redistribution tidal
potential must be taken into account.

5.4. Conclusions

In this research the contributions to the IAU2006 precession of
the mass redistribution processes induced on Earth by the grav-
itational action of the Moon and the Sun have been revisited.
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Table 3. Precession corrections and indirect effects on nutation.

Mass redistribution Second order Total
This work (WB2016) (b) (Baenas et al. 2017)

Precession (a) (mas cy−1) Longitude rate: −43.945 (−42.985) −55.291 (−8.511) −99.236 (−51.496)
Obliquity rate: 0.934 (0.594) 0 (0) 0.934 (0.594)

Relative Hd change (ppm): +8.5 +1.7 +10.2
Θi Period Indirect effects on nutation (µas)

l l′ F D Ω (days) ∆ψ (sin) ∆ε (cos) ∆ψ (sin) ∆ε (cos) ∆ψ (sin) ∆ε (cos)

0 0 0 0 1 −6798.36 −146.74 78.51 −29.06 15.55 −175.80 94.06
0 0 0 0 2 −3399.18 1.77 −0.77 0.35 −0.15 2.12 −0.92
0 1 0 0 0 +365.26 1.25 0.06 0.25 0.01 1.51 0.07
0 0 2 −2 2 +182.62 −11.23 4.89 −2.22 0.97 −13.46 5.85
0 0 2 0 2 +13.66 −1.94 0.83 −0.38 0.17 −2.33 1.00

Notes. (a) In parentheses, the deviation of the precession component from the IAU2006 value. (b) Using the Love numbers model of the Earth with
oceans from Williams & Boggs (2016).

Closed analytical formulae for the precession rates in longitude
and obliquity have been obtained, by means of the Hamiltonian
formalism of the Earth rotation, through the consideration of
the redistribution of tidal potential energy, whose derivation has
been addressed in a comprehensive way from the changes in the
Earth’s matrix of inertia. The analytical formulation enables the
numerical computation of the precession rates in longitude and
obliquity through Eqs. (40) and (41), under diverse Earth mod-
els or rheologies, characterized by different Love numbers that
run from a SNREI model to those of an anelastic, elliptic and
rotating Earth with oceans models .

The validation of Eqs. (40) and (41) has been shown in
different contexts. For example, the precession rates formulae
show the analytical cancelation in the SNREI model when the
Love number is assumed to be constant regardless of the forc-
ing frequency (including the long period through the permanent
tide contribution). This result is consistent with other research
(Krasinsky 1999; Lambert & Mathews 2006) that employed
quite different methods. In addition, an excellent numerical
agreement with Williams & Boggs (2016) in terms of the pre-
cession rate in obliquity for an Earth with oceans (with agree-
ment in every frequency band) and Burša (1995) in relation to
the permanent tide contribution to the zonal Stokes parameter,
has been found.

The values displayed in Col. 4 of Table 2 are quite dif-
ferent from those computed Lambert & Mathews (2006, erra-
tum Lambert & Mathews 2008). Although the authors do not
specify which sets of Love numbers they used, it may be
inferred that the basic elements used in their approach are sim-
ilar to those employed in Williams & Boggs (2016). They got
the value 1.84 mas cy−1 (Lambert & Mathews 2008) replacing
the former estimation of 0.13 mas cy−1 (Lambert & Mathews
2006) for the obliquity rate. The value of 1.84 mas cy−1 is quite
close to 2.44 mas cy−1 determined by Williams (1994). However,
Williams & Boggs (2016) stated that the value 2.44 mas cy−1

(Williams 1994) was derived under incorrect assumptions,
because tidal forces have some components out of the ecliptic.
Their new value of 0.92 mas cy−1 is also consistent with similar
results by Krasinsky (1999) and that obtained in this work.

In addition to the obliquity rate, our approach has allowed
us to obtain the precession rate for the same model. Its numeric
value also differs from that of Lambert & Mathews (2006, 2008).
Since in those works explicit analytical formulae are not pro-
vided to compute the precession rates, it has not been possible to
determine the source of those discrepancies. As we have pointed

out, our Eqs. (40) and (41) are consistent with the results pro-
vided by other authors.

In conclusion, significant differences (−43.945 mas cy−1 in
longitude, 0.934 mas cy−1 in obliquity) with respect to the values
considered in IAU2006 precession (−0.960 mas cy−1 in longi-
tude, 0.340 mas cy−1 in obliquity) have been found. This circum-
stance should be carefully considered when assessing a possible
update of the IAU precession model (Liu & Capitaine 2017).

On the other hand, the indirect effects on nutations, due to
the change of the dynamical ellipticity of some parts per mil-
lion, must be taken into account for full consistency between the
precession and nutation theories, required by the IAU Resolu-
tions and also a main goal of the Global Geodetic Observing Sys-
tem (GGOS) of the International Association of Geodesy (IAG)
and the IAU/IAG Joint Working Group on theory of Earth rota-
tion and validation (Ferrándiz & Gross 2015; Transactions IAU
2015; IAG Travaux Reports 2017).

In turn, the obtained numerical results mean that much atten-
tion must be paid to the ocean tide models because of their
relevant influence in precession and nutation. Our computation
relies on the developments by to Williams & Boggs (2016) based
on the ocean tide model FES2004 (IERS Conventions 2010,
Sect. 6.3.2). Other models might be explored and their results
given in a clear form adapted to the Love number formalism,
in a similar way to Williams & Boggs (2016). The usefulness of
that approach has been proven in this work.
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Appendix A: Expansion of the spherical harmonics

The real spherical harmonics appearing in the potential energy
and inertia tensor expressions, referred to the rotating system,
can be developed to the first order in σ in the following form
(Kinoshita 1977; Getino & Ferrándiz 1995):

(a
r

)3
C20 (η, α) = 3

∑
i

Bi(I) cos Θi

− 3σ
∑

i,τ=±1

Ci(I, τ) cos (µ − τΘi) ,(a
r

)3
C21 (η, α) = 3

∑
i,τ=±1

Ci(I, τ) sin (µ + ν − τΘi)

+ σ
∑

i,τ=±1

[
9
2

Bi(I) sin (ν − τΘi)

−
3
2

Di(I, τ) sin (2µ + ν − τΘi)
]
,(a

r

)3
S21 (η, α) = 3

∑
i,τ=±1

Ci(I, τ) cos (µ + ν − τΘi)

+ σ
∑

i,τ=±1

[
9
2

Bi(I) cos (ν − τΘi) (A.1)

−
3
2

Di(I, τ) cos (2µ + ν − τΘi)
]
,(a

r

)3
C22 (η, α) = −3

∑
i,τ=±1

Di(I, τ) cos (2µ + 2ν − τΘi)

− 6σ
∑

i,τ=±1

Ci(I, τ) cos (µ + 2ν − τΘi) ,(a
r

)3
S22 (η, α) = 3

∑
i,τ=±1

Di(I, τ) sin (2µ + 2ν − τΘi)

+ 6σ
∑

i,τ=±1

Ci(I, τ) sin (µ + 2ν − τΘi) .

These expansions depend on the i subscript, which is a 5-
tuple of integers mki (k = 1, 2, . . . , 5), and the fundamental argu-
ment Θi given by

Θi = m1il + m2il′ + m3iF + m4iD + m5iΩ, (A.2)

where l, g, and h are the Delaunay variables of the Moon, l′,
g′ y h′ for the Sun, F = l + g, D = l + g + h − l′ − g′ − h′,
and Ω = h − λ. The functions Bi(I), Ci(I, τ), and Di(I, τ) are
the ones defined by Kinoshita (1977) and depend on the orbital
coefficients A( j)

i provided in Kinoshita & Souchay (1990), with
an update in Escapa et al. (2017):

Bi(I) = −
1
6

(
3 cos2 I − 1

)
A(0)

i −
1
2

sin 2IA(1)
i −

1
4

sin2 IA(2)
i ,

Ci(I, τ) = −
1
4

sin 2IA(0)
i +

1
2

(1 + τ cos I)×

(−1 + 2τ cos I) A(1)
i +

1
4
ε sin I (1 + τ cos I) A(2)

i ,

Di(I, τ) = −
1
2

sin2 IA(0)
i + τ sin I(1 + τ cos I)A(1)

i

−
1
4

(1 + τ cos I)2A(2)
i . (A.3)

In this work, Eqs. (A.1)–(A.3) are used both for perturbed
and perturbing bodies. Due to the fact that i and τ play as dummy
indices in the expressions of the redistribution potential and pre-
cession formulae, they are renamed as j and ε in the case of per-
turbing bodies, keeping the original notation for the perturbed
ones.

Appendix B: Analytical cancelation of precession
formulae in the SNREI model with k2 f = k2

The quantities T (nψ/nε)
i jpq,m (τ, ε) (Eq. (41)) are specific combinations

of the Kinoshita Bi, Ci, and Di functions, defined by Eq. (A.3),
which in turn depend on the A(0,1,2)

i orbital coefficients (of per-
turbing and perturbed bodies) provided originally by Kinoshita
(1977). Then, any mathematical property derived from the defi-
nition of these coefficients will be transferred to the mathemati-
cal features of the precession formulae.

This is the case of the following conditions, namely,

A(0)
i = 0 if m5i = 1, 2,

A(1)
i = 0 if m5i = 0, 2,

A(2)
i = 0 if m5i = 0, 1,

(B.1)

indicated by Kinoshita (1977) and Kinoshita & Souchay (1990).
These conditions are implicitly included in the expression of the
redistribution potential, and also within the precession formulae,
through the expansions (A.1) of the spherical harmonics. Due to
the second-order expansion of the tide-raising potential, the inte-
ger m5i just takes the values 0, 1, and 2, for the listed components
of the fundamental arguments Θi, thus the conditions (B.1) hold
in all the cases, and can be used to simplify the Bi, Ci , and Di
functions.

The conditions (B.1) are a consequence of the A(0,1,2)
i def-

inition. By way of example, the coefficient A(0)
i is related to

the spherical harmonic C20 of a perturbing body with spherical
angular coordinates (η̃, α̃) by means of Kinoshita (1977)(a

r

)3
C20(η̃, α̃ − λ) = −

∑
i

A(0)
i cos Θi. (B.2)

Here the longitude α̃ − λ excludes the Z-axis rotation of
angle λ in the definition of the Andoyer-like set of canonical
variables, and causes the implicit dependence with λ of the fun-
damental arguments, through Ω = h − λ. Since C20(η̃, α̃ − λ) =
(3 cos2 η̃−1)/2 does not depend on λ, but Θi does, Θi = Θ̄i−m5iλ,
necessarily A(0)

i = 0 if m5i , 0 (m5i = 1, 2), which is the first
of the conditions (B.1). The remaining conditions can be analo-
gously proven by making the form of the related spherical har-
monics explicit.

It should be noted that the precession rate in obliquity, δnε,
is directly canceled out due to ε2m, j = 0 in Eq. (40). In order to

show the cancelation of the longitude rate, δnψ, the T (nψ)
i jpq,m (τ, ε)

function will be written down using Eq. (B.1) as

T (nψ)
i jpq (τ, ε) =

∑
m5i=0,1,2

fm5i (I, τ, ε)A
(m5i)
i;p A(m5i)

j;q , (B.3)

with fm5i being functions of the obliquity I, defined by

f0(I, τ, ε) = 0,

f1(I, τ, ε) = −
3
4

sin I
[
ε − τ + cos2 I (τ + 2ε)

]
, (B.4)

f2(I, τ, ε) = −
3

32
sin3 I (2ε + τ) .
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We note that m subscript has been omitted due to the exis-
tence of a sole value k2 in the Love number set in the SNREI
model with k2 f = k2. Considering that i, j, τ, and ε subscripts
are related by τΘi − εΘ̃ j = 0 within the sum, and the high-
lighted equivalence between perturbing and perturbed bodies,
Θi = Θ̃i, Eq. (B.3) must be rewritten with i = j and τ = ε, regard-
less of the value of the p, q subscripts. Under these conditions,
fm5i (I, τ, ε) functions verify the property fm5i (I, τ,±τ) = τ f ±m5i

(I),
where f ±m5i

(I) denotes the remaining functions after taking τ as
common factor. Thus, Eq. (B.3) looks like

T (nψ)
iipq (τ, τ) =

∑
m5i=0,1,2

τ f +
m5i

(I)A(m5i)
i;p A(m5i)

i;q . (B.5)

Replacing Eq. (B.5) in the first formula (Eq. 40), and the equiva-
lent summation conditions, the following expression for the pre-
cessional rate in longitude is obtained:

δnψ = −
1

sin I

∑
m5i=0,1,2

∑
p,q

∑
i

fqkpk2A(m5i)
i;p A(m5i)

i;q f +
m5i

(I)
∑
τ=±1

τ, (B.6)

which demonstrates its exact cancelation due to the sum over
τ index, that is, δnψ = 0. This result can also be derived from
certain relationships satisfied by the Kinoshita orbital functions
B, C, and D (Escapa et al. 2003, 2004).

From a physical point of view, the analytical cancelation of
the precession formulae is a consequence of that of the torque
components associated with the redistribution potential. This
fact was directly shown via vectorial mechanics, for instance, in
Krasinsky (1999) or Lambert & Mathews (2006). The demon-
stration is somewhat more costly in the Hamiltonian framework,
although it follows the same mechanism as the previous case. A
complete proof of the exact cancelation of the torque induced by
redistribution potential in a SNREI model with k2 f = k2 can be
found in Baenas (2014).
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