
Novel Simulink Blockset
for Image Processing Codesign

A Toledo, J. Suardíaz
Dept. Tecnología Electrónica.
U. Politécnica de Cartagena

Cartagena, Spain
{Ana.Toledo, Juan.Suardiaz}@upct.es

S. Cuenca, A. Grediaga
Dept. Tecnología Informática y Computación

Universidad de Alicante
Alicante, Spain

{sergio, gredi}@dtic.ua.es

Abstract—In this paper we present a novel Simulink blockset
which is conceived especially for image processing hybrid
systems. The blockset is composed of several libraries with
different abstraction levels (high-level, hardware and software)
allowing the co-design and simulation of an entire
hardware/software system. This background setting is
complemented by a set of tools that automates the transition
through the different descriptions of the system and helps to
make the critical decisions in the partition phase. In addition, a
co-design flow is proposed to take advantage of the blockset
features. All these items shape a “co-design environment” that
allows an easy and quick exploration of the design space to
obtain optimised solutions which satisfy the system
restrictions.

I. INTRODUCTION

Image processing is a very extensive field which
currently has a great number of applications. One of the main
problems when implementing these systems arises from the
necessity to fulfil certain requirements which become
increasingly strict: processing speed, economic cost,
reliability, development time, and so on… In many cases,
fulfilling these requirements demands the integration of
hardware and software components in the same application.
Reconfigurable devices (mainly FPGAs) represent a
promising alternative for implementing the hardware side of
these hybrid systems due to their high performance and
flexibility. However, designing these kinds of systems is
difficult and is the subject of a relatively new field of
research.

The hardware/software co-design method attempts to
concurrently design both sides of the systems, reducing the
development time and achieving the performance goals at
the same time [1]. A significant part of the co-design
problem consists of deciding on the software and hardware
architecture for the system and the blocks to be implemented
in the software running on programmable components and in
specialised hardware. Moreover, both the partition of the
system and the integration and synchronisation of the

hardware and software are difficult tasks that compromise
the viability of the final result

On the other hand, the building of specific hardware is
not a simple task, and specialised skills are needed to obtain
a correct design in a short time period. Because of this,
FPGAs are not the first choice of designers of image
processing systems, whose abilities are more focused on the
design of “software algorithms”.

Different approaches have been proposed for alleviating
the work involved in co-designing HW/SW systems, but due
to the complexity and magnitude of the process, only a few
have been put to practice. There are also some
approximations that focus specifically on the domain of
image processing. The CHAMPION project [2] provides a
collection of libraries of image processing components
defined in VHDL and ANSI C. The model defined in C,
which works the same as the VHDL model, is employed to
generate the functional description of the system and permits
simulation within the Khoros environment. It does not
actually constitute a co-design environment because there is
no software partition. Consequently, the target platform must
be integrated exclusively for FPGAs. The CAMERON
project [3] is based on the use of a high-level language
targeted at SA-C image processing. This language
incorporates an optimised compiler for FPGAs which
translates the SA-C high-level code into two configurations:
C code for a general purpose microprocessor and VHDL
code for the co-processing hardware. In this case a division
of hardware and software is established but a help
mechanism is not provided for the partition phase, it does not
allow the integration of pre-designed hardware blocks either.

In our approximation we have two main goals: first, to
facilitate space design exploration, enabling a quick
evaluation of different partitions in order to obtain the best
approximation, and second, to accelerate the development of
image processing algorithms in hardware by means of a
blockset of optimised components. For base tools we used
Mathworks Simulink [4] and Xilinx System Generator
(XSG) [5]. Simulink is widely used among developers of

IEEE MELECON 2006, May 16-19, Benalmádena (Málaga), Spain

1-4244-0088-0/06/$20.00 ©2006 IEEE 117

image processing and computer vision systems, enabling a
fast learning curve in our scenario. It also has a Video and
Image Processing Blockset and a Signal Processing Blockset
that can easily be integrated with our libraries. Furthermore,
it has a code C generator and is capable of generating
executables adapted for the special requirements of several
microprocessors. XSG includes a code generator which,
starting from the model, automatically builds a netlist in
synthesisable VHDL code and a functional model for
integration into the Simulink environment.

II. BLOCKSET DESCRIPTION

Creating a suitable HW/SW co-design environment
requires the hierarchical nature of the co-design flow to be
reflected in the hierarchical structuring of the processing
components. In our blockset the components have been
grouped into four categories. This taxonomy has been
defined with reference to the abstraction level (in the co-
design flow), target platform (HW or SW), and functionality:

High-level components. These components are
involved in the construction of a functional model.
Their interface is therefore platform-independent,
including only those parameters related to the
functionality of the component shared by the SW and
HW components.

SW and HW components. These components appear
after the partitioning, from the corresponding high-
level blocks whose implementation was decided to be
in software/hardware. As a result, their interfaces
inherit the parameters of the parent high-level block
as well as additional parameters related to
software/hardware specifics.

External interface components. This category
comprises components that simulate the interrelation
of the HW platform and external HW devices (such
as memories, cameras or processors).

To facilitate the co-design flow and ensure the
inheritance of functionality while allowing finer control as
the designer descends on the co-design flow, the interface of
the components is divided into two classes: the inter-
component interface and the intra-component interface. All
parameters pertaining to the functionality of the components
are grouped into the intra-component interface. The inter-
component interface only contains mechanisms needed for
component interconnection. This ensures that the
components are connectable and interchangeable.

The high-level and SW components were created using
blocks from several Simulink toolboxes and by incorporating
blocks described in C using image-processing libraries such
as the OpenCV library. A bottom-up approach has been
followed for the HW components, using the basic blocks
given in the System Generator.

A wide variety of image-processing algorithms have been
implemented. It must be emphasised that the final
implementation of these algorithms can be either in HW or

in SW, and this implementation takes place by means of an
automated process. Table I shows the entire list of available
components.

TABLE I. BLOCKSET COMPONENTS

Conversions: RGBtoYCbCr, YCbCrtoRGB, RGBtoI , Threshold,
DoubleThreshold, Brightness_Contrast, Complement, ABS, Type_Convert.

Filters: GenericConv, 3x3Gaussian, 3x3Mean, 2x1Gradient, 1x2Gradient,
PrewittX, PrewittY, SobelX, SobelY, 3x3LaplacianA, 3x3LaplacianB,
3x3Sharpen, 5x5LoG, 3x3Median, EdgeDetection.
Morphology: Erode_Dilate, Opening, Closing, Top-hat, Bottom_Hat, Skel,

Thin, Morph.
Arithmetic, Logic & Geometric: Add, Subs, Scale, LogicalOp, Crop, Resize.
Outputs: Viewer, Viewer_RGB, ViewerYCbCr, ToWorkspace), Terminator.
Inputs: image, Image_RGB, Image_YcbCr , Video, Video_RGB, Video_YCbCr,
USBVideo, USBVideo_RGB, USBVideo_YCbCr.
Others: Labelling, SemiLabelling, 0Moments, 01Moments,
Peak_ValleyDetection.

The components offer transparency of implementation
details in the high-level design while maintaining the
possibility for an advanced user to fine-tune the low-level
models using parameters specific to the HW and SW
components. For example, the arithmetic precision of the
blocks in the data path is specified using Matlab expressions,
thereby minimising the hardware used and avoiding the risk
of overflow. This means that changing parameters
automatically yields an appropriately customised
implementation.

As a general rule, the HW components process the input
pixels as they come in in raster scan order (from left to right
and from top to bottom). This removes the need to have an
entire image stored in order to begin processing. In turn, this
reduces storage requirements and the number of memory
accesses, which can otherwise cause a bottleneck. The
components have been designed modularly. This enables the
generation of simplified schemes, especially in HW, by
eliminating shared structures in blocks that work in parallel.

For example, inside the generic convolution components,
an algorithm and the corresponding tool for fully-automatic
generation of optimized HW code with no limit on the mask
size have been developed. The optimisation has been
achieved by means of the parallel processing of the columns
of pixels involved in each computation. Additionally, in the
case of embedded ALUs were not available, the multipliers
can been replaced by shift-registers and adders.

III. CODESIGN FLOW

Figure 1 summarises the co-design flow of the proposed
methodology. First, a functional model needs to be described
from the initial specifications. This model can be built using
the high-level libraries. This is a critical phase in the design,
because any possible mistakes made during the specification
phase can lead to important delays in the design process or
even to the need to create a totally new model. The
functional verification of this high-level prototype can be
performed quickly and easily using Simulink facilities.

118

Figure 1.

IV.

Proposed co-design flow

Next, a partitioning phase is required during which the
user can select the parts to be implemented using hardware
elements and those to be implemented using software. The
approximated model includes a transparent depiction of all
interfaces required for the communication of hardware- and
software-partitioned components. A new simulation can be
performed to check that certain specific collateral effects,
such as data type conversion or any similar conversion
process, do not affect the final result. A hardware-in-the-loop
simulation and a fast simulation based on synchronisation
indicators or flags were considered when developing this
simulation kernel. Important design data must be obtained at
this point in order to evaluate the partition. This data should
include the estimated latency and the area occupancy derived
from simulated hardware components and the estimated
execution times derived from simulated software
components.

Two different types of model must be created after
validating this partition. The first type consists of
synthesisable hardware models that can be downloaded onto
an FPGA device, and the second type comprises executable
software models. All these new models can be simulated
again, at low-level, using in this case tools specifically
associated with each type of component. Hardware elements
can be simulated using a connection between the
environment and the ModelSim hardware simulation tool,
and software models can be simulated and implemented
using a link to the Real Time Workshop tool.

To complement the proposed methodology, several tools
have been developed to ease the transition between the co-
design stages. The Hierarchical-Descent Tools (HDT) allow
the automatic generation of the approximated model from the
functional model, including the transparent depiction of all
interfaces (virtual interfaces) required for communication
between hardware- and software-partitioned components.
The HDTs also generate the Hardware and Software models
from the previous ones, replacing the virtual interfaces with
real ones and adding synthesisable interfaces for the external
HW components (cameras, memories, and so on…). Other

tools that have been developed include several partitioning
aids based on estimations of the execution time of the
software and the area occupation and latency of the
hardware.

Hw model

Functional
redesign

Cycle accu. Sim.

Aproximate Model

Functional Sim.

Functional Model

bitstream

Sw model

Functional
redesign

exe

Minor
modifications

Partitioning

Conceptual Model

A PRACTICAL CASE STUDY

In order to confirm the versatility of both the blockset
and the design proposal methodology, an application was
developed that can be used to detect defects in the quality
control process of the manufacturing of preserved orange
segments. The objective of the proposed system is to reject
broken orange segments or segments that are too small to be
packed with a particular quality grade. A specification
prerequisite of an inspection rate of 25 frames per second
was also a factor.

A modular processing architecture was designed using
the developed co-design blockset. An initial phase involves
modelling the most appropriate data path using high-level
processing components and blocks described in C and
Matlab. Following the inspection algorithm flow, an image
acquisition device initially generates a grey-scale levelled
image that has to be processed. Then a Gaussian filter is
performed to remove possible noise. The threshold process
can now be used to obtain a binary image. This operation
takes advantage of the fact that all orange segments appear as
dark objects against the luminous background of the
conveyor belt, since the backlit illumination method has been
taken into account.

The resulting binary image is processed using an
opening operation to remove small objects that might remain
after the threshold process. At this point the data path is
divided into two threads. The filtered binary image is
introduced into a block that carries out the moments
computation (orders 0 and 1). At the same time, edge
detection is performed on the binary image to generate the
perimeter of the remaining objects. This result is fed into a
block designed to perform an area calculation which is
associated with a standard measure of the perimeter length
expressed in pixels. Both results feed into a final block in
which a neuronal network carries out the classification of the
segment according to the standard quality criteria, taking the
area and the compactness measurements into account.

After constructing the functional model it was necessary
to adjust certain parameters in order to achieve the optimum
processing algorithm. The proposed library offers the
possibility of parameterising components using variables
accessible from the Matlab workspace and allows the
adjustments to be made without needing to alter the structure
or composition of any of the functional models.

During this tuning phase the segmentation threshold and
the size and form of the structural elements for the opening
operation were adjusted. This was carried out with several
functional simulations using different images taken from the
actual process, and the offline training of the neuronal
classifier. Training and validation data were extracted from

119

the functional model itself, inserting the special components
that download this data into the workspace.

Figure 2. Co-simulation of Aproximated model after partition phase

Once the system had been validated at functional level, a
temporal requirement validation was performed. The
processing time was estimated, first assuming total system
implementation using a software processor (PC). In order to
calculate this time specification, the software target was
selected for each block of the functional model (default
option) and the approximate model was automatically
generated using the HDTs. The result was an estimated value
of 180ms/frm, which is not fast enough for the predefined
requirements.

Several partitions were evaluated before finding the best
solution. Every partition was generated manually by clicking
on the blocks and selecting the final target (HW or SW). The
acquisition system was directly connected to the hardware
components and a double buffer framework was chosen for
the implementation of the interface between software and
hardware components. The tools that were developed
automatically generated the model and gave us the required
estimates. The final partition is shown in fig. 2. As can be
seen from the figure, the hierarchical descent tool carried out
the replacement of the high-level blocks with the
corresponding hardware and software blocks, automatically
creating a virtual interface between the partitions
(IFACE_HW_SW) and a virtual camera (IFACE_
Imagen_HW) that generates the video signals corresponding
to a 778x576-sized grey-levelled image. The results of co-
simulation are shown in the same figure. The estimates gave
us a latency of 37.05ms for the hardware side (assuming a
conservative 50MHz frequency value), and 1.1ms for the
software. Because of the concurrent processing of both sides
(as a result of the double buffer) the entire process time of

one frame is equal to the HW latency, with a rate near to
27frm/s.

After this validation the HDTs generated the hardware
and software models. A “hardware-in-the-loop” schema was
adopted to verify the accuracy of these models, avoiding the
time-consuming VHDL simulation. As the configurable
platform we chose the PCI board Nallatech Ballynuey3
populated with a Xilinx VirtexII FPGA device and the add-
on board Nallatech BallyVision which includes the camera
interface circuit. Table I summarises the actual results from
the implementation tool (Xilinx ISE7.1)

Functional
redesign

TABLE II. HARDWARE IMPLEMENTATION RESULTS

Virtex2-XC2V 3000 Device
Slices 30% (15% Flip-Flops)
LUTs 23%

BRAM 45%
fmax 65.1MHz

V. CONCLUSIONS

A novel Simulink blockset especially conceived for
image processing domain has been presented. The Blockset
facilitates the co-design of hardware/software systems by
means of a high-level library and several automatic tools that
perform the transition between models with different
abstraction levels. Every blockset component has two
interchangeable versions with different implementations (hw
and sw). The blockset also includes virtual components and
hw/sw interfaces for improving the co-simulation of the
whole systems, including external devices like video
cameras.

As a case study, the development of an industrial system
has been presented. The blockset allows a quick exploration
of the design space to get the system requirements.

REFERENCES

[1] Giovanni de Micheli, R.K. Gupta, Hardware/Software co-design,
Proceedings of IEEE 85 (3) (1997) 349–365. [4] S. Edwards, et al.,
Design of embedded systems: formal models,validation and
synthesis, Proceedings of IEEE 85 (3) (1997) 366–390.

[2] S. Natarajan, et al. Automatic Mapping of Khoros-Based
Applications to Adaptative Computing systems. Nashville, TN: Univ
Tenesse Press, 1999.

[3] Draper, J. Ross Beveridge, A. P. Willem Böhm, C. Ross, M.
Chawathe. Accelerated Image Processing on FPGAs. IEEE
transactions on image processing,vol 12. Dec 2003.

[4] The Math Works Inc., http://www.mathworks.com

[5] System Generator: Reference guide, http://www.xilinx.com/

120

