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Abstract
We show that any compact surface of genus zero inR3 that satisfies a quasiconformal inequal-
ity between its principal curvatures is a round sphere. This solves an old open problem by
H. Hopf, and gives a spherical version of Simon’s quasiconformal Bernstein theorem. The
result generalizes, among others, Hopf’s theorem for constant mean curvature spheres, the
classification of round spheres as the only compact ellipticWeingarten surfaces of genus zero,
and the uniqueness theorem for ovaloids by Han, Nadirashvili and Yuan. The proof relies on
the Bers-Nirenberg representation of solutions to linear elliptic equations with discontinuous
coefficients.

Mathematics Subject Classification 53A10 · 53C42 · 35J60

1 Introduction

Hopf’s soap bubble theorem is one of the fundamental theorems of constant mean curvature
(CMC) theory. It states that any CMC sphere immersed in R

3 is a round sphere [32]; here,
by a sphere or immersed sphere, we mean a smooth, compact orientable surface of genus
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zero immersed in R
3. Hopf’s soap bubble theorem has been extended to several important

geometric situations, such as elliptic Weingarten spheres in R
3 ([13, 15, 22, 29, 32]), or

CMC spheres in Riemannian homogeneous 3-manifolds ([1, 2, 7, 14, 16, 17, 35–37], the
final classification being obtained in [37]).

In this paper we prove a quasiconformal extension of Hopf’s theorem. In it, we replace
the CMC hypothesis by the general quasiconformal inequality

(H − c)2 ≤ μ(H2 − K ), (1.1)

where μ, c are constants, with μ < 1, and H , K denote the mean and Gaussian curvatures
of the surface. Obviously, when μ = 0 we obtain the CMC condition H = c, but the case
μ ∈ (0, 1) models a much more general class of surfaces. Condition (1.1) has its origins in
some classical problems of surface theory considered, among others, by Alexandrov, Hopf,
Pogorelov, Osserman, Simon and Schoen, that we explain next.

When c = 0, inequality (1.1) corresponds to the property that the Gaussmap of the surface
is quasiconformal, and this defines a well-known class of surfaces. They were classically
introduced by Finn [20] (for the case of graphs), and by Osserman [41], who called them
quasiminimal surfaces. The problem of determining which properties of minimal surfaces
remain true in the quasiconformal setting of (1.1) has been deeply studied, see e.g. [20,
41, 43, 45] and also [25]. Of special importance is the following quasiconformal Bernstein
theorem, by L. Simon [45]: planes are the only entire graphs with quasiconformal Gauss
map.

Aligned with the classical quasiminimal terminology, we define a quasi-CMC surface as
a smooth (C∞) immersed surface in R

3 satisfying (1.1) for some values of c, μ; here the
term quasi refers to the quasiconformal nature of inequality (1.1). Obviously, quasiminimal
surfaces are quasi-CMC.

An equivalent way of writing (1.1) is

(κ1 − c)2 + (κ2 − c)2 ≤ 2�(κ1 − c)(κ2 − c), (1.2)

where� ≤ −1, c ∈ R andκ1 ≥ κ2 are the principal curvatures of the surface.Here,� = μ+1
μ−1 .

In this equivalent form, (1.2) appears as the uniformly elliptic case of Alexandrov’s inequality
(2.1) (see Sect. 2), and as an extension of Hopf’s classical cusp property (H) that will be
explained below. A useful visual interpretation of (1.2) in terms of the curvature diagram of
the surface is given in Fig. 1.

In general, the class of surfaces satisfying (1.1) is vast, and should not be expected to show
many similarities with CMC surface theory. For instance, quasi-CMC surfaces do not satisfy
the maximum principle, and Alexandrov’s classical theorem for compact embedded CMC
surfaces does not hold in the quasiconformal setting. Indeed, any thin enough tube around
an arbitrary smooth Jordan curve of R3 is an embedded quasi-CMC torus.

In contrast, Theorem 1.1 below shows that Hopf’s soap bubble theorem admits a general
quasiconformal extension. It can be seen as a spherical version of Simon’s quasiconformal
Bernstein theorem [45] stated above.

Theorem 1.1 Any quasi-CMC sphere immersed in R
3 is a round sphere.

Remark 1.2 The proof of Theorem 1.1 also holds if we only assume that (1.2) is satisfied
around the umbilics of the immersed sphere. Specifically, let � be an immersed sphere inR3

such that, in a neighborhood of each umbilic p ∈ �, the inequality (1.2) holds for c := κi (p),
i = 1, 2, and for some � = �(p) ≤ −1. Then � is a round sphere. Here, no assumption
is made on � away from its umbilic set, and the values of the umbilicity constant c and the
quasiconformal coefficient � are allowed to be different on different umbilics.
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Fig. 1 Curvature diagram regions for quasiminimal and quasi-CMC surfaces. A surface � is quasiminimal
(resp. quasi-CMC) if its curvature diagram (κ1, κ2)(�) ⊂ R

2, κ1 ≥ κ2, lies in the wedge regionR in the left
(resp. right)

Theorem 1.1 answers a question posed by H. Hopf in 1956 on the curvature diagram of
immersed spheres inR3, that we explain next. Recall that the curvature diagram of a surface
� is the region D := {(κ1(p), κ2(p)) : p ∈ �} ⊂ R

2, where κ1 ≥ κ2 are the principal
curvatures of �. Note that D lies in the closed half-plane x ≥ y of R2, and the points where
D intersects the diagonal y = x correspond to the umbilics of �. In particular, if � is
compact of genus zero, then D intersects the diagonal (since � must have some umbilic, by
Poincaré-Hopf theorem).

In his famous book [32], Hopf proved that a compact, real analytic surface of genus zero
� in R

3 must be a round sphere if its curvature diagram D satisfies the following property
(H): D has cusps at the diagonal y = x , with tangents orthogonal to this diagonal. That is,
D lies in a region of the half-plane x ≥ y that has such cusps at the diagonal (see Fig. 2, left).
He asked then if the analyticity condition can be removed, see [32,p. 145]. Our Theorem 1.1
together with Remark 1.2 gives a positive answer to Hopf’s question:

Corollary 1.3 (Solution to Hopf’s problem) Any immersed sphere in R
3 whose curvature

diagram satisfies property (H) is a round sphere.

More specifically, our results imply a positive solution to Hopf’s problem under a much
weaker condition:

Corollary 1.4 An immersed sphere � in R
3 must be a round sphere if its curvature diagram

D satisfies the following property (W):D has wedges of negative slopes at the diagonal (not
necessarily cusps). See Fig. 2, right.

Proof The hypothesis that � satisfies property (W) is easily seen to be equivalent to the
curvature condition imposed in Remark 1.2. Thus, Corollary 1.4, and so, Corollary 1.3, hold.

��
The proof of Theorem 1.1 relies on the Poincaré-Hopf theorem. Specifically, we will

show (Sect. 4) that the umbilics of a quasi-CMC surface in R
3 are isolated, and have non-

positive index, unless the surface is totally umbilical. This proves the theorem. However, the
proof of these properties is not elementary, due to the generality of the quasi-CMC condition
(1.1). In order to show that they hold, we will first develop in Sect. 3 an analytic study of
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Fig. 2 Left: Curvature diagram restriction (H) in Hopf’s problem. Right: Curvature diagram restriction (W),
with wedges of negative slopes at the diagonal. Note that (W) includes (H) as a particular case

the Hessian D2u around critical points of smooth solutions u to linear, uniformly elliptic
equations L[u] = 0 with bounded (non-continuous) coefficients. More specifically, we will
show that det(D2u) < 0 in a punctured neighborhood of any such critical point, and that the
vector fields ∇ux and ∇uy have non-positive index. The key tool for proving this result will
be the Bers-Nirenberg representation, [12]. The analytic results of Sect. 3 might have further
geometric applications.

In Sect. 5 we will give an anisotropic version of Theorem 1.1, see Theorem 5.1, showing
that any immersed sphere � in R3 that is quasiconformal with respect to a given ovaloid S0
must be a translation of this ovaloid. This extends to the genus zero case an important result
by Han, Nadirashvili and Yuan [27], who proved (via the study of 1-homogeneous solutions
to a uniformly elliptic equation in R

3) that the statement of Theorem 5.1 holds when both
surfaces �, S0 are ovaloids; see Sect. 5 for more details on this connection.

Theorems 1.1 and 5.1 seem sharp in a number of directions, and have additional geometric
consequences. These will be discussed in Sect. 2 below, and in an Appendix.

2 Discussion, sharpness and consequences of the result

Theorem 1.1 has two topological hypotheses that are unavoidable for its validity. On the
one hand, the result is strictly two-dimensional, since there exist immersed, non-round CMC
hypersurfaces in R

n+1 that are diffeomorphic to S
n for any n ≥ 3, see [28]. On the other

hand, the genus zero hypothesis cannot be removed, since there exist immersed compact
CMC surfaces of arbitrary genus inR3. Moreover, as already pointed out in the introduction,
a thin tube over a simple, closed regular curve in R

3 is an example of a closed, embedded
quasi-CMC surface of genus one in R

3. So, the result is topologically sharp.
The quasiconformal condition (1.2) is related to a classical conjecture byA.D. Alexandrov

[4, 5], which can be formulated in the following way: if a closed, C2 convex surface S ⊂ R
3

has its principal curvatures κ1, κ2 > 0 satisfying at any point

(κ1 − c)(κ2 − c) ≤ 0, and equality holds only if κ1 = κ2 = c, (2.1)

for some constant c > 0, then S is a sphere of radius 1/c. Alexandrov proved this result in
[4] for the case that S is real analytic. The conjecture remained open for a long time, until
Martinez-Maure [34] constructed in 2001 a C2 counterexample to it; see also Panina [42].
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One should observe at this point that the quasi-CMC inequality (1.2) implies the Alexan-
drov condition (2.1). More specifically, (1.2) is actually the uniformly elliptic version of the
degenerate elliptic condition (2.1). In this sense, it is interesting to remark that Theorem 1.1
does not hold under the weaker Alexandrov hypothesis (2.1). Indeed, in Lemma A.2 of the
Appendix we will construct many smooth non-round spheres embedded inR3 that satisfy the
Alexandrov inequality (2.1). This indicates that the quasi-CMC condition (1.2) in Theorem
1.1 is close to being sharp.

In the particular case where the quasi-CMC sphere � is strictly convex, Theorem 1.1 can
be obtained as a direct consequence of the uniqueness theorem by Han, Nadirashvili and
Yuan [27] mentioned above; see also [40, Sect. 1.6]. We note that the approach in [27] needs
the convexity assumption, and so it cannot handle the general case of immersed spheres that
we study here.

In the real analytic case, Theorem 1.1 was previously known, after a theorem of Voss
and Münzner (see Satz III in [39]): Any real analytic immersed sphere in R

3 satisfying
(κ1 − c)(κ2 − c) ≤ 0 for some c > 0 is a sphere of radius 1/c. The analyticity assumption
in this result cannot be removed, by the examples given in Lemma A.2, or in Panina [42].

An immediate, non-trivial consequence of Theorem 1.1 is the characterization of round
spheres as the only compact elliptic Weingarten surfaces of genus zero, under much weaker
hypotheses on theWeingarten equation than the previous classification results for this type of
surfaces [13, 15, 22, 30, 32]. Specifically, we obtain the result below directly from Corollary
1.4:

Corollary 2.1 Let� be an immersed sphere inR3 whose principal curvatures κ1 ≥ κ2 satisfy
a Weingarten equation κ1 = f (κ2), for some real function f . Assume that f is continuous
and its Dini derivatives are negative and finite at every point. Then, � is a round sphere.

Proof The Dini condition on f automatically implies that the curvature diagram of�, which
is a subset of the curve κ1 = f (κ2), approaches the principal diagonal of the (κ1, κ2)-plane
inside a wedge of negative slopes, and so the result follows from Corollary 1.4. ��

Note that if f ∈ C1, the Dini condition is equivalent to f ′ < 0, and we recover the
general classification of elliptic Weingarten spheres in [22]. Also, note that the equation
κ1 = f (κ2) is not symmetric in (κ1, κ2); therefore, Corollary 2.1 (or the classification in
[22]) is not covered by the classical works of Hopf, Chern, Hartman-Wintner and Bryant
about the classification of elliptic Weingarten spheres.

We single out another interesting consequence of Theorem 1.1. It gives a non-trivial
property of any immersed sphere in R

3 with positive (not constant) mean curvature.

Corollary 2.2 If an immersed sphere � inR3 has mean curvature H ≥ 1 at every point, then
unless � is a sphere of radius 1, there should exist some point of � with K > 1.

Proof Let � be an immersed sphere in R
3 for which K ≤ 1 ≤ H holds. Then, � satisfies

(1.1) for c = 1 and

μ = H0 − 1

H0 + 1
, H0 := max� H .

Indeed, for that value of μ we have by K ≤ 1 that

(H − 1)2 − μ(H2 − K ) ≤ H2(1 − μ) − 2H + 1 + μ,

and the right hand-side is ≤ 0 for all values H ∈ [1, H0]. Therefore, � is a sphere of radius
1, by Theorem 1.1. ��
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Observe again that Corollary 2.2 is not true without the genus zero assumption; take for
example a thin rotational tube over a large circle. Note that Corollary 2.2 is not an elementary
result, since it contains as a particular case Hopf’s soap bubble theorem (due to the general
inequality H2 ≥ K ).

Some of the arguments that we present in this paper carry over naturally to the uniqueness
study of immersed spheres in Riemannian 3-manifolds, by means of the notion of transitive
family of surfaces, see [22, 23]. Our index study here also gives relevant information about
overdetermined elliptic problems, as in [18, 24, 38]. However, these lines of inquiry will not
be pursued here.

3 On the Hessian of solutions to linear elliptic equations

Consider the linear homogeneous equation

L[u] := a11uxx + 2a12uxy + a22uyy + b1ux + b2uy = 0, (3.1)

where the coefficients are bounded, measurable functions in some domain � ⊂ R
2, that

satisfy the uniform ellipticity condition

λ1|ξ |2 ≤
∑

ai jξiξ j ≤ λ2|ξ |2 ∀ξ = (ξ1, ξ2) ∈ R
2, (3.2)

for some positive constants 0 < λ1 ≤ λ2. Note that no regularity is assumed for the coeffi-
cients of (3.1). In particular, they might be discontinuous.

In [12], Bers and Nirenberg showed that critical points of solutions u to (3.1) are isolated,
and the gradient∇u has around such critical points a zero of finite order, and a nodal structure
equivalent to that of a holomorphic function. InTheorem3.1 belowweuse theBers-Nirenberg
representation in [12] to study the Hessian D2u of smooth solutions to (3.1). We remark that
when the coefficients ai j of (3.1) are C1, or more generally Holder continuous, Theorem 3.1
is known and follows from results of Hartman-Wintner [29] and Bers [9].

Also, note that a C∞ regularity assumption on the solution u is not unnatural, even if the
coefficients of (3.1) are discontinuous. For instance, consider two linear, uniformly elliptic
homogeneous operators Li [u], i = 1, 2, as in (3.1), with smooth coefficients, and let u(x, y)
be a smooth function on � satisfying

L1[u] ≤ 0 ≤ L2[u].
Then, there exists a uniformly elliptic operator L[u] as in (3.1), but this time with discontin-
uous coefficients in general, such that L[u] = 0. See also Theorem 3.2 below.

Theorem 3.1 Let u ∈ C∞(�) be a non-constant solution to (3.1), with ∇u(p0) = (0, 0) at
some p0 ∈ �. Then, there exists a punctured disk D∗ ⊂ � centered at p0 such that:

(1) det(D2u) < 0 in D∗.
(2) The (common) index of the gradient vector fields ∇ux , ∇uy around p0 is non-positive.

Proof We start with some well knownmanipulations. By (3.2), a11+a22 is bounded between
two positive constants. Dividing (3.1) by this quantity, we can rewrite it in terms of the
complex parameter z = x + iy as

2uzz̄ + μuzz + μ̄uz̄z̄ + βuz + βuz̄ = 0, (3.3)
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where

μ := a11 − a22 + 2ia12
a11 + a22

, β := b1 + ib2
a11 + a22

. (3.4)

In this way, if 0 < μ1(z) ≤ μ2(z) denote the eigenvalues of (ai j ) at a point z ∈ �, then we
have at z

|μ| = Kμ − 1

Kμ + 1
, Kμ := μ2

μ1
.

In particular, it holds

|μ| ≤ μ0 := K − 1

K + 1
< 1, K := λ2

λ1
≥ 1. (3.5)

Let now p0 ∈ � be a critical point of u, and assume p0 = (0, 0) for simplicity. Consider
a simply connected domain containing the origin and whose closure is contained in �. For
simplicity, as our study is local, we still denote this domain by�. In these conditions we may
apply the Bers-Nirenberg representation theorem in [12] (see also [10, 11]), which says that
the complex gradient f = uz of any solution u to (3.3) can be written in � as

f (z) = es(z)F(χ(z)), (3.6)

where:

(i) s : � → C is a Holder continuous function. It is equal to zero when β = 0.
(ii) χ : � → �′ := χ(�) ⊂ C is a K-quasiconformal homeomorphism, that satisfies the

Beltrami equation χz̄ = μχz for μ given by (3.4). In particular, both χ and χ−1 are of
class Cα , with α = 1/K; see, e.g., [8].

(iii) F is a holomorphic function on �′.

We proceed with the rest of the proof. If D2u is not zero at the origin, then item (1)
follows by the ellipticity of (3.1), and item (2) is trivial since∇ux ,∇uy do not vanish around
the origin, and so their index is zero. So, assume from now on that D2u = 0 at the origin,
i.e., Df (0) = 0. Also, f (0) = 0 since the origin is a critical point of u. In (3.6), denote
ξ0 := χ(0), and let n ≥ 1 denote the order of the zero of F(ζ ) at ζ0 (note that F(ζ0) = 0
and that F �≡ 0 since u is non-constant).

It follows then from (3.6) and the fact that both χ and χ−1 are Holder with exponent 1/K
that, in a sufficiently small neighborhood of the origin, we have

c1|z|nK ≤ | f (z)| ≤ c2|z|n/K, (3.7)

for positive constants c1, c2.
Thus, since f ∈ C∞(�), we have by the left inequality in (3.7) that there exists a first

homogeneous non-zero term of degree ν ≥ 2 in the Taylor series expansion of f at 0. Then,
we can write around the origin

f (z) = ω(z) + o(|z|ν) (3.8)

where ω = ω1 + iω2 is a complex-valued homogeneous polynomial in R
2 of degree ν.

It follows from (3.3) that

| fz̄ | ≤ μ0| fz | + c| f |,
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for some positive constant c > 0, where μ0 is given by (3.5). Therefore, dividing this
inequality by |z|ν−1 and taking limits as |z| → 0 we obtain from (3.8) that

|ωz̄ | ≤ μ0|ωz |. (3.9)

Observe that J (z, ω) := |ωz |2−|ωz̄ |2 ≥ 0 by (3.9), sinceμ0 < 1.We claim that J (z, ω) > 0
in R

2 − {(0, 0)}.
Indeed, assume that J (z, ω) = 0 at some η0 ∈ C−{0}. By (3.9), we have Dω(η0) = 0. By

Euler’s formula for homogeneous functions,ω(η0) = 0. Thus,ω admits a factorization of the
form ω(z) = (α0z + α0 z̄)mQ(z), with m ≥ 2, where α0 := iη0, and Q is a complex-valued
homogeneous polynomial with Q(η0) �= 0. Thus, away from the line L ≡ α0z + α0 z̄ = 0 in
C we have

|ωz̄ |
|ωz | = |m α0 Q + (α0z + α0 z̄)Qz̄ |

|m α0 Q + (α0z + α0 z̄)Qz | .
This quantity converges to 1 as we approach L , a contradiction with (3.9).
Therefore, J (z, ω) > 0 except at the origin. A standard blow-up argument from (3.8)

shows then that J (z, f ) > 0 on a sufficiently small punctured disk D∗(0, ε0), i.e., that
uxxuyy − u2xy < 0 in that punctured disk. This proves item (1) of the statement. Observe that
this implies that the origin is an isolated critical point of both ux and uy .

To finish the proof, let us show the non-positivity of the topological index of the vector
fields ∇ux and ∇uy around the origin. Here, we recall that if a C1 function w(x, y) has an
isolated critical point at p0, the topological index of its gradient ∇w at p0 is given by the
winding number of ∇w around a sufficiently small circle centered at p0.

First of all, note that if ∇ux and ∇uy were collinear at some point in D∗(0, ε0), we would
have uxxuyy − u2xy = 0 at that point, which does not happen. Thus, the vector fields ∇ux ,
∇uy have the same index around the origin. By the same argument, this index also agrees
with that of ∇uθ , where uθ := cos θux + sin θuy , θ ∈ [0, 2π).

Assume that the index of ∇ux at the origin is positive. By a known argument (see [3,
Lemma 3.1]), this index is equal to 1, and either ux > ux (0, 0) or ux < ux (0, 0) in a small
punctured neighborhood of the origin. So, since the origin is a critical point of u, either ux > 0
or ux < 0. Moreover, one of the analogous inequalities holds for uθ and each θ ∈ [0, 2π),
by the previously observed invariance of the index of ∇uθ . By continuity then, one of these
two inequalities should hold around the origin for all values of θ . For definiteness, assume
that uθ (x, y) > 0 in a punctured neighborhood of the origin, for all θ . This implies that, in
a sufficiently small disk D(0, δ), we have

u(x, y) ≥ u(0, 0),

which gives a contradiction with the maximum principle for (3.1). Therefore, the common
index of ∇ux and ∇uy is non-positive, what completes the proof of Theorem 3.1. ��

The above arguments actually yield a more general result, that we present below, which
controls the behavior of solutions to a natural differential inequality around their zeros.
The statement of Theorem 3.2 below in the particular case μ0 = 0 is well known, and a
direct consequence of the Bers-Vekua similarity principle. In that situation, the solution f
is asymptotically holomorphic around its zeros. However, when μ0 �= 0, this holomorphic
behavior does not hold in general, as the example f (z) = z|z|2 shows. The similarity principle
for μ0 = 0 has been an important tool in the study of harmonic maps between surfaces, see
e.g. Jost [33, p. 75]. In this sense, although Theorem 3.2 will not be used in this paper, we
believe that it might have further geometric applications. For related analytic results, see e.g.
Chapter 7 of Schulz [44].
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Theorem 3.2 Let f be a complex, non-zero smooth function in � ⊂ C that satisfies in a
neighborhood of z0 ∈ � the inequality

| fz̄ | ≤ μ0| fz | + c| f |, (3.10)

where μ0 < 1 and c > 0 are constants. Assume f (z0) = 0. Then, there exists a punctured
disk D∗ ⊂ � centered at z0 so that:

(1) J (z, f ) := | fz |2 − | fz̄ |2 > 0 holds in D∗.
(2) Re( f ), Im( f ) have at z0 an isolated critical point of non-positive index.

Proof For each z ∈ �, there exists τ = τ(z) ∈ [0, 1] such that
| fz̄ | = τ(μ0| fz | + c| f |),

as a consequence of (3.10). Observe that, at points where f = Df = 0, the value of τ is not
uniquely determined, and so it can be chosen arbitrarily. In particular τ is not continuous.
Write next

f = eiθ0 | f |, fz = eiθ1 | fz |, fz̄ = eiθ2 | fz̄ |,
where again the values θ j = θ j (z) ∈ [0, 2π), j = 0, 1, 2, are chosen arbitrarily at the zeros
of their corresponding functions. We have then

fz̄ = μ fz + α f , μ := μ0τe
i(θ2−θ1), α := c τei(θ2−θ0). (3.11)

Clearly,

sup{|μ(z)| : z ∈ �} ≤ μ0 < 1, sup{|α(z)| : z ∈ �} ≤ c.

In particular, (3.11) is a linear uniformly elliptic system with bounded coefficients in the
conditions of the Bers-Nirenberg representation [12]. Therefore, f admits a representation
(3.6) around z0.

Now, regarding assertion (1) in the statement, note that (3.6) implies that f satisfies (3.7).
By the same arguments in the proof of Theorem 3.1, we conclude that J (z, f ) > 0 in a
punctured disk D∗ ⊂ � around z0.

To prove assertion (2), write f1 = Re( f ), f2 = Im( f ). From J (z, f ) > 0 we obtain that
∇ f1, ∇ f2 are always linearly independent in D∗. In particular, z0 is, at worst, an isolated
critical point of both f1, f2, and the indices of the gradients ∇ f1,∇ f2 at z0 coincide.

Assume that this index is positive. By [3, Lemma 3.1], we have that each of f1 and f2
is either always positive or always negative in D∗, that is, f (D∗) lies in an open quadrant
of C. But next, recall that by (3.6) we have f = es(F ◦ χ) in D∗, where s is continuous,
F is holomorphic and χ is a quasiconformal homeomorphism, all in D = D∗ ∪ {z0}. Also,
F ◦ χ is an open mapping in D that sends z0 to the origin, and in particular, the image
of the restriction of F ◦ χ to a small enough circle |z − z0| = r winds around the origin
a non-zero number of times. On the other hand, making D∗ smaller if necessary, we can
assume that es(D) is a small open neighborhood of some non-zero ζ0 ∈ C

∗, and in particular
the argument function of es has an arbitrary small image along |z − z0| = r . Thus, since
arg( f ) = arg(es) + arg(F ◦ χ), the variation of the argument of f around any such circle
can be made larger than π/2. This contradicts that f (D∗) lies in a quadrant. Therefore, the
index is non-positive, and this completes the proof. ��
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4 Proof of Theorem 1.1 and Remark 1.2

Theorem 1.1 and Remark 1.2 will be an almost direct consequence of a local result (Theorem
4.1) that we prove below. To explain this, let us recall that, at any non-umbilical point of a
surface � in R

3, there exist exactly two eigenlines L1,L2 of its second fundamental form,
which describe the principal directions of � at the point. Thus Li , i = 1, 2, are continuous
line fields on � − U , where U is the umbilic set of �. In addition, if p ∈ U is an isolated
umbilic, the principal line fields L1,L2 have a common well defined index at p, which is a
half-integer. This number is called the index of the isolated umbilic p. We have:

Theorem 4.1 Let p be an umbilic of a surface � in R3, let c := κi (p), i = 1, 2, and assume
that (1.2) holds in a neighborhood of p, for some � < 0. Then, either � is totally umbilical
around p, or p is an isolated umbilic of non-positive index.

In particular, any quasi-CMC surface in R
3 is either totally umbilical, or it has only

isolated umbilics of non-positive index.

Let us explain howTheorem 1.1 andRemark 1.2 follow fromTheorem 4.1. Assume that�
is an immersed sphere in R3 that satisfies (1.2) around each umbilic p ∈ �, where c = c(p)
and � = �(p) may have different values on different umbilics.

Suppose first of all that there exists a connected component V ⊂ � of the totally umbilical
set of � that has non-empty interior, and take p ∈ ∂V . Then, p is also an umbilic of �, and
by Theorem 4.1, � is totally umbilical around p. Thus, the closure of V is an open set, and
by connectedness, � must be a totally umbilical round sphere.

Assume next that � does not contain totally umbilical open sets. Then, by Theorem 4.1,
the umbilic setU of� is finite, and the index of any p ∈ U is non-positive. In this way,L1,L2

define two continuous line fields in � with a finite number of singularities, all of them of
non-positive index. By the Poincare-Hopf theorem, the sum of such indices equals the Euler
characteristic of �. This gives a contradiction, since � has positive Euler characteristic.

Thus, we only need to prove Theorem 4.1, which we do next:

Proof of Theorem 4.1 Start by noting that (1.2) can be rewritten as

m2(κ1 − c) ≤ κ2 − c ≤ m1(κ1 − c), {m1,m2} := {� ±
√

�2 − 1} < 0. (4.1)

Consider for i = 1, 2 the Weingarten functionals

Wi (κ1, κ2) := −mi (κ1 − c) + κ2 − c, (4.2)

defined on the set {κ1 ≥ κ2} ⊂ R
2. Note that, for i = 1, 2,

∂Wi

∂κ1
= −mi > 0,

∂Wi

∂κ2
= 1. (4.3)

This implies that the fully nonlinear operators Wi are uniformly elliptic.
In what follows, let p ∈ � denote an umbilic, with principal curvatures equal to c. By

hypothesis, (4.1) holds in a neighborhood V ⊂ � of p, and so, for each q ∈ V there exists
a value τ(q) ∈ [0, 1] such that

Wτ (κ1(q), κ2(q), q) = 0, (4.4)

where

Wτ (κ1, κ2, q) := τ(q)W1(κ1, κ2) + (1 − τ(q))W2(κ1, κ2). (4.5)

123



A quasiconformal Hopf soap bubble theorem Page 11 of 20 129

One should observe here that τ is not continuous, and its value is undetermined at the points
q ∈ V where κ1 = κ2, i.e., it can be chosen arbitrarily at those points. Note that, by (4.3),

0 < −m1 ≤ ∂Wτ

∂κ1
≤ −m2,

∂Wτ

∂κ2
= 1, (4.6)

which is a uniform ellipticity condition on Wτ . We can rewrite (4.5) as

Wτ = −c(1 − m2 + τ(m2 − m1)) − τm1κ1 − (1 − τ)m2κ1 + κ2 (4.7)

Let Sc denote the totally umbilical surface with principal curvatures equal to c, and that
is tangent to � at the umbilic p, with the same unit normal. We suppose from now on that
� and Sc do not agree in a neighborhood of p. Up to ambient isometry, for simplicity,
we will assume that p is the origin, and the unit normal of � at p is e3 = (0, 0, 1). Let
z = u(x, y) and z = u0(x, y) be graphical local representations around the origin of � and
Sc, respectively. Thus, u0(x, y) = 0 if c = 0, and

u0(x, y) = 1

c
− 1

c

√
1 − c2(x2 + y2)

if c �= 0. In this way, (4.4) shows that u(x, y) is a solution to a second order PDE

�τ [u] := �τ (x, y, ux , uy, uxx , uxy, uyy) = 0. (4.8)

Here, �τ (x, y, p, q, r , s, t) is defined in a neighborhood of (0, 0, 0, 0, c, 0, c) ∈ R
7. By

(4.7), its explicit expression is given by

�τ = −c(1 − m2 + τ(m2 − m1)) − τm1K1 − (1 − τ)m2K1 + K2,

where τ = τ(x, y), 0 ≤ τ ≤ 1, {K1,K2} := {H ± √
H2 − K}, and

H(p, q, r , s, t) := r(1 + q2) − 2pqs + (1 + p2)t

2(1 + p2 + q2)3/2
,

K(p, q, r , s, t) := r t − s2

(1 + p2 + q2)2
. (4.9)

It is classical that the functions Ki (p, q, r , s, t), i = 1, 2, have bounded first derivatives
in a neighborhood of any point of the form (0, 0, c, 0, c) ∈ R

5; see e.g. [19, Section 5] for
the explicit computation. So, �τ (x, y, p, q, r , s, t) has the same property. In addition, it is
immediate that u0(x, y) is also a solution to (4.8), as Sc satisfiesWi (κ1, κ2) = 0 for i = 1, 2.

So, if we denote h = u − u0, a standard application of the mean value theorem to �τ

shows that the restriction of h to some convex neighborhood of the origin satisfies a linear,
homogeneous equation with bounded coefficients

L[h] := a11hxx + 2a12hxy + a22hyy + b1hx + b2hy = 0.

Here, for each (x, y) fixed in such a neighborhood,

a11(x, y) :=
∫ 1

0

∂�τ

∂r
(x, y, uϑ

p , u
ϑ
q , uϑ

r , uϑ
s , uϑ

t ) dϑ,

where uϑ := ϑu(x, y) + (1 − ϑ)u0(x, y), etc., with similar formulas for the rest of the
coefficients. Note that these coefficients are not continuous in (x, y), in general.

Moreover, the ellipticity condition (4.6) on Wτ actually implies that the operator L[h] is
uniformly elliptic, i.e., it satisfies (3.2) around the origin, for adequate constants 0 < λ1 ≤
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λ2. This is a standard fact, see e.g. Alexandrov [6], which can also be checked by direct
computation from (4.6) and the definition of the coefficients ai j .

Also, note that∇h = (0, 0) at the origin. Therefore, h(x, y) is in the conditions ofTheorem
3.1. In particular, since h is not constant (recall that we are assuming that � is not totally
umbilical around p), h has a zero of finite order k > 2 at (0, 0) (by Bers-Nirenberg) and we
have from Theorem 3.1 that hxxhyy − h2xy < 0 in a punctured disk D∗ ⊂ � centered at the
origin. Observe that k > 2 since the origin is an umbilic of principal curvatures equal to c of
both z = u(x, y) and z = u0(x, y), and so D2h vanishes at (0, 0).

Define next the analytic functions

�1(p, q) := p√
1 + p2 + q2

, �2(p, q) := q√
1 + p2 + q2

.

Then, we can write for any pair (p, q), (p0, q0) ∈ R
2 near the origin, and for i = 1, 2,

�i (p, q) − �i (p0, q0) = Ai1(p − p0) + Ai2(q − q0), (4.10)

where each Ai j depends analytically on (p, q, p0, q0), and (Ai j ) = Id at (0, 0, 0, 0). This
follows, for instance, from the mean value theorem, or alternatively from a series expansion
of the left hand-side of (4.10) with respect to (p, q, p0, q0) around (0, 0, 0, 0).

Let us denote (αi j ) := I I · I−1, with I , I I being the first and second fundamental forms
of z = u(x, y), written with respect to the coordinates (x, y). By a standard computation
using the above notations and ∇u := (ux , uy), we have

(αi j ) =
(

(�1(∇u))x (�2(∇u))x

(�1(∇u))y (�2(∇u))y

)
. (4.11)

The same computation, but this time for u0(x, y), gives that

(
c 0

0 c

)
=

((
�1(∇u0)

)
x

(
�2(∇u0)

)
x(

�1(∇u0)
)
y

(
�2(∇u0)

)
y

)
, (4.12)

where we have used that z = u0(x, y) is totally umbilical, with principal curvatures equal to
c.

Then, from (4.11) and (4.12), using (4.10) and h = u − u0, we obtain

(αi j − c δi j ) =
((

�1(∇u) − �1(∇u0)
)
x

(
�2(∇u) − �2(∇u0)

)
x(

�1(∇u) − �1(∇u0)
)
y

(
�2(∇u) − �2(∇u0)

)
y

)

=
((A0

11 hx + A0
12 hy

)
x

(A0
21 hx + A0

22 hy
)
x(A0

11 hx + A0
12 hy

)
y

(A0
21 hx + A0

22 hy
)
y

)
,

where A0
i j := Ai j (ux , uy, u0x , u

0
y). Therefore, recalling that (Ai j ) = Id when (p, q, p0, q0)

= (0, 0, 0, 0), and that h(x, y) has a zero of order k > 2 at the origin, we obtain from the
above expression that

(αi j − c δi j ) =
(
hxx hxy

hxy hyy

)
+ o(�k−2), (4.13)
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where � := √
x2 + y2. Hence, from (4.13)

H2 − K = 1

4
(hxx − hyy)

2 + h2xy + o(�2k−4) (4.14)

where H , K denote the mean and Gauss curvature of z = u(x, y). Since hxxhyy − h2xy < 0
in D∗, we have that (hxx − hyy)

2 + 4h2xy is positive in D∗, and has a zero of order 2k − 4 at
the origin. Thus, by (4.14), H2 − K > 0 holds in a maybe smaller punctured disk D∗

0 ⊂ D∗
centered at the origin. This implies that p is an isolated umbilic of �, as claimed in Theorem
4.1.

To end the proof of Theorem 4.1, we need to control the index of the umbilic p. In
coordinates (x, y), the principal line fields of � around p are given by the solutions to

− α12dx
2 + (α11 − α22)dxdy + α21dy

2 = 0. (4.15)

Note that this equation remains invariant if we change (αi j ) by (αi j − c δi j ). Thus, by (4.13),
it is clear that these line fields have around p the same index as the line fields around (0, 0)
given by

− hxy(dx
2 − dy2) + (hxx − hyy)dxdy = 0. (4.16)

Note that the line fields (4.16) are well defined around the origin, since hxxhyy − h2xy < 0 in
D∗(0, ρ0). By a classical argument, the index of the line fields given by (4.16) is ≤ 0 if and
only if the index of the vector field Z = (−2hxy, hxx − hyy) is ≤ 0; see Hopf [32, p.167].
But now, note that 〈Z ,∇hy〉 < 0 in D∗(0, ρ0). In particular, Z and ∇hy have the same index
at the origin. Thus, by Theorem 3.1, we deduce that the index of the principal line fields of
� around p is ≤ 0.

This concludes the proof of Theorem 4.1. As explained at the beginning of this section,
this shows that Theorem 1.1 and Remark 1.2 hold. ��

Let us remark that the non-positivity of the index of umbilics of quasi-CMC surfaces
given in Theorem 4.1 cannot be improved to negativity, in contrast with the CMC case. See
Lemma A.1 in the Appendix.

5 A uniqueness theorem for ovaloids and applications

We will next modify the arguments in the proof of Theorem 1.1 to obtain a more general
result, in which the uniqueness property is not obtained for round spheres, but for an arbitrary
ovaloid of R3.

Let S0 be an ovaloid, i.e., a compact C∞ surface in R
3 with K > 0 at every point. We

say that an immersed surface � in R
3 is quasiconformal with respect to S0 if the following

inequality holds at every q ∈ �, for some � ≤ −1:

(κ1 − κ0
1 )2 + (κ2 − κ0

2 )2 ≤ 2�(κ1 − κ0
1 ) (κ2 − κ0

2 ). (5.1)

Here, κ1 ≥ κ2 are the principal curvatures of� at q , and κ0
1 ≥ κ0

2 are the principal curvatures
of S0 at the unique point q0 ∈ S0 whose unit normal agrees with the unit normal N (q) of �

at q . Note that, by their own definition, κ0
1 , κ0

2 are viewed here as maps from � to R.
One should observe that if S0 is a sphere of radius 1/c, then (5.1) coincides with (1.2),

i.e., with the notion of quasi-CMC surface.
We have then the following anisotropic extension of Theorem 1.1.
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Theorem 5.1 Let S0 be an ovaloid. Then, any immersed sphere� inR3 that is quasiconformal
with respect to S0 is a translation of S0.

For the particular case where the immersed sphere � is also an ovaloid, Theorem 5.1
follows from the uniqueness result of Han, Nadirashvili and Yuan in [27], as we explain next.
Assume that � is an ovaloid, and let h, h0 be the support functions of � and S0, viewed
as functions on S

2. Then h − h0 extends by homogeneity to a homogeneous function v of
degree 1 in R

3 − {0}. It can be shown that v satisfies a linear, uniformly elliptic equation∑
Ai j Di jv = 0 in R

3 (with bounded, measurable coefficients) if and only if � satisfies
(5.1). By [27], any such v is linear. So, � is a translation of S0. One should note that, even
though the homogeneous equation in R

3 for v considered in [27] is equivalent to (5.1) (for
ovaloids), the regularity on the solution v imposed in [27] is much weaker than the C∞
regularity that we ask here. On the other hand, the result in [27] does not cover the general
case of immersed spheres given by Theorem 5.1. An elegant alternative proof of the theorem
by Han, Nadirashvili and Yuan in [27] has been obtained by Guan, Wang and Zhang in [26],
via the study of global solutions to a linear elliptic equation in S

2, and using the unique
continuation principle of Bers and Nirenberg.

Proof Let I I be the second fundamental form of the fixed surface �, and I I0 be the second
fundamental form of the osculating ovaloid S0 to � at each point. Specifically, I I0(q) is, for
each q ∈ �, the second fundamental form of S0 at the point q0 ∈ S0 that has unit normal
equal to N (q). Note that we can view I I0 as a Riemannian metric on �.

Let U0 := {q ∈ � : I I (q) = I I0(q)}. That is, U0 is the set of points where the immersed
sphere � has a contact of order at least two with some translation of the ovaloid S0.

From now on, we fix an arbitrary point p ∈ U0 ⊂ �, and consider a sufficiently small
neighborhood V ⊂ � of p. We will begin following closely the proof of Theorem 4.1.

To start, we rewrite (5.1) as

m2(κ1 − κ0
1 ) ≤ κ2 − κ0

2 ≤ m1(κ1 − κ0
1 ), (5.2)

for constants mi < 0, where κ1, κ2, κ
0
1 , κ0

2 are defined on V . Denote next, for i = 1, 2,

Wi (κ1, κ2, q) := κ2 − κ0
2 − mi (κ1 − κ0

1 ), (5.3)

both of them defined on the set {(x, y, q) : x ≥ y, q ∈ V } ⊂ R
2 × V .

By (5.2), we have on V that W1(κ1(q), κ2(q), q) ≤ 0 and W2(κ1(q), κ2(q), q) ≥ 0. So,
for each q ∈ V there exists a value τ = τ(q) ∈ [0, 1] such that

Wτ (κ1(q), κ2(q), q) = 0 for all q ∈ V , (5.4)

where

Wτ (κ1, κ2, q) := τW1 + (1 − τ)W2. (5.5)

Choose next Euclidean coordinates (x, y, z) in R
3 so that both � and S0 can be seen,

respectively, as graphs z = u(x, y) and z = u0(x, y) in these coordinates. We can also
assume that, in these coordinates, p = (0, 0, 0), the common unit normal of � and S0 at p
is (0, 0, 1), and I I (p) = I I0(p) is a (positive definite) diagonal matrix B. Then, by (5.4),
u(x, y) is a solution to a second order PDE

�τ [u] := �τ (x, y, ux , uy, uxx , uxy, uyy) = 0. (5.6)

At this point we can discuss the ellipticity of (5.6) in the very same way that we did in
the proof of Theorem 4.1 for the equation (4.8). Indeed, the definitions of Wi and Wτ in
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this general case do not alter the dependence with respect to second order derivatives of the
corresponding objects (4.2), (4.5), and so the uniform ellipticity discussion is the same as in
Theorem 4.1.

In particular, if we define h := u − u0, then arguing still as in Theorem 4.1, there exists a
small disk Dε(0) around the origin so that h(x, y) is a solution to a linear uniformly elliptic
equation with bounded measurable coefficients

L[h] := a11hxx + 2a12hxy + a22hyy + b1hx + b2hy = 0.

Note that h, ∇h and D2h vanish at (0, 0). Assume for the moment that h is not identically
zero around the origin. Then, by Theorem 3.1, we have that hxxhyy −h2xy < 0 in a punctured
neighborhood of the origin, and that the vector fields ∇hx , ∇hy have non-positive index at
(0, 0). Moreover, h(x, y) has at the origin a zero of finite order (by Bers-Nirenberg), and so
we can write for � := √

x2 + y2

h(x, y) = w(x, y) + o(�k) (5.7)

where w(x, y) is a homogeneous polynomial of degree k ≥ 3. It also holds for w that
det(D2w) < 0 in R

2 − {(0, 0)}, and that the index of the vector fields ∇wx , ∇wy is non-
positive at the origin.

Following a previous construction by the first two authors in arbitrary Riemannian 3-
manifolds, cf. [22, Eq. (3.3)], we consider the smooth symmetric bilinear form

σ := I I − I I0 : T� × T� → C∞(�),

which compares the fixed second fundamental form I I with the osculating second fundamen-
tal form I I0. In these conditions, if we write the expression of σ with respect to the graphical
coordinates (x, y), equation (3.13) in [22] shows that we have the asymptotic expansion

σ = D2w(x, y) + o(�k−2). (5.8)

Here, the key point for the validity of (5.8) in our situation is that we already proved that
h(x, y) satisfies (5.7) in our general quasiconformal setting; so we do not need that � and
S0 satisfy a C1,α elliptic PDE, as is the case in [22].

Consider finally the endomorphism α : X(�) → X(�) given by I I0(α(X), Y ) =
σ(X , Y ) for all X , Y ∈ X(�). Note that α is diagonalizable at every point, and the matrix
expressions of α, σ and I I0 with respect to the (x, y) coordinates are related by α = σ · I I−1

0 .
Also, denote in these coordinates

B−1 = I I−1
0 (p) =

(
β1 0
0 β2

)
,

where β1, β2 > 0. Up to a rotation in the (x, y)-coordinates, we can assume that β1 ≤ β2.
The line fields on� described by the eigendirections of α are given by (4.15). Then, by (5.8),
these are arbitrarily well approximated around the origin by the line fields

−β2wxydx
2 + (β1wxx − β2wyy)dx dy + β1wxydy

2 = 0.

Arguing as in the final part of the proof of Theorem 4.1, the index of these line fields agrees
with the index of the vector field Z := (−2β2wxy, β1wxx −β2wyy). Now, using that β1 ≤ β2

and D2w < 0 in R2 − {(0, 0)}, we obtain 〈Z ,∇wy〉 < 0 in R2 − {(0, 0)}. Hence, this index
agrees with the one of ∇wx and ∇wy , which we know is non-positive.

Therefore, we have proved that if h(x, y) is not identically zero around p ∈ U0, then p is
an isolated point of U0 and the principal line fields of the tensor α have non-positive index at
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p. A standard connectedness argument shows then that either h = u − u0 vanishes around
any p ∈ U0 ⊂ �, what implies that � = S0 up to a translation, or that the principal line
fields of α have on � a finite number of singularities with non-positive index. Since � has
positive Euler characteristic, this second possibility contradicts the Poincaré-Hopf theorem.
Thus, we deduce that � = S0 up to a translation. ��

Observe that the proof of Theorem 5.1 only uses the hypothesis that � is quasiconformal
with respect to S0 in an open domain of � that contains the set U0. Thus, Theorem 5.1 holds
under more general conditions, in the spirit of Remark 1.2. We omit the exact statement.

Theorem 5.1 generalizes several known uniqueness theorems for immersed spheres mod-
eled by elliptic PDEs, and in particular, it implies the solution by the first two authors in [22]
of Alexandrov’s uniqueness conjecture ([5]) for immersed spheres of prescribed curvature
in R

3. One example of such a consequence is given in the result below, where κ1 ≥ κ2 and
η denote, respectively, the principal curvatures and the unit normal of an immersed oriented
surface in R

3.

Corollary 5.2 ([22]) Let �0, �1 be two immersed spheres in R
3 that satisfy a prescribed

curvature equation

W (κ1, κ2, η) = 0, (5.9)

where W is C1 in the set {(x, y, ν) ∈ R
2 ×S

2 : x ≥ y}, and satisfies the ellipticity condition
WxWy > 0 on W−1(0). Assume that �0 is an ovaloid. Then �1 is a translation of �0. One
should note that W is not assumed symmetric in the x, y variables. Equation (5.9) contains
as particular cases the elliptic Weingarten equation W (κ1, κ2) = 0, the prescribed mean
curvature equation H = H(η) or the Minkowski problem equation K = K(η) > 0. The
hypothesis in Corollary 5.2 that �0 is an ovaloid cannot be removed, see the example in [22,
p.460] or [21, Section5.1]. This example also shows that Theorem 5.1 does not hold if the
convex sphere S0 is only assumed to have non-negative curvature, K ≥ 0.

Proof Take (x01 , x
0
2 , ν) ∈ W−1(0), and consider a small neighborhood of this point where

a ≤ Wxi ≤ b for i = 1, 2 and positive constants a, b. Then, for any other point of the form
(x1, x2, ν) ∈ W−1(0) in this neighborhood, we have by the mean value theorem

0 = W (x1, x2, ν) − W (x01 , x
0
2 , ν) =

2∑

i=1

Ai (xi − x0i ),

where Ai = Ai (x1, x2, x01 , x
0
2 , ν), with a ≤ Ai ≤ b. In particular,

−b

a
(x1 − x01 ) ≤ x2 − x02 ≤ −a

b
(x1 − x01 ).

These inequalities guarantee that if �0, �1 are as in the statement of Corollary 5.2, then
S0 := �0 and � := �1 are in the conditions of Theorem 5.1; see e.g. (5.2). Thus, the result
follows immediately from Theorem 5.1. ��
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A. Appendix: Examples

It is well-known that umbilics of CMC surfaces in R
3, and more generally of elliptic Wein-

garten surfaces of the form W (H , K ) = 0, are isolated and of negative index. We prove
next that, even though non-totally umbilical quasi-CMC surfaces only have isolated umbilics
(Theorem 4.1), these umbilics can actually have index zero. In particular, this bifurcation
from the classical theories suggests that there could exist quasi-CMC tori in R3 with a finite,
non-empty umbilic set.

We thank Giovanni Alessandrini and Albert Clop for helpful conversations regarding the
existence of this example.

Lemma A.1 Consider the homogeneous polynomial of degree 6

h(x, y) = xy(x2 + y2)(x2 + 16y2).

Then, the graph z = h(x, y) is a quasiminimal surface in a neighborhood of the origin, and
it has at the origin an isolated umbilic of index zero.

Proof Acomputation using polar coordinates (r , θ) in the plane shows that hxxhyy−h2xy < 0
holds when r = 1. In particular, this implies that

(hxx + hyy)
2 ≤ μ{(hxx − hyy)

2 + 4h2xy} (A.1)

holds when r = 1, for some constant μ < 1. By homogeneity, these equations hold globally
in R

2∗ := R
2 − {(0, 0)}. In particular, the graph z = h(x, y) has a unique umbilic, situated

at the origin. One can check that hxy > 0 in R
2∗, and this implies that the vector field

∇hx = (hxx , hxy) has index zero around (0, 0). As was explained at the end of the proof of
Theorem 4.1, this is equivalent to the fact that the principal line fields of the graph around
the origin have index zero, as claimed.

It remains to show that the graph z = h(x, y) is quasiminimal in a neighborhood of the
origin, i.e., it satisfies H2 ≤ μ(H2 − K ) for some μ < 1. But this property follows directly
from (A.1) and the asymptotic expansions

H2 − K = 1

4
(hxx − hyy)

2 + h2xy + o(r8), H = 1

2
(hxx + hyy) + o(r4),

what proves the Lemma. ��
Let us remark that, by (A.1), h(x, y) is a solution to a linear, uniformly elliptic equation

(3.1) with bounded (discontinuous) coefficients ai j , and with b1 = b2 = 0, which has at the
origin a critical point of index zero. In particular, the origin is not a geometric critical point
in the sense of [3]. This contrasts with the local behavior around critical points of solutions to
elliptic equations (3.1) with smooth (C1, Holder, etc.) coefficients, given by Bers, Carleman,
Hartman-Wintner and others, since in these cases the index is always negative at critical
points.

In the next example we construct a wide family of smooth compact surfaces of genus zero
embedded inR3 that satisfy the Alexandrov inequality (2.1). This proves that the quasi-CMC
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Fig. 3 Smooth embedded spheres
satisfying the Alexandrov
inequality (A.2)

condition (1.2) in Theorem 1.1 cannot be weakened to its natural limit, given by (2.1). These
examples are similar to a construction in [39].

Lemma A.2 There exist non-round C∞ spheres embedded in R
3 satisfying

(κ1 − 1)(κ2 − 1) ≤ 0, and equality holds only if κ1 = κ2 = 1. (A.2)

Proof Take a, b ∈ ( π
2 , π), with a < b < a + sin(a). Let κ ∈ C∞([0, b]) satisfy that

κ(s) = 1 for all s ∈ [0, a], κ ′(s) < 0 for all s ∈ (a, b], and
∫ b

a
κ(s) ds = π

2
− a < 0. (A.3)

Consider the curve α(s) = (x(s), z(s)) in R
2 parametrized by arc-length, given by

α(0) = (0, 0), α′(0) = (1, 0), and the prescribed curvature function κ(s). Then, α′(s) =
(cos θ(s), sin θ(s)) where θ ′ = κ . Note that α(s) = (sin s, 1 − cos s) for s ∈ [0, a]. In
particular, since x(a) = sin(a) and α(s) is parametrized by arc-length, it follows from
b − a < sin(a) that x(s) > 0 for all s ∈ (0, b], independently of our choice of κ(s). The
condition (A.3) implies that α′(b) = (0, 1). Since κ ′ < 0 in (a, b), (A.3) does not hold for
any b′ ∈ (a, b) and thus α′(s) �= (0, 1) if s ∈ [0, b). Besides, since κ ≤ 1, we have θ(s) < π

for all s. Also, note that θ(s) ∈ (π/2, π) when s ∈ (a, b), since (A.3) does not hold for any
b′ ∈ (a, b). In particular, z(s) is increasing in (a, b).

Then, we can glue α with its reflection across the z = z(b) line in the x, z-plane, and
rotate this curve around the z-axis to obtain an embedded rotational sphere � in R

3, which
can obviously be constructed withC∞ regularity by choosing κ(s) adequately. One can think
of � as a rotational sandglass, made of two large spherical caps S1, S2 of radius 1, joined by
a neck N ; see Fig. 3, left.

We claim that any such embedded � satisfies (A.2). First, it is clear that the principal
curvature κ(s) of � corresponding to the meridian curves is 1 in S1 ∪ S2, and smaller than 1
in N . The principal curvature μ(s) corresponding to the parallels of � is also 1 in S1 ∪ S2,
but is greater than 1 in N as we explain next. Since θ ′ = κ , x ′ = cos(θ), and κ ′ < 0 in
(a, b), by differentiation we have xκ − sin(θ) < 0 in (a, b). As the principal curvature μ(s)
is given by μ = sin(θ)/x , we conclude from the previous equations that μ′(s) > 0 in (a, b).
Therefore, μ(s) > 1 for all s ∈ (a, b). So, � satisfies (A.2), and this finishes the proof.

It is interesting to observe that any small normal variation of the sphere � in a compact
region of the interior of the neck N also produces a smooth embedded sphere that satisfies
(A.2), this time not rotational. So, there is a large class of smooth embedded spheres satisfying
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(A.2). One can also construct other examples by considering two spherical caps S1, S2 of
radius 1 with corresponding rotational half-necks N1,N2 as above, but now joined by a
long tube of fixed radius over a smooth regular curve in R

3 (see Fig. 3, right). We omit the
details. ��
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