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A B S T R A C T   

This article proposes a protocol for the simultaneous determination of the position, release time and mass release 
rate of an unknown gas emission source from experimental data in the form of an inverse problem, since these 
are the main variables in the short duration release of pollutants. 

Records of pollutant concentration and of measurement time (with their inherent errors) carried out at two 
measuring stations are the input data for the inverse problem. The actions of the protocol are divided into two 
well-differentiated stages. In the first, the simulations are started for each iteration, the functionals are calculated 
to program the next iteration, setting the new values of measurement time and the distance of the emission 
source in downwind direction with respect to the measuring stations by comparing the simulated and experi-
mental values, and so on until reaching the final solution. In the second, an analogous procedure is followed until 
the mass rate and the emission source position is obtained. In addition, it has been necessary to define a new 
coefficient that relates the effect of dispersion in the measurement time, the distance in the downwind direction 
and the atmospheric stability categories. 

The reliability of the proposed protocol is checked by means of a problem whose parameters are known a 
priori. First, the direct problem is solved to obtain the values of contaminant concentration and the measurement 
time of the stations. These variables are then affected by random errors of up to 2% to provide the input data for 
the inverse problem. In all the examples shown in this work, solutions have been obtained that can be considered 
very successful in this field of engineering.   

1. Introduction 

The release of chemical compounds into the atmosphere, such as 
nitrogen or sulfur oxides, particulate matter, carbon monoxide, etc., can 
be harmful to the health of the population. The atmospheric dispersion 
of these pollutants depends mainly on the wind speed in the lower layers 
of the atmosphere, being the study of their behavior an important 
challenge for environmental engineering [1–3]. The mathematical and/ 
or numerical study of the atmospheric dispersion of pollutants has 
produced analytical or semi-analytical solutions with increasingly pre-
cise results for both continuous and short-term emission [4–10]. 

Therefore, the emission of certain pollutants can cause harmful ef-
fects by increasing the concentration in the area near the emission 

source, in some cases reaching values higher than those recommended 
by international organizations. Specifically, when a short duration 
emission of pollutants occurs, their concentrations increase, which can 
cause, among others, acute effects [11]. For all the above, it is necessary 
to develop an inverse problem protocol that allows determining the 
mass rate, release time and where the pollutant release has occurred, 
knowing the variables provided by the measuring stations. 

The development of the work is as follows. The mathematical model 
for both the direct and the inverse problems is described, as well as the 
protocol to implement the inverse problem. Dimensional characteriza-
tion is applied to establish concentration and distance relationships that 
will facilitate the development of the inverse problem. Afterward, the 
direct problem to determine the pollutant concentration and the mea-
surement time for two measuring stations is solved. These variables 
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affected by a random error, thus allowing us to simulate a real scenario, 
are the input data of the inverse problem whose solution provides the 
variables to determine. The methodology shown in this work allows to 
verify that the proposed protocol for the inverse problem leads to reli-
able and accurate solutions even with errors in the experimental mea-
surements that can be considered as relatively large. 

2. Mathematical models of direct and inverse problems 

2.1. Direct problem 

There are many models to simulate the direct problem where the 
concentration of a pollutant is determined at different positions and 
times once it has been emitted from a point source. Most apply simpli-
fications, being able to obtain analytical or semi-analytical solutions of 
the pollutant dispersion process. To illustrate the methodology of the 
inverse problem, in this case we will use the well-known mathematical 
model given by NOAA for the ALOHA software for the direct problem 
[10], which is one of the most complete, although the procedure could 
be used for another mathematical model or software that simulates the 
direct problem [3,12]. This pollutant dispersion model where a short- 
term release occurs was developed by Palazzi et al. as an extension of 
the well-known Gaussian puff model, and presented a good agreement 
between the experimental and calculated data [13]. 

The mathematical model for the dispersion of neutrally-buoyant 
pollutants when a short-term emission occurs is collected in equations 
(1) to (7) [10]. Equation (1), given by Palazzi et al., is based on a 
Gaussian dispersion model for short duration releases [13], which in-
cludes the dispersion parameters for each of the spatial coordinates (σx, 
σy and σz), a Gaussian distribution term (χ), wind speed in downwind 
direction (Vx), the pollutant release time (tr), which is the time that the 
source is emitting the pollutant, the time since the start of the emission 
(t), rate of mass release (Q) and the position from the emission source (x, 
y and z coordinates). Equation (2) is used to calculate the term of 
Gaussian distribution (χ) from a continuous steady-state point source 
given by Hanna [14]. Equation (3) is a function of the y coordinate 
necessary for the calculation of the Gaussian distribution term (χ). 
Similarly, expression (4) presents a function for the z coordinate. In this 
case, two equations are presented, one for when there is inversion and 
another for when there is not. In these equations, the variable hs rep-
resents the height of the emission source and hi, the height of the 
inversion [10]. Finally, the dispersion parameters for each of the spatial 
coordinates are given in equations (5) to (7) [14–16]. These parameters 
depend on coefficients (αi) that encompass the stability category and 
surface roughness factors, Table 1. To better illustrate the problem, the 
physical scheme of the direct 3-D problem shows in Fig. 1. 

Nomenclature 

Cp pollutant concentration at a certain position and time (g/ 
m3) 

Cp,max pollutant maximum concentration at a certain position and 
time (g/m3) 

gy function of the y coordinate necessary for the calculation of 
the Gaussian distribution 

gz function of the z coordinate necessary for the calculation of 
the Gaussian distribution 

hi height of the inversion (m) 
hs height of the emission source (m) 
Q rate of mass release (g/s) 
t time (s) 
tr pollutant release time (s) 
tr* starting values for release time (s) 
Δtm time that the station has been measuring the pollutant (s) 
Vx wind speed in downwind direction (m/s) 
x position in downwind direction (m) 
y position in horizontal crosswind direction (m) 
z position in vertical direction (m) 
Δx relative distance between the station for x-coordinate (m) 
Δy relative distance between the station for y-coordinate (m) 

αi dispersion coefficients for each of the spatial coordinates, 
stability categories and roughness 

σx dispersion parameter for x-coordinate 
σy dispersion parameter for y-coordinate 
σz dispersion parameter for z-coordinate 
δ coefficient of dispersion deformation (m) 
ξ random error 
χ gaussian distribution term 
Ψ, ϕ functionals 

Subscripts (for others subscripts do not listed, see general nomenclature) 
i refers to dispersion coefficients 
position refers to position 
station refers to measure station 
time refers to time 
ξ related to random error 

Superscripts 
i = I, II, III,… referred to each iteration or simulation for the second 

stage 
j = I, II, III,… referred to each iteration or simulation for the first 

stage  

Table 1 
Values for the coefficients of dispersion parameters [10].    

Stability categories 

Roughness Coefficient A B C D E F 

Both α1 0.02 0.02 0.02  0.04 0.17 0.17 
α2 1.22 1.22 1.22  1.14 0.97 0.97 
α3 0.22 0.16 0.11  0.08 0.06 0.04 
α4 0.0001 0.0001 0.0001  0.0001 0.0001 0.0001 

Small surface roughness (Rural) α5 0.2 0.12 0.08  0.06 0.03 0.016 
α6 0 0 0.0002  0.0015 0.0003 0.0003 
α7 0 0 − 0.5  − 0.5 − 1 − 1 

Large surface roughness (Urban) α5 0.24 0.24 0.2  0.14 0.08 0.08 
α6 0.001 0.001 0  0.0003 0.0015 0.0015 
α7 0.5 0.5 0  − 0.5 − 0.5 − 0.5  
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Fig. 2. Representation of the measurement time of a measuring station with and without dispersion.  

Fig. 1. Scheme of the direct problem.  
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σx = α1xα2 (5)  

σy =
α3x
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + α4x

√ (6)  

σz = α5x(1 + α6x)α7 (7) 

Equations (1) to (7) of the direct problem have been implemented in 
a MATLAB® sheet to be able to carry out the simulations of the different 
cases [17]. 

2.2. Coefficient of dispersion deformation 

If there were no dispersion in the diffusion of atmospheric pollutants, 
that is, the cloud will behave like a block, an atmospheric pollutant 
measuring station will measure that pollutant for a time which would 
coincide with the emission time (Fig. 2a). When there is dispersion, the 
time that a station measures a contaminant increases with distance, 
being greater the further away the station is from the emission focus in 
the downwind direction (Fig. 2b). 

In this way, it is possible to define a new coefficient, which we have 
called coefficient of dispersion deformation (δ), that relates the effect of 
dispersion in the measurement time of a pollutant, the distance in the 
downwind direction and the atmospheric stability categories. This co-
efficient only depends on the distance to the source in the downwind 
direction, since the other two directions mainly affect the concentration 
and its influence on the measurement time of the station is practically 
negligible. In this way we can define the coefficient of deformation by 
dispersion as: 

δ = (Δtm − tr)Vx (8) 

Fig. 3. Representation of the of dispersion deformation (δ) with the distance for each atmospheric stability.  

Fig. 4. Projection on the xy-plane of the scenario example for an inverse problem with three emission sources.  
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Fig. 5. Sensitivity coefficient SΔtm,Vx for different distances and a) unstable, b) neutral and c) stable conditions.  

J.F. Sánchez-Pérez et al.                                                                                                                                                                                                                       



Chemical Engineering Journal 445 (2022) 136782

6

where Δtm (s) is the time that the station has been measuring the 
pollutant. Expression (8) is based on the methodology for the appro-
priate choice of references to obtain monomials derived from dimen-
sional characterization techniques [18–22]. This methodology is widely 
used in different engineering problems [23,24]. 

On the other hand, the categories are grouped in atmospheric sta-
bilities. Thus, categories A, B and C are Unstable, D is Neutral, and E and 
F are Stable [3,25]. In this way, the coefficients α1 and α2 of the 
dispersion parameter in the downwind direction (σx) present the same 
value for each of the atmospheric stabilities (Table 1). Thereby, if we 
simulate equations (1) to (7) with a constant speed for different positions 
in the downwind direction and at ground level, we can represent the 
coefficient of dispersion deformation (δ), calculated by means of 
expression (8), against the distance for each of the atmospheric 

stabilities (Fig. 3) and adjust its trend, equations (9) to (11). It should be 
noted, derived from the bases of dimensional characterization 
[19,20,18], these equations are valid for any case, as will be seen later in 
Section 4. 

δ = 0.3348x1.220 for unstable conditions R2 = 0.999998 (9)  

δ = 0.6639x1.141 for neutral conditions R2 = 0.999853 (10)  

δ = 2.3922x0.985 for stable conditions R2 = 0.999999 (11) 

It should be noted that the exponents of expressions (9) to (11) take 
practically the same values as the exponents (α2) of the dispersion 
parameter σx for each of the stabilities (Table 1). The differences may be 
due to the fit of the equations. These equations have been adjusted for a 
hypothetical measuring station with a sensitivity of 1⋅10-20 g/m3. If the 

Fig. 6. Sensitivity coefficient SΔtm,Q for different distances and unstable conditions.  

Fig. 7. Sensitivity coefficient SΔtm,tr for different distances and unstable conditions.  
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station had a different sensitivity, it would be advisable to adjust the 
equations for that sensitivity to improve the precision of the method-
ology proposed in this article. 

2.3. Inverse problem 

For the scenario of the inverse problem, we have a minimum of two 
pollutant measuring stations that indicate us the direction and magni-
tude of the wind, as well as the atmospheric stability obtained by the 
combination of other environmental parameters, the measurement time 
and concentration of pollutant. Furthermore, the height of the stations is 
known as well as the relative distance between them for each direction 
(Δx and Δy). On the other hand, we know the different possible emission 
sources from which the instantaneous emission of neutrally-buoyant 
pollutants has occurred. Fig. 4 shows an example scenario for the in-
verse problem where there are three emission sources (although there 

could be more) and two measuring stations. Sources 1 and 3 are at the 
same distance from the measuring stations in the downwind direction. 

The set of governing equations for the inverse problem are the same 
as for the direct problem plus the equations of the coefficient of 
dispersion deformation (δ), equations (8) to (11). On the one hand, in 
this problem, the position of the emission source with respect to the 
measuring stations, the emission time and the rate of mass release are 
unknown. By the other hand, the wind speed (Vx) and direction, the 
atmospheric stability category, the detection time (Δtm) and maximum 
concentration of pollutant (Cp,max) for each station, as well as their 
relative distance for each direction (Δx and Δy), are known. Solving the 
inverse problem involves two well-differentiated stages. In the first one, 
expressions (8) to (11) are used, obtained with dimensional character-
ization techniques, which allow to easily obtain both the distances from 
the emission focus to the measuring stations and the release time. In the 
second, once the position of the emission source is known, the mass 

Fig. 8. Sensitivity coefficient SCp,max,vx for different distances and unstable conditions.  

Fig. 9. Sensitivity coefficient SCp,max,Q for different distances and unstable conditions.  
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release rate is calculated using the direct problem, equations (1) to (7). 
The importance of the proposed inverse problem is due to the fact 

that three of the most important input variables of the direct problem are 
unknown (the position, the release time and the mass release rate) and it 
is only known the concentration evolution in an indeterminate time for 
each of the measuring stations, since the position of the emission source 
and the release time are not known. In other words, neither when nor the 
time elapsed since the pollutant release occurred is known, only the time 
that each of the stations had been measuring the concentration is 
known. 

Finally, to solve the inverse problem, the dimensional characteriza-
tion methodology supported by more classical techniques is used, such 
as the implementation of functionals [26–28]. The choice of this 
methodology instead of other more classic ones such as the Bayesian 
framework of statistics [29–31], is due to the fact that it has been con-
trasted in various engineering problems where universal curves have 

been obtained that allow the resolution of both the direct and the inverse 
problem with few experimental data, as is the case of the problem under 
study in this work, since a limited number of experimental data are 
available, due to the fact that there are only two measuring stations and 
the emission is of short duration [22,32–34]. 

2.4. Sensitivity analysis 

In choosing the adequate parameters for the inverse problem, the 
examination of the sensitivity coefficients can provide valuable infor-
mation, allowing to determine areas of difficulty and improve the pro-
posed procedure. When the coefficients, calculated with the derivative 
of the dependent variable with respect to a parameter, take small values 
or are correlated with each other, the estimation of the problem is 
difficult [26]. 

This article studies, for different distances and atmospheric stabil-

Fig. 10. Sensitivity coefficient SCp,max,tr for different distances and unstable conditions.  

Fig. 11. Projection on the xy-plane of the determination of emission sources located at a distance xA,ξ (or xB,ξ) from station A (or B).  
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ities, the sensitivity coefficients of the pollutant maximum concentration 
(Cp,max) and the measurement time of the station (Δtm), since they are 
the input variables for the inverse problem and are dependent on the 
wind speed (Vx), the rate of mass release (Q) and the release time (tr), 
expressions (12) and (13). When one of the variables changes the rest 
remains constant, taking the following standard values Vx = 1 m/s, Q =
1 g/s and tr = 100 s. To calculate the sensitivity coefficients, the direct 
problem of pollutant diffusion is simulated, equations (1) to (7), 
implemented in a MATLAB® sheet together with a protocol that calcu-
lates the aforementioned coefficients [17]. The value of the sensitivity 
coefficients is shown in absolute value, since it is only of interest to study 
its trend and thus its visualization is facilitated. 

SΔtm ,Vx =

⃒
⃒
⃒
⃒
∂Δtm

∂Vx

⃒
⃒
⃒
⃒ SΔtm ,Q =

⃒
⃒
⃒
⃒
∂Δtm

∂Q

⃒
⃒
⃒
⃒ SΔtm ,tr =

⃒
⃒
⃒
⃒
∂Δtm

∂tr

⃒
⃒
⃒
⃒ (12)  

SCp,max ,Vx =

⃒
⃒
⃒
⃒
∂Cp,max

∂Vx

⃒
⃒
⃒
⃒ SCp,max ,Q =

⃒
⃒
⃒
⃒
∂Cp,max

∂Q

⃒
⃒
⃒
⃒ SCp,max ,tr =

⃒
⃒
⃒
⃒
∂Cp,max

∂tr

⃒
⃒
⃒
⃒

(13) 

First, the sensitivity coefficients of the measurement time of the 
station are analyzed. If the coefficients related to wind speed are studied 
(Fig. 5), these take higher values as distance increases, wind speed de-
creases and atmospheric conditions are more stable. Although as the 
wind speed increases, the values decrease considerably, they do not take 
a constant value, that is, they always present a slope. If the sensitivity 
coefficient is studied through expression (8), proposed for the calcula-
tion of the coefficient of dispersion deformation (δ) and obtained by 
means of dimensional characterization techniques, once rewritten, 

Δtm = tr +
δ

Vx
, it is obtained that the coefficient of sensitivity, SΔtm ,Vx =

⃒
⃒
⃒∂Δtm

∂Vx

⃒
⃒
⃒ =

⃒
⃒
⃒ − δ

V2
x

⃒
⃒
⃒∕= 0, has the same behavior as that obtained by simulation 

of the direct problem (Fig. 5), validating the previous expression (8). 
The dependence of the sensitivity coefficient on distance and atmo-
spheric stability is implicitly implemented in the coefficient of disper-
sion deformation (δ), since it depends on both variables, equations (9) to 
(11). In conclusion, as the coefficients take large values, the choice of the 
measurement time of the station, and therefore the coefficient of 
dispersion deformation (δ) that includes both the wind speed and the 
measurement time, is a suitable variable and will be used in the first 
stage of the inverse problem [26]. Regarding the relationship with the 
rate of mass release, the sensitivity coefficient takes zero value (Fig. 6), 
which remains constant, so this relationship is not adequate, confirming 
that it does not appear in the expression of the coefficient of dispersion 

deformation (δ), since it would take a constant or null value, SΔtm ,Q =
⃒
⃒
⃒∂Δtm

∂Q

⃒
⃒
⃒=0 , as is the case of equation (8). Finally, the relationship between 

the measurement time and the release time is similar to that of the 
previous case, but in this case the sensitivity coefficient takes a unit 
value, which remains constant (Fig. 7). However, this variable appears 
in the coefficient of dispersion deformation (δ) equation, expression (8), 
since if it is rewritten Δtm = tr +

δ
Vx

, the measurement time depends 
inversely on the wind speed as a variable, with the release time being the 
origin ordinate, that is, it takes constant value, so it complies with what 
was obtained in the sensitivity analysis. That is, if the sensitivity coef-
ficient is studied again through expression (8) rewritten, it is obtained 

that the coefficient, SΔtm ,tr =

⃒
⃒
⃒∂Δtm

∂tr

⃒
⃒
⃒ = 1, has the same behavior as that 

obtained by simulating the direct problem (Fig. 7), validating equation 
(8) again. As in the last two cases the behavior of the sensitivity co-
efficients with atmospheric stability is very similar in all conditions, it is 
only shown as an illustration for unstable conditions (Figs. 6 and 7). 

Hereafter, the sensitivity coefficients of the maximum concentration 
are analyzed. For all the variables, that is, wind speed, rate of mass 
release and release time, values of the coefficients lower than one are 
obtained, being more accentuated in the cases of rate of mass release and 
release time, which present values close to zero in addition to a linear 
behavior in the case of rate of mass release, making the maximum 
concentration not a good variable for the inverse problem, so it has been 
used in the second stage once both the distance from the emission focus 
to the stations and the release time are known. Again, since the behavior 
for all atmospheric conditions is similar, it is shown for illustration only 
for unstable conditions (Figs. 8 to 10). 

In conclusion, the sensitivity study confirms the use of expression 
(8), obtained with dimensional characterization techniques, for calcu-
lating the coefficient of dispersion deformation (δ) in the first stage of 
the inverse problem, as will be shown later, since it implicitly carries the 
behavior of the measurement time (Δtm) with the wind speed (Vx), the 
release time (tr), the distance and the atmospheric stability. In addition, 
the expression above also shows the null relationship of the rate of mass 
release (Q) with the measurement time (Δtm) derived from the 

Fig. 12. Flow diagram for the solution of the direct problem.  
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aforementioned study. Thus, in this first stage distances from the emis-
sion focus to the stations and the release time (tr) are determined, only 
missing for the second stage the rate of mass release (Q), since it does not 
present adequate values in the sensitivity coefficients. On the other 
hand, the sensitivity study also confirms the use of the maximum con-
centration in the second stage of the inverse problem, once the distances 
from the emission focus to the stations and the release time are known, 
because it is not an adequate variable for the first stage, being used, in 
the second, in an only step for each of the possible emission sources to 
calculate the rate of mass release (Q), since the rest of the unknowns are 
known. Previously, in this second stage, the time in which the maximum 

concentration is reached for each station is calculated with the direct 
problem, using a random rate of mass release value, since the time in 
which this concentration is detected is the same, as derived from the 
sensitivity study as it depends mainly on wind speed, release time, dis-
tance, and atmospheric stability. 

3. Protocol for the solution of the inverse problem 

The protocol of the inverse problem is constituted by the following 
steps iv) to xxviii). Additionally, steps i) to iii) are added to be able to 
verify the proposed protocol by comparing the results of the inverse 

Fig. 13. Flow diagram for the solution of the inverse problem.  

Table 2 
Input data and results of the direct problem.  

Input data for the direct problem 

Source Atmospheric pollutant measuring station Roughness 
Station A Station B Δx (m) Δy (m) Vx (m/s) Atmospheric stability 

Number hs (m) Q (g/s) tr (s) x (m) y (m) z (m) x (m) y (m) z (m) 
1 8 200 360 900 15 0 1500 25 0 600 40 3 A Rural  

Result for the direct problem 

Station A Station B 
Cp,max (g/m3) Δtm (s) Cp,max (g/m3) Δtm (s) 
6.19⋅10-4 808 2.29⋅10-4 1196  
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problem with exact and known values. This is a procedure that has been 
used in numerous works [35–37]. 

To validate the protocol of the inverse problem, instead of using 
experimental tests, we will use as input data for the inverse problem the 
results obtained by simulating the direct problem affected by a random 
error, which will allow us to compare the results obtained in the inverse 

problem with the variables introduced in the direct problem. These steps 
are:  

i) The direct problem for the diffusion of pollutants is simulated by 
defining the wind speed, stability, surface roughness, the height 
of the emission, the release time and rate of mass release, and 
finally, the positions of the measuring stations. The time for the 
simulation must be long enough so that the contaminant can be 
measured by the station showing an evolution of the contaminant 
as in the Fig. 2b.  

ii) The evolution and distribution profiles of the concentration are 
obtained (Cp,position and Cp,time), as well as the Δtm,station value for 
each station. It should be noted that for the inverse problem we 
only need the maximum concentration measured in each station 
(Cp,max,station). 

Fig. 14. Evolution of concentration at measuring station A.  

Fig. 15. Evolution of concentration at measuring station B.  

Table 3 
Height and distance of each of the emission sources to the measuring stations.   

Station A Station B hs (m) 

Source x (m) y (m) x (m) y (m) 

1 900 15 1500 25 8 
2 500 30 1100 10 9 
3 900 60 1500 20 6  
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iii) A random error (ξ = 0.1%, 0.25%, 0.5%, 2%…, according to the 
accuracy of the experimental measurements) is applied to the 
maximum concentration measured at each station (Cp,max, 

station,ξ), to the distance between stations (Δxξ) and to the time the 
stations have been measuring the contaminant (Δtm,station,ξ). To 
apply the desired random error, for example up to 2%, an Excel® 
routine with the random function has been used, which generates 
random numbers using the Mersenne Twister algorithm [38]. We 
assume that these values affected with an error are equivalent to 
those obtained by experimental measurements.  

iv) The inverse problem has been divided into two stages. In the first, 
the release time and the distance of the emission source in 
downwind direction (x) with respect to the measuring stations 
will be determined. In the second, the rate of mass release and the 
position of the emission source will be obtained. The input data 
for the first stage is provided by the measuring stations. Among 
these stand out: Vx,ξ, stability, surface roughness, Δxξ, Δtm,A,ξ and 
Δtm,B,ξ.  

v) Set starting values for release time (tr*,j). For the initial value, the 
shortest measurement time of the stations is taken (Δtm), that is, 
the time of the station closest to the emission source (tr*,1 = Δtm, 

A,ξ), since it has a lower dispersion and therefore, this value will 
be closer to the release time (tr*,j), as explained in Subsection 2.2.  

vi) From the simulation of equations (8) to (11) and using the 
expression xj

B,ξ = xj
A,ξ + Δx, is obtained the position of the 

emission source in downwind direction (x) for each measuring 
station and the release time (tjr,ξ). The procedure used is the 
following. First, δj

A,ξ is obtained with tr*,j (equation (8)), and then 
xj

A,ξ (equations (9) to (11)). The expression xj
B,ξ = xj

A,ξ + Δx is used 
to obtain xj

B,ξ, which allows us to calculate δj
B,ξ (equations (9) to 

(11)). Finally, tjr,ξ is obtained (equation (8)).  

vii) Determine the value of the following functional 
(

ψ j
tr

)
given by 

equation (14), and then, if t1r,ξ ≥ t*,1r , go to step viii), otherwise, go 
to step xiv). 

ψ j
tr =

∑i=N

i=1

(
tj
r,ξ − t*,jr

)2
(14)    

viii) If ψ j
tr ≤ 10, go to step ix). Ifψ j

tr > 10, go to step xiii).  
ix) If ψ j

tr > 1⋅10-5, go to step x), otherwise, go to step xxi).  
x) If tjr,ξ ≥ t*,jr , go to step xi). If it is not meet, apply the expression tr*, 

j+1 = 1.16⋅tr*,j and go to step xx).  
xi) Apply the equation tr*,j+1 = tr*,j- 1, and then, if it is the first 

simulation (j = 1) go to step xx), otherwise, go to step xii).  
xii) If the condition ψ j− 1

tr ≥ ψ j
tr is met, go to step xx). Otherwise, go to 

step xxi).  
xiii) If tjr,ξ ≥ t*,jr , apply the expression tr*,j+1 = 0.5⋅tr*,j, otherwise, apply 

the equation tr*,j+1 = 1.16⋅tr*,j. Go to step xx).  
xiv) Ifψ j

tr ≤ 10, go to step xv), otherwise, go to step xix).  
xv) Ifψ j

tr > 1⋅10-5, go to step xvi). If it is not meet, go to step xxi). 

Fig. 16. Projection on the xy-plane of the determination of emission sources located at a distance xA,ξ (or xB,ξ) from station A (or B) for the first scenario.  

Table 4 
Input data or “experimental measurements” obtained from measuring stations. Maximum error of 2%.  

Station A Station B Δx, ξ (m) Vx (m/s) Atmospheric stability Roughness 

Cp,max,,ξ (g/m3) Δtm,ξ (s) Cp,max,,ξ (g/m3) Δtm,ξ (s) 

6.31⋅10-4 

(1.94%) 
811 
(0.37%) 

2.32⋅10-4 

(1.31%) 
1199 
(0.25%) 

598 
(0.33%) 

3 A Rural  

Table 5 
xj

A,ξ, xj
B,ξ, tr*,j and Ψj

tr for selected iterations.  

Iteration tr*,j (s) tj
r, ξ (s) xj

A,ξ (m) xj
B,ξ (m) Ψj

tr 

1  811.00  926.57  0.00  598.00  13356.31 
2  405.50  412.15  828.49  1426.49  44.24 
–  –  –  –  –  – 
11  363.11  364.55  898.84  1496.84  2.09 
12  362.11  363.44  900.48  1498.48  1.77 
–  –  –  –  –  – 
23  351.11  351.14  918.53  1516.53  0.0012  
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xvi) If tjr,ξ < t*,jr , go to step xvii), otherwise, apply the expression tr*,j+1 

= 1.16⋅tr*,j and go to step xx).  
xvii) Apply the equation tr*,j+1 = tr*,j- 1, and if it is the first simulation (j 

= 1) go to step xx), otherwise, go to step xviii).  
xviii) If the condition ψ j− 1

tr ≥ ψ j
tr is met, go to step xx). Otherwise, go to 

step xxi).  
xix) If tjr,ξ < t*,jr , apply the expression tr*,j+1 = 0.5⋅tr*,j, otherwise, apply 

the equation tr*,j+1 = 1.16⋅tr*,j. Go to step xx).  

xx) If the new value of tr*,j+1 is greater than zero (tr*,j+1 > 0), go to step 
vi). Otherwise, choose the value of tr*,j for the minimum value of 
the functional ψ j

tr and then go to step xxi).  
xxi) Retain the values of tr*, xj

A,ξ and xj
B,ξ, and go to step xxii).  

xxii) In this step the second stage begins. Determine the number of 
emission sources (n) that are located at a distance xj

A,ξ (or xj
B,ξ) 

from station A (or B), Fig. 11. Go to step xxiii).  
xxiii) For each selected emission source xi

A,ξ, yi
A,ξ, zi

A,ξ, xi
B,ξ, yj

B,ξ, zi
b,ξ and hi

s, 

ξ is known (Fig. 11) and steps xxiv) to xxvi) must be applied. As the 

Fig. 17. Evolution of concentration at measuring station A to determine the time at which the maximum concentration occurs for a) source 1 and b) source 3.  
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rate of mass release is not known, a random one is taken, for example 
QRandom = 550 g/s, since the time that the maximum concentration 
is detected in each station is the same although the concentration is 
different. Go to step xxiv).  

xxiv) Simulation of the direct problem (equations (1) to (7)) and 
determination of the time in which it reaches the maximum 
concentration value for each station (timei

station,ξ for Ci
p,max,station, 

Q=Random). Go to step xxv). 

Fig. 18. Evolution of concentration at measuring station B to determine the time at which the maximum concentration occurs for a) source 1 and b) source 3.  

Table 6 
Qi

A,ξ, Qi
B,ξ, ϕi

Q and Qi
Mean,ξ for sources 1 and 3.  

Source Qi
A,ξ (g/s) Qi

B,ξ (g/s) ϕi
Q Qi

Mean,ξ (g/s) 

1  203.85  202.66  1.43  203.25 
3  213.55  202.38  124.69  207.97  

J.F. Sánchez-Pérez et al.                                                                                                                                                                                                                       



Chemical Engineering Journal 445 (2022) 136782

15

xxv) Simulation of equations (3) to (7), (15) and (16) for each station. 
Go to step xxvi). Note that these last expressions have been ob-
tained from equations (1) and (2). 

χi
station =

2Cp,max,station,ξ(x, y, z, t)
[
erf

(xi
station,ξ

σx
̅̅
2

√

)
− erf

(xi
station,ξ − Vx,ξ timei

station,ξ

σx
̅̅
2

√

) ] for timei
station,ξ ≤ t*r

(15a)   

χi
station =

2Cp,max,station,ξ(x,y,z,t)
[

erf
(

xi
station,ξ − Vx,ξ(timei

station,ξ − t*r )

σx
̅̅
2

√

)

− erf
(xi

station,ξ − Vx,ξ timei
station,ξ

σx
̅̅
2

√

)] for timei
station,ξ

> t*r
(15b)  

Qi
station,ξ =

χi
stationVx,ξ

gy(x, y) gz(x, z)
(16)    

xxvi) Determine the value of the following functional 
(

ϕi
Q

)
giving by 

the expression (17) and go to step xxvii). 

ϕi
Q =

∑i=n

i=1

(
Qi

A,ξ − Qi
B,ξ

)2
(17)    

xxvii) If the simulation is for the last emission source (i = n) go to step 
xxviii). Otherwise go to step xxiii).  

xxviii) The emission source is the one that the minimum value of ϕi
Q and 

with an average rate of mass release value (Qi
Mean,ξ) between the 

values obtained for each station (Qi
A,ξ and Qi

B,ξ). 

The following flow diagrams (Figs. 12 and 13) summarizes the pro-
tocol for the solution of the direct and inverse problems. 

The previous steps (iv to xxviii) have been programmed in a MAT-
LAB® work routine [17], which starts the simulation, reads the results, 
calculates the functionals and sets the data for the new simulation, and 
so on until the final solution is reached. 

As we know the exact values of each variable, thanks to the direct 

Table 7 
Comparison between the results obtained by the direct and inverse problem.  

Source  Station A Station B hs (m) Direct problem Inverse problem 

x (m) y (m) z (m) x (m) y (m) z (m) Q (g/s) tr (s) Q (g/s) tr 
(s) 

1 900 15 0 1500 25 0 8 200 360 203.25 
(1.63%) 

362 
(0.56%)  

Table 8 
Input data and results of the direct problem.  

Input data for the direct problem 

Source Atmospheric pollutant measuring station Roughness 
Station A Station B Δx (m) Δy (m) Vx (m/s) Atmospheric stability 

Number hs (m) Q (g/s) tr (s) x (m) y (m) z (m) x (m) y (m) z (m) 
3 12 600 180 1000 40 6 1800 10 3 800 30 5 D Rural  

Result for the direct problem 
Station A Station B 
Cp,max (g/m3) Δtm (s) Cp,max (g/m3) Δtm (s) 
1.08⋅10-2 538 4.88⋅10-3 874  

Fig. 19. Evolution of concentration at measuring station A.  
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problem, the verification of the results obtained with the inverse prob-
lem is immediate, expecting that the deviations obtained in the solution 
reached depend on the error applied to the input data. 

4. Applications and verification 

To verify the previous protocol, it will be applied to three different 
scenarios, one for each type of stability (stable, neutral and unstable). In 
all cases the direct problem with the input data, which we will calculate 

Fig. 20. Evolution of concentration at measuring station B.  

Table 9 
Height and distance of each of the emission sources to the measuring stations.   

Station A Station B hs (m) 

Source x (m) y (m) x (m) y (m) 

1 1000 10 1800 20 7 
2 400 20 1200 10 9 
3 1000 40 1800 10 12  

Fig. 21. Projection on the xy-plane of the determination of emission sources located at a distance xA,ξ (or xB,ξ) from station A (or B) for the second scenario.  

Table 10 
Input data or “experimental measurements” obtained from measuring stations. Maximum error of 2%.  

Station A Station B Δx, ξ (m) Vx (m/s) Atmospheric stability Roughness 

Cp,max,,ξ (g/m3) Δtm,ξ (s) Cp,max,,ξ (g/m3) Δtm,ξ (s) 

1.07⋅10-2 

(0.93%) 
528 
(1.86%) 

4.95⋅10-3 

(1.43%) 
864 
(1.14%) 

798 
(0.25%) 

5 D Rural  
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later with the inverse problem, will be solved and a maximum error of 
2% will be applied to the results to obtain the “experimental measure-
ments” or input data for the inverse problem. Although in the direct 
problem we know the source of emission, it is not so in the inverse 
problem. Thereby, in the scenarios posed for the inverse problem, 
although there may be more, we will assume only three possible emis-
sion sources to facilitate the understanding of the examples, since they 
are enough to show the protocol of the inverse problem. 

4.1. First scenario 

In the first scenario, an atmospheric stability class A is studied, where 

Table 11 
xj

A,ξ, xj
B,ξ, tr*,j and Ψj

tr for selected iterations.  

Iteration tr*,j (s) tj
r, ξ (s) xj

A,ξ (m) xj
B,ξ (m) Ψj

tr 

1  528.00  592.59  0.00  798.00  4171.62 
2  264.00  273.72  778.86  1576.86  94.46 
–  –  –  –  –  – 
5  177.62  179.16  998.22  1796.22  2.38 
6  176.62  178.08  1000.72  1798.72  2.12 
–  –  –  –  –  – 
23  159.62  159.64  1043.04  1841.04  0.00032  

Fig. 22. Evolution of concentration at measuring station A to determine the time at which the maximum concentration occurs for a) source 1 and b) source 3.  
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Table 2 presents the input values as well as those obtained by the 
simulation of the direct problem. Finally, the results at the measuring 
stations are shown in Figs. 14 and 15. 

Table 3 and Fig. 16 show the distances from each of the possible 
emission sources to the measuring stations. Finally, Table 4 presents the 
necessary data for the inverse problem, affecting the input data and 
results of the direct problem by an error of up to 2%. Relative error is 
shown in parentheses. 

Next, steps iv) to xxi) are applied until the distance values are 

Fig. 23. Evolution of concentration at measuring station B to determine the time at which the maximum concentration occurs for a) source 1 and b) source 3.  

Table 12 
Qi

A,ξ, Qi
B,ξ, ϕi

Q and Qi
Mean,ξ for sources 1 and 3.  

Source Qi
A,ξ (g/s) Qi

B,ξ (g/s) ϕi
Q Qi

Mean,ξ (g/s) 

1  505.19  609.90  10963.81  557.54 
3  593.48  613.87  415.71  603.67  
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Table 13 
Comparison between the results obtained by the direct and inverse problem.  

Source  Station A Station B hs (m) Direct problem Inverse problem 

x (m) y (m) z (m) x (m) y (m) z (m) Q (g/s) tr (s) Q (g/s) tr (s) 

3 1000 40 6 1800 10 3 12 600 180 603.67 
(0.61%) 

177 
(1.67%)  

Table 14 
Input data and results of the direct problem.  

Input data for the direct problem 

Source Atmospheric pollutant measuring station Roughness 
Station A Station B Δx (m) Δy (m) Vx (m/s) Atmospheric stability 

Number hs (m) Q (g/s) tr (s) x (m) y (m) z (m) x (m) y (m) z (m) 
1 3 800 600 600 10 0 2100 20 0 1500 30 4 E Rural  

Result for the direct problem 
Station A Station B 
Cp,max (g/m3) Δtm (s) Cp,max (g/m3) Δtm (s) 
1.12⋅10-1 926 1.41⋅10-2 1719  

Fig. 24. Evolution of concentration at measuring station A.  

Fig. 25. Evolution of concentration at measuring station B.  
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obtained with respect to the measuring stations (xj
A,ξ and xj

B,ξ) and the 
release time (tr*,j) that present the lowest functional value (Ψj

tr), Table 5. 
Next, the data from iteration 23 (the one with the lowest value of the 

functional) are taken and the emission sources that are at a distance 
close to 918.53 m from station A and 1516.53 m from station B must be 
selected. This requirement is met by emission sources 1 and 3 that are 
located at a distance of 900 m from station A and 1500 m from station B. 
In this way, the data necessary to start the second stage are sources 1 and 
3, 900 m for xj

A,ξ, 1500 m for xj
B,ξ and 362 s for tr*,j (the last value is 

obtained from iteration 12 which is the corresponding one for the pre-
vious distances). 

The second stage covers steps xxii) to xxviii), where we must first 
determine the time at which the maximum concentration is reached for 
each station using a random mass rate (550 g/s). For source 1, the 
mentioned time is 473 and 683 s for stations A and B, respectively, and 
for source 3 is 433 and 680 s for A and B, respectively, Figs. 17 and 18. 
Finally, we can determine the emission mass rate and therefore the 
emission source by choosing the one that presents the lowest value for 
the functional ϕi

Q, Table 6. 
If we analyze the results shown in Table 6, it is concluded that the 

emission occurred in source 1. Table 7 shows the comparison of the 
input data of the direct problem with those obtained with the inverse 
problem, where the relative error is shown in bold. As can be seen, the 
errors obtained by the inverse problem are small, being less than 2%, 
allowing the values of the mass rate, the position of emission source and 

the release time to be reliably determined. 

4.2. Second scenario 

In the second scenario, an atmospheric stability class D is studied, 
where Table 8 presents the input values as well as those obtained by the 
simulation of the direct problem. Finally, the results at the measuring 
stations are shown in Figs. 19 and 20. 

Table 9 and Fig. 21 show the distances from each of the possible 
emission sources to the measuring stations. Finally, Table 10 presents 
the necessary data for the inverse problem, affecting the input data and 
results of the direct problem by an error of up to 2%. Relative error is 
shown in parentheses. 

Next, steps iv) to xxi) are applied until the distance values are ob-
tained with respect to the measuring stations (xj

A,ξ and xj
B,ξ) and the 

release time (tr*,j) that present the lowest functional value (Ψj
tr), 

Table 11. 
Next, the data from iteration 23 (the one with the lowest value of the 

functional) are taken and the emission sources that are at a distance 
close to 1043.04 m from station A and 1841.04 m from station B must be 
selected. This requirement is met by emission sources 1 and 3 that are 

Table 15 
Height and distance of each of the emission sources to the measuring stations.   

Station A Station B hs (m) 

Source x (m) y (m) x (m) y (m) 

1 600 10 2100 20 3 
2 300 15 1800 15 7 
3 600 50 2100 20 9  

Fig. 26. Projection on the xy-plane of the determination of emission sources located at a distance xA,ξ (or xB,ξ) from station A (or B) for the third scenario.  

Table 16 
Input data or “experimental measurements” obtained from measuring stations. Maximum error of 2%.  

Station A Station B Δx, ξ (m) Vx (m/s) Atmospheric stability Roughness 

Cp,max,,ξ (g/m3) Δtm,ξ (s) Cp,max,,ξ (g/m3) Δtm,ξ (s) 

1.14⋅10-1 

(1.79%) 
932 
(0.65%) 

1.43⋅10-2 

(1.42%) 
1726 
(0.41%) 

1501 
(0.07%) 

4 D Rural  

Table 17 
xj

A,ξ, xj
B,ξ, tr*,j and Ψj

tr for selected iterations.  

Iteration tr*,j (s) tj
r, ξ (s) xj

A,ξ (m) xj
B,ξ (m) Ψj

tr 

1  932.00  921.83  0.00  1501.00  103.50 
2  466.00  468.31  862.58  2363.58  5.33 
–  –  –  –  –  – 
11  620.05  619.75  573.90  2074.90  0.088 
12  619.05  618.77  575.77  2076.77  0.077 
–  –  –  –  –  – 
25  606.05  606.02  600.06  2101.06  0.001 
26  605.05  605.04  601.93  2102.93  0.00017 
27  604.05  604.06  603.80  2104.80  0.00003  
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located at a distance of 1000 m from station A and 1800 from station B. 
In this way, the data necessary to start the second stage are sources 1 and 
3, 1000 m for xj

A,ξ, 1800 m for xj
B,ξ and 177 s for tr*,j (the last value is 

obtained from iteration 18 which is the corresponding one for the pre-
vious distances). 

The second stage covers steps xxii) to xxviii), where we must first 
determine the time at which the maximum concentration is reached for 
each station using a random mass rate (550 g/s). For both sources, the 
mentioned time is 289 and 449 s for stations A and B, respectively, 
Figs. 22 and 23. Finally, we can determine the emission mass rate and 
therefore the emission source by choosing the one that presents the 

lowest value for the functional ϕi
Q, Table 12. 

If we analyze the results shown in Table 12, it is concluded that the 
emission occurred in source 3. Table 13 shows the comparison of the 
input data of the direct problem with those obtained with the inverse 
problem, where the relative error is shown in bold. As can be seen, the 
errors obtained by the inverse problem are small, being less than 2% 
(acceptable in engineering problems), allowing the values of the mass 
rate, the position of emission source and the release time to be reliably 
determined. 

Fig. 27. Evolution of concentration at measuring station A to determine the time at which the maximum concentration occurs for a) source 1 and b) source 3.  
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4.3. Third scenario 

In the last scenario, an atmospheric stability class E is studied, where 

Table 14 presents the input values as well as those obtained by the 
simulation of the direct problem. Finally, the results at the measuring 
stations are shown in Figs. 24 and 25. 

Table 15 and Fig. 26 show the distances from each of the possible 
emission sources to the measuring stations. Finally, Table 16 presents 
the necessary data for the inverse problem, affecting the input data and 
results of the direct problem by an error of up to 2%. Relative error is 
shown in parentheses. 

Next, steps iv) to xxi) are applied until the distance values are ob-
tained with respect to the measuring stations (xj

A,ξ and xj
B,ξ) and the 

release time (tr*,j) that present the lowest functional value (Ψj
tr), 

Fig. 28. Evolution of concentration at measuring station B to determine the time at which the maximum concentration occurs for a) source 1 and b) source 3.  

Table 18 
Qi

A,ξ, Qi
B,ξ, ϕi

Q and Qi
Mean,ξ for sources 1 and 3.  

Source Qi
A,ξ (g/s) Qi

B,ξ (g/s) ϕi
Q Qi

Mean,ξ (g/s) 

1  811.55  810.24  1.71  810.89 
3  2527.88  830.00  2882783.21  1678.94  
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Table 17. 
Next, the data from iteration 27 (the one with the lowest value of the 

functional) are taken and the emission sources that are at a distance 
close to 603.80 m from station A and 2104.80 m from station B must be 
selected. This requirement is met by emission sources 1 and 3 that are 
located at a distance of 600 m from station A and 2100 from station B. In 
this way, the data necessary to start the second stage are sources 1 and 3, 
600 m for xj

A,ξ, 2100 m for xj
B,ξ and 606 s for tr*,j (the last value is ob-

tained from iteration 69 which is the corresponding one for the previous 
distances). 

The second stage covers steps xxii) to xxviii), where we must first 
determine the time at which the maximum concentration is reached for 
each station using a random mass rate (550 g/s). For source 1, the 
mentioned time is 456 and 827 s for stations A and B, respectively, and 
for source 3 is 454 and 829 s for A and B, respectively, Figs. 27 and 28. 
Finally, we can determine the emission mass rate and therefore the 
emission source by choosing the one that presents the lowest value for 
the functional ϕi

Q, Table 18. 
If we analyze the results shown in Table 18, it is concluded that the 

emission occurred in source 1. Table 19 shows the comparison of the 
input data of the direct problem with those obtained with the inverse 
problem, where the relative error is shown in bold. As can be seen, the 
errors obtained by the inverse problem are small, being less than 1.5%, 
allowing the values of the mass rate, the position of emission source and 
the release time to be reliably determined. 

For the three cases studied, which include each of the atmospheric 
stabilities, the proposed methodology can determine the possible 
emission source, as well as the pollutant release time and the rate of 
mass release with relatively small errors. 

5. Application of the proposed inverse problem to other 
pollutant diffusion software 

The inverse problem proposed in this work is valid for other 
contaminant diffusion software, such as those that implement the phe-
nomena of diffusion, drag, turbulence, etc. [1–3]. The use of the equa-
tions given by the NOAA for both the direct and the inverse problem is 
due to the fact that they are included in software of recognized prestige 
from the U.S. Environmental Protection Agency (U.S. E.P.A) [10]. For 
the implementation of the proposed protocol for the inverse problem in 
other software, the steps described below must be followed. i) The first 
stage procedure of the inverse problem is followed using expressions (8) 
to (11) given in this article, which allows calculating both the release 
time and the distances from the emission source to the measuring sta-
tions. Equations (9) to (11) can be adjusted again for the software used 
following the method specified in subsection 2.2. ii) The procedure of 
the second stage is followed with the software used to calculate the rate 
of mass release. Depending on the software a simple iterative process 
may be needed for step xxv). 

6. Contributions and conclusions 

The protocol proposed for the inverse problem allows the determi-
nation of the three main parameters that control the contaminant 
dispersion released from a gas emission source, namely position, release 

time and rate of mass release (source position, tr and Q), providing 
convergent and very precise, and therefore, reliable results, even for 
experimental measurements affected by errors of up to 2%. Determining 
these parameters is a fundamental aim in knowing the position of the 
source and the amount of neutrally-buoyant pollutants when a short 
duration emission occurs. Furthermore, in order to implement the in-
verse protocol, it is necessary to define a new coefficient, which we have 
called coefficient of dispersion deformation (δ), that relates the effect of 
dispersion in the measurement time of a pollutant, the distance in the 
downwind direction and the atmospheric stability categories. This co-
efficient, which has been developed by applying dimensional charac-
terization techniques, only depends on the distance to the source in the 
downwind direction, since the other two directions mainly affect the 
concentration and its influence on the measurement time of the station is 
practically negligible. The procedure for obtaining the aforementioned 
coefficient, equations (8) to (11), has been validated by means of a 
sensitivity analysis, where the sensitivity coefficients confirmed the 
expressions obtained. 

The actions of the protocol of the inverse problem, which have been 
programmed with a Matlab® work routine [17] and which include steps 
iv) to xxviii) (Fig. 13), are divided into two well-differentiated stages. In 
the first, the simulations are started for each iteration, the functionals 
are calculated to program the next iteration, setting the new values of 
measurement time and the distance of the emission source in downwind 
direction with respect to the measuring stations by comparing the 
simulated and experimental values, and so on until reaching the final 
solution. In the second, an analogous procedure is followed until the 
mass rate and the emission source position is obtained. 

As expected, the results obtained have been affected by the errors of 
the experimental measurements of pollutant concentrations, position, 
and time that the station has been measuring the pollutant, since they 
are the input data of the inverse problem. However, it should be noted 
that despite the fact that the measurements had errors of up to 2% (a 
value that can be considered appreciable), for the cases studied, very 
precise solutions have been obtained. In relation to the position, the 
protocol allows to determine the source of emission since initially we 
know the possible emission sources. Regarding the rate of mass release 
(Q), the deviations in the results are less than 2% for errors in the 
experimental measurements of up to 2% for the cases studied. Finally, in 
relation to pollutant release time, the deviations are less than 2% for 
errors in experimental measurements of up to 2%. It should be noted 
that in scenarios 1 and 3 the error is equal to or less than 1%. The 
explanation that scenario 2 shows a greater error is due to the fact that in 
this case the pollutant release time is small, producing a greater relative 
error for the same absolute error. As we have already mentioned before, 
these results can be considered very successful in this field of 
engineering. 

The proposed protocol for the inverse problem has been successfully 
verified following the procedure described below. From the numerical 
simulation (direct problem) the pollutant concentration values and time 
that the station has been measuring the pollutant for two measuring 
stations are obtained. Affecting these variables with a random relative 
error (up to 2%), an inverse protocol is applied to recover the initial 
parameters of the problem with a successful result. The numerical 
simulations have been performed with Matlab® [17] implementing the 

Table 19 
Comparison between the results obtained by the direct and inverse problem.  

Source  Station A Station B hs (m) Direct problem Inverse problem 

x (m) y (m) z (m) x (m) y (m) z (m) Q (g/s) tr (s) Q (g/s) tr 
(s) 

1 600 10 0 2100 20 0 3 800 600 810.89 
(1.36%) 

606 
(1.00%)  
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complete mathematical model given by NOAA for the ALOHA software 
[10]. 
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Gimeno, and J. Martínez Alonso, Consequence analysis by means of characteristic 
curves to determine the damage to humans from the detonation of explosive 
substances as a function of TNT equivalence, J. Loss Prev. Process Industries 20(3) 
(May 2007) 187–193. doi: 10.1016/J.JLP.2007.03.003. 

[25] Lee, Lees’ Loss Prevention in the Process Industries: Hazard Identification, 
Assessment And Control: Fourth Edition, vol. 1–2. 2012. doi: 10.1016/C2009-0- 
24104-3. 

[26] J.V. James, V. Beck, Ben. Blackwell, C.R. st. Clair, Inverse heat conduction: ill- 
posed problems, p. 308, 1985. 

[27] B. Heinrich, B. Hofmann, Beck, J. V.; Blackwell, B.; St. Clair, C. R., jr., Inverse Heat 
Conduction. Ill-Posed Problems. New York etc., J. Wiley & Sons 1985. XVII, 308 S., 
£ 46.00. ISBN 0-471-08319-4, ZAMM - Journal of Applied Mathematics and 
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 67, no. 3, 
pp. 212–213, Jan. 1987, doi: 10.1002/ZAMM.19870670331. 

[28] O.M. Alifanov, E.A. Artyukhin, S.V. Rumyantsev, Extreme Methods for Solving III- 
posed Problems with Applications to inverse Heat Transfer Problems. Begell House 
Inc., 1995. 

[29] J. Zueco, F. Alhama, Inverse estimation of temperature dependent emissivity of 
solid metals, J. Quant. Spectrosc. Radiat. Transf. 101(1) (2006). doi: 10.1016/j. 
jqsrt.2005.11.005. 

[30] B. Lamien, et al., A Bayesian approach for the estimation of the thermal diffusivity 
of aerodynamically levitated solid metals at high temperatures, Int. J. Heat Mass 
Transf. 141 (2019), https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.054. 

[31] D. Calvetti, J.P. Kaipio, E. Somersalo, Inverse problems in the Bayesian framework, 
Inverse Probl. 30(11) (2014). doi: 10.1088/0266-5611/30/11/110301. 

[32] I. Alhama, M. Cánovas, F. Alhama, On the nondimensionalization process in 
complex problems: Application to natural convection in anisotropic porous media, 
Math. Probl. Eng. 2014 (2014), https://doi.org/10.1155/2014/796781. 

[33] G. García-Ros, I. Alhama, M. Cánovas, F. Alhama, Derivation of universal curves 
for nonlinear soil consolidation with potential constitutive dependences, Math. 
Probl. Eng. 2018 (2018), https://doi.org/10.1155/2018/5837592. 

[34] G. García-Ros, I. Alhama, M. Cánovas, Use of discriminated nondimensionalization 
in the search of universal solutions for 2-D rectangular and cylindrical 
consolidation problems, Open Geosci. 10(1) (2018). doi: 10.1515/geo-2018-0016. 
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