
 

Kaunas University of Technology 

Faculty of Electrical and Electronics Engineering 

Technical University of Cartagena 

School of Industrial Engineering 

Automatic Diabetic Foot Wound Detection Based on 
Computer Vision Methods 

 
Bachelor’s Final Degree Project  

 
Alberto Hita Esquer 

Project author 

 
Prof. Dr. Vidas Raudonis 

Assoc Prof. Dr. Miguel Almonacid Kroeger 

Supervisors 

 

Cartagena, Kaunas 2022 



 

Kaunas University of Technology 

Faculty of Electrical and Electronics Engineering 

Technical University of Cartagena 

School of Industrial Engineering 
 
 
 
 

Automatic Diabetic Foot Wound Detection Based on 
Computer Vision Methods 

Bachelor‘s Final Degree Project 

Industrial Electronics and Automation Engineering (5071) 

Intelligent Robotics Systems (6121EXO013) 

  
Alberto Hita Esquer 

Project author  

  
Prof. Dr. Vidas Raudonis 
Assoc Prof. Dr. Miguel Almonacid 
Kroeger 

Supervisors 

 

  
Lect  Dr. Rimvydas Simutis 

Reviewer  

  

Cartagena, Kaunas 2022 



 

 
Kaunas University of Technology  

Faculty of Electrical and Electronics Engineering 

Technical University of Cartagena 

School of Industrial Engineering 

Alberto Hita Esquer 

 

 

Automatic Diabetic Foot Wound Detection Based on 
Computer Vision Methods 
Declaration of Academic Integrity 

I confirm the following:  

1. I have prepared the final degree project independently and honestly without any violations of the 
copyrights or other rights of others, following the provisions of the Law on Copyrights and Related 
Rights of the Republic of Lithuania, the Regulations on the Management and Transfer of Intellectual 
Property of Kaunas University of Technology (hereinafter – University) and the ethical requirements 
stipulated by the Code of Academic Ethics of the University;  

2. All the data and research results provided in the final degree project are correct and obtained 
legally; none of the parts of this project are plagiarised from any printed or electronic sources; all the 
quotations and references provided in the text of the final degree project are indicated in the list of 
references; 

3. I have not paid anyone any monetary funds for the final degree project or the parts thereof unless 
required by the law; 

4. I understand that in the case of any discovery of the fact of dishonesty or violation of any rights of 
others, the academic penalties will be imposed on me under the procedure applied at the University; 
I will be expelled from the university and my final degree project can be submitted to the Office of 
the Ombudsperson for Academic Ethics and Procedures in the examination of a possible violation of 
academic ethics. 

Alberto Hita Esquer 
 



4 

 

TASK OF FINAL PROJECT OF UNDERGRADUATE (BACHELOR) STUDIES 
 

Issued to the Student: Alberto Hita Esquer Group ERB8/2 
1. Project  Subject:  
Lithuanian Language: Automatinis diabetinės pėdos žaizdų aptikimas taikant kompiuterinės regos 

metodus 
English Language: Automatic Diabetic Foot Wound Detection Based on Computer Vision 

Methods 

Approved  2022 April . 29d. Decree of Dean Nr. V25-03-10 
2. Goal of the Project: To develop and investigate the classification method that can be used for 

automatic diabetic foot classification 
  

3. Specification of Final 
Project: 

The work must meet the methodological requirements for the preparation of 
final projects for the  KTU Faculty of Electrical and Electronics Engineering. 

 

4. Project’s Structure. The content is concretized  together with supervisor, considering the format of the 
final project, which is listed in  14 and 15 points of Combined Description of Preparation , Defence and 
Keeping of Final Projects Methodical Requirements 
4.1 Analyze the state-of-the-art literature about classification algorithms. 
4.2 Provide detailed information about research object, i.e., diabetic foot. 
4.3 Apply selected classification methods to foot images of known database.  
4.4 Develop diabetic foot classification algorithm and test it.   
  

5. Economical Part. If economical substantiation is needed; content and scope is concretized  together with 
supervisor during preparation of final projects 
none 
  

6. Graphic Part. If necessary, the following schemes, algorithms and assembly drawings; content and scope 
is concretized  together with supervisor during preparation of final projects 
Show algorithms and mathematical reasoning  
 

5. This Task is Integral Part of Final Project of Undergraduate (Bachelor) Studies 

6. The Term of Final Project Submission to Defense Work at a Public Session 
of Qualification Commission.  

until 2020-06-02 
(date) 

I received this task: Alberto Hita Esquer  2021-03-01 
 (student’s name, surname, signature) (date) 
Supervisors: Assoc. Prof. Dr. Miguel Almonacid Kroeger 

Prof. Dr. Vidas Raudonis 
2021-03-01 

 (position, name, surname, signature) (date) 

 APPROVED BY: 
KTU Faculty of Electrical and Electronics Engineering 

Head of the Department of Automation 
Assoc. prof. dr. Gintaras Dervinis 

2022 05 04 



 

Alberto Hita Esquer. Automatic Diabetic Foot Wound Detection Based on Computer Vision 
Methods. Bachelor's Final Degree Project. Supervisors Prof. Dr. Vidas Raudonis Assoc and Prof. Dr. 
Miguel Almonacid Kroeger; Faculty of Electrical and Electronics Engineering, Kaunas University of 
Technology; School of Industrial Engineering, Technical University of Cartagena. 

Study field and area (study field group): Electronics and aoutomation engineering, technological 
science, robotic engineering 

Keywords: Diabetic foot disease, ischemia, ulcer, Diabetic foot wound, recognition, detection, 
convolutional neural networks, computer vision. 

Kaunas, Cartagena, 2022. P.80 

Summary 

The objective of this final degree project is to develop a model able to detect automatically the 
presence or not of ischemia and infection in the wound produced by diabetic foot disease. The work 
consists of an introduction of the mentioned disease as well as some statistical data that motivates 
this work. Next, the reader is introduced to all the theoretical concepts used to carry out the mentioned 
task. The model based on computer vision methods will be deduced after analizing different studies 
focused on diabetic foot ulcer detection. This method is exposed paying special attention to all stages 
from data collection to the results exposition which are later suitably analized. At the end of the 
project, the obtained conclusions and possible improvements are presented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Alberto Hita Esquer. Detección automática de heridas en el pie diabético basada en métodos de visión 
artificial. Trabajo de Fin de Grado. Supervisores Prof. Dr. Vidas Raudonis Assoc y Prof. Dr. Miguel 
Almonacid Kroeger; Facultad de Ingeniería Eléctrica y Electrónica, Universidad Tecnológica de 
Kaunas; Escuela de Ingeniería Industrial, Universidad Politécnica de Cartagena.  

Campo y área de estudio (grupo de campo de estudio): ingeniería electrónica y de automatización, 
ciencia tecnológica, ingeniería robótica. 

Palabras clave: Enfermedad del pie diabético, isquemia, úlcera, herida del pie diabético, 
reconocimiento, detección, redes neuronales convolucionales, visión artificial. 

Kaunas, Cartagena, 2022. P.80 

Sumario 

El objetivo de este trabajo final de grado es desarrollar un modelo capaz de detectar de forma 
automática la presencia o no de isquemia e infección en la herida producida por la enfermedad del 
pie diabético. El trabajo consta de una introducción de la mencionada enfermedad así como algunos 
datos estadísticos que motivan este trabajo. A continuación, se introduce al lector en todos los 
conceptos teóricos utilizados para llevar a cabo la tarea mencionada. El modelo a desarrollar, basado 
en técnicas de vision artificial, se deducirá del análisis de diferentes estudios centrados en la detección 
de úlceras de pie diabético. Este método se expone prestando especial atención a todas las etapas 
desde la recogida de datos hasta la exposición de los resultados, que son debidamente analizados. Al 
final del proyecto se presentan las conclusiones obtenidas y las posibles mejoras. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

Alberto Hita Esquer. Automatinis diabetinės pėdos žaizdų aptikimas taikant kompiuterinės regos 
metodus. Bakalauro studijų baigiamasis projektas. Vadovai Prof. Dr. Vidas Raudonis ir Prof. Dr. 
Miguel Almonacid Kroeger; Elektros ir elektronikos fakultetas, Kauno technologijos universitetas, 
Pramonės inžinerijos mokykla, Kartegenos technikos universitetas. 

Studijų kryptis ir sritis (studijų krypčių grupė): Automatikos ir elektronikos inžinerija, technologiniai 
mokslai, robotikos inžinerija. 

Reikšminiai žodžiai: Diabetinė pėda, išemija, diabetinės pėdos žaizdos, atpažinimas, aptikimas, 
konvoliuciniai neuronų tinklai, kompiuterinė rega. 

Kaunas, Kartagena, 2022. P.80 

Santrauka 

 

Bakalauro baigiamojo projekto tikslas – sukurti kompiuterinės regos algoritmą skirtą automatiškai 
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Introduction. 

Computer vision is becoming more and more important nowadays, and algorithms used are increasing 
their complexity and their performance. In this context, it is acceptable to think about challenging 
tasks carried out by humans which could be automatized by applying machine learning algorithms. 

In this paper, computer vision methods will be used to extract valuable results in the recognition of 
the wound produced by diabetic foot disease. This syndrome produces ulcers and ischemia which are 
one of the most important causes of disability in the world, due to its severity and the lack of 
specialists to attend to all diabetic foot patients in the world.  

This work will be based on creating a high-performance model able to detect diabetic foot wound 
stages. In addition, a small-size solution able to be used in any mobile device will be developed. 
Finally, both results will be compared. 
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1. Diabetic foot disease 

Diabetic foot is a disease that causes severe wounds mainly in feet and legs which could lead to the 
amputation of a foot, leg, or part of them. 

1.1. Causes 

Diabetic foot is mainly caused because of two pathologies that are commonly suffered by diabetic 
patients. These two pathologies are: 

- Neuropathy. This pathology most often appears in lower extremities but can affect any part 
of the body. It causes damage to foot muscles’ innervations which leads to a lack of movement 
and consequently to a deformation of the affected muscles. This fact creates lumps or 
deformities which are likely to develop skin breakdown and ulceration. Due to the 
innervations damage patients usually don’t feel any kind of pain so this wound deteriorates 
without being noticed. 

- Peripheral vascular disease. This pathology is similar in diabetic and non-diabetic patients, 
however, in diabetic patients, it appears before and it develops quicker so at the end this 
disease could be quite more severe at advanced ages. It causes ischemia (deficient blood flow 
due to narrow and blocked arteries) and consequently wounds healing due to a lack of 
nutrients and oxygen carried by the blood. 

1.2. Complications 

Injury infection is one of the most important things to avoid due to the patient impossibility to 
overcome it as the defense mechanisms are damaged due to neuropathy and ischemia. As blood is not 
blowing correctly, there is a lack of cells which are in charge of defeating bacteria which cause 
infection, and it develops until amputation is required in order to avoid infection growth. 

1.3. Classification 

There are two major groups in which diabetic foot disease can be separated into. Making this 
classification is quite important because of the difference in therapeutic process as each type produces 
different kinds of risks for our body. The types are the following ones: 

- The Neuropathic Foot where neuropathy dominates. It causes complications such as fissures, 
bullae, neuropathic (Charcot) joint, neuropathic edema, and digital necrosis.  

- The Neuroischemic foot where the blood difficulty to flow is the main factor although 
neuropathy is present. It causes complications such as pain at rest, ulceration on foot margins, 
digital necrosis, and gangrene.  

One of the most worldwide accepted classifications is the one shown in Fig.1. 
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1.4. Diabetic foot disease over the world 

Diabetic foot disease is a quite common syndrome in the diabetic people. It is estimated that around 
9% of the global population suffer from diabetes and around 25% of those patients are likely to suffer 
from diabetic foot syndrome. Fig. 2 and Fig. 3 are a graphical view of this fact. 

Global population

Non-diabetic population Diabetic population

Fig. 1 University of Texas Wound Classification System. 

Fig. 2 Diabetic patients distribution. 
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All data above, makes diabetic foot one of the most common disability causes over the world. Fig.4 
shows  another example of important causes of disabilities over the world. 

Fig. 4 Global causes of disability comparison. 

In Africa, the standard of living is not as good as in other continents, this fact directly affects specialist 
doctor accessibility which is a significant fact in papatients‘ recovery. To land this fact in numbers, 
in South Africa there are more than 4 million diabetic foot patients with only 200 specialists so each 
specialist should take care of 20,000 each. In addition, South Africa is one of the richest countries in 
Africa (top 3 GDP in Africa) with a huge social inequality so for the lower class this lack of specialists 
is even worse. 

In more developed continents such as Europe or Asia, many specialist teams for ulcer and ischemia 
care have been created however this is not something entirely spread out and there are still many 
countries in these continents with signs of underdevelopment in this issue. 

Diabetic population

Diabetic foot patients Non-diabetic foot patients

Fig. 3 Diabetic foot patients distribution. 
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1.5. Objective 

It is a fact that there are many places in the world where diabetic foot specialists are not easily 
reachable. This supposes an additional risk factor for patients who suffer from this syndrome. 
Developing a tool that would be able to detect infection and ischemia and based on that given stage 
of the disease to the non-specialist doctors could make the difference in avoiding amputation. The 
purpose of the work is the development and comparison of different classification algorithms able to 
recognize the stage of the diabetic foot syndrome, that can be later used as a part of whole diabetic 
foot analysis tool able to recognize every stage and grade of the injury by detecting each part of the 
wound.  
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2. State of the art 

In this section, the theoretical framework, in which this work is based, will be exposed. In addition, 
some papers about this issue will be reviewed. 

2.1. What is artificial intelligence? 

In 1950, Alan Turing, who is considered the father of computer sciences, came up with the following 
question: “Can machines think? ". It is considered the germ of artificial intelligence as its answer 
construction has created this huge scientific field. 

One of the most worldwide spread artificial intelligence definitions is the one given by John 
McCarthy: “It is the science and engineering of making intelligent machines, especially intelligent 
computer programs. It is related to the similar task of using computers to understand human 
intelligence, but AI does not have to confine itself to methods that are biologically observable". 

2.1.1. Machine learning 

Machine learning is a huge field inside artificial intelligence, its goal is to imitate human way of 
thinking using large amounts of data, learning from them in a process called “training". Typical 
algorithms used in this field are regression models and decision trees. Machine learning models 
usually need the human intervetion to learn as it is necessary to set input features to the algorithm so 
it can provide accurate predictions. 

2.1.2. Deep learning 

By the year 2010, the improvement in computational performance let the first deep learning 
algorithms to be developed. Deep Learning aim is similar to machine learning but its algorithms have 
more complex structures which works well without pretraining human intervention, in other words, 
it can be assumed as a "scalable machine learning" as Lex Fridman propose in his notes. In this work 
we will focus on this type of algorithms, specifically in neural networks, that will be explained in the 
following section. In Fig. 5, hierarchy inside artificial intelligence can be appreciated. 

 

Fig. 5 AI hierarchy. 
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2.2. Neural networks 

Neural networks are artificial imitations of how our brain works, nowadays they are one of the most 
useful AI algorithms because of computanional performance improvements. They have become an 
important part inside machine learning algorithms and the main pilar in deep learning ones.  

In human beings, brains are made up billions of neurons which are connected forming networks. This 
neural network can learn from different inputs and the same learning structure is used for every simple 
knowledge acquired. It has been proved that if we reconnect the optical nerve to the auditory cortex, 
this part of the brain would learn to see instead of listening. So, it is not about the algorithm is about 
the input data. Extrapolating this into the current field of study, we could create a unique algorithm 
which could be completely scalable to a huge range of tasks. 

2.2.1. Neurons and the brain 

In a very basic way, brain neural networks are made up of billions of neurons, each neuron has three 
main parts: dendrites, cell body and the axon. The dendrites are the part which collect information 
from other neurons as electrical inputs. Based on that information, the axon will transmit an answer 
to other neurons. This answer can be active or inactive. In Fig. 6 the structure of a human neuron can 
be appreciated. 

 

 

 

 

Fig. 6 Schematic of a human neuron. 
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2.2.2. Model representation 

The fundamental unit of the model is the artificial neuron, and it is an equivalent representation of 
the human one. These basic nodes join themselves forming layers, and several layers form the neural 
network. We will learn more about its structure in Fig. 7. 

As we can see we have four different parts: 
- Inputs. The inputs are just the value of each node in the previous layer, it is important to say 

that every neuron receives information of every node in the predecessor layer. 
- Linear function. Each node has associated a “weight” which is number that multiplies its value 

before sending the information to the next layer. The linear function is just the addition of 
every input multiply by its weight. 

- Activation function. The activation function is what defines the output of the neuron 
depending on the value obtained from the linear function. There are multiple types of 
activation functions, even you can find different activation functions among the several layers 
of a neural network. 

- Output. It is just the output value of the neuron; which could be sent to the next layer of the 
net (previously multiplied by the neuron weight) or it could be the final output of the network. 

2.2.3. How do neural networks work? 

In order to understand how neural networks work it is important to know the mathematical expression 
of linear and activation functions. 

The following calculations will be referred to one node of the net and it is completely applicable to 
the rest of the artificial neurons. 

2.2.3.1. Linear function 

The linear function can be expressed as: 

𝑓(𝑥) =&𝑤!𝑥! +	𝑤"!#$ ∗ 𝑏𝑖𝑎𝑠
%

!&'

 

 

Fig. 7 Human neuron vs artificial one. 
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On the one hand, as we can see there is a term called bias, it is a 1 value node and there is one per 
layer. It actuates as input in the linear function and it has its own weight. 

On the other hand, it is essential to notice that weights are not something characteristic of neurons, as 
a neuron has different weights for each node of the following layer as can be appreciated in Fig. 8.  

2.2.3.2. Activation function 

As it is understood by its name, this function determines the level of activation of the neuron. Its 
dependent variable is defined by the linear function. There are many types of activation functions, 
even in a neural network more than one activation function can be applyed. In this introduction to 
neural networks, sigmoid activation function intuition willl be introduced as an example. It is very 
commonly applied to output neuron when a binary output is needed as it is very easy to convert the 
funcion output into 0 or 1 by a simple threshold setting as we will see in Fig. 9. 

The function representation is the following one: 

Fig. 8 Neural network representation. 

Fig. 9 Sigmoid function representation. 
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Looking at the representation, we realise that the function values are represented by all real numbers 
between 0 and 1, so by setting a threshold of 0.5 ( it depends on the level of confidence we are looking 
for) we will obtain:   

𝑔(𝑥) = 01, 𝑓
(𝑥) > 0.5

0, 𝑓(𝑥) < 0.5 

2.3. Computer vision 

Computer vision is a scientific discipline (subfield of AI) based on applying machine learning 
techniques to digital images in order to obtain valuable information and predictions. 

2.3.1. Digital images 

A digital image is numeric representation of an image based on one or more bidimensional matrices, 
whose values are called pixels. Usually, these values go from 0 to 255 (28 levels of intensity), that is 
to say, images usually have a “color depth” of 8 bits. There are several ways to make a numerical 
representation of an image, attending to the number of bidimensional matrices and what each matrix 
represents. Each representation system is called “colour space”. 

2.3.2. Colour spaces 

The following colour spaces are explained assuming that we are in front of 8 bits colour depth images, 
that is, values go from 0 to 255. This colour depth is the most common one, however we can find 
other ones, such as 10 bits color depth in which values go from 0 to 1024. 

The simplest and the most ancient one is the “gray scale”. It is a one bidimensional matrix-based 
representation in which each pixel represents a grey value from 0 to 255, being 0 black and 255 white. 
An example of this it is shown in Fig. 10. 

 

Fig. 10 Left picture shows numeric representation of an image and the right one includes visual one. 
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At the beginning of computer vision, colour was not something that alogorithms considered because 
of the computational costs that it would add. Nowadays, due to all the technological advances in 
CPUs, GPUs and TPUs, colour has achieved the position it deserves when it comes to represent image 
features. The two main colour spaces, when we are representing colour in digital images are RGB 
and HSV: 

- RGB uses three bidimensional matrices to numerically represent images and their colour. 
These three matrices represent three color channels Red Green and Blue (RGB). By the 
combination of these three primary colours, it is possible to obtain any chromacity of the 
triangle defined by these colours, according Grassmann's law of light additivity. As we can 
see in Fig. 11, white colour is represented by the value (255,255,255). 

 

- HSV also uses three bidimensional matrices, but these channels represent Hue, Saturation and 
Value (HSV). Hue represents the color inside the chromatic circle by the degree value which 
this colour occupies inside it. Usually, hue is represented from 0 to 180 so that the 360º of the 
chromatic circle can be represented by multiplying the value by two. Saturation is defined as 
the amount of gray which can be found inside a colour, so a value of 0 represents the gray 
colour and a 255 value represents the colour defined by the Hue information. Value defines 
the brightness of the colour, and it works together with the saturation parameter. Below, we 
can observe how colour changes according to mentioned parameters. 

Fig. 11 RGB colour space. 
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2.3.3. Image filtering 

Image filtering is the base of modern image processing as it lets us to extract visual information of 
the image, such as textures or shapes, and to improve image quality by correcting imperfections. The 
are two types of image filters: linear and non-linear ones. 

Linear filtering of an image is based on applying a convolution operation to the input image in order 
to obtain a new one. This operation is based on overlapping the input image over another matrix 
called filter or kernel, multiplying each cell by the inferior and adding the products. The symbol of 
convolution operation is (*). B, a graphic explanation of convolution on images is presented. 

 

Fig. 13 Convolution operation on images. 

Fig. 12 Typical representation of HSV colour space. 
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Filtering parameters are size, stride and padding. Size is usually 1x1, 3x3 or 5x5, but it can be of 
completely different dimensions. Stride referes to the “size of the jump of the filter”, that is, how 
many cells the filter will move forward for the next set of opeations. Padding is a feature that adds 
empty pixels to the frame of the input image, as we can see in Fig.14, in order to control the output 
size.  

Just to come up with an idea of what linear filters do, some examples will be shown. There are two 
important filters when it is necessary to reduce the noise in an image, which is the random intensity 
variation of the pixels. These two famous filters are the mean and the gaussian filter. 

Mean filter:     
1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

       (mean of the neighboring pixels)  

 

Gaussian filter:        
1 2 1
2 4 2
1 2 1

           (approximation to gaussian distribution) 

Fig. 14 Padding example 

Fig. 15 A: Normal image, B: Mean filter applied, C: Gaussian filter applied 
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Another important group of linear filters are the edge detection ones, which are filters able to detect 
changes in the intensity of neighbouring pixels. It is based on the derivative principle, as it is an 
operation which calculates the instantaneous rate of variation of a function.  

Derivative definition:   lim
!→#

$$(&'!))$(&)
!

%        

 

Discrete approximation:    
![#$%]'![#]

(
 

Edge detection is about introducing filters inspired by discrete approximation of derivative since we 
can define digital images as discrete functions. One of the simplest kernels is: 

2.4. Convolutional neural networks 

Convolutional neural networks constitude the key tool for deep learning algorithms and they are the 
base of computer vision, as they let us to “extract visual information of an image”. This last sentence 
seems to be trivial, but it is not. Using conventional neural networks, we have two ways of procedding 
when we face a computer vision problem: 

On the one hand, we can make a flatten operation in order to convert the matrix representation of an 
image into a flat vector and then introduce this vector into the neural network: 

 

Fig. 16 Edge detection example 
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This way of solving the problem is absolutely correct and it may work for simple situations. 
Unfortunately, is not a powerful solution since the neural network receives “random” pixels which 
only contribute its intensity value to the neural network, and it does not receive any visual information 
about the image. As an example, if we think about the typical character recognition problem solved 
by the proposed method, we could face the following problem: 

This happens because neural networks do not receive visual information, so, something that for a 
human beign is a completely random image for the neural network could represent a correct pattern 
of pixels which corresponds to number “5”. 

On the other hand, we can face the computer vision problem by extracting manually the visual 
information using different filters and introducing this information into the neural network. This could 

Fig. 17 Computer vision solution implementation 

Fig. 18 . Neural network limitations example. 
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be a good solution for simple problems where you know exactly what the most representative 
parameters of each class are. However, this is not a scalable solution, as it needs human intervention 
to work. 

Convolutional neural networks brought a solution for both problems. It consists of adding a 
convolutional block before the conventional neural network, which is called as “dense layer” in this 
context. This added block is composed of several filters in which kernel values are defined during the 
training process. This makes possible to extract visual information of the image while the algorithm 
remains scalable. 

 

Fig. 19 Convolutional neural network representation. 

2.4.1. Convolutional process 

Convolutional layer 

 It is the core block of this type of networks and where almost all the computation occurs. It is made 
up of an input which is an image represented in whatever colour space (grey scale, RGB, HSV, etc.), 
a variable number of undefined filters and an output whose depth is defined by each filter’s output. 

The unsetted kernels/filters will carry out a convolutional operation as the one explained in the section 
before, and their values will be calculated during the training, minimizing the error of the neural 
networks output. 

Pooling layer 

It leads to the dimensionality reduction as it is important for the last stage of the convolutional process. 
There are two main types of pooling “max pooling” and “average pooling”. 

- Max pooling uses a kernel that moves across the convolutional layer output picking the 
maximum value of all covered pixels by the kernel at the same time. 

- Average pooling makes a convolutional operation over the convolutional layer output in order 
to get the average of al the values covered by the kernel. 

As we can see in Fig.19, is it possible to concatenate different processes of “convolutional layer + 
pooling” in order to get a “deeper learning” of the input image. 
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Fully-Connected layer 

A flatten operation it is applied to the output of the last pooling operation. This one dimention array 
is “fully-connected” to the dense layer. Now we understand the importance of the pooling operation 
since reducing the dimension of convolution outputs is essential to connect matrices to the dense 
layer. 

2.5. Training process 

2.5.1. Backpropagation algorithm 

¿How is the training carried out? This is an essential question which must be solved in order to 
understand all parameters that affect our training process and that we will have to declare.  

Backpropagation algorithm is what makes possible training process. It became important in 1989 
thanks to the paper “Learning representations by back-propagating errors” written by Rumelhart, 
Hinton and Williams. To understand this algorithm, it is important to keep in mind Fig. 20. 

Fig. 20 Convolutional neural network representation. 

The process starts with a forward propagation process, this is what is explained in section 2.2.3. Inputs 
values are sended to hidden layer where linear and activation function are applied in each neuron, the 
obtained values go through the net following the same process until output layer value is calculated, 
in that moment, a hole forward propagation process has been carried out.  

Next step is to evaluate the predicted output against the exècted one. What measures the error between 
both outputs is called cost function and it could be a simple mean squared error or more complex 
functions such as cross-entropy one. 
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As mentioned in 1989 paper, backpropagation: “repeatedly adjusts the weights of the connections in 
the network so as to minimize a measure of the difference between the actual output vector of the net 
and the desired output vector”. 

So, backpropagation is the process of going back through the net adjusting its weights in order to 
reduce the cost function. The level of adjustment of each parameter is given by the gradient of the 
cost function respect that parameter. When we are working with CNNs, backpropagation algorithm 
also adjusts kernels’ values in order to reduce cost function. 

2.5.2. Epochs and batches 

In the training process, the model doesn’t carry out the backpropagation algorithm either with a 
unique input data or all the data available. The data set is divided into batches, so, only when all 
inputs which constituted a batch have gone forward the net, the backpropagation algorithm will be 
carried out and the model weights will be actualized. Processing in batches helps to save memory and 
improve training speed. 

Batch size is a parameter, defined by the model designer, which defines how many data inputs will 
constitute a batch. Typical batch sizes are 16, 32 o 64. 

An epoch is when all dataset has gone forward and backward through the model. That is to say, when 
N batches of inputs have been processed, being:  

𝑁 =
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡𝑠

𝑏𝑎𝑡𝑐ℎ	𝑠𝑖𝑧𝑒  

2.5.3. Optimizer and loss parameters 

An optimizer is the function used to adjust weights in backpropagation algorithm. There are a lot of 
optimizers such us gradient descent, stochastic gradient descent, Adam, etc. In this paper, Adam 
optimizer will be used as it is one of the most effective ones as it can be seen in Fig. 21. 

Fig. 21 Some optimizers comparison 
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Adam optimizer’s particularity is that it updates the learning rate for each individual weight in the 
net. 

Loss parameter defines 5the function used to express the cost (error) of the model. In this paper binary 
cross entropy will be used. On the one hand, binary cross entropy is the negative mean of the 
logarithms of corrected propabilities (pc). Being corrected probabilities, the probability of a prediction 
to belongs to the expected output. 

Binary cross entropy: 

𝐶𝑜𝑠𝑡(𝑝() = −
1
𝑁&log	(𝑝()

)

!&'

 

2.6. Metric parameters 

To evaluate how good is a machine learning algorithm we can used different parameters to come up 
with a global idea of how the model is working on testing set. 

- Accuracy: It is a mesure of how many predictions our model had right. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

- Recall: It is the number of true positives (TP) divided by the total number of elements which 
should belong to the positive class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃 

- Precision: It measures how many positive cases were predicted correctly. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

- F-score. It is the harmonic mean between Precision and Recall 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 +	12 (𝐹𝑃 + 𝐹𝑁)
 

2.7. Transfer Learning and fine-tuning 

Transfer learning is a deep learning method which is based on the use of a pre-trained CNN, with 
presaved weights from a previous training with a large and general dataset. This method follows the 
intuition that if a model is trained on a general enough dataset, it will be a good tool to obtain 
characteristics of the visual world and it will be able to solve different kind of problems by using 
these visual characteristics. There are two main ways of applying transfer learning: 

- Feature extraction: Use the pretrained model to obtain characteristics from new examples, 
then a classifier is added at the top and it will be trained from scratch. So, the pretrained 
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weights of the CNN will be locked during the training process and only the classificatory 
weights will change their value. 

- Fine tunning: This method unfreezes some layers of the pretrained model in order to train 
their weights at the same time of the classifier ones. This is computationally more expensive, 
but it obtains quite good results. 

2.8. CNN architectures 

When is time to face a computer vision problem it is not worth trying to create a specific CNN that 
fits the problem. There are many CNNs created by research teams which are tested and approved by 
all scientic community and will fit the problem to be faced. 

2.8.1. ResNet 

In CNN it is commonly proposed that “the deeper the better”, this makes sense as the models have 
more parameters to adapt to different visual situations. However, at a certain depth, it makes no sense 
in continuing increasing the number of layers because generalization becomes a complex task for the 
model. 

In this context, ResNet solve the problem of vanishing gradient, which make the gradients go to 0 
when nets are too deep. These 0 gradients cause the parameters to be static, stopping the learning 
process. 

There are different sizes of ResNets as we can see in Fig. 22. 

 

Fig. 22 ResNet sizes. 
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 ResNet network starts with one standard convolutional block, but what make different to this network 
are the following convolutional layers which are based in the repetition of blocks as the one shown 
in Fig. 23. 

As we can see in Fig. 24, by applying this process ResNet ensure that the number of layers remain 
costant in each layer, at the same time, it increases the number of operations. Adding the input tensor 
to the output one in each repetition is essential for the mentioned purpose. 

2.8.2. MobileNet 

 MobileNet is a lightweight net created in order to get the best possible efficiency between size and 
accuracy. This net was created for tasks which must be run in embebed or mobile systems such as 
robotics, self-driving, augmented reality, etc. 

Fig. 24. ResNet50 example block 

Fig. 23 ResNet34 representation 
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Mobile net is constituted by the repetition of a type of block called the MobileNet block, this repetition 
is preceded by a standard convolution. 

This block is made up of the following operations: 

- Depthwise convolution: It is a type of convolution in which a different filter is applied for 
each input channel while standard convolution applies multiple layer filters with the same 
number of layers as channels. 

- In MobileNet V2, the 1x1 convolution (called pointwise convolution) reduces the number of 
channels. 

- Batch normalization: It normalizes its inputs with some trainable parameters and with their 
mean and standard desviation. 

- ReLU: activation function which converts into 0 all negative numbers 

Another important feature of MobileNet is the residual connections between the bottleneck layers, 
which are the layers made up of few layers compared with their predecessors. 

2.8.3. NasNet 

Neural Search Architecture (NAS) is the new paradigm of neural networks, its goal is to use AI to 
design AI. One of the most challenging tasks by the time of facing a machine learning problem is to 
choose the appropriate network architecture; this is what NAS is solving.  

NasNet is not a predefined network, it is able to change its architecture and its block structure using 
machine learning algorithms in order to achieve the highest performance. 

Generally, Nas involves three components: 

- Search Space. It defines the possible architectures and block structures that the net is going to 
try. It is divided into Global Search Space (architecture-based search) and Cell-based Search 
Space (which defines the block structure). 

Fig. 25 MobileNet block. 
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- Performance Estimation. It measures the performance of the model proposed by the Search 
Space. 

- Search Strategy. Using different algorithms, it finds the best strategy to find the most 
appropriate architecture.  

2.8.4. Inception Net 

Power CNNs are called to be large; this is the principle followed by Inception Net. However, by the 
time of developing a net, researchers must be cautious because just increasing net depth would lead 
to overfitting.  

Inception Net is based on the repetition of the characteristical Inception blocks preceded by a standard 
convolution block. This first convolution operations help to reduce de dimensions of the input by 
increasing the number of channels. 

Inception block applies parallel operations to the input, these operations are different types of 
convolutions and a max pooling. After this operation process, all the results generated will be 
concatenated to create a final block output. This concatenation is possible because the dimension of 
the input is constant by adding to it the necessary padding in each convolution or pooling. This block 
lets the model to extract “different kind” of information without going deeper in the net. 

2.8.5. Inception-ResNet V2 

This type of network is based on joining both filosophies: Inception and ResNet, so the functional 
blocks include parallel operations observed in Inception network and the input summatory at the end 
of this operations. 

Fig. 26 Inception block 
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2.8.6. EfficientNet 

EfficientNet is able to scale its dimensions (width, depth and resolution) according some fixed 
scalling coefficients. EfficientNetB0, which is the simplest one, is based on MobileNet structure with 
some squeeze and excitation blocks. From B0 to B7, there are different complexity networks. In this 
paper EfficientNetB1 will be used. 

2.9. Diabetic Foot Ulcer (DFU) database 

DFU database is a public database for the purpose of research under the approval from the UK 
National Health Service (NHS) Re-search Ethics Committee (REC). Due to the application made by 
Professor Vidas Raudonis, the dataset was shared with me in order to use it for research purposes. 
This dataset consists of 5955 images of diabetic foot patients where we can find healthy skin and 
unhealthy skin due to ulcers or ischemia produced by diabetic foot disease. These pictures were taken 
in Lancashire Teaching Hospital making use of three different cameras:  Kodak DX4530, Nikon 
D3300and Nikon COOLPIX P100. The images were acquired at around 30-40cm using parallel 
orientation to the skin plan and avoiding the use of flash as main source of light. An image example 
of each group will be shown in following figure. 

Fig. 27.Database examples. 

  
No Infection or ischemia Infection 

  
Ischemia Infection and ischemia 
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This database has been used for several research papers, some of the most representative ones will be described 
in following sections. 

2.9.1. “Deep learning in diabetic foot ulcers detection: A comprehensive evaluation” by Moi 
Hoon Yap [1] 

This paper is based in the application of different object detection algorithms to the DFU database in 
order to detect the wound position in case it is present in the picture. The deep learning algorithms 
applied are: Faster R–CNN, YOLOv3, YOLOv5, and EfficientNet. Descriptions of an ensemble 
method and a new Cascade Attention DetNet were implemented. The working model is always the 
same during the hole paper, being described in the following steps: 

- Data augmentation. Due to the heterogeneity of the taken pictures and the small amount of 
them, some data augmentation techniques were used such us blurring, brightness scaling or 
rotation transformations. 

- Model training and implementation. The model is trained by the dataset images and the ones 
produced using data augmentation techniques. 

- Post-processing. Some post processing techniques such as test-time augmentation is used to 
improve accuracy, added to the application of an ensemble method which is able to combine 
predictions from different models. 

 In Fig. 28. we can see: “A comparison of ensemble methods with different combinations of object 
detection frameworks, where FRCNN is Faster R–CNN, DetNet is CA-DetNet, EffDet is EfficientDet 
and ‘ALL methods’ represents an ensemble method based on Faster R–CNN, CA-DetNet, 
EfficientDet, YOLOv3 and YOLOv5”. 

As we can see the best result has been obtained by making used of post-processing stages detecting 
skin lesions but no differencing between ischemia or ulcer and neither between its grades or stages. 

 

Fig. 28.Results obtained by the research. 
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2.9.2. “DFUC 2020: Analysis Towards Diabetic Foot Ulcer Detection” by Bill Cassidy [2] 

This article is very similar to the previous one, it makes use of several deep learning algorithms in 
order to detect ulcers in human skin using DFU dataset. In this case results are more limited in terms 
of stats (compared with previous paper), as post-processing methods are not applied to improve 
performance. In this case the following algorithms have been used: Faster R-CNN, YOLOv5 and 
EfficientDet. From this work we can get the results which are shown in Fig. 29. 

We can conclude that results are quite similar to previous ones and the algorithms are not able to 
detect ischemia/infection or ulcer grades on human skin. 

2.9.3. DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification by M. 
Goyal, N. D. Reeves, A. K. Davison, S. Rajbhandari, J. Spragg and M. H. Yap.[3] 

This work has a different point of view from the previous ones, its goal is to develop a custom 
convolutional neural network for image classification which is called DFUNet. This net is able to 
classify human skin between two groups, normal and anormal. This paper doesn‘t face the problem 
as an object detection problem, actually it faces it as an image classification one. Train images show 
parts of the human body containin DFU and healthy skin with no background artifacts, so the 
algorithm doesn‘t have to detect de location of the object, it only has to classificate between two 
groups.  

DFUNet reduces its network depth by increasing the size of the convolution kernel by appliying 
parallel convolution. This type of convolution extracts concatenate information from the inputs by 
applying to it different filters in parallel. Previously to this layer, traditional convolution is applied to 
the input data. Finally, a dense layer is applied. 

Fig. 29. Performance of the benchmark algorithms. FRCNN represents Faster R-CNN. 
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Results obtained by this method improve the ones shown in previous works, they are provided in the 
following figure. 

2.9.4. Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques 
by Manu Goyal, Neil D.Reeves, Satyan Rajbhandari, Naseer Ahmad, Chuan Wang and Moi 
Hoon Yap [4] 

This work is based on solving an image classification problem by the application of several machine 
learning algorithms twice in order to make two binary classifications: ischemia/non-ischemia and 
ulcer/non-ulcer. These algorithms are trained by around 1500 images, the data imbalance appreciated 
at this images is solved using data augmentation before training as an upsampling technique. 
Networks are the following ones: BayesNet, Random forest, Multilayer perceptron, InceptionV3 
(CNN), ResNet50 (CNN) and InceptionResNetV2 (CNN). In addition, ensemble method is applied 
as a post-processing technique to increase performance. The results are the following ones: 

Fig. 30. DFUNet and GoogLenet results. 

Fig. 31. DFUNet architecture. 
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2.9.5. Summary 

In previous papers, we can observe that DFU database has been used for wound detection as an object 
detection problem, for normal and anormal skin classification and for ischemia an infection 
recognition as a classification problem. In this case, according to the wanted solution, the DFU 
database will be used to train a model which can detect both: ischemia and infection.  
 
According to the purpose of this work, it is acceptable to think that the best way of facing the problem 
is a classification one, as the “object recognition task“ is carried out by the person who would take 
the picture. Then, this image is normalized so a classification algorithm would achieve the best 

Fig. 33 Performance of binary classification of ischemia. 

Fig. 32 Performance of binary classification of infection. 
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performance. In this context, reference [4] is the paper where this project will be landed.  In this work, 
we will try to improve results obtained in article [4] without using upsampling technique for solving 
imbalance problem. In addition, we will look for a reduced-size model as it would be an important 
characteristic at the time of implementing the algorithm in underdeveloped regions. 
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3. Working environment 

3.1. Python 

Python and R are the most common programming languages in the field of machine learning and data 
science. Specifically, in computer vision tasks, python is a must use. This work will be completely 
developed using python as programming language. As it can be read in python organization official 
web: “Python is an interpreted, object-oriented, high-level programming language with dynamic 
semantics. Its high-level built-in data structures, combined with dynamic typing and dynamic binding, 
make it very attractive”. There are plenty of machine learning libraries in python, the ones used in 
this work will be introduced below. 

3.1.1. Tensorflow 

Tensorflow is a python library which contains all necessary tools to carry out almost every single step 
when solving a machine learning problem is needed. It allows to: create neural networks (high-level 
or low-level), train models, test models, carry out data augmentation techniques, etc. In this paper a 
lot of functions from this library will be used and explained. 

3.1.2. NumPy 

It is a scientific computing library, which constitutes a highly powerful way to work with 
multidimensional data. It is based in objects with plenty of methods which are designed to make 
algebraic operations in a faster and more intuitive way. By the time of introducing data into the 
machine learning algorithms, all of it will be introduced as a NumPy object. 

3.1.3. OpenCV 

As its name indicates (Open Source Computer Vision Library), it is a library which includes more 
than 2500 algorithms which make possible working with images for computer vision problem 
solving. 

3.1.4. Scikit-learn 

Scikit-learn is a python library which contains many functions for machine learning problem solving. 
Tensorflow and Scikit-learn are the two most used machine learning python libraries. 

3.2. Google Colaboratory  

Google colaboratory is a tool to write python tool through the browser especially suitable for machine 
learning, education and data analysis. In addition, it provides online computational capacity, 
including GPUs and large RAM and disk capacity. Formally, Google Colaboratory is a hosted Jupyter 
notebook service which permit users to access this software without downloading it.  

The code on this paper will be entirely run in Google Colaboratory Pro which is a subscription which 
includes better GPUs and storage capacities (RAM: 25.46GB and disk: 166.83GB). 
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4. Binary classification for infection and ischemia recognition 

The problem will be faced both: as two binary classification problems and as a multilabel 
classification problem. On the one hand, in binary classification problem we will obtain one output 
bit which will determine if we have or not a specific object in the input picture (in this case: infection 
and ischemia). On the other hand, in multilabel classification problem we will have two output bits 
which will determine if we have or not ischemia and if we have or not infection in the output picture. 
Attending to what we have explained we will develop two binary classification algorithms and one 
multilabel classification algorithm. 

Below, two independient python code will be exposed (ischemia and infection), they are executed in 
different scripts, so it is possible to find variables with the same name. 

4.1. Dataset preparation 

4.1.1. Infection imbalance solving 

In DFU dataset we have 5955 images as we mentioned in section 2.9, attending infection and non-
infection cases we will have the following representation: 

For machine learning algorithms it is important to have a balanced dataset with same representation 
of the classes that we are going to predict. If we have an imbalanced dataset the algorithm will obtain 
a good accuracy by always predicting the larger class, but this algorithm won’t face properly our 
problem. In this case, attending infection and non infection separation we have 3176 infection cases 
and 2779 non-infection cases, constituting the 53% and the 47% of the hole dataset, respectively. 
This is not a completely imbalanced system, but we are going to make both classes to have 50% of 
the hole amount of data by down sampling the infection class (as we would lose only 6% of the data).  
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Fig. 34 Dataset division for infection recognition. 
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4.1.2. Ishcemia imbalance solving 

As metioned before, DFU dataset is made up of 5955 images, for binary infection classification the 
dataset was balanced, however, for ischemia binary classification this is completely different. As it is 
shown in Fig. 35, there is a significant imbalance as there are 879 ischemia cases and 5076 non-
ischemia cases. 

This inconvenience will be solved by downsamplig the majority class to the number of examples of 
the minority class. It is important to express why data augmentation is not applied to upsample the 
minority class. Data augmentation in computer vision problems is not applied before training in order 
to make bigger the amount of data, what it is applied is real-time data augmentation.  

Real-time data augmentation is based on randomly generating batches of augmented images 
(rotatations, zooms, shears, etc) from the training set, this way in each epoch the model is receiving 
different images. This technique is quite positive for avoiding overfitting. Thus, the network will not 
receive images from training data but only a randomly augmentation of them in each epoch. 

Applying data augmentation to the minority class in order to balance the dataset would create adverse 
effects. The goal of machine learning algorithms is to create a model able to generalize so that it can 
predict a correct output from a real-world input, to obtain this purpose it is essential to have a wide 
database able to represent in a general way problem inputs. By applying previous data augmentation, 
an homogeneous database made up of images with very similar visual characterisitcs is being created. 
Consequently, we will obtain apparently quite good results in our data but very poor ones with inputs 
out of our database. 
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4.1.3. Python code 

When images from Google Drive are downloaded, it may suffer variations in their order, so we read 
an order file to make it constant and compatible with Y labels. As we can see we are obtaining list of 
images which will be later processed. 

Now it is time to import Y labels, which will be downloaded as an image format of 5955x4, as we 
can see in Table 2. 

By default cv.imread() function reads the image format as BGR so we are obtaining a 5955x4x3 
vector, by applying a colour space transformation into gray space we will obtain the desired 5955x4 
vector. 

As shown in section 2.9, the dataset is divided into 4 groups “no infection or ischemia”, “only 
infection”, “only ischemia”, “both”. So, Y labels describe those four groups in the following way:       
[1 0 0 0], [0 1 0 0], [0 0 1 0] and [0 0 0 1] respectively. Each one of the following algorithms create 
two independent lists of ischemia and non-ischemia images and infection and non-infection images.  
 

 

Table 1. Importing input images 

file1=open("/content/gdrive/My Drive/TFG/DFUC2021_train/orden.txt","r")  
file1_str=file1.read()  
order = ast.literal_eval(file1_str) 

train_images = [] 
for item in orden: 
  img = cv.imread('/content/gdrive/My Drive/TFG/DFUC2021_train/images/'+item) 

  train_images.append(img) 
 

Table 2 Downloading Y labels 

y_input_bgr=cv.imread('/content/gdrive/My Drive/TFG/DFUC2021_train/y.png') 
y_cv = cv.cvtColor(y_input_bgr, cv.COLOR_BGR2GRAY) 

Table 3 Separating input images for infection recognition. 

y_list=[] 
infection=[] 
no_infection=[] 

i=0 
for item in y_listtype: 
  if item==[1,0,0,0]: 

    no_infection.append(train_images[i]) 
  elif item==[0,1,0,0]: 

    infection.append(train_images[i]) 
  elif item==[0,0,1,0]: 
    no_infection.append(train_images[i]) 

  elif item==[0,0,0,1]: 
    infection.append(train_images[i]) 
  i+=1 



47 

Now, downsampling can be done by simply adding desired elements from both lists. Then, the list of 
images will be converted into a NumPy array as it is essential to introduce into the CNN that type of 
data. 

 

NumPy array of floating values is created. 

To create the new vector of characteristics, it will be concatenated 1s to a list as many times as images 
there are in down sampled infection list. The same process will be carried out for 0s. Then the list is 
converted into a NumPy array of floating values. 

Table 4 Separating input images for ischemia recognition. 

y_list=[] 

ischemia=[] 
no_ischemia=[] 
i=0 

for item in y_listtype: 
  if item==[1,0,0,0]: 
    no_ischemia.append(train_images[i]) 

  elif item==[0,1,0,0]: 
    no_ischemia.append(train_images[i]) 

  elif item==[0,0,1,0]: 
    ischemia.append(train_images[i]) 
  elif item==[0,0,0,1]: 

    ischemia.append(train_images[i]) 
  i+=1 
 

Table 5. Converting into a NumPy array for infection recognition. 

X = np.array(no_infection + infection[:-400], np.float32) 
 

Table 6 Converting into  NumPy array for ischemia recognition. 

X = np.array( ischemia+no_ischemia[:-4200], np.float32) 
 

Table 7. Creating characteristic vector for infection recognition. 

y_list=[] 
for i in range(len(infection[:-397])): 

  y_list.append(1) 
for i in range(len(no_infection)): 
  y_list.append(0) 

 
y = np.array(y_list, np.float32) 
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4.2. Splitting the data 

In data science and machine learning is quite important to evaluate and test models in order to know 
how they are going to behave in real world problems. Typically, data is divided into two groups: 
90/80% for training and 10/20% for validation and testing.  

Focusing on validation data, it is used to evaluate a model at the same time of training, always at the 
end of an epoch. The model doesn’t learn from this data as it only goes through the net in a forward 
way. However, many times this validation data is used to stop the training if we are not obtaining 
better results than previous epochs, so, somehow it is influencing the model. 

Due to previous reason, the most correct way to split the data would be in three groups: training, 
validation and testing. In this paper, data will be splitted in 80% training, 10% validation and 10% 
testing as it is shown in Table 9. 

Train_test_split() is a function from sklearn library which is able to split data randomly. The argument 
random_state refers to the seed to make the random separation. 

4.3. Data augmentation 

Data augmentation is a term which refers to the action of create artificial data making some 
mathematical operations to the dataset. In the field of computer vision, these mathematical operations 
can be translated into visual ones as: rotations, zooms, height and width shifts and shears. 

 

Table 8 Creating characteristic vector for ischemia recognition 

y_list=[] 

for i in range(len(ischemia)): 
  y_list.append(1) 

for i in range(len(no_ischemia[:-4200])): 
  y_list.append(0) 
 

y = np.array(y_list, np.float32) 
 

Table 9 Data splitting. 

X, X_test, y, y_test = train_test_split( 
   X,  
   y,  

   test_size = 0.10, 
   random_state = 32) 
X_training, X_validation, y_training, y_validation = train_test_split( 

   X,  
   y, 

   test_size = 0.10,  
   random_state = 32) 
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Fig. 36 Data augmentation transformations. 

In this work, the function ImageDataGenerator() from tensorflow library will be used to carry out 
in-place data augmentation. This function can generate batches of images using real-time data 
augmentation. It returns an iterator which will be called at training time. This is a great advantage, as 
memory costs are small. 
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Next step is to create the iterator, which will be called by the training function, using the method 
datagen.flow(). 

4.4. Proposed network 

For this purpose, fine tuning technique will be used as it is the best technique to obtain quite good 
results with a limited dataset. In addition, the problem will be faced with different CNNs in order to 
create a final ensemble method using all of them. Below, the general method will be explained taken 
as example ResNet101 but it will be the same for all CNNs. 

First step to apply fine tunning to a specific CNN is to download the net with pretrained weights. That 
is what the following python code does: 

From tensorflow library we are able to download the architecture with predefined weights which are 
trained in ImageNet dataset, which is a public database with a number of images around 1.5 million 
belonging to 1000 classes. In this piece of code, it is also defined the input image dimension: 
(224,224,3). 

Next step is to make this pretrained model to fit our problem by adding a classification layer. 

In Table 13, it is shown how the final net is built. First, we have to unlock for training all parameters. 
Then by applying GlobalAveragePooling2D() function from tensorflow library we are converting the 
output of the net into a one dimension vectior by making an average operation between all the output 
layers. Finally, the unique output unit is added; preceded by a dense layer of 32 neurons. 

Table 10 Creating data generator. 

datagen = ImageDataGenerator( 

    rotation_range=45, 
    width_shift_range=0.25, 
    height_shift_range=0.25, 

    shear_range=20, 
    zoom_range=[0.6, 1.4], 

) 
 

Table 11 Creating data augmentation iterator 

data_gen_entrenamiento = datagen.flow( 

   X_entrenamiento,  
   y_entrenamiento,  
   batch_size=32) 

 

Table 12 Downloading the CNN. 

from tensorflow.keras.applications.resnet import ResNet101 
 

base_model = ResNet101(weights="imagenet", include_top=False, 
  input_tensor=Input(shape=(224, 224, 3))) 
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Last part of the code locks some parameters of the net, process which improves training duration and 
accuracy. 

As it is shown in Fig. 37, we have around 43 million parameters of which 33 million will be trainable. 
In all CNNs around 20% of the parameters will be locked for training because it increases 
performance as it has been observed empirically. However, NASNet will not have locked parameters. 

 

 

 

 

 

 

 

Table 13 Creating the complete net. 

base_model.trainable = True 
 
input = tf.keras.Input(shape=(224, 224, 3)) 

x = base_model(input, training=True) 
x = tf.keras.layers.GlobalAveragePooling2D()(x) 
x = Dense(32, activation='relu')(x) 

output = Dense(1, activation='sigmoid')(x) 
resnet101 = tf.keras.Model(input, output) 

 
fine_tune_at = 150 
for layer in base_model.layers[:fine_tune_at]: 

  layer.trainable = False 
 

Fig. 37 Final CNN summary based on ResNet 101. 
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Following step is to train the model, which is made by these lines of code: 
 

With compile() method from tensorflow library we declare optimizer, loss function and metrics as it 
was detailed in section 2.5. 

Callbacks parameter are functions which can be added to the training process. In this case, 
EarlyStopping() function has been added, which let the model to stop before the predefined epochs 
are finished if the validation loss does not improve in a predefined number of epochs (which is defined 
using patience parameter). 

 

 

 

 

 

 

 

 

 

 

Table 14 Model training. 

Mobile_fine.compile(optimizer='adam', 
                    loss='binary_crossentropy', 
                    metrics=['accuracy'])  

 
#------------------------------------------------------------------ 
from keras.callbacks import EarlyStopping 

 
early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1) 

callbacks=[early_stop] 
 
history=Mobile_fine.fit( 

    data_gen_entrenamiento, 
    epochs=130, batch_size=32, 
    validation_data=(X_validacion,y_validacion), 

    steps_per_epoch=int(np.ceil(len(X_entrenamiento) / float(32))), 
    validation_steps=int(np.ceil(len(X_validacion) / float(32))), 

    #class_weight={0:1.0,1:2.74}, 
    callbacks=callbacks 
) 
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4.5. Networks’ results 

Below the results for each individual network will be exposed. 

4.5.1. Results for infection recognition 

ResNet101 

Using ResNet 101, the following graphs for accuracy and loss have been obtained. The number of 
epochs is 76 until validation loss is stabilised, Curves have an appropriate form, no overfitting can be 
appreciated. Training time is 1.35 hours and the model size is 415.5 MB.  

On testing data, the result obtained are the following ones. Precission and recall are balanced and 
accuracy obtained is high. 

 

 

 

 

Fig. 38 ResNet101 accuracy and loss 

Fig. 39. Testing data metrics and confusion matrix for ResNet101 
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MobileNet 

Using MobileNet, the following graphs for accuracy and loss have been obtained. The number of 
epochs is 64, from epoch 45 we can observe little bit of over fitting as the training loss continues 
decreasing but the validation loss stays costant. Training time is 0.87 hours which is the 60% of the 
one obtained in ResNet101due to the model size which is 23.7 MB.  

 

Fig. 40 MobileNet accuracy and loss. 

On testing data, the result obtained are the following ones. Performance is worst that in ResNet101 
but the model size is less. However, results are acceptable, so this network can be later used for the 
small-size solution. 

 

 

 

 

 

 

 

 

Fig. 41 MobileNet Metrics obtained on testing set and confusion matrix 
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Inception-ResNet V2 

Using Inception_ResNet V2, the following graphs for accuracy and loss have been obtained. The 
number of epochs is 126, from epoch 90 a stabilisation can be observed in accuracy a loss so training 
could have been stopeed then. Training time is 2.41 hours and the model size is 618.4 MB. 

 

Fig. 42 Inception-ResNet V2 accuracy and loss. 

On testing data, the result obtained are the following ones. Metrics obtained are balanced and very 
similar to ResNet ones. 

 

 

 

 

 

 

 

 

 

 

Fig. 43 Inception-ResNet V2 metrics obtained on testing set and confusion matrix. 
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NasNet 

Using NasNet, the following graphs for accuracy and loss have been obtained. The number of epochs 
is 125, training time is 5.66 hours and the model size is 975.7 MB. 

 

Fig. 44 NasNet accuracy and loss. 

On testing data, the result obtained are the following ones. Although this net is the biggest one, the 
results are good but not the best. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 45 NasNet metrics obtained on testing set and confusion matrix. 
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Inception net 

Using NasNet, the following graphs for accuracy and loss have been obtained. The number of epochs 
is 225, training time is 3.5 hours and the model size is 221.3 MB. Validation curves seem to start to 
be slightly constant, but maybe we could have obtained better results with a longer training time. 
However due to the computational cost compared with the metrics obtained, the training was stopped. 

 

Fig. 46 Inception accuracy and loss 

On testing data, the result obtained are the following ones. They are very poor if the model size is 
taken into account. 

 

 

 

 

 

 

 

 

 

Fig. 47 Inception net metrics obtained on testing set and confusion matrix. 
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4.5.2. Results for ischemia recognition 

ResNet101 

Using ResNet 101, the following graphs for accuracy and loss have been obtained. The number of 
epochs is 110, training time is 44 minutes and the model size is 415.5 MB. Curves are costant from 
epoch 40, however, due to the big number used for patience parameter in EarlyStopping() function 
the training wasn’t stopped. 

 

Fig. 48 ResNet101 accuracy and loss. 

On testing data, the result obtained are the following ones. Performance is outstanding in ischemia 
recognition as it has easier visual characteristics to be recognised. 

 

 

 

 

 

 

 

 

 

Fig. 49 ResNet101 metrics obtained on testing set and confusion matrix 
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MobileNet 

Using MobileNet, the following graphs for accuracy and loss have been obtained. The number of 
epochs is 80, training time is 25 minutes and the model size is 23.7 MB. We can observe instability 
in training and loss curves due to the small number of training examples.  

 

Fig. 50 MobileNet accuracy and loss. 

On testing data, the result obtained are the following ones. As happened in infection recognition, 
MobileNet results are poorer compare with bigger size models, although they are still useful. 

 

 

 

 

 

 

 

 

 

 

Fig. 51 MobileNet metrics on testing set and confusion matrix. 
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Inception-ResNet V2 

Using Inception_ResNet V2, the following graphs for accuracy and loss have been obtained. The 
number of epochs is 71, training time is 28 minutes and the model size is 618.4 MB. We can observe 
instability in both curves and how fast they become almost costant. 

 

Fig. 52 Inception-ResNet V2 accuracy and loss 

On testing data, the result obtained are the following ones. Results are outstanding, from 176 images 
only 13 are wrong predicted. 

Fig. 53 Inception-ResNet V2 metrics obtained on testing set and confusion matrix 
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NasNet 

Using NasNet, the following graphs for accuracy and loss have been obtained. The number of epochs 
is 83, training time is 1.25 hours and the model size is 975.7 MB. The curves seem to be the most 
unstable, however they aren’t due to the y axis scale as a quite good performance is obtained since 
very early epochs. 

 

Fig. 54 NasNet accuracy and loss. 

On testing data, the results are balanced and performance is high. 

 

  

 

 

 

 

 

 

 

 

Fig. 55 NasNet metrics obtained on testing set and confusion matrix. 
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Inception net 

Using Inception Net, the following graphs for accuracy and loss have been obtained. The number of 
epochs is 137, training time is 25 minutes and the model size is 221.3 MB. As happened before, 
curves reach stability at very early epochs as the visual recognition of ischemia is simpler task 
compare with infection. 

On testing data, the result obtained are the following ones. We can observe imbalance between recall 
and precision values, however it is acceptable. 

 

 

 

 

 

 

 

 

Fig. 56 Inception accuracy and loss. 

Fig. 57 Inception net metrics obtained on testing set 
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4.6. Ensemble method for binary classification 

Considering all networks’ predictions and making a simple algorithm, it is possible to improve 
performance by creating an ensemble method. Predictions will be based on the majority vote of the 
best three models in isxhemia and infection recognition (NasNet, ResNet and Inception-ResNet). 
Method implementation is carried out by the following code. The algorithm is very simple, prediction 
values are stored in a list which is converted into a NumPy array. Finally, all the predictions values 
are added, if the addition is greater than one the final output will be 1 if not it will be 0. 

4.6.1. Final metrics for infection recognition 

Using this method, it is possible to obtain the following results. As we can see, the results have 
improved from a maximum of 91% of accuracy to a 94%. 

  

Table 15 Ensemble method for binary classification algorithm 

y_np=[] 

for model in models: 
  y_np.append(model.predict(np.array(X_test, np.float32))) 

 
y_pred=[] 
y_elemen=[] 

for prediction in y_np: 
  for element in prediction: 
    if element>0.5: 

      y_elemen.append(1) 
    else:  

      y_elemen.append(0) 
  y_pred.append(y_elemen) 
  y_elemen=[] 

y_pred=np.array(y_pred) 
 
y_pred=y_pred.sum(axis=0) 

Y=[] 
for pred in y_pred: 

    if pred>1: 
      Y.append(1) 
    else:  

      Y.append(0) 
Y = np.array(Y, np.float32) 
 

Fig. 58 Ensemble method metrics obtained in testing set and confusion matrix. 
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4.6.2. Final metrics for ischemia recognition 

Using this method, performance is improved as we have obtained 2% better accuracy from 96% to 
98%. 

 

4.7. Results overview 

As we can see that results are outstanding, as we have obtained 98% of accuracy for ischemia 
recognition and 94% for infection recognition. However, the size of each ensemble method is 2GB, 
so for a hole wound detection we would need to use a 4GB-size model. Handling with this amount of 
data could be a limitation for many of mobile devices and computers so a hosted solution should be 
implemented. The model would be installed in a remote server, powerful enough to run the model, 
then, pictures will be taken and sent to the server via internet, where the prediction would be made.   

However, this model is called to be used in places where diabetic foot specialists are inaccessible, so 
it is appropriate to think that many of these places will be underdeveloped regions where internet 
access could be limited. In order to cover all possible situations, we will develop a small-size model 
that could be run in any mobile device without having to use a hosted solution.  

Final results for hosted solution are: 

Fig. 60 Final metrics for hosted solution. 

 

 

 

 

 

 

 Accuracy Precision Recall F1-score 

Infection 0.94 0.93 0.94 0.94 

Ischemia 0.98 0.99 0.97 0.98 

Fig. 59. Ensemble method metrics obtained in testing set and confusion matrix. 
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Some accurate and no accurate predictions for ischemia recognition: 

 

  

True positive True positive 

  

 

 

 

 

False positive False positive 

 

 

 

 

 

 

True negative True negative 

 

 

 

 

 

 

False negative False negative 

Fig. 61 Prediction examples for ischemia recognition. 
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Some accurate and no accurate examples for infection recognition: 

 

 

 

 

 

 

 

True positive True positive 

 

 

 

 

 

 

False positive False positive 

 

 

 

 

 

 

True negative True negative 
 
 
 
 
 
 
 
 
 
 

 

 

False negative False negative 

Fig. 62 Prediction examples for infection recognition. 
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5. Multilabel classification for infection and ischemia recognition 

Facing the problem as a multilabel recognition task reduces the size of the model by half, as only one 
algorithm will be needed in order to carry out the hole task. 

5.1. Dataset preparation 

5.1.1. Imbalance solving 

Multilabel classification algorithms are able to detect the presence or absence of several objects in a 
certain image, so using a unique CNN we are able to solve infection and ischemia recognition 
problem, reducing the final model size. As we are trying to detect two objects so our system output 
will be: [0 0], [1 0], [0 1], [1 1]. Each one of these outputs can be considered as a class so all of them 
must be balanced in order to obtain good results. However, a significant imbalance can be 
appreciated. 

Fig. 63. Dataset distribution for multilabel classification. 

As it was explained in section 4.1.2, solving imbalance with upsampling techniques could lead to 
misleading results. Due to this fact, using downsampling techniques would be the best options in 
order to appreciate more realistic results. So, only 226 images of each group will be introduced into 
the algorithm. It could seem to be few images, but they will be enough for a transfer learning method. 
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5.1.2. Python code 

As done in previous method, all data will be imported using the same process. 

Now, the dataset will be divided into 4 groups: “no infection or ischemia”, “only infection”, “only 
ischemia”, “both”. As we know, Y labels describe those four groups in the following way: [1 0 0 0], 
[0 1 0 0], [0 0 1 0] and [0 0 0 1] respectively. The following algorithms create four independent lists 
which will be later used to downsample the suitable groups.  

Now, downsampling can be done by simply adding the lists first 226 items. Then, list of images will 
be converted into a NumPy array as it is essential to introduce into the CNN that type of data. 

 

Table 16 Importing data. 

file1=open("/content/gdrive/My Drive/TFG/DFUC2021_train/orden.txt","r")  

file1_str=file1.read()  
order = ast.literal_eval(file1_str) 

train_images = [] 
for item in orden: 
  img = cv.imread('/content/gdrive/My Drive/TFG/DFUC2021_train/images/'+item) 

  train_images.append(img) 
 
y_input_bgr=cv.imread('/content/gdrive/My Drive/TFG/DFUC2021_train/y.png') 

y_cv = cv.cvtColor(y_input_bgr, cv.COLOR_BGR2GRAY) 
 

Table 17 Separating input into four groups 

case1=[0,0] 
case2=[1,0] 

case3=[0,1] 
case4=[1,1] 
y_list=[] 

ischemia_img=[] 
infection_img=[] 
both_img=[] 

any_img=[] 
i=0 

for item in y_listtype: 
  if item==[1,0,0,0]: 
    any_img.append(train_images[i]) 

  elif item==[0,1,0,0]: 
    infection_img.append(train_images[i]) 
  elif item==[0,0,1,0]: 

    ischemia_img.append(train_images[i]) 
  elif item==[0,0,0,1]: 

    both_img.append(train_images[i]) 
  i+=1 
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NumPy array of floating values is created. 

To create the new vector of characteristics, it will be concatenated [0 0], [0 1], [1 0], [1 1] to a list as 
many times as images of each group there are in down sampled list.  

5.2. Splitting the data 

Data will be splitted in 80% training, 10% validation and 10% testing, using the same function as in 
previous method. 

The same function as in previous method is used. 

5.3. Data augmentation 

As in previous sections, the function ImageDataGenerator() from tensorflow library will be used to 
carry out in-place data augmentation.  

Table 18 Creating input array for multilabel classification. 

X = np.array(ischemia_img+infection_img[:227]+both_img[:227]+any_img[:227],  

   np.float32) 
 

Table 19 Creating characteristic vector for multilabel classification. 

y_list=[] 

for i in range(len(ischemia_img)): 
  y_list.append([0,1]) 
for i in range(len(infection_img[:227])): 

  y_list.append([1,0]) 
for i in range(len(both_img[:227])): 
  y_list.append([1,1]) 

for i in range(len(any_img[:227])): 
  y_list.append([0,0]) 

   
y = np.array(y_list, np.float32) 
 

Table 20 Data splitting for multilabel classification. 

X, X_test, y, y_test = train_test_split( 
   X,  
   y,  

   test_size = 0.10, 
   random_state = 32) 
X_training, X_validation, y_training, y_validation = train_test_split( 

   X,  
   y, 

   test_size = 0.10,  
   random_state = 32) 
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Next step is to create the iterator, which will be called by the training function, using the method  
datagen.flow(). 

5.4. Proposed networks 

For this purpose, fine tuning technique will be used as it is the best technique to obtain quite good 
results with a limited dataset. The problem will be faced with different small-size CNNs in order to 
create a final ensemble method using all of them. Below, the general method will be explained taken 
as example MobileNet but it will be the same for all CNNs. 

First step to apply fine tunning to a specific CNN is to download the net with a pretrained weights. 
That is what the following python code does: 

We are using pretrained weights from tensorflow library as in the previous method. In this piece of 
code, it is also defined the input image dimension: (224,224,3). 

Next step is to make this pretrained model to fit our problem by adding a classification layer. 

Table 21 Creating data generator for multilabel classification. 

datagen = ImageDataGenerator( 

    rotation_range=45, 
    width_shift_range=0.25, 
    height_shift_range=0.25, 

    shear_range=20, 
    zoom_range=[0.6, 1.4],) 

Table 22 Creating data augmentation iterator for multilabel classification. 

data_gen_entrenamiento = datagen.flow( 
   X_entrenamiento,  

   y_entrenamiento,  
   batch_size=32) 
 

Table 23 Downloading the CNN  

from tensorflow.keras.applications import MobileNetV2 
 

base_model =  MobileNetV2(weights="imagenet", include_top=False, 
  input_tensor=Input(shape=(224, 224, 3))) 
 

Table 24 Creating the complete net  

base_model.trainable = True 

 
input = tf.keras.Input(shape=(224, 224, 3)) 
x = base_model(input, training=True) 

x = tf.keras.layers.GlobalAveragePooling2D()(x) 
x = Dense(32, activation='relu')(x) 
output = Dense(2, activation='sigmoid')(x) 
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The code is the same used for binary classification with the exception of the two-neuron output in 
order to classify into the four different groups. 

Last part of the code locks some parameters of the net, process which improves training duration and 
accuracy. As it is shown in Fig. 64, we have around 2.3 million parameters of which 1.9 million will 
be trainable.  

Following step is to train the model, which is made by these lines of code: 

resnet101 = tf.keras.Model(input, output) 

 
fine_tune_at = 150 
for layer in base_model.layers[:fine_tune_at]: 

  layer.trainable = False 
 

Table 25 Model training.  

Mobile_fine.compile(optimizer='adam', 
                    loss='binary_crossentropy', 
                    metrics=['accuracy'])  

#------------------------------------------------------------------ 
early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1) 

callbacks=[early_stop] 
 
history=Mobile_fine.fit( 

    data_gen_training, 
    epochs=130, batch_size=32, 
    validation_data=(X_validation,y_validation), 

    steps_per_epoch=int(np.ceil(len(X_training) / float(32))), 
    validation_steps=int(np.ceil(len(X_validation) / float(32))), 

    #class_weight={0:1.0,1:2.74}, 
    callbacks=callbacks 
) 

Fig. 64 Final CNN summary based on MobileNetV2 
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The code is exactly the same than the one used for binary recognition problem. The only parameter 
is worth talking about is the “loss” one. Each neuron of the output should behave as independent 
binary classification nodes so binary_crossentropy parameter is chosen. This loss function gives an 
independent real value from 0 to 1 for each neuron.  

5.5. Network’s results 

Three different CNNs have been trained in order to built the final ensemble method. In this section, 
individual CNN results will be presented. The algorithms used are: MobileNet, NASNet mobile and 
EfficientNet. 

As the amount of data is very small, the accuracy and loss graphics are very unstable so in this section 
will be omitted. 

MobileNet 

The model size is 23.7MB and the training time is 10 minutes. The results obtained are the following 
ones. 

The confusion matrices are the following ones: 

Fig. 66 Confusion matrix for infection recognition on the left and for ischemia recognition on the right using 
MobileNetV2. 

Applying accuracy formula, the following result is obtained for infection recgnition: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
38 + 36
91 · 100 = 81.3% 

Accuracy for ischemia recognition is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
36 + 40
91 · 100 = 83.5% 

 

 

Fig. 65 MobiletNet metrics for multilabel classification. 
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NASNet Mobile 

NASNet mobile is a model based in the same principles than the standard one but reducing the number 
of parameters, and therefore the size of the algorithm. The model size is 46.6MB and the training 
time is 14 minutes. The results obtained are the following ones. 

The confusion matrices are the following ones: 

Applying accuracy formula, the following result is obtained for infection recgnition: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
36 + 34

30 + 38 + 8 + 15 · 100 = 76.9% 

Accuracy for ischemia recognition is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
37 + 44
91 · 100 = 89% 

 

 

 

 

 

 

 

 

 

Fig. 67 NASNet Mobile metrics for multilabel classification. 

Fig. 68 Confusion matrix for infection recognition on the left and for ischemia recognition on the right using 
NASNet Mobile. 
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EfficientNet 

The model size is 70.6 MB and the training time is 6 minutes. The results obtained are the following 
ones. 

Fig. 69. NASNet Mobile metrics for multilabel classification. 

The confusion matrices are the following ones: 

Applying accuracy formula, the following result is obtained for infection recgnition: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
39 + 38
91 · 100 = 84.6% 

Accuracy for ischemia recognition is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
47 + 37
91 · 100 = 92.3% 

 

 

 

 

 

 

 

 

 

Fig. 70 Confusion matrix for infection recognition on the left and for ischemia recognition on the right using 
EfficientNet. 
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5.6. Ensemble method 

As used in section 4.6, an ensemble method will be used in order to improve performance. The 
algorithm used will be the same, all predictions will be based in the majority vote. The python code 
is presented below. 

 

 

Table 26 Ensemble method for multilabel classification. 

#----------------- making predictions-------------------------- 
y_np=[] 
for model in models: 

  y_np.append(model.predict(np.array(X_test, np.float32))) 
 

#------------------------obtaining binary predictions----------------- 
y_pred=[] 
y_elemen=[] 

for prediction in y_np: 
  for element in prediction: 
    if element[0]>0.5 and element[1]>0.5: 

      y_elemen.append([1,1]) 
    if element[0]>0.5 and element[1]<=0.5: 

      y_elemen.append([1,0]) 
    if element[0]<=0.5 and element[1]<=0.5: 
      y_elemen.append([0,0]) 

    if element[0]<=0.5 and element[1]>0.5: 
      y_elemen.append([0,1]) 
  y_pred.append(y_elemen) 

  y_elemen=[] 
y_pred=np.array(y_pred) 

 
#-----------------applying the mojority voting algorithm----------------- 
y_pred=y_pred.sum(axis=0) 

Y=[] 
for element in y_pred: 
    if element[0]>1 and element[1]>1: 

      Y.append([1,1]) 
    if element[0]>1 and element[1]<=1: 

      Y.append([1,0]) 
    if element[0]<=1 and element[1]<=1: 
      Y.append([0,0]) 

    if element[0]<=1 and element[1]>1: 
      Y.append([0,1]) 
 

Y = np.array(Y, np.float32) 
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The model size is 140.9 MB and the metrics obtained are the following ones. 

Fig. 71 Ensemble method metrics for multilabel classification. 

The confusion matrices are the following ones: 

Fig. 72 Confusion matrix for infection recognition on the left and for ischemia recognition on the right 
using ensemble method. 

Applying accuracy formula, the following result is obtained for infection recgnition: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
39 + 40
91 · 100 = 86.8% 

Accuracy for ischemia recognition is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙	𝐶𝑎𝑠𝑒𝑠 · 100 =
37 + 44
91 · 100 = 89.0% 

A we can see, using an ensemble method, an accuracy of 86.8% for infection and 89.0% for ischemia 
is obtained. However, using only the EfficientNet model results for ischemia recognition are better, 
this happens because other two models have a significant worse performance in this aspect, being 
prejudicial for the final model. On the other hand, infection results are improved using the ensemble 
method. 

5.7. Results overview 

In conclusion, to obtain the best possible results, the ensemble method will be used for infection 
recognition and the EfficientNet model will be used for ischemia recognition. Final model size is 
140.9 MB. Final metrics are:  

 Accuracy Precision Recall F1-score 

Infection 0.868 0.85 0.89 0.87 

Ischemia 0.923 0.94 0.92 0.93 
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Fig. 73 Results for multilabel classification solution. 

Some examples of multilabel ischemia and infection recognition: 

 

  

Ischemia: 0 (FN) 

Infection: 1 (TP) 

Ischemia: 0 (TN) 

Infection: 1 (FP) 

  

Ischemia: 1 (TP) 

Infection: 0 (TN) 

Ischemia: 0 (TN) 

Infection: 0 (FN) 

  

Ischemia: 1 (FP) 

Infection: 0 (FN) 

Ischemia: 1(TP) 

Infection: 1(TP) 

Fig. 74 Examples for multilabel recognition task. 

 
 
 



78 

Conclusions and results 

1. In this paper two methods to recognise ischemia and infection in diabetic foot wound have been 
created. Best results have been obtained with the model obtained in section 4, which has a total 
size of 4GB and its metrics are shown in Fig. 75. This algorithm would be useful to implement a 
hosted solution due to the computational capability required. 

2. Solution developed in section 6 obtains accurate results and it considerably reduces computational 
costs. As we can see in Fig 75, accuracy is reduced a 6% for ischemia recognition and a 7% for 
infection recognition by reducing the model size by a 96.5%. This model can be used in mobile 
and embebed devices. 

Fig. 75 Results compare with the model size. 

3. By implementing real-time data augmentation and avoiding using pretraining data augmentation 
to balance the dataset, models obtained are more likely to be used in real environments. 

4. After understanding the task and people needs, it is much more valuable to develop classification 
models in diabetic foot field rather than object detection models. Person who is taken the picture 
can follow some normalization steps. 

5. Google Colab is an essential tool to carry out this type of taks as it provides computational 
capabilities which are impossible to reach with standard computers. In this work Google 
Colaboratory Pro has been used, but in order to improve training times Google Colaboratory Pro 
+ could be considered. 

Improvements 

1. Due to dataset distribution, multilabel solution can be trained with a small dataset. On the other 
hand, using two binary classification algorithms allows to use a bigger database. For future works, 
trying to create a small-size model based on two classification algorithms could obtain good 
results. 

2. The creation of an algorithm able to classify the wound grading, would be an important step to 
create a tool which carries out a complete diabetic foot disease diagnosis. 

3. In future works, the models will improve their performance in real world applications by 
introducing more images into the database and repeating the training process. The more different 
images introduced in the training process the better general performance the models will achieve. 

 

                 Accuracy Precision Recall F1-score Model size 

Multilabel Infection 0.87 0.85 0.89 0.87 140.9 MB 

model Ischemia 0.92 0.94 0.92 0.93  

Classification Infection 0.94 0.93 0.94 0.94 4GB 

model Ischemia 0.98 0.99 0.97 0.98  
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