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ABSTRACT 
In the present work, new epoxy resin (ER) – ionic liquid (IL) dispersions have been 
obtained and their abrasion resistance has been determined by multiple scratch 
tests. The IL was added in a range of concentrations between 7 and 12 wt. %.After 
the scratch tests, the viscoelastic recovery and healing ability of the damaged 
surface has been monitorized using optical and electronic microscopy and 
profilometry. The results are discussed on the basis of the curing procedure and are 
related to mechanical, thermal and dynamic-mechanical properties, and to surface 
porosity of the new dispersions. 
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1.- INTRODUCTION 
There is an increasing interest in polymer nanocomposites with enhanced tribological 
performance due to their growing number of applications, from coatings to sliding 
parts. [1-3]. Epoxy resins combine toughness, high electrical resistance and thermal 
stability with ease of fabrication. Their applications range from electric and electronic 
systems, automotive parts, and aircraft components to biocompatible implants, 
protective coatings and adhesives [4]. 
It is well know that the tribological performance of epoxy resins is extremely poor due 
to their high brittleness, which induces severe wear by crack propagation and 
fracture [5]. 
Numerous precedents of self-repairing or healing epoxy resin systems [6-15] have 
been described. In most cases, the mechanism is that previously described [16], by 
releasing of curing agents which repair fracture cracks. 
Room temperature ionic liquids (ILs) have been used to obtain new nanocomposites 
with improved tribological performance [16-21]. Recently, ILs have also been used to 
modify epoxy resin [22-32]. 
In previous studies [16, 18-20], we have shown the prevention of sliding wear and the 
first self-healing of abrasion damage on epoxy resin induced by the presence of an 
IL.  
The main purpose of the present study is to determine the influence of the nature of 
the IL, the concentration of IL added to the epoxy resin and the curing process on the 
self-healing ability of the new nanocomposites.  
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2.- EXPERIMENTAL SECTION 
The preparation of epoxy composites and the experimental procedures have been 
previously described [19, 20]. In the case of ER+9%IL, two different methods have 
been used, the previously described one, and an alternative method where the curing 
process takes place under vacuum, in order to minimize porosity. 

3.- RESULTS AND DISCUSSION 
Effect of IL concentration 
Table 1 shows the evolution of the abrasion grooves on each of the materials 
obtained following the previously described method, without vacuum. In all cases, the 
initial abrasion resistance of the ER+IL materials is lower (in agreement with 
hardness reduction as seen in table 2). After 22 hours, while the scar on neat ER 
remains unchanged, the ER+IL show a remarkable healing effect which seems to 
increase with IL content, as it is maximum for ER+9IL. 

Table 1. Evolution of abrasion scars on epoxi resin and composites (cured wothiout 
vacuum) as a function of IL content. 

Material 0 hours 22 hours 
ER 

ER+7%IL 

ER+8%IL 

ER+9%IL 

As expected, the addition of the IL fluid phase reduces the hardness of the neat 
epoxy resin. An increase in the IL concentration further reduces hardness to reach 
the lowest values for the highest IL concentration, of a 9wt.% (table 2). 

Table 2. Hardness values for materials cured without vacuum 
Material ER ER+7%IL ER+8%IL ER+9%IL 

Hardness 
(Shore D) 

82.84 
(0.230) 

76.54 
(0.654) 

77.23 
(0.463) 

71.84 
(0.780) 

With the aim of studying the limit in the IL percentage that can be added to ER, the 
new ER+12%IL material was obtained. 
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Figure 1 shows the evolution of the abrasion groove on ER+12%IL (with a Shore D 
hardness of 75.8) with time. 

     a)           b)                 c)                      d) 

Figure 1. Evolution of the abrasion groove on ER+12%IL with time: a) 0 hours; 
b) 5 hours; c) 8 hours; d) 22 hours.

The presence of a 12 wt.% IL increases the self-healing effect, but the composite 
blend is not stable, as some IL exhudation was observed at room temperature.  

Effect of curing conditions. 
Figure 2 shows that when ER+9%IL is cured under vacuum conditions, removing the 
gas and minimizing porosity, no self-healing effect is observed after 22 hours. The 
porosity percentage has been measured using optical profilometry. 

a)  b) 

Figure 2. Abrasion groove on ER+9%IL cured under vacuum conditions: a) 0 hours; 
b) 22 hours.

ER+9%IL cured under vacuum shows a 10% increase in hardness with respect to the 
material cured without vacuum (table 3). 
Table 3 also shows the comparative results of porosity measurements on cross 
sections of both materials. 

Table 3. Porosity results 
ER+ 9%IL Number of pores /mm2

(standard deviation) 
Shore D 71.8 7.83 (0.99) 
Shore D 80.3 0.52 (0.05) 

Figure 3 shows the surface topography profiles on two sections of both ER+9IL 
materials, cured without and with vacuum respectively. 
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a) b) 

c) d) 

Figure 3. Surface topography images of cross sections of ER+9%IL: a) and b) Cured 
in vacuum; c) and d) Cured without vacuum. 

4.- CONCLUSIONS 
The results described here show that not only a threshold IL concentration is needed 
for the self-healing effect, but also a porosity network is necessary for the IL to reach 
the damaged surface.  
New studies are being carried out at the present moment with different IL 
compositions and curing processes, to optimize the abrasion damage reduction on 
the new epoxy resin nanocomposites. 
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