Show simple item record

dc.contributor.authorDurán Parada, Camilo Alejandro 
dc.coverage.spatialeast=9.173581800000001; north=48.7815142; name=Breitscheidstraße 2B, 70174 Stuttgart, Alemaniaes_ES
dc.description.abstractAccidents between a passenger vehicle and a heavy weight vehicle (HWV) stand out as one of the most dangerous ones. These often result in fatal injuries or the death of the passengers, due to higher dimension and weight differences. One possible accident situation is the underrunning of a smaller vehicle with the rear end of a heavy truck. To avoid these types of accidents important parameters have to be considered when designing the frame of the vehicles or the implementation of safety equipment. Front, side and rear underrun protections (RUP) are all examples of safety equipment that avoid the slippage of smaller vehicles beneath heavy truck frames. In Europe, the legal requirements of these are all fixed in regulations imposed by the United Nations Economic Commission of Europe (UNECE). Within the framework of this work, we will specifically analyse the regulation number R58 (revision 2), which contains all technical specifications for RUPs and all steps to a numerical test. Using a Finite Element (FE) analysis tool like ANSYS Mechanical, we will develop a computer model from scratch to simulate stress distribution of a RUP. The model is to be based on the test procedures specified in the R58 and the design of the RUP will be provided by the company “Laboratorio T´ecnico de Reformas S.A” (LTR). The main objective of this work is to provide the company with a simulative software which calculates accurate results, comparable to a real physical test. We will also check the strength resistance of the provided RUPs design and if this is capable of withstanding regulative loads. Our results concluded that this was not the case: the utilized screws, which served as union components for the RUP, fail before reaching maximum load. However, after some physical tests performed by the manufacturer, their RUP was also not able to withstand applied forces. The computational and physical results are subsequently similar. In order to verify the accuracy of the simulative program, further ten designs were tested with the same conditions as the first one. After observing promising results, the Entidad Nacional de Acreditaci´on (ENAC) approved the software for further usage and so the homologation procedure can be started.es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.title.alternativeAnálisis de la simulación de esfuerzos : un estudio de caso para el evaluación de un procedimiento de prueba de homologación para el diseño de la protección trasera contra empotramientoes_ES
dc.titleAnalysis of stress simulation : a case study for the evaluation of a homologation test procedure for the design of rear underrun protectiones_ES
dc.subjectVehículos automotoreses_ES
dc.subjectMotor vehicleses_ES
dc.subjectDiseño industriales_ES
dc.subjectIndustrial designes_ES
dc.subject.otherIngeniería Químicaes_ES
dc.contributor.advisorMoreno Nicolás, José Andrés 
dc.contributor.advisorGonzález Carpena, Antonio 
dc.description.centroEscuela Técnica Superior de Ingeniería Industriales_ES
dc.contributor.departmentIngeniería Mecánica, Materiales y Fabricaciónes_ES
dc.description.universityUniversidad Politécnica de Cartagenaes_ES
dc.subject.unesco3317 Tecnología de Vehículos de Motores_ES
dc.subject.unesco3313 Tecnología E Ingeniería Mecánicases_ES
dc.subject.unesco6109.01 Prevención de Accidenteses_ES
dc.contributor.convenianteUniversität Stuttgartes_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España