A neural-network method for the analysis of multilayered shielded microwave circuits
Author
Pascual García, Juan; Quesada Pereira, Fernando Daniel; Cañete Rebenaque, David; Gómez Tornero, José Luis; Álvarez Melcón , AlejandroResearch Group
Grupo de Electromagnetismo Aplicado a las Telecomunicaciones (GEAT)Knowledge Area
Teoría de la Señal y las ComunicacionesPublication date
2006-01Publisher
IEEE Microwave Theory and Techniques SocietyBibliographic Citation
PASCUAL GARCÍA, Juan, QUESADA PEREIRA, Fernando, CAÑETE REBENAQUE, David, GÓMEZ TORNERO, José Luis, ÁLVAREZ MELCÓN, Alejandro. A neural-network method for the analysis of multilayered shielded microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 54 (1): 309-320, Enero 2006. ISSN 0018-9480Keywords
Circuitos múltiplesFunciones múltiples de Green
Red neuronal
Circuitos impresos
Base radial de función de redes neuronales (RBFNN)
Circuitos blindados de microondas
Computer Aided Design (CAD)
Multiple Circuits
Multiple functions of Green
Neural Network (NN)
Radial basis function neural networks (RBFNN)
Armoured Microwave Circuits
Circuit board
Diseño asistido por ordenador
Abstract
In this paper, a neural-network-based method for the
analysis of practical multilayered shielded microwave circuits is
presented. Using this idea, a radial basis function neural network
(RBFNN) is trained to approximate the space-domain multilayered
media boxed Green’s functions used in the integral-equation
(IE) method. Once the RBFNN has been trained, the outputs of the
neural network (NN) replace the exact Green’s functions, during
the numerical solution of the IE. The computation of the RBFNN
output values is very fast in comparison with the numerical
methods used to calculate the exact Green’s functions. This paper
describes two novel strategies for efficiently training the RBFNN.
In the first strategy, the input space of the RBFNN is divided into
several spatial and frequency regions. The spatial subdivision is
extended for the first time to both observation and source regions.
In addition, the subdivision of the observation points regions is
applied in a novel manner ...
Collections
- Artículos [1255]
The following license files are associated with this item:
Social media