Show simple item record

dc.contributor.authorAlcaraz Aparicio, Manuel 
dc.coverage.spatialeast=-0.9783730000000332; north=37.6067457; name=Cartagena, Murcia, Españaes_ES
dc.date.accessioned2018-01-25T13:43:05Z
dc.date.available2018-01-25T13:43:05Z
dc.date.issued2016-07
dc.description.abstract[SPA] El problema de Henry es ya muy antiguo, pero sin duda, su estudio para el escenario más general no está cerrado pues la literatura científica sigue recogiendo aspectos nuevos sobre el mismo. Desde el primer momento, antes de ser aceptado como problema patrón por la comunidad científica en hidrogeología, Henry caracteriza su problema isótropo siguiendo las técnicas más o menos formales de adimensionalización clásica de las ecuaciones de gobierno, técnicas que conducen a dos parámetros adimensionales (a los que Henry no atribuye significado físico alguna) a los que añade la relación de aspecto sin justificación formal sino sólo por el hecho de ser adimensional. A continuación, asigna valores concretos a estos tres parámetros con criterios prácticos y para salvar los problemas de convergencia de los métodos numéricos al uso en aquellos tiempos. Otros autores posteriores y recientes han corregido estos valores y tratado de asignar significado físico a los (dos) parámetros deducidos de la adimensionalización. En 2014, Kalakan [2014] estudia la caracterización del problema dispersivo de Henry mediante técnicas de análisis dimensional con unos resultados que se reducen a los parámetros de Henry en el problema no dispersivo. Sin embargo, la consideración de una difusividad anisótropa efectiva (por efectos de la tortuosidad anisótropa de los canales de flujo), no abordada en la literatura sino a través del efecto de dispersión, no hubiera permitido expulsar la relación de aspecto como grupo adimensional independiente. Así, de considerar una difusividad anisótropa, todos los autores que han tratado de caracterizar este problema hubieran derivado un monomio adimensional más, lo cual se demuestra un resultado impreciso en esta memoria. Lo mismo hubiera ocurrido con el problema dispersivo. El objetivo de esta memoria es la deducción y verificación mediante simulaciones numéricas de los grupos adimensionales discriminados que caracterizan el problema de Henry no dispersivo, pero con anisotropía en la conductividad hidráulica y la difusividad efectiva. Como herramienta para esta caracterización se utiliza la adimensionalización discriminada de las ecuaciones de gobierno, una técnica formal que se ha mostrado muy efectiva en problemas complejos de otros campos de la ingeniería. Tras explicar los fundamentos de la adimensionalización discriminada, su aplicación al problema anisótropo de Henry conduce a cuatro nuevos grupos adimensionales discriminados (en los que no aparece la relación de aspecto) que se demuestra son los verdaderos grupos independientes que controlan los patrones de solución de este problema, es decir, los mapas de isolíneas de concentración y flujo estacionarios. La discriminación, por otro lado, permite asignar un significado físico preciso y un orden de magnitud a los grupos adimensionales derivados de ella. Tras verificar la veracidad de los grupos deducidos, se estudian sus reducciones a escenarios simplificados (incluyendo el problema original de Henry) en los que alguno de los coeficientes dimensionales del problema tiene una influencia despreciable. Se discuten los valores numéricos propuestos por Henry y el efecto de sus cambios en los patrones de solución del problema original. Se discuten también los patrones resultantes de asignar valor unidad a los grupos discriminados y la influencia de sus cambios (de valores) en los mismos patrones del problema anisótropo. De todo ello, se analiza la idoneidad del problema original de Henry como problema patrón desde el punto de vista de verificación de los códigos de computación en procesos de flujo y transporte de sal. Finalmente, se estudia la influencia de la longitud del dominio en los patrones y los cambios de estos patrones en los dos grupos discriminados emergentes en problemas en los que la longitud del dominio no influye en la solución (escenarios esbeltos); para estos escenarios, las cuñas de intrusión (difusión) y recirculación se muestran desacopladas, lo que plantea la necesidad de un estudio más profundo del problema: los dos grupos adimensionales deducidos no reproducen la complejidad manifiesta de los patrones de concentración y flujo. Sólo la introducción de nuevas referencias para la coordenada horizontal, relacionadas con las longitudes ocultas de las cuñas de intrusión y recirculación, y la reducción de las ecuaciones de gobierno a las regiones definidas por estas cuñas, podrían conducir a nuevos grupos adimensionales de los que cabe deducir expresiones para el orden de magnitud de las longitudes ocultas. [ENG] Henry`s problem is already ancient but, no doubt, its study for the most general scenario is not close since new aspects on the subject appear each year in the scientific literature. From the first moment, before to be accepted as benchmark by the hydrogeology scientific community, Henry characterizes his original isotropic problem following more or less formal mathematical techniques based on the classical nondimensionalization of governing equations, a tool that leads to two dimensionless parameters (to which he does not assigned any physical meaning) to which the aspect relation or geometric form factor is added by the only fact of being dimensionless. Then, Henry assigns particular values to these three parameters following practical criteria and with the aim of solving the convergence problems that emerge from the numerical methods of those years. Later authors and recent have slightly corrected these values and given physical meaning to the (two) parameters derived from nondimensionalization. In 2014, Kalakan [2014] studies the characterization of dispersive Henry problem by using classical dimensional analysis (pi theorem) with results that reduced to those of Henry for the nondispersive case. However, the assumption of an effective anisotropic diffusivity (caused by the tortuosity effects of the flow channels), not dealing with in the literature but through the dispersive effects, had no allowed to delete the aspect ratio as a dimensionless independent group. Thus, with the hypothesis of anisotropic diffusivity, all authors that have intended to characterize this problem had obtained the aspect ratio monomial as an independent group, a less precise result as it is proved in this memory. The same came be said in relation with the dispersive problem. The aim of this memory is the derivation and verification, by numerical simulations, of the discriminated dimensionless groups that characterize the non-dispersive Henry problem, but assuming anisotropy in the hydraulic conductivity and effective diffusivity. As the tool for this subject it is used the discriminated nondimensionalization of the governing equations, a formal technique that has been proved effective in complex problems in other engineering fields. After explaining the fundamentals of discriminate nondimensionalization, its application to anisotropic Henry problem provides the four new discriminate dimensionless groups (aspect ratio is not included separately in these numbers) that are the really independent true groups that rule the steady-state solution patterns, i.e., the concentration and stream function flow iso-line maps). In addition, discrimination allows to attribute a precise physical meaning and order of magnitude to the dimensionless group derived from its application. After verifying the veracity of the derived groups, their reduction to simplified scenarios (including the original Henry problem) in which some of the physical properties has a negligible influence is investigated. Numerical values of the dimensionless parameters proposed by Henry and the effect of their changes in the solution patterns of the original problem are discussed. Also, resulting patterns derived from assigning a value of unity to the discriminated groups as well as the influence of their (value) changes in those patterns for the anisotropic problem are investigated. From this, the suitability of the original Henry problem, as benchmark, is also discussed from the point of view of the verification of the standard computational codes in these coupled fluid and salt transport process. Finally, the influence of the length of the domain as well as the changes in the values of the two parameters that result from the assumption of very large (horizontally extended) domains, in the steady state patterns, are also studied theoretical (nondimensionalization) and numerically. For these scenarios, the intrusion (diffusion) and recirculation wedges are decoupled demonstrating the need of a deeper understanding: the two dimensionless groups derived from nondimensionalization does not reproduce the emergent complexity of the concentration and flow steady patterns. Only the introduction of new references for the horizontal coordinate, related to the ‘hidden’ lengths of the intrusion and recirculation wedges, as well as the simplification of the governing equations to the subdomains defined by these wedges, could lead to new dimensionless groups from which the order of magnitude of these hidden quantities could be obtained.es_ES
dc.description.abstract[ENG] Henry`s problem is already ancient but, no doubt, its study for the most general scenario is not close since new aspects on the subject appear each year in the scientific literature. From the first moment, before to be accepted as benchmark by the hydrogeology scientific community, Henry characterizes his original isotropic problem following more or less formal mathematical techniques based on the classical nondimensionalization of governing equations, a tool that leads to two dimensionless parameters (to which he does not assigned any physical meaning) to which the aspect relation or geometric form factor is added by the only fact of being dimensionless. Then, Henry assigns particular values to these three parameters following practical criteria and with the aim of solving the convergence problems that emerge from the numerical methods of those years. Later authors and recent have slightly corrected these values and given physical meaning to the (two) parameters derived from nondimensionalization. In 2014, Kalakan [2014] studies the characterization of dispersive Henry problem by using classical dimensional analysis (pi theorem) with results that reduced to those of Henry for the nondispersive case. However, the assumption of an effective anisotropic diffusivity (caused by the tortuosity effects of the flow channels), not dealing with in the literature but through the dispersive effects, had no allowed to delete the aspect ratio as a dimensionless independent group. Thus, with the hypothesis of anisotropic diffusivity, all authors that have intended to characterize this problem had obtained the aspect ratio monomial as an independent group, a less precise result as it is proved in this memory. The same came be said in relation with the dispersive problem. The aim of this memory is the derivation and verification, by numerical simulations, of the discriminated dimensionless groups that characterize the non-dispersive Henry problem, but assuming anisotropy in the hydraulic conductivity and effective diffusivity. As the tool for this subject it is used the discriminated nondimensionalization of the governing equations, a formal technique that has been proved effective in complex problems in other engineering fields. After explaining the fundamentals of discriminate nondimensionalization, its application to anisotropic Henry problem provides the four new discriminate dimensionless groups (aspect ratio is not included separately in these numbers) that are the really independent true groups that rule the steady-state solution patterns, i.e., the concentration and stream function flow iso-line maps). In addition, discrimination allows to attribute a precise physical meaning and order of magnitude to the dimensionless group derived from its application. After verifying the veracity of the derived groups, their reduction to simplified scenarios (including the original Henry problem) in which some of the physical properties has a negligible influence is investigated. Numerical values of the dimensionless parameters proposed by Henry and the effect of their changes in the solution patterns of the original problem are discussed. Also, resulting patterns derived from assigning a value of unity to the discriminated groups as well as the influence of their (value) changes in those patterns for the anisotropic problem are investigated. From this, the suitability of the original Henry problem, as benchmark, is also discussed from the point of view of the verification of the standard computational codes in these coupled fluid and salt transport process. Finally, the influence of the length of the domain as well as the changes in the values of the two parameters that result from the assumption of very large (horizontally extended) domains, in the steady state patterns, are also studied theoretical (nondimensionalization) and numerically. For these scenarios, the intrusion (diffusion) and recirculation wedges are decoupled demonstrating the need of a deeper understanding: the two dimensionless groups derived from nondimensionalization does not reproduce the emergent complexity of the concentration and flow steady patterns. Only the introduction of new references for the horizontal coordinate, related to the ‘hidden’ lengths of the intrusion and recirculation wedges, as well as the simplification of the governing equations to the subdomains defined by these wedges, could lead to new dimensionless groups from which the order of magnitude of these hidden quantities could be obtained.es_ES
dc.formatapplication/pdfes_ES
dc.language.isospaes_ES
dc.publisherManuel Alcaraz Aparicioes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleCaracterización del problema de intrusión salina de Henry basada en la adimensionalización discriminada avanzadaes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.subject.otherIngeniería del Terrenoes_ES
dc.contributor.advisorAlhama Manteca, Iván 
dc.contributor.advisorSoto Meca, Antonio 
dc.date.submitted2016-10-14
dc.subjectAgua saladaes_ES
dc.subjectAguas subterráneases_ES
dc.subjectIngeniería civiles_ES
dc.subjectProblema de Henryes_ES
dc.identifier.urihttp://hdl.handle.net/10317/6359
dc.description.centroEscuela Internacional de Doctoradoes_ES
dc.contributor.departmentUnidad predepartamental de Ingeniería Civiles_ES
dc.identifier.doi10.31428/10317/6359
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.description.universityUniversidad Politécnica de Cartagenaes_ES
dc.subject.unesco2508.04 Aguas Subterráneases_ES
dc.subject.unesco3305.06 Ingeniería Civiles_ES
dc.description.programadoctoradoPrograma de Doctorado Tecnología y Modelización en Ingeniería Civil, Minera y Ambientales_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España