Show simple item record

dc.contributor.authorGuerrero García, Julio 
dc.contributor.authorAldaya Valverde, Víctor 
dc.contributor.authorCalixto Molina, Manuel
dc.identifier.citationGUERRERO GARCÍA, Julio, CALIXTO MOLINA, Manuel, ALDAYA VALVERDE, Victor. Quantization on the Torus and modular invariance. En: International Colloquium on Group Theoretical Methods in Physics (21º : 1996: Goslar). Goslar: 1999,
dc.description.abstractThe implementation of modular invariance on the torus as a phase space at the quantum level is discussed in a group-theoretical framework. Unlike the classical case, at the quantum level some restrictions on the parameters of the theory should be imposed to ensure modular invariance. Two cases must be considered, depending on the cohomology class of the symplectic form on the torus. If it is of integer cohomology class n, then full modular invariance is achieved at the quantum level only for those wave functions on the torus which are periodic if n is even, or antiperiodic if n is odd. If the symplectic form is of rational cohomology class n/r , a similar result holds –the wave functions must be either periodic or antiperiodic on a torus r times larger in both direccions, depending on the parity of nr. Application of these results to the Abelian Chern-Simons is
dc.description.sponsorshipJ. Guerrero thanks the Spanish MEC for a Postdoctoral grant and the Department of Physics of Naples-INFN for its hospitality and financial support, and M. Calixto thanks the Spanish MEC for a FPI grant. Work partially supported by the
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.titleQuantization on the Torus and modular invariancees
dc.subject.otherMatemática Aplicadaes
dc.subjectTeoría de Abelian Chern-Simonses

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España