Show simple item record

dc.contributor.authorNavarro, Miguel 
dc.contributor.authorAldaya Valverde, Víctor 
dc.contributor.authorCalixto Molina, Manuel
dc.identifier.citationNAVARRO, Miguel, ALDAYA VALVERDE, Victor, CALIXTO MOLINA, Manuel. Group Quantization on Configuration Space. Journal of Mathematical Physics, 37 (206): 206-218, 1996. ISSN 0022-2488es
dc.description.abstractNew features of a previously introduced Group Approach to Quantization are presented. We show that the construction of the symmetry group associated with the system to be quantized (the “quantizing group”) does not require, in general, the explicit construction of the phase space of the system, i.e., does not require the actual knowledgement of the general solution of the classical equations of motion: in many relevant cases an implicit construction of the group can be given, directly, on configuration space. As an application we construct the symmetry group for the conformally invariant massless scalar and electromagnetic fields and the scalar and Dirac fields evolving in a symmetric curved spacetime or interacting with symmetric classical electromagnetic fields. Further generalizations of the present procedure are also discussed and in particular the conditions under which non-abelian (mainly Kac-Moody) groups can be
dc.description.sponsorshipM. Navarro is grateful to the Spanish MEC for a postdoctoral FPU grant. M. Calixto thanks the Spanish MEC for a FPU
dc.publisherAmerican Institute of Physicses
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.titleGroup Quantization on Configuration Spacees
dc.subject.otherMatemática Aplicadaes
dc.subjectSimetria de grupoes
dc.subjectCuantización de gruposes
dc.subjectCampos Klein-Gordones
dc.subjectOscilador harmónicoes

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España