Show simple item record

dc.contributor.authorPérez Jiménez, Margarita 
dc.date.accessioned2013-12-02T08:27:17Z
dc.date.available2013-12-02T08:27:17Z
dc.date.issued2012-09
dc.description.abstract[SPA] En la Región de Murcia, la fruticultura presenta una gran importancia económica, destacándose el melocotón como el frutal de hueso al que más extensión se dedica. Éste papel destacado del melocotón, propició la unión entre sector productivo e investigación, dando como resultado el programa de mejora genética IMIDA-NOVAMED de melocotón y nectarina. Desde sus inicios, este programa tuvo como objetivo la obtención de variedades mejoradas genéticamente seleccionadas en la zona de cultivo, evitando el pago de costosos royalties por parte de los agricultores y donde ellos mismos seleccionaran los objetivos de las variedades a obtener. Sin embargo, los resultados obtenidos en programas de mejora genética clásica de melocotón y nectarina, se ven limitados por una metodología que no ha sido renovada desde hace décadas: recolección de polen, hibridación en campo, recolección de frutos, cultivo de embriones y/o germinación de semillas y traspaso de plantas a campo. Además, estos programas se enfrentan a dos factores limitantes, ciclos reproductivos largos y largos períodos de junenilidad. Así, la conjunción de todas éstas técnicas completan un ciclo, elevando el tiempo medio de registro de una variedad a 10 años. Uno de los objetivos primordiales en un programa de mejora genética de frutales es la obtención de variedades que adelanten en su salida al mercado a sus competidoras. Para alcanzar este objetivo se realizan hibridaciones empleando variedades de rápida maduración. En la mayor parte de los casos, cuando el parental de rápida maduración es el femenino, las semillas resultantes no puedan germinar por sí solas. Así, nacieron las técnicas de cultivo in vitro de embriones, que suponen un excelente complemento para los programas de mejora clásica, ya que proporcionan a las semillas inmaduras de un ambiente propicio para su germinación. Por otro lado, hay determinados caracteres que tras años de mejora no han conseguido transmitirse. Este es el caso de la resistencia a Sharka, una enfermedad viral con gran capacidad de infección cuya fuente de resistencia se encuentra en otras especies y en variedades que no están adaptadas a nuestras condiciones de cultivo. En los últimos años, la biotecnología se presenta como alternativa a este tipo de limitaciones de la mejora clásica, mediante la incorporación de genes de interés que, o bien confieren resistencia para determinadas enfermedades, o bien potencian las propiedades beneficiosas de determinadas especies. Para la consecución de estos objetivos mediante técnicas de transformación genética se requiere de una regeneración de novo de plantas a partir de células vegetales individuales en cultivo in vitro. Sin embargo, aunque en algunas especies este fenómeno ocurre de forma casi espontánea en otras como las leñosas, es un proceso bastante dificultoso. El melocotón es una especie especialmente recalcitrante en este sentido, donde solo algunos autores han publicado protocolos de regeneración somática, y en la mayoría de los casos a partir de tejidos zigóticos. El inconveniente de la utilización de estos tejidos para técnicas de transformación genética radica en que las semillas son nuevos genotipos en los que sus cualidades organolépticas están aún por determinar.es_ES
dc.description.abstract[ENG] The world population is currently growing in a global food crisis framework, in which science has to rise to the occasion. In the last decades, plant science has offered alternatives to the world, including a deep understanding and improvement of crop quality. Several techniques have been developed in order to increase production or quality by means of adapting horticulture to environmental conditions. Plant breeders have been searching for crop improvements in terms of solutions for different problems, namely diseases, production or postharvest problems. But breeders have also varied objectives such as adaptation of new cultivars to growing areas, disease resistance, ripening fruit, high productivity and organoleptic quality. However, the results obtained in classical breeding programs are limited by a methodology that has not been updated for decades: pollen collection, hybridization, crop harvest, seed germination, and transplanting to the field. Other important factors are seeds containing immature embryos. They are due to a short period between blooming and ripening that leads to low percentages of germination. Immature embryo rescue techniques provide an alternative means to recover seeds from early ripening fruit, which usually fails to completely develop in vivo. But also, fruit breeding programs are facing two limiting factors: long reproductive cycles and long juvenile phases. Thus, the combination of all of them rises the average release time of a new cultivar to a 10-year range. Peach (Prunus persica L. Batsch) is one of the major fruits in the world. Thus, the economic value of this crop is one of the bases of agriculture in Europe. Currently, after decades of breeding, breeding still requires too much time obtaining peach fruits with interesting characteristics because traditional techniques are being used and the genetic basis of economically important traits are unknown. But also, in spite of the presence of some 70 peach breeding programs, peach breeding programs have failed to stabilize certain characters after many cycles of selection. This is the case of resistance to Plum Pox Virus (PPV), widely known as Sharka, a disease with high capacity for viral infection, which affects the productivity and fruit quality of Prunus species. Biotechnology has been presented as a tool to overcome the limitations of classical improvement, through the incorporation of desirable genes that either confer resistance to diseases or boost the beneficial properties of some species. In this sense, genetic transformation is an important tool that can be used in different ways. This technique is very well known as an application to provide protection to crops against certain diseases or insect actions. However, as the genome of different plant species has been sequenced, genetic transformation has played a major role in the elucidation of gene function. To efficiently harness genetic transformation technology, an efficient plant regeneration protocol from plant cells is required. Although in some species this phenomenon occurs almost spontaneously, in others such as woody plants it is quite difficult to achieve. Peach is a particularly recalcitrant species in this sense, in which only some authors have reported somatic regeneration protocols, and in most cases from zygotic tissue. The drawback of using seed-derived material for genetic transformation techniques are that each genotype is unique and not a clone of the parent. The development of plant regeneration protocols from mature tissues is important for the modification of desirable commercial cultivars that have been selected because of economic potential. Since cultivars are typically heterozygous, the seed they produce segregate and the desirable traits may not be present in the progeny that they produce. This research focuses in the development of protocols for both in vitro rescue of embryos and somatic regeneration in peach. On one hand, the searching for a general and improved protocol for embryo rescue in peach can provide a supplementary tool for the peach and nectarine breeding programme developed in IMIDA. On the other hand, developing a series of studies that lead to achieve an efficient protocol for plant regeneration will contribute to take a step forward in genetic transformation in peach. Preliminary field studies of genetic transformation are also included in this present dissertation.en
dc.formatapplication/pdfes_ES
dc.language.isospaes_ES
dc.publisherMargarita Pérez Jiménezes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleHerramientas biotecnológicas aplicadas a la mejora genética de melocotón y nectarinaes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.contributor.advisorCos Terrer, José Enrique 
dc.date.submitted2012-11-30
dc.subjectMelocotónes_ES
dc.subjectNectarinaes_ES
dc.subjectTransformación genéticaes_ES
dc.subjectPeaches_ES
dc.subjectGenetic transformationes_ES
dc.subjectNectarinees_ES
dc.identifier.urihttp://hdl.handle.net/10317/3738
dc.contributor.departmentCiencia y Tecnología Agrariaes_ES
dc.identifier.doi10.31428/10317/3738
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.description.universityUniversidad Politécnica de Cartagenaes_ES
dc.description.programadoctoradoPrograma de doctorado en Técnicas Avanzadas en Investigación y Desarrollo Agrario y Alimentarioes_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España