Show simple item record

dc.contributor.authorAmat Plata, Sergio 
dc.contributor.authorMuñoz, Juan 
dc.date.accessioned2008-07-01T11:29:53Z
dc.date.available2008-07-01T11:29:53Z
dc.date.issued2008-07-01T11:29:53Z
dc.description.abstractIn recent years wavelets decompositions have been widely used in computational Maxwell’s curl equations, to effectively resolve complex problems. In this paper, we review different types of wavelets that we can consider, the Cohen-Daubechies-Feauveau biorthogonal wavelets, the orthogonal Daubechies wavelets and the Deslauriers-Dubuc interpolating wavelets. We summarize the main features of these frameworks and we propose some possible future works.es
dc.description.sponsorshipDepartamento de Matemática Aplicada y Estadística. Universidad Politécnica de Cartagena.es
dc.formatapplication/pdf
dc.language.isospa
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleSome wavelets tools for Maxwell's equationses
dc.typeinfo:eu-repo/semantics/articlees
dc.subjectWaveletses
dc.subjectMultiresoluciónes
dc.subjectMaxwell's equationes
dc.subjectMultiresolución
dc.subjectEcuaciones de Maxwell
dc.identifier.urihttp://hdl.handle.net/10317/331
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España